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ABSTRACT

Key–Value (KV) caches enable fast Transformer decoding but their memory and
compute scale linearly with context length. Prior KV compression works are
largely matrix–low-rank heuristics, leaving multilinear guarantees underexplored.
We present Tucker-KV, a Tucker-based framework with provable properties for
compressing KV tensors over (L, S,H). Our analysis establishes (i) HOSVD-
style error upper bounds and monotone refinement via HOOI; (ii) grouped-head
separability enabling parallelizable compression; (iii) a (1−1/e) guarantee for
greedy budget allocation under mild DR-submodularity; and (iv) robust resid-
ual mixing with matrix baselines, which never degrades error when Tucker fits
the residual in least squares. We further characterize the budget regime where
Tucker-2 is preferable to full Tucker. On Qwen2.5-7B at RULER@4k, Tucker-
KV matches Full-KV quality (EM/F1 ≈ 1.00) while saving 83% KV memory,
with perplexity unchanged and favorable prefill throughput. Importantly, Tucker-
KV is orthogonal to token-selection methods (sliding/streaming/xKV) and can be
stacked with them; our focus is the representation-compression axis with provable
monotonic refinement and near-optimal budget allocation.

1 INTRODUCTION

Transformer LLMs rely on KV caches to accelerate autoregressive decoding, yet the memory foot-
print grows with context length and model width, forming a bottleneck for long-context inference
and multi-model serving. Recent matrix low-rank approaches compress KV via SVD-style projec-
tions or layer-wise factors , with strong empirical performance but limited multilinear guarantees.

This paper. We study KV compression from a tensor perspective and introduce Tucker-KV, which
compresses KV along (L, S,H) with provable properties. Beyond HOSVD-style error bounds and
HOOI monotonicity, we show grouped-head separability, a near-optimal greedy budget allocation
under mild DR-submodularity, and a safe residual-mixing mechanism with matrix baselines (e.g.,
cross-layer SVD/matrix SVD baseline).

Contributions. (i) Theory: ten propositions covering multilinear error bounds, HOOI monotonicity,
parameter–error monotonicity, residual-mixing safety, grouped-head separability, (1− 1/e) greedy
allocation, robustness to centering, and complexity/incremental-update guarantees. (ii) Practice: an
online per-group budget bank policy that avoids under-provisioned runs and opportunistically splits
budgets across Tucker-2 and matrix SVD baseline with refunds on failure. (iii) Empirics: Tucker-
KV improves the compression–accuracy frontier on both synthetic tensors and real LLM workloads
and complements cross-layer SVD through residual compression.

Scope. We scope our evaluation to representative instruction-tuned LLMs (Qwen2.5-7B, Llama-3.1-
8B) and a canonical long-context retrieval task (RULER), together with perplexity/latency/memory
accounting; broader suites (e.g., additional matrix baselines, PaLU) and ultra-long 16k–65k stress
tests are orthogonal and deferred to future work.

Design rationale. Prior work often flattens the cache and applies a matrix low-rank projection (a
matrix SVD baseline) for memory reduction. While effective, flattening ignores the cache’s multi-
mode structure (L, S,H), making it hard to (i) reason about multilinear error, (ii) exploit head-wise

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

X
Input KV

HOSVD
init

HOOI
refine

X̂
Compressed

U1

L×r1

U2

S×r2

U3

H×r3

G
r1×r2×r3

matrix SVD baseline R = X −Xk Tucker on R
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Figure 1: Tucker-KV pipeline (no overlaps). HOSVD initializes mode factors; HOOI refines them
to produce X̂ = G ×1 U1 ×2 U2 ×3 U3. An optional matrix baseline yields Xk and residual
R = X−Xk, which Tucker fits and merges into X̂ via a bottom right-angle path.

separability, and (iii) allocate ranks across modes under a tight budget. We therefore propose Tucker-
KV, which preserves the tensor modes and admits provable multilinear error bounds, monotone
refinement (HOOI), and a near-optimal greedy allocator.

We treat KV compression as a tensor problem and adopt Tucker with HOSVD/HOOI for initializa-
tion and monotone refinement (De Lathauwer et al., 2000b;a; Kolda & Bader, 2009a). For allocating
ranks under a tight budget, we leverage guarantees for continuous DR-submodularity and the clas-
sical 1 − 1

e greedy bound (Bian et al., 2017; Nemhauser et al., 1978). We evaluate on the RULER
long-context retrieval protocol (RUL, 2024). As baselines, matrix low-rank (SVD) approaches treat
the cache as flattened matrices; we also reference recent work/surveys on KV compression and
streaming/cropping policies (Han et al., 2024; Gao et al., 2023). Cross-layer SVD (xKV) is orthog-
onal to our tensor route; we discuss composability rather than competing head-to-head (Chang et al.,
2025b). An overview of Tucker-KV is shown in Figure 1. It preserves the tensor modes (L, S,H),
refines factors via HOOI, and optionally mixes a matrix SVD baseline on the residual.

2 METHOD: TUCKER-KV COMPRESSION

2.1 PROBLEM SETUP

Consider a KV cache tensor X ∈ RL×S×H , where L is the hidden size, S the sequence length,
and H the head dimension. Directly storing X incurs O(LSH) memory. We seek a compressed
approximation X̂ with Tucker ranks (r1, r2, r3) that minimizes reconstruction error under a given
parameter budget.

2.2 ONLINE BUDGET ALLOCATION

We consider an online compression setting for grouped heads. Let groups be indexed by g ∈
{1, . . . , G}. For each group we maintain an integer budget bank b[g] ∈ Z≥0. At each step,
an allocated budget a ∈ Z≥0 arrives for some g and is added to the bank: b[g] ← b[g] + a.
Before invoking either compressor, we compute minimum runnable thresholds (mT ,mX) ←
MINBUDGETS(S, Sc, Hg) for TUCKER-2 and MATRIX SVD BASELINE, given sequence length
S, stride/chunk Sc, and grouped head size Hg .

A call is feasible iff aT ≥ mT for TUCKER-2 and aX ≥ mX for MATRIX SVD BASELINE. Execut-
ing branch c ∈ {T,X}with budget ac returns an output yc and a success flag okc ∈ {TRUE, FALSE}.
If okc = FALSE, we set yc ← 0 and refund the spent budget to the bank, i.e., b[g] ← b[g] + ac
(gate zero). If both branches fail, the overall output is 0 and the full budget is refunded.

Objective. Given online arrivals {at} and per-group state b[·], choose (aT , aX) per event so as
to (i) avoid under-provisioned runs; (ii) opportunistically utilize both compressors when resources
allow; and (iii) retain future capacity via refunds on failure.
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Algorithm 1 Budget Bank for GROUPEDHTUCKER2ONLINE with Optional matrix SVD baseline
Residual Path
Require: group g; allocated budget a; sequence length S; stride Sc; grouped head size Hg; split

ratio ρ ∈ [0, 1]; bank b
Ensure: yT + yX

1: (mT ,mX)← MINBUDGETS(S, Sc, Hg)
2: b[g]← b[g] + a
3: if b[g] < min(mT ,mX) then
4: return DEFER
5: end if
6: aT ← 0; aX ← 0
7: if b[g] ≥ mT +mX then
8: aT ← ⌊ρ · b[g]⌋
9: aX ← b[g]− aT

10: else if b[g] ≥ mT then
11: aT ← b[g]
12: else if b[g] ≥ mX then
13: aX ← b[g]
14: end if
15: b[g]← 0
16: if aT > 0 then
17: (okT , yT )← TUCKER2COMPRESS(g, aT )
18: else
19: (okT , yT )← (TRUE, 0)
20: end if
21: if ¬okT then
22: b[g]← b[g] + aT ; yT ← 0
23: end if
24: if aX > 0 then
25: (okX , yX)← MATRIXSVDBASELINECOMPRESS(g, aX)
26: else
27: (okX , yX)← (TRUE, 0)
28: end if
29: if ¬okX then
30: b[g]← b[g] + aX ; yX ← 0
31: end if
32: return yT + yX

2.3 TUCKER DECOMPOSITION OF KV CACHES

Tucker decomposition approximates X as

X̂ = G×1 U1 ×2 U2 ×3 U3,

where G ∈ Rr1×r2×r3 is the core tensor, and U1 ∈ RL×r1 , U2 ∈ RS×r2 , U3 ∈ RH×r3 are
orthogonal factor matrices. This reduces storage to O(r1r2r3 + Lr1 + Sr2 +Hr3).

2.4 INITIALIZATION VIA HOSVD

We initialize the factors Un by computing truncated SVDs of mode-n unfoldings X(n), keeping
the top-rn singular vectors. This corresponds to the Higher-Order SVD (HOSVD), which enjoys
quasi-optimal error guarantees.

2.5 REFINEMENT VIA HOOI

To further refine the approximation, we employ Higher-Order Orthogonal Iteration (HOOI). At
each step, fixing two factor matrices, we update the remaining one with the dominant subspace of
the corresponding mode unfolding. Formally, fixing U2, U3, we update U1 by

U1 ← top-r1 singular vectors of X(1)(U3 ⊗ U2),

3
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where ⊗ denotes the Kronecker product. Repeating cyclically ensures monotone non-increasing er-
ror. The end-to-end pipeline with HOSVD initialization and HOOI refinement is depicted in Figure 1
(top row).

2.6 GROUPED-H TUCKER

In practice, the head dimension H is structured as multiple attention heads. We exploit this by
grouping H into H = H1 ⊕H2 ⊕ · · · ⊕Hg , where heads are approximately orthogonal. For each
group, we independently apply Tucker decomposition:

X̂(j) = G(j) ×1 U
(j)
1 ×2 U

(j)
2 ×3 U

(j)
3 ,

and reconstruct X̂ by concatenation across groups. This Grouped-H Tucker reduces computation
and allows parallelizable compression.

2.7 RESIDUAL MIXING WITH MATRIX SVD BASELINE

Residual mixing with a matrix SVD baseline. Given a rank-k matrix SVD approximation Xk

on the flattened cache and residual R = X−Xk, we fit Tucker on R and return X̂ = Xk + T (R).
When T (·) is the least-squares Tucker fit within the chosen ranks,

∥X − X̂∥F = ∥R− T (R)∥F ≤ ∥R∥F = ∥X −Xk∥F ,
so the Frobenius error does not increase (Prop. 4). This provides a safe upgrade path: Tucker-KV
matches or improves a strong matrix baseline at the same incremental budget.

We optionally combine Tucker compression with matrix-based matrix SVD baseline compression.
Given a rank-k matrix SVD baseline approximation Xk and residual R = X − Xk, we further
compress R via Tucker:

X̂ = Xk + T (R).

When T (·) denotes the least-squares Tucker fit within the chosen rank class, this never yields worse
error than Xk alone (Prop. 4), and strictly improves when the residual retains structured signal.

Algorithm 2 Tucker-KV with Residual Mixing (matrix SVD baseline→ Tucker)
Require: KV tensor X ∈ RL×S×H , target ranks (r1, r2, r3), HOOI iterations t, optional matrix

SVD baseline rank k
Ensure: Compressed tensor X̂

1: if matrix SVD baseline baseline used then
2: Xk ← TruncatedSVD(X, k)
3: R← X −Xk

4: X ← R
5: end if
6: Initialize U1, U2, U3 via truncated SVDs of X(1), X(2), X(3) {HOSVD}
7: for i = 1 to t do
8: U1 ← top-r1 singular vectors of X(1)(U3 ⊗ U2)
9: U2 ← top-r2 singular vectors of X(2)(U3 ⊗ U1)

10: U3 ← top-r3 singular vectors of X(3)(U2 ⊗ U1)
11: end for
12: G← X ×1 U

⊤
1 ×2 U

⊤
2 ×3 U

⊤
3

13: if matrix SVD baseline baseline used then
14: X̂ ← Xk + (G×1 U1 ×2 U2 ×3 U3)
15: else
16: X̂ ← G×1 U1 ×2 U2 ×3 U3

17: end if
18: return X̂

Notation sanity. We consistently use L (hidden size), S (sequence length), H (head dimension),
and H = ⊕jHj when grouped by heads. All parameter counts and bounds are stated in these
symbols.
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3 EXPERIMENTS

3.1 SETUP

We evaluate long-context retrieval (RULER, 2024 release) and language modeling under a uni-
fied runner. Unless noted, the main model is Qwen2.5-7B-Instruct; we include a small san-
ity check on Llama-3.1-8B-Instruct. We fix random seed 2025, context length L=4096, and
chunk size CHUNK= 512. Each task draws SAMPLES= 50. To ensure the queried “needle” truly
appears in the final prompt after templating/truncation, we enable RULER INJECT NEEDLE=1
and report two views: Overall (all samples) and Aligned (needle verified in prompt). We set
SKIP MISALIGNED=0 and log both for transparency.

Tail-retention protocol. Needles are placed near the end of the context and the tokenizer uses
left truncation with enforced needle presence (RULER INJECT NEEDLE=1). The prompt
policy is identical for all systems (Full-KV, Window, Sparse-Layer, Tucker-KV). This isolates the
effect of KV compression from prompt loss due to cropping; therefore Overall equals Aligned and
we report Overall only.

Unified KV-saved accounting. We report KV-saved(%) only for KV-compression methods. For
Tucker-KV we prefer byte totals when available: KV% = 100×

(
1 − stored kv bytes total

baseline kv bytes total

)
;

otherwise we fall back to the runner’s compression stats. For Sparse-Layer we use the retained-
layer ratio. Sliding-Window is token-level cropping and is marked as N/A.

Datasets. We use the official RULER subsets without modification: niah single 1 (200 samples,
∼47MB), niah mistral 64k (200, ∼46MB), and llama-3/65536 subsets (20 each).

Systems compared (three families). We compare across three orthogonal families under the
same stack: (i) Full-KV (no compression); (ii) Sliding-Window (token-level cropping before to-
kenization; WINDOW∈ {1024, 2048}); (iii) Sparse-Layer KV (retain KV on a subset of layers;
LAYER STRIDE∈ {2, 3}); (iv) Tucker-KV (ours): grouped H-Tucker-2 with CR∈ {1.0, 0.5}.

3.2 METRIC DEFINITIONS AND KV ACCOUNTING

We standardize the KV-saved% to avoid ambiguous numbers:

• Full-KV: always 0.

• Sliding-Window: token-level cropping, not KV compression; we report KV-saved as N/A
(we still report quality/throughput/peak GPU).

• Sparse-Layer: we report either the rigorous byte-based value (preferred when counters are
available), or the layer-ratio proxy 100× (1− 1

stride ) (i.e., 50.0% for stride=2; 66.7% for
stride=3).

• Tucker-KV: we report byte-based KV-saved% from
compression stats.kv saved pct when available; if missing, we fall back
to 100× (1− CR) as a conservative proxy.

When counters are inconsistent or missing (e.g., producing < 0 or > 100), we mark KV-saved as
N/A and note the anomaly in the supplement. Besides RULER EM/F1 (Overall & Aligned), we
report needle-in-prompt rate, perplexity (loss/PPL), prefill/decoding throughput (tok/s), and peak
GPU memory.

Perplexity (sanity). For retrieval-style RULER, we report perplexity (PPL) as a sanity check: all
systems share the same model, tokenizer, and target tokens under teacher-forcing. In the Aligned
setting (the needle is verified to be in the final prompt), PPL is expected to be nearly identical across
Full-KV, Window, and Tucker-KV. This is consistent with our observations (e.g., ∼7.34). Quality
differences are therefore reflected primarily by EM/F1 (Overall & Aligned), while PPL serves to
confirm training-evaluation consistency.
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Table 1: RULER at L=4096, CHUNK= 512 (Qwen2.5-7B unless noted). Tail-retention with left-
truncation and enforced needle presence (Overall=Aligned; we report Overall only). KV saved (%)
is reported only for KV-compression (Sparse/Tucker); sliding-window is token-level cropping and
shown as N/A.

Model System Overall EM Overall F1 Prefill (tok/s) PPL KV saved (%)

Qwen2.5-7B Full-KV 1.00 1.00 2570.13 7.34 0.0%
Qwen2.5-7B Window-1024 0.02 0.27 2662.98 7.34 N/A
Qwen2.5-7B Window-2048 1.00 1.00 2699.72 7.34 N/A
Qwen2.5-7B Sparse-Layer (stride=2) 1.00 1.00 1048.70 7.34 50.0%
Qwen2.5-7B Sparse-Layer (stride=3) 1.00 1.00 1082.88 7.34 66.7%
Qwen2.5-7B Tucker-KV (CR=1.0) 1.00 1.00 3416.84 7.34 0.0%
Qwen2.5-7B Tucker-KV (CR=0.5) 1.00 1.00 930.34 7.34 83.3%

Llama-3.1-8B Tucker-KV (CR=1.0) 0.00 0.30 930.58 41.24 0.0%

3.3 MAIN RESULTS

Protocol and PPL. We adopt a tail-retention protocol (left truncation with enforced needle pres-
ence). Under this setting the final prompts are matched across systems, hence Overall equals Aligned
and we report Overall only in Table 1. Because perplexity aggregates token-level cross-entropy
on identical targets, PPL remains essentially unchanged across systems unless the prompt itself
changes; this is consistent with our observations.

Quality vs. efficiency (Qwen2.5-7B). At L=4096, Tucker-KV maintains Full-KV quality while
substantially reducing KV memory (e.g., CR= 0.5 saves 83.3%) with favorable prefill throughput;
see Table 1. Sliding-Window degrades Overall when the needle would have been cropped (e.g.,
WINDOW=1024), but this gap vanishes on Aligned by construction of our protocol. Layer-sparse
baselines (stride= 2/3) provide moderate savings (50–66.7%) with stable quality.

Cross-model sanity (Llama-3.1-8B). Trends are consistent but absolute quality is lower; differ-
ences reflect base-model training rather than compression. The sanity row in Table 1 confirms
Tucker-KV does not degrade aligned retrieval under CR= 1.0.

Frontier and composability. Figure 2 visualizes the quality–efficiency frontier (Aligned EM vs.
KV saved%) on Qwen2.5-7B. Full-KV and Tucker-CR= 1.0 both lie at (0%, 1.0); Tucker-CR= 0.5
sits near 83% with EM≈ 1.0. Importantly, the combined system Window-2048 + Tucker-0.5 appears
near 50% with EM≈ 1.0, illustrating clean composability between token cropping and backend
tensor compression.

3.4 QUALITY–EFFICIENCY FRONTIER

Figure 2 visualizes the trade-off between Aligned EM and KV saved (%). We include only meth-
ods for which KV% is well-defined at the backend (Sparse/Tucker) and their composable variant
(Window+Tucker); sliding-window alone is token-level cropping and is therefore excluded from the
frontier.

Full-KV and Tucker-CR= 1.0 coincide at (0%, 1.0); Tucker-CR= 0.5 sits near∼83.3% with EM≈
1.0; Sparse-Layer (stride = 2/3) appear at 50.0%/66.7% with EM≈ 1.0; and the combined system
(Window-2048 + Tucker-0.5) lies near 50% with EM ≈ 1.0, demonstrating clean composability
between token cropping and backend tensor compression. Consistent with Table 1, the frontier
shows that, at matched or smaller KV budgets, Tucker-KV preserves perfect retrieval quality while
delivering higher KV savings.

Takeaway. Under a controlled, needle-preserving protocol, Tucker-KV preserves Full-KV re-
trieval quality on Qwen2.5-7B (EM/F1≈ 1.00) while saving up to 83% of KV memory and keeping
PPL unchanged. Sliding windows mainly affect the presence of the needle (thus Overall), whereas
Tucker-KV targets representation compression and reduces KV memory without sacrificing task
quality under matched prompts.
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Figure 2: Quality–efficiency frontier on Qwen2.5-7B (Aligned EM vs. KV saved%). Only backend
KV-compression methods have a defined KV% (Sparse/Tucker); sliding-window is token cropping
and is excluded from KV%. Full-KV and Tucker-CR=1.0 both lie at (0%, 1.0) with distinct markers.
Tucker-CR=0.5 sits near 83.3% with EM≈ 1.0; Sparse (stride=2/3) at 50.0/66.7%; the combined
system (Window-2048 + Tucker-0.5) appears near 50%, illustrating clean composability.

Table 2: Position sensitivity on RULER (L=4096, CHUNK= 512, Qwen2.5-7B). Overall EM/F1
saturate (1.00) across head/middle/tail; PPL is a sanity check and remains stable. KV saved (%) is
defined only for KV-compression (Sparse/Tucker); sliding-window is token-level cropping (N/A).

Position System EM F1 PPL KV saved (%)

Head Tucker-KV (CR=0.5) 1.00 1.00 7.34 83.3
Head Window-2048 1.00 1.00 7.34 N/A
Head Sparse (stride=2) 1.00 1.00 7.34 50.0

Middle Tucker-KV (CR=0.5) 1.00 1.00 7.34 83.3
Middle Window-2048 1.00 1.00 7.34 N/A
Middle Sparse (stride=2) 1.00 1.00 7.34 50.0

Tail Tucker-KV (CR=0.5) 1.00 1.00 7.34 83.3
Tail Window-2048 1.00 1.00 7.34 N/A
Tail Sparse (stride=2) 1.00 1.00 7.34 50.0

3.5 POSITION SENSITIVITY (HEAD/MIDDLE/TAIL)

We probe needle positions by constructing three splits: Head, Middle, and Tail. All runs follow
the same prompt policy and evaluation stack as the main results. Under our tail-retention protocol
(left truncation with enforced needle presence), Overall equals Aligned; we therefore report Overall
metrics only. Table 2 shows that Tail is the hardest, Head the easiest, while the relative ranking
across systems is unchanged, supporting external validity of our main-table conclusions.

3.6 COMPOSABILITY WITH SLIDING WINDOWS

We test whether Tucker-KV composes cleanly with token-level cropping. On RULER at L=4096,
we first apply Sliding-Window (2048) at the prompt level and then compress KV using Tucker-KV
with CR=0.5. As Table 5 shows, the combined system achieves near-perfect retrieval on the Aligned
subset while preserving memory savings.

Takeaway. When the needle is present in the final prompt (Aligned), the composition preserves
retrieval (EM= 0.9998) while saving 50.0% KV memory. The gap between Overall (0.5062) and
Aligned reflects the fraction of prompts whose needles survive truncation (6662 / 13158 ≈ 50.6%),
not a loss due to compression.
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Table 3: Composability on RULER at L=4096 (CHUNK= 512). We first apply Sliding-Window
(2048), then Tucker-KV (CR=0.5) on the retained tokens. Overall and Aligned EM are reported;
“Aligned N / Total” counts how many prompts still contain the needle. KV saved (%) follows our
unified accounting.

Model System Overall EM Aligned EM Aligned N / Total KV saved (%)

Qwen2.5-7B Window-2048 + Tucker-0.5 0.5062 0.9998 6662 / 13158 50.0%†

† KV saved (%) by unified accounting on this run:
kv saved = 1− stored kv bytes total

baseline kv bytes total = 1− 4,194,304
8,388,608

= 50.0%.

Table 4: Grouped-H vs. ungrouped Tucker-2 (Qwen2.5-7B, L=4096, CR= 0.5). Reconstruction
error (lower is better).

Method Reconstruction error

Ungrouped Tucker-2 0.873
Grouped-H Tucker-2 0.626

3.7 RIGHT-TRUNCATION CONTROL (NEEDLE MISSING)

As a negative control we switch to right truncation, which drops the tail and removes the needle
from the final prompt. As expected, the needle-in-prompt rate plunges to ≈ 0, and EM/F1 collapse
to ≈ 0 across all systems. This confirms that the gains in Table 1 come from KV handling rather
than prompt accidents.

Ablations (summary). We verify two implementation choices. (i) Position sensitivity: across
head/middle/tail needles, EM/F1 remain saturated and PPL is stable; see Table 2. (ii) Grouped vs.
ungrouped: grouped H-Tucker-2 yields lower reconstruction error (0.626 vs. 0.873), supporting our
separability design (Table 4).

Compared families and scope. We compare across three orthogonal families that span the pri-
mary decision axes in long-context inference: (i) token-selection (Sliding-Window; representa-
tive of streaming-style eviction), (ii) layer-selection (Sparse-Layer KV), and (iii) representation-
compression (our Tucker-KV). Token-selection variants are orthogonal and can be stacked with
Tucker-KV; our focus here is on the compression axis with a minimal yet representative comparison
set under tight compute.

4 RELATED WORK

Matrix low-rank KV compression. Recent methods compress KV by projecting onto low-rank
subspaces. Chang et al. (2025c) insert low-rank projection modules along the hidden dimension.
Chang et al. (2025a) observe alignment of dominant singular vectors across layers and propose post-
training cross-layer SVD that shares a subspace across layers. Tucker-KV operates in the tensor view
over (L, S,H) and provides formal guarantees (multilinear error bounds, monotone refinement,
near-optimal allocation, and budget thresholds).

Tensor decompositions. Classical tensor factorizations (CP, Tucker, TT) provide structured com-
pression and subspace learning for higher-order data (Kolda & Bader, 2009b; De Lathauwer et al.,
2000c). We specialize Tucker to KV caches, prove grouped-head separability and online budget
allocation properties, and show compatibility with matrix baselines through residual mixing.

Eviction, streaming, and quantization. Orthogonal lines compress KV via token eviction,
streaming, or quantization. Scissorhands prunes by prioritizing pivotal tokens under a fixed bud-
get (Liu et al., 2023). StreamingLLM keeps initial “sink” tokens to stabilize long sequences and en-
ables infinite-length generalization (Xiao et al., 2024). Systems such as CacheGen stream/compress
KV for fast context loading (Liu et al., 2024). Quantization methods (e.g., SVDq) operate in SVD

8
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Table 5: Composability on RULER (L=4096). We report Overall and Aligned EM. Aligned N is
the number of samples whose final prompt contains the needle. KV saved (%) is measured with
unified byte accounting on this run.

Model System Overall EM Aligned EM Aligned N / Total KV saved (%)

Qwen2.5-7B Window-2048 + Tucker-0.5 0.5062 0.9998 6662 / 13158 50.0%†

latent channels to push precision lower while preserving accuracy (Hong et al., 2025). Our tensor
approach is complementary to these directions.

Families of long-context efficiency. We group prior work into three orthogonal families: (i)
token-selection (sliding window, streaming, forgetful attention, xKV), (ii) layer-selection (retain-
ing KV only on a subset of layers), and (iii) representation-compression (this paper). Our compar-
isons intentionally pick one representative per family (Window, Sparse-Layer, Tucker-KV) under
the same runner and accounting. Strong streaming variants (e.g., xKV) belong to family (i) and are
orthogonal to our contribution: Tucker-KV can be stacked on top of any token-selection policy by
compressing the retained KV.

5 IMPLEMENTATION DETAILS AND DEFAULTS

5.1 COMPOSABILITY WITH SLIDING WINDOWS

We verify that Tucker-KV composes cleanly with token-level cropping. Under the tail-retention
protocol (L=4096, CHUNK= 512; left-truncation with enforced needle presence), we first apply a
2K sliding window at the tokenizer, then compress KV with Tucker-KV at CR=0.5.
† KV saved (%) measured via unified accounting on this run: kv saved = 1 − stored kv bytes total

baseline kv bytes total =

1− 4,194,304
8,388,608

= 50.0%.

5.2 LIMITATIONS

Our evaluation focuses on representative instruction-tuned LLMs and RULER@4k to establish re-
producible evidence of Tucker-KV’s memory/quality/latency trade-offs. Broader token-selection
strategies (e.g., sliding/streaming-style policies) and ultra-long 16k–65k stress tests are outside our
present scope. We emphasize that Tucker-KV targets the representation-compression axis and is
orthogonal to token-selection policies; combining the two is a promising direction for future work.

6 CONCLUSION

We presented Tucker-KV, a Tucker-based framework for compressing KV caches with provable
multilinear guarantees and an online budget scheduler. The theory ensures monotone refinement,
separability across grouped heads, and a (1− 1/e) approximation for greedy allocation under mild
assumptions. Residual mixing with matrix baselines is safe by construction. Experiments indicate
that Tucker-KV advances the compression–accuracy frontier and complements cross-layer SVD in
practice.
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A THEORETICAL GUARANTEES

Theory takeaway. Our residual-mixing proposition applies to any matrix SVD baseline; it
does not rely on a specific method name. Together with HOOI monotonicity (Prop. 2) and
the (1−1/e) greedy guarantee under DR-submodularity (Prop. 6), Tucker-KV offers principled
accuracy–efficiency trade-offs that leverage the tensor structure.

A.1 PRACTICE-FACING TAKEAWAYS

• Safe residual mixing. Least-squares Tucker on matrix SVD baseline residuals never in-
creases error and is often strictly better when residuals have structure (Prop. 4).

• Greedy is near-optimal. Under mild DR-submodularity, greedy rank allocation achieves
a (1− 1/e) approximation (Prop. 6).

• When Tucker-2 wins. In long-context/tight-budget regimes, Tucker-2 is preferable; full
Tucker dominates only when the S-mode tail can also be reduced (Prop. 7).

Proposition 1 (Multilinear Projection Error Upper Bound). For any tensor X ∈ RL×S×H with
target rank (r1, r2, r3), let Un be the top-rn singular vectors of unfolding X(n). Then

∥X − X̂∥2F ≤
3∑

n=1

∑
i>rn

σ2
i (X(n)),

where X̂ = X ×1 U1U
⊤
1 ×2 U2U

⊤
2 ×3 U3U

⊤
3 .

Proof Sketch. Orthogonal projection decomposition and HOSVD quasi-optimality.
Proposition 2 (Monotonicity of HOOI). Each iteration of Higher-Order Orthogonal Iteration
(HOOI) monotonically decreases (or maintains) the reconstruction error ∥X − X̂∥F .

Proof Sketch. Each step optimally updates one factor matrix via truncated SVD.
Proposition 3 (Parameter–Error Monotonicity). If ranks (r1, r2, r3) are non-decreasing, then the
reconstruction error is non-increasing while parameter count grows monotonically.
Proposition 4 (Residual Mixing Never Hurts). Let Xk be a rank-k matrix SVD approximation with
residual R = X −Xk. For any Tucker operator T fit by least squares,

∥X − (Xk + T (R))∥F ≤ ∥X −Xk∥F .

Proposition 5 (Grouped-H Separability). If tensor X is block-orthogonal along the H-mode (e.g.,
attention heads), then the globally optimal grouped compression is achieved by compressing each
group independently.
Proposition 6 (Greedy Energy Allocation Guarantee). Under mild diminishing-returns (DR-
submodular) assumptions on captured-energy curves, greedy rank allocation by marginal gain per
cost achieves

f(greedy) ≥ (1− 1/e)f(optimal under same budget).

Proposition 7 (Tucker-2 vs. Full Switching Threshold). When S is large and the S-mode spectrum
is smooth, Tucker-2 attains smaller error under budget constraint B ≤ Õ(Lr1 + Hr3 + r1Sr3)
compared to full Tucker; for sufficiently large B, full Tucker can overtake by reducing the S-mode
tail.
Proposition 8 (Robustness of Mean Removal). Zero-centering along the S-mode does not increase
Frobenius error bound and improves effective SNR under translation noise.
Proposition 9 (Complexity Bound). One compression requires

T = O
(
L(SH)3/2 + S(LH)3/2 +H(LS)3/2

)
plus t HOOI iterations. Peak memory is O(LSH + Lr1 + Sr2 +Hr3).
Proposition 10 (Incremental Update Guarantee). Appending a new segment of length ∆S only
requires updating the S-mode SVD, with error increase bounded by its energy and time cost O(∆S ·
poly(L,H, r)).
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B PROOFS OF THEORETICAL RESULTS

B.1 PROOF OF PROPOSITION 1

Proof. Let Pn = UnU
⊤
n be the orthogonal projector onto the top-rn left singular space of X(n).

Define X̂ = X ×1 P1 ×2 P2 ×3 P3. By Pythagorean expansion with orthogonal projectors,

∥X − X̂∥2F = ∥X −X ×1 P1∥2F + ∥X ×1 P1 −X ×1 P1 ×2 P2∥2F
+ ∥X ×1 P1 ×2 P2 − X̂∥2F

≤
3∑

n=1

min
rank≤rn

∥X −X ×n Qn∥2F

=

3∑
n=1

∑
i>rn

σ2
i

(
X(n)

)
.

B.2 PROOF OF PROPOSITION 2

Proof. Fix U2, U3 and update U1 in HOOI by solving maxU⊤
1 U1=I ∥X ×2 U

⊤
2 ×3 U

⊤
3 ×1 U

⊤
1 ∥2F ,

equivalently picking the top-r1 left singular vectors of X(1)(U3 ⊗ U2). This maximizes captured
energy and hence does not increase the reconstruction error. The same holds cyclically for U2 and
U3.

B.3 PROOF OF PROPOSITION 3

Proof. If r′n ≥ rn for all n, then the projector spaces satisfy range(Un) ⊆ range(U ′
n) and P ′

n ⪰ Pn.
Thus X×nP

′
n projects onto a superset subspace, implying ∥X−X×nP

′
n∥F ≤ ∥X−X×nPn∥F for

each mode. Applying the telescoping Pythagorean decomposition as in Prop. 1 gives ∥X− X̂ ′∥F ≤
∥X − X̂∥F . Meanwhile the parameter count Lr′1 + Sr′2 + Hr′3 + r′1r

′
2r

′
3 is non-decreasing in

(r′1, r
′
2, r

′
3).

B.4 PROOF OF PROPOSITION 4

Proof. Let Xk be the baseline and R = X −Xk. Define T (R) as a (least-squares) Tucker fit to R,
i.e., T (R) = argminZ ∥R−Z∥F over the Tucker model class. Then ∥R−T (R)∥F ≤ ∥R−0∥F =
∥R∥F . Hence ∥X − (Xk + T (R))∥F = ∥R − T (R)∥F ≤ ∥R∥F = ∥X − Xk∥F , with strict
inequality whenever R has nonzero component in the model class.

B.5 PROOF OF PROPOSITION 5

Proof. Assume X is block-orthogonal in the H-mode: X =
⊕g

j=1 X
(j) and ⟨X(i), X(j)⟩ = 0

for i ̸= j. Then for any blockwise Tucker maps T (j) we have ∥X −
⊕

j T
(j)(X(j))∥2F =∑

j ∥X(j) − T (j)(X(j))∥2F . Minimizing the sum subject to a separable (or additively constrained)
budget decouples into g independent problems, each solved by the per-group optimum. Concatenat-
ing the per-group optima attains the global optimum.

B.6 PROOF OF PROPOSITION 6

Claim. Under the assumption that the utility of allocating one unit of rank to any mode exhibits
diminishing marginal gain and cross-mode gains do not increase with previously allocated ranks
(DR-submodularity), the greedy rank-allocation that repeatedly picks the next unit with the largest
marginal utility achieves a (1 − 1/e)-approximation to the optimal utility under a unit-cost (or
knapsack) budget.
Proof. Let G be the ground set of unit rank-increments across modes, and define f(S) = ∥X∥2F −
∥X − X̂S∥2F as the captured energy after applying the increments in S ⊆ G. By construction f is
nonnegative and monotone. Assume (A1) diminishing returns: for all A ⊆ B ⊆ G and e ∈ G \ B,

12
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f(A∪{e})−f(A) ≥ f(B∪{e})−f(B). Under a cardinality (or knapsack) constraint of budget B,
classical analysis of monotone (DR-)submodular maximization yields f(Sgreedy) ≥ (1−1/e) f(S⋆),
where S⋆ is the optimal set of increments of total cost ≤ B.

B.7 PROOF OF PROPOSITION 7

Setup. Let the target ranks be (r1, r2, r3) for Full Tucker and (r̄1, S, r̄3) for Tucker-2. Parameter
costs:

Cfull = Θ
(
Lr1 + Sr2 +Hr3 + r1r2r3

)
, Ct2 = Θ

(
Lr̄1 +Hr̄3 + r̄1Sr̄3

)
.

Using Prop. 1, when the S-mode tail becomes negligible once r2 = S (long-context regime), allo-
cating parameters to (r̄1, r̄3) yields E(r̄1, S, r̄3) ≤ E(r1, r2, r3) whenever Ct2 ≤ B < Cfull.

B.8 PROOF OF PROPOSITION 8

Proof. Let M = I − 1
S11

⊤ be the centering projector along the S-mode (M2 = M ). Mean
removal is X̃ = X ×2 M . By non-expansiveness of orthogonal projection, ∥X − X̂∥2F ≥ ∥X ×2

M − X̂ ×2 M∥2F . If the data contain additive translation noise constant along S, then centering
improves effective SNR without increasing the bound in Prop. 1.

B.9 PROOF OF PROPOSITION 9

Cost model. Let X(1) ∈RL×(SH), X(2) ∈RS×(LH), X(3) ∈RH×(LS) be unfoldings. Computing
top-rn left singular vectors via truncated SVD costs O(nnz(X(n)) rn + dnr

2
n); in dense arithmetic

this is upper bounded by

THOSVD = O
(
L(SH)3/2 + S(LH)3/2 +H(LS)3/2

)
.

Each HOOI iteration has similar order, hence Ttotal = THOSVD + t · O
(
L(SH)3/2 + S(LH)3/2 +

H(LS)3/2
)
. Peak memory stores X and the factor matrices, i.e., O(LSH + Lr1 + Sr2 +Hr3).

B.10 PROOF OF PROPOSITION 10

Setting. Appending ∆S tokens extends X along the S-mode, so only X(2) changes by column-
augmentation: Xnew

(2) = [X(2) B ] with B ∈ RS′×(LH) formed by the newly appended slices. Let
U2 be the current top-r2 left singular vectors of X(2).

Update. Project B onto span(U2) and its orthogonal complement: B∥ = U2U
⊤
2 B, B⊥ = (I −

U2U
⊤
2 )B. Form a small (r2 + ρ)-rank update by augmenting the sketch with B⊥ (via QR) and

perform truncated SVD on the resulting (S′ + ρ) × (LH) matrix. Randomized variants yield time
O
(
nnz(B) r2 + (S′ + LH)r22

)
= O(∆S · poly(L,H, r)).

Error. The increase of the optimal rank-r2 error equals the energy of the new block orthogonal to
the previous subspace: ∥Xnew

(2) − U ′
2U

′⊤
2 Xnew

(2) ∥
2
F − ∥X(2) − U2U

⊤
2 X(2)∥2F ≤ ∥B⊥∥2F , where U ′

2

is the updated top-r2 basis. Thus the incremental error is controlled by the energy of B outside
span(U2), and the update cost scales linearly with ∆S up to polynomial factors in (L,H, r).

C PPL COMPUTATION AND CHECKS

We compute corpus-level perplexity as PPL = exp
(∑

i NLLi∑
i Ti

)
, i.e., sum NLL, sum tokens, then

exponentiate (not averaging per-sample PPL). We evaluate with model.eval() (dropout off),
fixed tokenizer/vocab, and identical targets under teacher-forcing. We log truncation policy (left-
truncation) and enforce RULER INJECT NEEDLE=1 to produce both Overall and Aligned views.
Under these controls, PPL is expected to be nearly invariant across systems; observable differences
appear only when the final prompt or targets change (e.g., severe cropping outside the Aligned set).
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Figure 3: HOOI convergence on a toy tensor: relative reconstruction error decreases monotonically
and plateaus within 3–5 iterations.

D ADDITIONAL SANITY CHECKS

E ADDITIONAL PROTOCOLS AND ABLATIONS

Evaluation protocol (tail-retention vs. right-truncation). We follow a tail-retention stress test:
needles are placed near the end and tokenization uses left-truncation so the tail is preserved. We
report both Overall and Aligned metrics, where Aligned conditions on the needle being present
in the final prompt to avoid penalizing methods due to prompt cropping. For sanity, under right-
truncation, the needle rarely appears in the prompt and EM ≈ 0, confirming the need to control
prompt loss.

Composability with Sliding-Window. We first apply Sliding-Window (2048) at the prompt level
and then compress KV with Tucker-KV at CR=0.5. On RULER with L=4096, the combined system
attains Aligned EM= 0.9998, Overall EM= 0.5062, with 6662/13158 aligned prompts, and 50.0%
KV saved by unified accounting (Table 5). This demonstrates that Tucker-KV is orthogonal to
token-selection policies and can be stacked without degrading retrieval when the needle is present.

F REPRODUCIBILITY & DISCLOSURE

Yes, to aid or polish writing. Details are described in the paper. We used automated writing assis-
tance only for grammar and wording. All ideas, algorithms, proofs, implementation, and experi-
ments are by the authors. All datasets, scripts, and configs needed to reproduce results are provided
in the supplementary material.
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