
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TUCKER-KV: PROVABLE TUCKER COMPRESSION OF
KV CACHES WITH MONOTONE REFINEMENT AND
NEAR-OPTIMAL BUDGETING

Anonymous authors
Paper under double-blind review

ABSTRACT

Key–Value (KV) caches enable fast Transformer decoding but their memory and
compute scale linearly with context length. Prior KV compression works are
largely matrix–low-rank heuristics, leaving multilinear guarantees underexplored.
We present Tucker-KV, a Tucker-based framework with provable properties for
compressing KV tensors over (L, S,H). Our analysis establishes (i) HOSVD-
style error upper bounds and monotone refinement via HOOI; (ii) grouped-head
separability enabling parallelizable compression; (iii) a (1−1/e) guarantee for
greedy budget allocation under mild DR-submodularity; and (iv) robust resid-
ual mixing with matrix baselines, which never degrades error when Tucker fits
the residual in least squares. We further characterize the budget regime where
Tucker-2 is preferable to full Tucker. On Qwen2.5-7B at RULER@4k, Tucker-
KV matches Full-KV quality (EM/F1 ≈ 1.00) while saving 83% KV memory,
with perplexity unchanged and favorable prefill throughput. Importantly, Tucker-
KV is orthogonal to token-selection methods (sliding/streaming/xKV) and can be
stacked with them; our focus is the representation-compression axis with provable
monotonic refinement and near-optimal budget allocation.

1 INTRODUCTION

Transformer LLMs rely on KV caches to accelerate autoregressive decoding, yet the memory foot-
print grows with context length and model width, forming a bottleneck for long-context inference
and multi-model serving. Recent matrix low-rank approaches compress KV via SVD-style projec-
tions or layer-wise factors , with strong empirical performance but limited multilinear guarantees.

This paper. We study KV compression from a tensor perspective and introduce Tucker-KV, which
compresses KV along (L, S,H) with provable properties. Beyond HOSVD-style error bounds and
HOOI monotonicity, we show grouped-head separability, a near-optimal greedy budget allocation
under mild DR-submodularity, and a safe residual-mixing mechanism with matrix baselines (e.g.,
cross-layer SVD/matrix SVD baseline).

Contributions. (i) Theory: ten propositions covering multilinear error bounds, HOOI monotonicity,
parameter–error monotonicity, residual-mixing safety, grouped-head separability, (1− 1/e) greedy
allocation, robustness to centering, and complexity/incremental-update guarantees. (ii) Practice: an
online per-group budget bank policy that avoids under-provisioned runs and opportunistically splits
budgets across Tucker-2 and matrix SVD baseline with refunds on failure. (iii) Empirics: Tucker-
KV improves the compression–accuracy frontier on both synthetic tensors and real LLM workloads
and complements cross-layer SVD through residual compression.

Scope. We scope our evaluation to representative instruction-tuned LLMs (Qwen2.5-7B, Llama-3.1-
8B) and a canonical long-context retrieval task (RULER), together with perplexity/latency/memory
accounting; broader suites (e.g., additional matrix baselines, PaLU) and ultra-long 16k–65k stress
tests are orthogonal and deferred to future work.

Design rationale. Prior work often flattens the cache and applies a matrix low-rank projection (a
matrix SVD baseline) for memory reduction. While effective, flattening ignores the cache’s multi-
mode structure (L, S,H), making it hard to (i) reason about multilinear error, (ii) exploit head-wise

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

X
Input KV

HOSVD
init

HOOI
refine

X̂
Compressed

U1

L×r1

U2

S×r2

U3

H×r3

G
r1×r2×r3

matrix SVD baseline R = X −Xk Tucker on R

L×S×H same shape, lower ranks

Figure 1: Tucker-KV pipeline (no overlaps). HOSVD initializes mode factors; HOOI refines them
to produce X̂ = G ×1 U1 ×2 U2 ×3 U3. An optional matrix baseline yields Xk and residual
R = X−Xk, which Tucker fits and merges into X̂ via a bottom right-angle path.

separability, and (iii) allocate ranks across modes under a tight budget. We therefore propose Tucker-
KV, which preserves the tensor modes and admits provable multilinear error bounds, monotone
refinement (HOOI), and a near-optimal greedy allocator.

We treat KV compression as a tensor problem and adopt Tucker with HOSVD/HOOI for initializa-
tion and monotone refinement (De Lathauwer et al., 2000b;a; Kolda & Bader, 2009a). For allocating
ranks under a tight budget, we leverage guarantees for continuous DR-submodularity and the clas-
sical 1 − 1

e greedy bound (Bian et al., 2017; Nemhauser et al., 1978). We evaluate on the RULER
long-context retrieval protocol (RUL, 2024). As baselines, matrix low-rank (SVD) approaches treat
the cache as flattened matrices; we also reference recent work/surveys on KV compression and
streaming/cropping policies (Han et al., 2024; Gao et al., 2023). Cross-layer SVD (xKV) is orthog-
onal to our tensor route; we discuss composability rather than competing head-to-head (Chang et al.,
2025b). An overview of Tucker-KV is shown in Figure 1. It preserves the tensor modes (L, S,H),
refines factors via HOOI, and optionally mixes a matrix SVD baseline on the residual.

2 METHOD: TUCKER-KV COMPRESSION

2.1 PROBLEM SETUP

Consider a KV cache tensor X ∈ RL×S×H , where L is the hidden size, S the sequence length,
and H the head dimension. Directly storing X incurs O(LSH) memory. We seek a compressed
approximation X̂ with Tucker ranks (r1, r2, r3) that minimizes reconstruction error under a given
parameter budget.

2.2 ONLINE BUDGET ALLOCATION

We consider an online compression setting for grouped heads. Let groups be indexed by g ∈
{1, . . . , G}. For each group we maintain an integer budget bank b[g] ∈ Z≥0. At each step,
an allocated budget a ∈ Z≥0 arrives for some g and is added to the bank: b[g] ← b[g] + a.
Before invoking either compressor, we compute minimum runnable thresholds (mT ,mX) ←
MINBUDGETS(S, Sc, Hg) for TUCKER-2 and MATRIX SVD BASELINE, given sequence length
S, stride/chunk Sc, and grouped head size Hg .

A call is feasible iff aT ≥ mT for TUCKER-2 and aX ≥ mX for MATRIX SVD BASELINE. Execut-
ing branch c ∈ {T,X}with budget ac returns an output yc and a success flag okc ∈ {TRUE, FALSE}.
If okc = FALSE, we set yc ← 0 and refund the spent budget to the bank, i.e., b[g] ← b[g] + ac
(gate zero). If both branches fail, the overall output is 0 and the full budget is refunded.

Objective. Given online arrivals {at} and per-group state b[·], choose (aT , aX) per event so as
to (i) avoid under-provisioned runs; (ii) opportunistically utilize both compressors when resources
allow; and (iii) retain future capacity via refunds on failure.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 Budget Bank for GROUPEDHTUCKER2ONLINE with Optional matrix SVD baseline
Residual Path
Require: group g; allocated budget a; sequence length S; stride Sc; grouped head size Hg; split

ratio ρ ∈ [0, 1]; bank b
Ensure: yT + yX

1: (mT ,mX)← MINBUDGETS(S, Sc, Hg)
2: b[g]← b[g] + a
3: if b[g] < min(mT ,mX) then
4: return DEFER
5: end if
6: aT ← 0; aX ← 0
7: if b[g] ≥ mT +mX then
8: aT ← ⌊ρ · b[g]⌋
9: aX ← b[g]− aT

10: else if b[g] ≥ mT then
11: aT ← b[g]
12: else if b[g] ≥ mX then
13: aX ← b[g]
14: end if
15: b[g]← 0
16: if aT > 0 then
17: (okT , yT )← TUCKER2COMPRESS(g, aT )
18: else
19: (okT , yT )← (TRUE, 0)
20: end if
21: if ¬okT then
22: b[g]← b[g] + aT ; yT ← 0
23: end if
24: if aX > 0 then
25: (okX , yX)← MATRIXSVDBASELINECOMPRESS(g, aX)
26: else
27: (okX , yX)← (TRUE, 0)
28: end if
29: if ¬okX then
30: b[g]← b[g] + aX ; yX ← 0
31: end if
32: return yT + yX

2.3 TUCKER DECOMPOSITION OF KV CACHES

Tucker decomposition approximates X as

X̂ = G×1 U1 ×2 U2 ×3 U3,

where G ∈ Rr1×r2×r3 is the core tensor, and U1 ∈ RL×r1 , U2 ∈ RS×r2 , U3 ∈ RH×r3 are
orthogonal factor matrices. This reduces storage to O(r1r2r3 + Lr1 + Sr2 +Hr3).

2.4 INITIALIZATION VIA HOSVD

We initialize the factors Un by computing truncated SVDs of mode-n unfoldings X(n), keeping
the top-rn singular vectors. This corresponds to the Higher-Order SVD (HOSVD), which enjoys
quasi-optimal error guarantees.

2.5 REFINEMENT VIA HOOI

To further refine the approximation, we employ Higher-Order Orthogonal Iteration (HOOI). At
each step, fixing two factor matrices, we update the remaining one with the dominant subspace of
the corresponding mode unfolding. Formally, fixing U2, U3, we update U1 by

U1 ← top-r1 singular vectors of X(1)(U3 ⊗ U2),

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where ⊗ denotes the Kronecker product. Repeating cyclically ensures monotone non-increasing er-
ror. The end-to-end pipeline with HOSVD initialization and HOOI refinement is depicted in Figure 1
(top row).

2.6 GROUPED-H TUCKER

In practice, the head dimension H is structured as multiple attention heads. We exploit this by
grouping H into H = H1 ⊕H2 ⊕ · · · ⊕Hg , where heads are approximately orthogonal. For each
group, we independently apply Tucker decomposition:

X̂(j) = G(j) ×1 U
(j)
1 ×2 U

(j)
2 ×3 U

(j)
3 ,

and reconstruct X̂ by concatenation across groups. This Grouped-H Tucker reduces computation
and allows parallelizable compression.

2.7 RESIDUAL MIXING WITH MATRIX SVD BASELINE

Residual mixing with a matrix SVD baseline. Given a rank-k matrix SVD approximation Xk

on the flattened cache and residual R = X−Xk, we fit Tucker on R and return X̂ = Xk + T (R).
When T (·) is the least-squares Tucker fit within the chosen ranks,

∥X − X̂∥F = ∥R− T (R)∥F ≤ ∥R∥F = ∥X −Xk∥F ,
so the Frobenius error does not increase (Prop. 4). This provides a safe upgrade path: Tucker-KV
matches or improves a strong matrix baseline at the same incremental budget.

We optionally combine Tucker compression with matrix-based matrix SVD baseline compression.
Given a rank-k matrix SVD baseline approximation Xk and residual R = X − Xk, we further
compress R via Tucker:

X̂ = Xk + T (R).

When T (·) denotes the least-squares Tucker fit within the chosen rank class, this never yields worse
error than Xk alone (Prop. 4), and strictly improves when the residual retains structured signal.

Algorithm 2 Tucker-KV with Residual Mixing (matrix SVD baseline→ Tucker)
Require: KV tensor X ∈ RL×S×H , target ranks (r1, r2, r3), HOOI iterations t, optional matrix

SVD baseline rank k
Ensure: Compressed tensor X̂

1: if matrix SVD baseline baseline used then
2: Xk ← TruncatedSVD(X, k)
3: R← X −Xk

4: X ← R
5: end if
6: Initialize U1, U2, U3 via truncated SVDs of X(1), X(2), X(3) {HOSVD}
7: for i = 1 to t do
8: U1 ← top-r1 singular vectors of X(1)(U3 ⊗ U2)
9: U2 ← top-r2 singular vectors of X(2)(U3 ⊗ U1)

10: U3 ← top-r3 singular vectors of X(3)(U2 ⊗ U1)
11: end for
12: G← X ×1 U

⊤
1 ×2 U

⊤
2 ×3 U

⊤
3

13: if matrix SVD baseline baseline used then
14: X̂ ← Xk + (G×1 U1 ×2 U2 ×3 U3)
15: else
16: X̂ ← G×1 U1 ×2 U2 ×3 U3

17: end if
18: return X̂

Notation sanity. We consistently use L (hidden size), S (sequence length), H (head dimension),
and H = ⊕jHj when grouped by heads. All parameter counts and bounds are stated in these
symbols.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3 EXPERIMENTS

3.1 SETUP

We evaluate long-context retrieval (RULER, 2024 release) and language modeling under a uni-
fied runner. Unless noted, the main model is Qwen2.5-7B-Instruct; we include a small san-
ity check on Llama-3.1-8B-Instruct. We fix random seed 2025, context length L=4096, and
chunk size CHUNK= 512. Each task draws SAMPLES= 50. To ensure the queried “needle” truly
appears in the final prompt after templating/truncation, we enable RULER INJECT NEEDLE=1
and report two views: Overall (all samples) and Aligned (needle verified in prompt). We set
SKIP MISALIGNED=0 and log both for transparency.

Tail-retention protocol. Needles are placed near the end of the context and the tokenizer uses
left truncation with enforced needle presence (RULER INJECT NEEDLE=1). The prompt
policy is identical for all systems (Full-KV, Window, Sparse-Layer, Tucker-KV). This isolates the
effect of KV compression from prompt loss due to cropping; therefore Overall equals Aligned and
we report Overall only.

Unified KV-saved accounting. We report KV-saved(%) only for KV-compression methods. For
Tucker-KV we prefer byte totals when available: KV% = 100×

(
1 − stored kv bytes total

baseline kv bytes total

)
;

otherwise we fall back to the runner’s compression stats. For Sparse-Layer we use the retained-
layer ratio. Sliding-Window is token-level cropping and is marked as N/A.

Datasets. We use the official RULER subsets without modification: niah single 1 (200 samples,
∼47MB), niah mistral 64k (200, ∼46MB), and llama-3/65536 subsets (20 each).

Systems compared (three families). We compare across three orthogonal families under the
same stack: (i) Full-KV (no compression); (ii) Sliding-Window (token-level cropping before to-
kenization; WINDOW∈ {1024, 2048}); (iii) Sparse-Layer KV (retain KV on a subset of layers;
LAYER STRIDE∈ {2, 3}); (iv) Tucker-KV (ours): grouped H-Tucker-2 with CR∈ {1.0, 0.5}.

3.2 METRIC DEFINITIONS AND KV ACCOUNTING

We standardize the KV-saved% to avoid ambiguous numbers:

• Full-KV: always 0.

• Sliding-Window: token-level cropping, not KV compression; we report KV-saved as N/A
(we still report quality/throughput/peak GPU).

• Sparse-Layer: we report either the rigorous byte-based value (preferred when counters are
available), or the layer-ratio proxy 100× (1− 1

stride ) (i.e., 50.0% for stride=2; 66.7% for
stride=3).

• Tucker-KV: we report byte-based KV-saved% from
compression stats.kv saved pct when available; if missing, we fall back
to 100× (1− CR) as a conservative proxy.

When counters are inconsistent or missing (e.g., producing < 0 or > 100), we mark KV-saved as
N/A and note the anomaly in the supplement. Besides RULER EM/F1 (Overall & Aligned), we
report needle-in-prompt rate, perplexity (loss/PPL), prefill/decoding throughput (tok/s), and peak
GPU memory.

Perplexity (sanity). For retrieval-style RULER, we report perplexity (PPL) as a sanity check: all
systems share the same model, tokenizer, and target tokens under teacher-forcing. In the Aligned
setting (the needle is verified to be in the final prompt), PPL is expected to be nearly identical across
Full-KV, Window, and Tucker-KV. This is consistent with our observations (e.g., ∼7.34). Quality
differences are therefore reflected primarily by EM/F1 (Overall & Aligned), while PPL serves to
confirm training-evaluation consistency.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: RULER at L=4096, CHUNK= 512 (Qwen2.5-7B unless noted). Tail-retention with left-
truncation and enforced needle presence (Overall=Aligned; we report Overall only). KV saved (%)
is reported only for KV-compression (Sparse/Tucker); sliding-window is token-level cropping and
shown as N/A.

Model System Overall EM Overall F1 Prefill (tok/s) PPL KV saved (%)

Qwen2.5-7B Full-KV 1.00 1.00 2570.13 7.34 0.0%
Qwen2.5-7B Window-1024 0.02 0.27 2662.98 7.34 N/A
Qwen2.5-7B Window-2048 1.00 1.00 2699.72 7.34 N/A
Qwen2.5-7B Sparse-Layer (stride=2) 1.00 1.00 1048.70 7.34 50.0%
Qwen2.5-7B Sparse-Layer (stride=3) 1.00 1.00 1082.88 7.34 66.7%
Qwen2.5-7B Tucker-KV (CR=1.0) 1.00 1.00 3416.84 7.34 0.0%
Qwen2.5-7B Tucker-KV (CR=0.5) 1.00 1.00 930.34 7.34 83.3%

Llama-3.1-8B Tucker-KV (CR=1.0) 0.00 0.30 930.58 41.24 0.0%

3.3 MAIN RESULTS

Protocol and PPL. We adopt a tail-retention protocol (left truncation with enforced needle pres-
ence). Under this setting the final prompts are matched across systems, hence Overall equals Aligned
and we report Overall only in Table 1. Because perplexity aggregates token-level cross-entropy
on identical targets, PPL remains essentially unchanged across systems unless the prompt itself
changes; this is consistent with our observations.

Quality vs. efficiency (Qwen2.5-7B). At L=4096, Tucker-KV maintains Full-KV quality while
substantially reducing KV memory (e.g., CR= 0.5 saves 83.3%) with favorable prefill throughput;
see Table 1. Sliding-Window degrades Overall when the needle would have been cropped (e.g.,
WINDOW=1024), but this gap vanishes on Aligned by construction of our protocol. Layer-sparse
baselines (stride= 2/3) provide moderate savings (50–66.7%) with stable quality.

Cross-model sanity (Llama-3.1-8B). Trends are consistent but absolute quality is lower; differ-
ences reflect base-model training rather than compression. The sanity row in Table 1 confirms
Tucker-KV does not degrade aligned retrieval under CR= 1.0.

Frontier and composability. Figure 2 visualizes the quality–efficiency frontier (Aligned EM vs.
KV saved%) on Qwen2.5-7B. Full-KV and Tucker-CR= 1.0 both lie at (0%, 1.0); Tucker-CR= 0.5
sits near 83% with EM≈ 1.0. Importantly, the combined system Window-2048 + Tucker-0.5 appears
near 50% with EM≈ 1.0, illustrating clean composability between token cropping and backend
tensor compression.

3.4 QUALITY–EFFICIENCY FRONTIER

Figure 2 visualizes the trade-off between Aligned EM and KV saved (%). We include only meth-
ods for which KV% is well-defined at the backend (Sparse/Tucker) and their composable variant
(Window+Tucker); sliding-window alone is token-level cropping and is therefore excluded from the
frontier.

Full-KV and Tucker-CR= 1.0 coincide at (0%, 1.0); Tucker-CR= 0.5 sits near∼83.3% with EM≈
1.0; Sparse-Layer (stride = 2/3) appear at 50.0%/66.7% with EM≈ 1.0; and the combined system
(Window-2048 + Tucker-0.5) lies near 50% with EM ≈ 1.0, demonstrating clean composability
between token cropping and backend tensor compression. Consistent with Table 1, the frontier
shows that, at matched or smaller KV budgets, Tucker-KV preserves perfect retrieval quality while
delivering higher KV savings.

Takeaway. Under a controlled, needle-preserving protocol, Tucker-KV preserves Full-KV re-
trieval quality on Qwen2.5-7B (EM/F1≈ 1.00) while saving up to 83% of KV memory and keeping
PPL unchanged. Sliding windows mainly affect the presence of the needle (thus Overall), whereas
Tucker-KV targets representation compression and reduces KV memory without sacrificing task
quality under matched prompts.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: Quality–efficiency frontier on Qwen2.5-7B (Aligned EM vs. KV saved%). Only backend
KV-compression methods have a defined KV% (Sparse/Tucker); sliding-window is token cropping
and is excluded from KV%. Full-KV and Tucker-CR=1.0 both lie at (0%, 1.0) with distinct markers.
Tucker-CR=0.5 sits near 83.3% with EM≈ 1.0; Sparse (stride=2/3) at 50.0/66.7%; the combined
system (Window-2048 + Tucker-0.5) appears near 50%, illustrating clean composability.

Table 2: Position sensitivity on RULER (L=4096, CHUNK= 512, Qwen2.5-7B). Overall EM/F1
saturate (1.00) across head/middle/tail; PPL is a sanity check and remains stable. KV saved (%) is
defined only for KV-compression (Sparse/Tucker); sliding-window is token-level cropping (N/A).

Position System EM F1 PPL KV saved (%)

Head Tucker-KV (CR=0.5) 1.00 1.00 7.34 83.3
Head Window-2048 1.00 1.00 7.34 N/A
Head Sparse (stride=2) 1.00 1.00 7.34 50.0

Middle Tucker-KV (CR=0.5) 1.00 1.00 7.34 83.3
Middle Window-2048 1.00 1.00 7.34 N/A
Middle Sparse (stride=2) 1.00 1.00 7.34 50.0

Tail Tucker-KV (CR=0.5) 1.00 1.00 7.34 83.3
Tail Window-2048 1.00 1.00 7.34 N/A
Tail Sparse (stride=2) 1.00 1.00 7.34 50.0

3.5 POSITION SENSITIVITY (HEAD/MIDDLE/TAIL)

We probe needle positions by constructing three splits: Head, Middle, and Tail. All runs follow
the same prompt policy and evaluation stack as the main results. Under our tail-retention protocol
(left truncation with enforced needle presence), Overall equals Aligned; we therefore report Overall
metrics only. Table 2 shows that Tail is the hardest, Head the easiest, while the relative ranking
across systems is unchanged, supporting external validity of our main-table conclusions.

3.6 COMPOSABILITY WITH SLIDING WINDOWS

We test whether Tucker-KV composes cleanly with token-level cropping. On RULER at L=4096,
we first apply Sliding-Window (2048) at the prompt level and then compress KV using Tucker-KV
with CR=0.5. As Table 5 shows, the combined system achieves near-perfect retrieval on the Aligned
subset while preserving memory savings.

Takeaway. When the needle is present in the final prompt (Aligned), the composition preserves
retrieval (EM= 0.9998) while saving 50.0% KV memory. The gap between Overall (0.5062) and
Aligned reflects the fraction of prompts whose needles survive truncation (6662 / 13158 ≈ 50.6%),
not a loss due to compression.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Composability on RULER at L=4096 (CHUNK= 512). We first apply Sliding-Window
(2048), then Tucker-KV (CR=0.5) on the retained tokens. Overall and Aligned EM are reported;
“Aligned N / Total” counts how many prompts still contain the needle. KV saved (%) follows our
unified accounting.

Model System Overall EM Aligned EM Aligned N / Total KV saved (%)

Qwen2.5-7B Window-2048 + Tucker-0.5 0.5062 0.9998 6662 / 13158 50.0%†

† KV saved (%) by unified accounting on this run:
kv saved = 1− stored kv bytes total

baseline kv bytes total = 1− 4,194,304
8,388,608

= 50.0%.

Table 4: Grouped-H vs. ungrouped Tucker-2 (Qwen2.5-7B, L=4096, CR= 0.5). Reconstruction
error (lower is better).

Method Reconstruction error

Ungrouped Tucker-2 0.873
Grouped-H Tucker-2 0.626

3.7 RIGHT-TRUNCATION CONTROL (NEEDLE MISSING)

As a negative control we switch to right truncation, which drops the tail and removes the needle
from the final prompt. As expected, the needle-in-prompt rate plunges to ≈ 0, and EM/F1 collapse
to ≈ 0 across all systems. This confirms that the gains in Table 1 come from KV handling rather
than prompt accidents.

Ablations (summary). We verify two implementation choices. (i) Position sensitivity: across
head/middle/tail needles, EM/F1 remain saturated and PPL is stable; see Table 2. (ii) Grouped vs.
ungrouped: grouped H-Tucker-2 yields lower reconstruction error (0.626 vs. 0.873), supporting our
separability design (Table 4).

Compared families and scope. We compare across three orthogonal families that span the pri-
mary decision axes in long-context inference: (i) token-selection (Sliding-Window; representa-
tive of streaming-style eviction), (ii) layer-selection (Sparse-Layer KV), and (iii) representation-
compression (our Tucker-KV). Token-selection variants are orthogonal and can be stacked with
Tucker-KV; our focus here is on the compression axis with a minimal yet representative comparison
set under tight compute.

4 RELATED WORK

Matrix low-rank KV compression. Recent methods compress KV by projecting onto low-rank
subspaces. Chang et al. (2025c) insert low-rank projection modules along the hidden dimension.
Chang et al. (2025a) observe alignment of dominant singular vectors across layers and propose post-
training cross-layer SVD that shares a subspace across layers. Tucker-KV operates in the tensor view
over (L, S,H) and provides formal guarantees (multilinear error bounds, monotone refinement,
near-optimal allocation, and budget thresholds).

Tensor decompositions. Classical tensor factorizations (CP, Tucker, TT) provide structured com-
pression and subspace learning for higher-order data (Kolda & Bader, 2009b; De Lathauwer et al.,
2000c). We specialize Tucker to KV caches, prove grouped-head separability and online budget
allocation properties, and show compatibility with matrix baselines through residual mixing.

Eviction, streaming, and quantization. Orthogonal lines compress KV via token eviction,
streaming, or quantization. Scissorhands prunes by prioritizing pivotal tokens under a fixed bud-
get (Liu et al., 2023). StreamingLLM keeps initial “sink” tokens to stabilize long sequences and en-
ables infinite-length generalization (Xiao et al., 2024). Systems such as CacheGen stream/compress
KV for fast context loading (Liu et al., 2024). Quantization methods (e.g., SVDq) operate in SVD

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Composability on RULER (L=4096). We report Overall and Aligned EM. Aligned N is
the number of samples whose final prompt contains the needle. KV saved (%) is measured with
unified byte accounting on this run.

Model System Overall EM Aligned EM Aligned N / Total KV saved (%)

Qwen2.5-7B Window-2048 + Tucker-0.5 0.5062 0.9998 6662 / 13158 50.0%†

latent channels to push precision lower while preserving accuracy (Hong et al., 2025). Our tensor
approach is complementary to these directions.

Families of long-context efficiency. We group prior work into three orthogonal families: (i)
token-selection (sliding window, streaming, forgetful attention, xKV), (ii) layer-selection (retain-
ing KV only on a subset of layers), and (iii) representation-compression (this paper). Our compar-
isons intentionally pick one representative per family (Window, Sparse-Layer, Tucker-KV) under
the same runner and accounting. Strong streaming variants (e.g., xKV) belong to family (i) and are
orthogonal to our contribution: Tucker-KV can be stacked on top of any token-selection policy by
compressing the retained KV.

5 IMPLEMENTATION DETAILS AND DEFAULTS

5.1 COMPOSABILITY WITH SLIDING WINDOWS

We verify that Tucker-KV composes cleanly with token-level cropping. Under the tail-retention
protocol (L=4096, CHUNK= 512; left-truncation with enforced needle presence), we first apply a
2K sliding window at the tokenizer, then compress KV with Tucker-KV at CR=0.5.
† KV saved (%) measured via unified accounting on this run: kv saved = 1 − stored kv bytes total

baseline kv bytes total =

1− 4,194,304
8,388,608

= 50.0%.

5.2 LIMITATIONS

Our evaluation focuses on representative instruction-tuned LLMs and RULER@4k to establish re-
producible evidence of Tucker-KV’s memory/quality/latency trade-offs. Broader token-selection
strategies (e.g., sliding/streaming-style policies) and ultra-long 16k–65k stress tests are outside our
present scope. We emphasize that Tucker-KV targets the representation-compression axis and is
orthogonal to token-selection policies; combining the two is a promising direction for future work.

6 CONCLUSION

We presented Tucker-KV, a Tucker-based framework for compressing KV caches with provable
multilinear guarantees and an online budget scheduler. The theory ensures monotone refinement,
separability across grouped heads, and a (1− 1/e) approximation for greedy allocation under mild
assumptions. Residual mixing with matrix baselines is safe by construction. Experiments indicate
that Tucker-KV advances the compression–accuracy frontier and complements cross-layer SVD in
practice.

REFERENCES

Ruler: What’s the real context size of your long-context language models? https://
huggingface.co/papers/2406.16494, 2024. Accessed 2025-09-25.

Andrew An Bian, Baharan Mirzasoleiman, Joachim M. Buhmann, and Andreas Krause. A continu-
ous diminishing returns submodular property. In NeurIPS, 2017.

Chi-Chih Chang, Chien-Yu Lin, Yash Akhauri, Wei-Cheng Lin, Kai-Chiang Wu, Luis Ceze, and
Mohamed S. Abdelfattah. xKV: Cross-layer SVD for KV-cache compression, 2025a. URL
https://arxiv.org/abs/2503.18893.

9

https://huggingface.co/papers/2406.16494
https://huggingface.co/papers/2406.16494
https://arxiv.org/abs/2503.18893


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Chi-Chih Chang, Chien-Yu Lin, Yash Akhauri, Wei-Cheng Lin, Kai-Chiang Wu, Luis Ceze, and
Mohamed S. Abdelfattah. xkv: Cross-layer svd for kv-cache compression. arXiv:2503.18893,
2025b. https://arxiv.org/abs/2503.18893.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, Mohamed S. Abdelfattah, and Kai-Chiang Wu. PALU: KV-cache
compression with low-rank projection. In International Conference on Learning Representations
(ICLR), 2025c. URL https://openreview.net/pdf?id=LWMS4pk2vK. Published as
a conference paper at ICLR 2025.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. On the best rank-1 and rank-(r1, r2, r3)
approximation of higher-order tensors. SIAM Journal on Matrix Analysis and Applications, 21
(4):1324–1342, 2000a.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular value decompo-
sition. SIAM Journal on Matrix Analysis and Applications, 21(4):1253–1278, 2000b.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular value de-
composition. SIAM Journal on Matrix Analysis and Applications, 21(4):1253–1278, 2000c.
doi: 10.1137/S0895479896305696. URL https://www.math.ucdavis.edu/˜saito/
data/tensor/lathauwer-etal_mulilinear-SVD.pdf.

Shangxiang Gao et al. Kv cache compression and streaming for llms. arXiv:2310.07240, 2023.
https://arxiv.org/abs/2310.07240.

Yuxin Han et al. Kv cache compression in llm inference: A survey. arXiv:2403.05527, 2024.
https://arxiv.org/abs/2403.05527.

Yankun Hong, Xing Li, Hui-Ling Zhen, Xianzhi Yu, Wulong Liu, and Mingxuan Yuan. SVDq:
1.25-bit and 410× key cache compression for LLM attention, 2025. URL https://arxiv.
org/abs/2502.15304.

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Review, 51
(3):455–500, 2009a.

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Re-
view, 51(3):455–500, 2009b. doi: 10.1137/07070111X. URL https://www.kolda.net/
publication/TensorReview.pdf.

Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang, Qizheng Zhang, Kuntai Du,
Jiayi Yao, Shan Lu, Ganesh Ananthanarayanan, Michael Maire, Henry Hoffmann, Ari Holtzman,
and Junchen Jiang. Cachegen: KV cache compression and streaming for fast large language model
serving. In ACM SIGCOMM, 2024. URL https://arxiv.org/abs/2310.07240. Also
available as arXiv:2310.07240.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu,
Anastasios Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the per-
sistence of importance hypothesis for LLM KV cache compression at test time.
In Advances in Neural Information Processing Systems (NeurIPS), 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/hash/
a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html.

George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approximations
for maximizing submodular set functions. Mathematical Programming, 14:265–294, 1978.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming lan-
guage models with attention sinks, 2024. URL https://arxiv.org/abs/2309.17453.
ICLR 2024.

10

https://arxiv.org/abs/2503.18893
https://openreview.net/pdf?id=LWMS4pk2vK
https://www.math.ucdavis.edu/~saito/data/tensor/lathauwer-etal_mulilinear-SVD.pdf
https://www.math.ucdavis.edu/~saito/data/tensor/lathauwer-etal_mulilinear-SVD.pdf
https://arxiv.org/abs/2310.07240
https://arxiv.org/abs/2403.05527
https://arxiv.org/abs/2502.15304
https://arxiv.org/abs/2502.15304
https://www.kolda.net/publication/TensorReview.pdf
https://www.kolda.net/publication/TensorReview.pdf
https://arxiv.org/abs/2310.07240
https://proceedings.neurips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
https://arxiv.org/abs/2309.17453


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

A THEORETICAL GUARANTEES

Theory takeaway. Our residual-mixing proposition applies to any matrix SVD baseline; it
does not rely on a specific method name. Together with HOOI monotonicity (Prop. 2) and
the (1−1/e) greedy guarantee under DR-submodularity (Prop. 6), Tucker-KV offers principled
accuracy–efficiency trade-offs that leverage the tensor structure.

A.1 PRACTICE-FACING TAKEAWAYS

• Safe residual mixing. Least-squares Tucker on matrix SVD baseline residuals never in-
creases error and is often strictly better when residuals have structure (Prop. 4).

• Greedy is near-optimal. Under mild DR-submodularity, greedy rank allocation achieves
a (1− 1/e) approximation (Prop. 6).

• When Tucker-2 wins. In long-context/tight-budget regimes, Tucker-2 is preferable; full
Tucker dominates only when the S-mode tail can also be reduced (Prop. 7).

Proposition 1 (Multilinear Projection Error Upper Bound). For any tensor X ∈ RL×S×H with
target rank (r1, r2, r3), let Un be the top-rn singular vectors of unfolding X(n). Then

∥X − X̂∥2F ≤
3∑

n=1

∑
i>rn

σ2
i (X(n)),

where X̂ = X ×1 U1U
⊤
1 ×2 U2U

⊤
2 ×3 U3U

⊤
3 .

Proof Sketch. Orthogonal projection decomposition and HOSVD quasi-optimality.
Proposition 2 (Monotonicity of HOOI). Each iteration of Higher-Order Orthogonal Iteration
(HOOI) monotonically decreases (or maintains) the reconstruction error ∥X − X̂∥F .

Proof Sketch. Each step optimally updates one factor matrix via truncated SVD.
Proposition 3 (Parameter–Error Monotonicity). If ranks (r1, r2, r3) are non-decreasing, then the
reconstruction error is non-increasing while parameter count grows monotonically.
Proposition 4 (Residual Mixing Never Hurts). Let Xk be a rank-k matrix SVD approximation with
residual R = X −Xk. For any Tucker operator T fit by least squares,

∥X − (Xk + T (R))∥F ≤ ∥X −Xk∥F .

Proposition 5 (Grouped-H Separability). If tensor X is block-orthogonal along the H-mode (e.g.,
attention heads), then the globally optimal grouped compression is achieved by compressing each
group independently.
Proposition 6 (Greedy Energy Allocation Guarantee). Under mild diminishing-returns (DR-
submodular) assumptions on captured-energy curves, greedy rank allocation by marginal gain per
cost achieves

f(greedy) ≥ (1− 1/e)f(optimal under same budget).

Proposition 7 (Tucker-2 vs. Full Switching Threshold). When S is large and the S-mode spectrum
is smooth, Tucker-2 attains smaller error under budget constraint B ≤ Õ(Lr1 + Hr3 + r1Sr3)
compared to full Tucker; for sufficiently large B, full Tucker can overtake by reducing the S-mode
tail.
Proposition 8 (Robustness of Mean Removal). Zero-centering along the S-mode does not increase
Frobenius error bound and improves effective SNR under translation noise.
Proposition 9 (Complexity Bound). One compression requires

T = O
(
L(SH)3/2 + S(LH)3/2 +H(LS)3/2

)
plus t HOOI iterations. Peak memory is O(LSH + Lr1 + Sr2 +Hr3).
Proposition 10 (Incremental Update Guarantee). Appending a new segment of length ∆S only
requires updating the S-mode SVD, with error increase bounded by its energy and time cost O(∆S ·
poly(L,H, r)).

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

B PROOFS OF THEORETICAL RESULTS

B.1 PROOF OF PROPOSITION 1

Proof. Let Pn = UnU
⊤
n be the orthogonal projector onto the top-rn left singular space of X(n).

Define X̂ = X ×1 P1 ×2 P2 ×3 P3. By Pythagorean expansion with orthogonal projectors,

∥X − X̂∥2F = ∥X −X ×1 P1∥2F + ∥X ×1 P1 −X ×1 P1 ×2 P2∥2F
+ ∥X ×1 P1 ×2 P2 − X̂∥2F

≤
3∑

n=1

min
rank≤rn

∥X −X ×n Qn∥2F

=

3∑
n=1

∑
i>rn

σ2
i

(
X(n)

)
.

B.2 PROOF OF PROPOSITION 2

Proof. Fix U2, U3 and update U1 in HOOI by solving maxU⊤
1 U1=I ∥X ×2 U

⊤
2 ×3 U

⊤
3 ×1 U

⊤
1 ∥2F ,

equivalently picking the top-r1 left singular vectors of X(1)(U3 ⊗ U2). This maximizes captured
energy and hence does not increase the reconstruction error. The same holds cyclically for U2 and
U3.

B.3 PROOF OF PROPOSITION 3

Proof. If r′n ≥ rn for all n, then the projector spaces satisfy range(Un) ⊆ range(U ′
n) and P ′

n ⪰ Pn.
Thus X×nP

′
n projects onto a superset subspace, implying ∥X−X×nP

′
n∥F ≤ ∥X−X×nPn∥F for

each mode. Applying the telescoping Pythagorean decomposition as in Prop. 1 gives ∥X− X̂ ′∥F ≤
∥X − X̂∥F . Meanwhile the parameter count Lr′1 + Sr′2 + Hr′3 + r′1r

′
2r

′
3 is non-decreasing in

(r′1, r
′
2, r

′
3).

B.4 PROOF OF PROPOSITION 4

Proof. Let Xk be the baseline and R = X −Xk. Define T (R) as a (least-squares) Tucker fit to R,
i.e., T (R) = argminZ ∥R−Z∥F over the Tucker model class. Then ∥R−T (R)∥F ≤ ∥R−0∥F =
∥R∥F . Hence ∥X − (Xk + T (R))∥F = ∥R − T (R)∥F ≤ ∥R∥F = ∥X − Xk∥F , with strict
inequality whenever R has nonzero component in the model class.

B.5 PROOF OF PROPOSITION 5

Proof. Assume X is block-orthogonal in the H-mode: X =
⊕g

j=1 X
(j) and ⟨X(i), X(j)⟩ = 0

for i ̸= j. Then for any blockwise Tucker maps T (j) we have ∥X −
⊕

j T
(j)(X(j))∥2F =∑

j ∥X(j) − T (j)(X(j))∥2F . Minimizing the sum subject to a separable (or additively constrained)
budget decouples into g independent problems, each solved by the per-group optimum. Concatenat-
ing the per-group optima attains the global optimum.

B.6 PROOF OF PROPOSITION 6

Claim. Under the assumption that the utility of allocating one unit of rank to any mode exhibits
diminishing marginal gain and cross-mode gains do not increase with previously allocated ranks
(DR-submodularity), the greedy rank-allocation that repeatedly picks the next unit with the largest
marginal utility achieves a (1 − 1/e)-approximation to the optimal utility under a unit-cost (or
knapsack) budget.
Proof. Let G be the ground set of unit rank-increments across modes, and define f(S) = ∥X∥2F −
∥X − X̂S∥2F as the captured energy after applying the increments in S ⊆ G. By construction f is
nonnegative and monotone. Assume (A1) diminishing returns: for all A ⊆ B ⊆ G and e ∈ G \ B,

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

f(A∪{e})−f(A) ≥ f(B∪{e})−f(B). Under a cardinality (or knapsack) constraint of budget B,
classical analysis of monotone (DR-)submodular maximization yields f(Sgreedy) ≥ (1−1/e) f(S⋆),
where S⋆ is the optimal set of increments of total cost ≤ B.

B.7 PROOF OF PROPOSITION 7

Setup. Let the target ranks be (r1, r2, r3) for Full Tucker and (r̄1, S, r̄3) for Tucker-2. Parameter
costs:

Cfull = Θ
(
Lr1 + Sr2 +Hr3 + r1r2r3

)
, Ct2 = Θ

(
Lr̄1 +Hr̄3 + r̄1Sr̄3

)
.

Using Prop. 1, when the S-mode tail becomes negligible once r2 = S (long-context regime), allo-
cating parameters to (r̄1, r̄3) yields E(r̄1, S, r̄3) ≤ E(r1, r2, r3) whenever Ct2 ≤ B < Cfull.

B.8 PROOF OF PROPOSITION 8

Proof. Let M = I − 1
S11

⊤ be the centering projector along the S-mode (M2 = M ). Mean
removal is X̃ = X ×2 M . By non-expansiveness of orthogonal projection, ∥X − X̂∥2F ≥ ∥X ×2

M − X̂ ×2 M∥2F . If the data contain additive translation noise constant along S, then centering
improves effective SNR without increasing the bound in Prop. 1.

B.9 PROOF OF PROPOSITION 9

Cost model. Let X(1) ∈RL×(SH), X(2) ∈RS×(LH), X(3) ∈RH×(LS) be unfoldings. Computing
top-rn left singular vectors via truncated SVD costs O(nnz(X(n)) rn + dnr

2
n); in dense arithmetic

this is upper bounded by

THOSVD = O
(
L(SH)3/2 + S(LH)3/2 +H(LS)3/2

)
.

Each HOOI iteration has similar order, hence Ttotal = THOSVD + t · O
(
L(SH)3/2 + S(LH)3/2 +

H(LS)3/2
)
. Peak memory stores X and the factor matrices, i.e., O(LSH + Lr1 + Sr2 +Hr3).

B.10 PROOF OF PROPOSITION 10

Setting. Appending ∆S tokens extends X along the S-mode, so only X(2) changes by column-
augmentation: Xnew

(2) = [X(2) B ] with B ∈ RS′×(LH) formed by the newly appended slices. Let
U2 be the current top-r2 left singular vectors of X(2).

Update. Project B onto span(U2) and its orthogonal complement: B∥ = U2U
⊤
2 B, B⊥ = (I −

U2U
⊤
2 )B. Form a small (r2 + ρ)-rank update by augmenting the sketch with B⊥ (via QR) and

perform truncated SVD on the resulting (S′ + ρ) × (LH) matrix. Randomized variants yield time
O
(
nnz(B) r2 + (S′ + LH)r22

)
= O(∆S · poly(L,H, r)).

Error. The increase of the optimal rank-r2 error equals the energy of the new block orthogonal to
the previous subspace: ∥Xnew

(2) − U ′
2U

′⊤
2 Xnew

(2) ∥
2
F − ∥X(2) − U2U

⊤
2 X(2)∥2F ≤ ∥B⊥∥2F , where U ′

2

is the updated top-r2 basis. Thus the incremental error is controlled by the energy of B outside
span(U2), and the update cost scales linearly with ∆S up to polynomial factors in (L,H, r).

C PPL COMPUTATION AND CHECKS

We compute corpus-level perplexity as PPL = exp
(∑

i NLLi∑
i Ti

)
, i.e., sum NLL, sum tokens, then

exponentiate (not averaging per-sample PPL). We evaluate with model.eval() (dropout off),
fixed tokenizer/vocab, and identical targets under teacher-forcing. We log truncation policy (left-
truncation) and enforce RULER INJECT NEEDLE=1 to produce both Overall and Aligned views.
Under these controls, PPL is expected to be nearly invariant across systems; observable differences
appear only when the final prompt or targets change (e.g., severe cropping outside the Aligned set).

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 3: HOOI convergence on a toy tensor: relative reconstruction error decreases monotonically
and plateaus within 3–5 iterations.

D ADDITIONAL SANITY CHECKS

E ADDITIONAL PROTOCOLS AND ABLATIONS

Evaluation protocol (tail-retention vs. right-truncation). We follow a tail-retention stress test:
needles are placed near the end and tokenization uses left-truncation so the tail is preserved. We
report both Overall and Aligned metrics, where Aligned conditions on the needle being present
in the final prompt to avoid penalizing methods due to prompt cropping. For sanity, under right-
truncation, the needle rarely appears in the prompt and EM ≈ 0, confirming the need to control
prompt loss.

Composability with Sliding-Window. We first apply Sliding-Window (2048) at the prompt level
and then compress KV with Tucker-KV at CR=0.5. On RULER with L=4096, the combined system
attains Aligned EM= 0.9998, Overall EM= 0.5062, with 6662/13158 aligned prompts, and 50.0%
KV saved by unified accounting (Table 5). This demonstrates that Tucker-KV is orthogonal to
token-selection policies and can be stacked without degrading retrieval when the needle is present.

F REPRODUCIBILITY & DISCLOSURE

Yes, to aid or polish writing. Details are described in the paper. We used automated writing assis-
tance only for grammar and wording. All ideas, algorithms, proofs, implementation, and experi-
ments are by the authors. All datasets, scripts, and configs needed to reproduce results are provided
in the supplementary material.

14


	Introduction
	Method: Tucker-KV Compression
	Problem Setup
	Online Budget Allocation
	Tucker Decomposition of KV Caches
	Initialization via HOSVD
	Refinement via HOOI
	Grouped-H Tucker
	Residual Mixing with matrix SVD baseline

	Experiments
	Setup
	Metric definitions and KV accounting
	Main results
	Quality–Efficiency Frontier
	Position sensitivity (head/middle/tail)
	Composability with Sliding Windows
	Right-truncation control (needle missing)

	Related Work
	Implementation details and defaults
	Composability with Sliding Windows
	Limitations

	Conclusion
	Theoretical Guarantees
	Practice-facing takeaways

	Proofs of Theoretical Results
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8
	Proof of Proposition 9
	Proof of Proposition 10

	PPL computation and checks
	Additional sanity checks
	Additional Protocols and Ablations
	Reproducibility & Disclosure

