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ABSTRACT

Video encoders optimize compression for human perception by minimizing re-
construction error under bit-rate constraints. In many modern applications such
as autonomous driving, an overwhelming majority of videos serve as input for AI
systems performing tasks like object recognition or segmentation, rather than be-
ing watched by humans. It is therefore useful to optimize the encoder for a down-
stream task instead of for perceptual image quality. However, a major challenge
is how to combine such downstream optimization with existing standard video
encoders, which are highly efficient and popular. Here, we address this challenge
by controlling the Quantization Parameters (QPs) at the macro-block level to op-
timize the downstream task. This granular control allows us to prioritize encoding
for task-relevant regions within each frame. We formulate this optimization prob-
lem as a Reinforcement Learning (RL) task, where the agent learns to balance
long-term implications of choosing QPs on both task performance and bit-rate
constraints. Notably, our policy does not require the downstream task as an input
during inference, making it suitable for streaming applications and edge devices
such as vehicles. We demonstrate significant improvements in two tasks, car de-
tection, and ROI (saliency) encoding. Our approach improves task performance
for a given bit rate compared to traditional task agnostic encoding methods, paving
the way for more efficient task-aware video compression.

1 INTRODUCTION

Video compression is an essential and widely studied problem (Bhaskaran & Konstantinides, 1997;
Wenger, 2003; Sullivan et al., 2012; Bross et al., 2021; Kufa & Kratochvil, 2017). Most video
compression algorithms are designed for preserving how a video is perceived by people. With
the success of computer vision applications, many videos are used in automated systems, from
autonomous drones and cars, to security cameras, and in downstream tasks, like object detection or
recognition. In these cases, compression must prioritize regions relevant to the task at hand (e.g.,
allocating more bits to objects than to the background). We illustrate the need for a downstream task
aware compression scheme in Figure 1. Basically, raw data is too expensive and existing encoders
are geared to optimize video PSNR, which may “waste” bits on task-irrelevant parts.

Real-world deployment of compression systems complicates matters further. Video data must be
collected in real time from devices, using low computational resources, and be usable for training
various models across multiple tasks, not just for immediate inference. Furthermore, due to compu-
tational and hardware constraints, compression must be done without access to the ground truth for
the downstream tasks during the encoding process. Our goal is to tackle these challenges by pro-
viding a general video compression method that can be adapted to any task, operates in real-time,
imposes low computational demands on the encoding side, and requires no ground-truth labels.

Many existing approaches for task-aware compression rely on deep encoding (Lu et al., 2019).
This makes them computationally expensive and unsuitable for real-time applications or resource-
constrained environments. In contrast, standardized video encoders such as x264 (Merritt & Vanam,
2006), are highly efficient but are not designed for adapting compression to specific tasks in real-
time. Some previous research proposed to use standardised video encoders for downstream tasks, but
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usually for a specific task, and commonly employ big models before encodingShi & Chen (2020). As
one example, Xie et al. (2022) perform semantic compression by applying a heavy feature extractor
before encoding using a ground-truth segmentation maps. While performing well at this setup, their
method requires large computation resources before encoding, can not be used for various tasks, and
is not suitable for data collection.

In this paper, we propose RL-RC-DoT, a novel solution to the problem of tuning an efficient real-
time video compression system to a downstream task without access to its ground truth labels during
inference. Our approach integrates a lightweight network on the video encoder side of the a x264
encoder, trained to control the encoding process such that the decoded output is ideal for the task
at hand. By leveraging standardized codecs, we ensure that our method is both computationally
efficient and easily deployable across a range of devices. The solution allows for real-time video
compression without requiring ground truth for downstream tasks.

Coping with these challenges is hard. Standardized encoders are not differentiable, making it dif-
ficult to optimize bit allocation for specific tasks. To overcome this, we introduce a reinforcement
learning (RL) mechanism that controls the Quantization Parameter (QP) at the macro-block level,
adjusting the bit allocation for each block of the frame dynamically. This allows us to efficiently
manage the bit-rate budget while optimizing task performance over an entire sequence of video
frames. Our experiments demonstrate that this approach yields significant improvements in rate-
distortion trade-offs, not just for the task the encoder was trained on, but also for other related
tasks, showcasing the robustness of our method. Furthermore, we demonstrate its generalizabil-
ity by showing how an encoder trained on one model can improve performance for other models
without additional tuning.

In summary, this paper makes the following contributions. (1) We design the first task-aware video
compression method that builds on top of existing encoders and does not require solving the task
during inference. (2) We show how to optimize the rate parameter of every macro-block in the frame
while optimizing the performance of a downstream task on the reconstructed video under bit-rate
constraints. (3) We design an architecture that outputs multiple actions, a tailored reward for this
problem, and a task-prediction loss term. (4) We show improved rate-distortion trade-off for our
agent on two tasks, car detection and ROI encoding with only small interference to image quality,
and further show robustness to task shift, when tested on a related-but-different task than used for
training.

1.1 RELATED WORKS

Task-aware video compression with unrestricted compute. Several previous studies proposed
video compression methods that are aware of a downstream task. Zhang et al. (2024) explored
content-specific filters to improve post-processing in video codecs, optimizing them for machine
vision tasks like object detection and segmentation. Ge et al. (2024) introduced an encoder con-
trol for deep video compression that adapts to multiple tasks using a single pre-trained decoder,
showing significant bit-rate improvement for object detection and tracking. Shor & Johnston (2022)
highlighted the limitations of classical codecs in medical videos, proposing learned compression
models to allocate more bits to medically relevant regions. Elgamal et al. (2020) presented a se-
mantic video encoding system that enhances object detection by selectively decompressing frames
in surveillance streams. Li et al. (2024) developed a distributed compression framework that adjusts
to varying bandwidth in multi-sensor networks to optimize task performance. Windsheimer et al.
(2024) introduced an annotation-free optimization strategy that aligns video coding with machine
tasks, improving rate savings without relying on ground truth data. Additionally, While Wu et al.
(2024) focused on real-time, quality-scalable video decoding, it also evaluated the codec perfor-
mance on machine-based tasks.

All these approaches share a common limitation, they do not use the existing highly optimized
and widely prevalent existing video compression ecosystem like the open-source x264 (Merritt &
Vanam, 2006). The challenge therefore remains to design video compression systems that build on
top of existing technology, but can be tuned in a-content adaptive way to a set of downstream tasks.

Task-aware video compression with standard encoders Another body of works does employ
standardized encoders, but does not consider the inter-frame dependencies. Singh et al. (2022) and
Fischer et al. (2020) optimize the CTU partitioning to improve the compression for a downstream
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task. Galteri et al. (2018) uses a threshold on the saliency map to allocate more bits to important
regions, while Cai et al. (2021) optimizes over the modelled relation between each block parameter
and the task performance. Li et al. (2021) uses RL for optimizing macro-block QPs, but does so
in each frame separately, where the sequence is defined over the sequence of macro-blocks in the
same frame. In our work we output all macro-block QPs with one policy and the sequence is defined
over consecutive encoded frames in the video. The work most related to ours is Xie et al. (2022),
where they propose to use RL on both the QPs and macro-block QPs in a hierarchical manner.
However, they limit their optimization to only two frames in every GOP, and only two values of
macro-block QPs are chosen per block according to a given segmentation map. In our work we
optimize over all frames and macro-block QPs, and we do not use any additional information like
saliency, segmentation or downstream task during inference.

Figure 1: Approaches for
video compression on a de-
vice. Videos are collected
on a device (left), transmit-
ted to a server (right) and
processed. (a) Raw data
transmission preserves all
information but requires
excessive bandwidth and
storage. (b) Traditional en-
coding using x264 is opti-
mized for PSNR. It reduces
data size but does not prior-
itize task-relevant informa-
tion. (c) Our RL-RC-DoT,
balances task performance
and bit-rate constraints.

2 PRELIMINARIES

2.1 VIDEO COMPRESSION

Video compression is a process of reducing the size of digital video files while maintaining accept-
able visual quality. It is a crucial technology in the modern digital age, enabling efficient storage,
transmission, and streaming of video content across various platforms and devices. The primary goal
of video compression is to eliminate redundant and less perceptible information from the video data
according to constraints such as bit-rate of the target video, while maintaining good visual quality.

One key aspect of video compression is the use of Quantization Parameters (QP). QP values control
the level of compression applied to the video data, with higher values resulting in more compression
but lower quality, and lower values preserving more detail but producing larger file sizes. In video
encoding, QP can be applied at different levels of granularity. Frame QP refers to setting a single QP
value for an entire frame, which is useful for maintaining consistent quality across the frame but may
not be optimal for all areas. Per-macro-block (MB) QP, on the other hand, allows for finer control
by assigning different QP values to individual MBs within a frame, usually in small perturbations
from a pre-assigned frame QP. This approach enables the encoder to apply more compression to
less important or visually complex areas while preserving quality in critical regions. Per-MB QP
can lead to more efficient compression and better overall visual quality, as it adapts to the local
characteristics of the video content. It is especially suitable for task-aware optimization since most
tasks target specific areas in the picture (for instance object detection and segmentation).

The effectiveness of video compression is typically measured by comparing the compressed video’s
file size and visual quality to the original. Metrics like Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index (SSIM; Wang et al. (2004)) are often used to objectively assess quality.
When comparing two encoders the compression efficiency is usually considered. To do so, a video
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is encoded in several desired bit-rates with each encoder to form a rate-distortion (RD) curve, where
the y axis is the quality measure, usually PSNR. If one encoder’s curve is higher than the other,
it means it suffers less distortion for the same bit-rate rendering it more efficient. If we integrate
over the entire curve, and average the result over multiple videos, we obtain a quantity specifying
how much more efficient one encoder than the other, a quantity referred to as Bjontegaard delta rate
(BD-rate) (Wiegand et al., 2003).

With the increasing usages of videos for machine vision, many researchers have recognized the
need for task-aware compression and proposed a suitable evaluation metric (Kong et al., 2016; Shi
& Chen, 2020). The most straightforward metric which we also use in this paper is obtained by
replacing the PSNR in the RD-curve (the y-axis) with a task-specific loss measure such as mIOU or
detection precision and calculating the BD-rate with respect to the adjusted curves.

One may wonder, if a downstream task is given, why is video compression needed at all? For in-
stance, in the autonomous vehicle example, if a car detector is available, why not run that detector
on the vehicle, and save only its decision instead of the compressed video. There are several strong
reasons not to take this approach: (1) Many downstream tasks require resource-heavy networks
that cannot run efficiently on-device, making it impractical to process the data locally. (2) Sending
only task-specific features limits human interpretability, as there would be no watchable video for
explainability. (3) This also confines the data to a single task, preventing its reuse for other ap-
plications or analyses. (4) Large-scale data collection, such as in autonomous driving, depends on
compressed video storage; using features alone would limit future training and fine-tuning oppor-
tunities. (5) Task-specific features are often tied to a particular model, making them incompatible
with new models, while compressed video remains adaptable across different systems. We show
that our method allows different models to achieve high performance using the same compressed
data. This is also the reason why we aim to develop a method that still preserves a video that would
be meaningful to a person.

2.2 REINFORCEMENT LEARNING

Reinforcement Learning (RL; Sutton & Barto (1998)) is a field dealing with sequential decision
making in unknown environments. To formulate a problem using RL, we first need to define its
underlying Markov Decision Process (MDP). An MDP is defined by a tuple (S,A, P,R, γ), where
S is a finite set of states, A is a finite set of actions, P is a state transition probability function,
P (s′|s, a), R is a reward function, R(s, a) and γ ∈ [0, 1] is a discount factor.
At each time step t, the agent observes the current state st ∈ S and chooses an action at ∈ A.
The environment then transitions to a new state st+1 with probability P (st+1|st, at) and the agent
receives a reward rt = R(st, at). The goal of the agent is to find a policy π : S → A that maximizes
the expected cumulative discounted reward:

max
π

Jπ = Eπ,s0∼µ,st+1∼P

[ ∞∑
t=0

γtR(st, π(st))

]
To do so, many algorithms were proposed in the literature varying in their assumptions on the prob-
lem, computational complexity and data requirements. Perhaps the most widely used algorithm
today is PPO (Schulman et al., 2017) which directly optimizes the policy using full trajectories
while constraining it from diverging.

3 METHOD

We present RL-RC-DoT, an RL-based Rate Controller for Downstream Task, that dynamically
optimizes macro-block QP deltas during video encoding. To formalize the training framework, we
cast the video compression problem with respect to a downstream task as an MDP. We define the
state of the environment to be block-wise statistics extracted from x264 MB-tree mode (Garrett-
Glaser, 2009) (block energy cost, inverse quantization scaling factor, etc.) and global statistics
(bit-stream size, percentages of P blocks, etc.). For a detailed list of the statistics used as state, see
Appendix A.1.

The action space is defined as the choice of all macro-block QP deltas within a frame. For instance,
given a frame resolution of 480×320 pixels partitioned into 16×16 pixel macro-blocks, the resulting
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Figure 2: RL-RC-DoT workflow. Our proposed solution to the block-level control for a down-
stream task. RL-RC-DoT takes encoder statistics as input and outputs a block-level delta QP map.
We then evaluate the difference in downstream task performance between the reconstructed frame
and the raw frame. The reward contains both global score as reward and block-level score.

action space constitutes a 30×20 dimensional matrix, where each value represent the delta between
the frame level QP and the block specific QP. However, the convergence of reinforcement learning
algorithms on high-dimensional action spaces presents significant computational challenges. To
address this limitation, we implement a hierarchical approach: during the learning phase, we operate
on a lower-resolution action space, which is subsequently upsampled to the original dimensions
through interpolation. This dimensionality reduction technique facilitates more efficient training
while maintaining the ability to generate fine-grained QP assignments. We analyze the impact of
action space resolution on model performance in Appendix A.5. A diagram of the full system is
given in Figure 2.

We define the reward as a combination of two rewards with different purposes. First, we want to
ensure compliance with the encoder’s bit-rate constraint. This is particularly crucial in streaming ap-
plications, where exceeding the allocated bandwidth can result in frame dropping and consequently
deteriorate the viewer experience. The reward component rbit-rate for this objective is defined as:

rbit-rate = −
∣∣∣∣log(current average bit-rate

target bit-rate

)∣∣∣∣.
The second objective is to maximize the performance of the downstream task on the decoded frames.
Since ground-truth data is unavailable, we introduce a novel self-supervised approach. This method
treats the downstream task’s output on the original uncompressed frame as a pseudo-ground-truth,
against which we evaluate the task performance on the reconstructed frame:

rDT = D(fDT(frameraw), fDT(framerec)),

where fDT is a pre-trained model for the downstream-task and D is a task-specific loss function. For
example, in the context of vehicle detection, f is a pre-trained car detection model (e.g. YOLO-
v5 nano (Jocher, 2020)), and D is the precision between f(framerec) with respect to f(frameraw).
Finally we use the weighted reward r = rbit-rate + λrDT for some hyper-parameter λ, in order to
optimize the rate-performance trade-off.

3.1 MACRO-BLOCK REWARD INFORMATION

In most RL problems, the reward is a black-box directly mapping the state to a continuous score. Re-
cent literature (Ye et al., 2021) has demonstrated that predictive modeling of rewards – implemented
as auxiliary heads alongside policy or value networks can significantly enhance agent performance.
In our setup, the reward presents a unique characteristic: the reward signals for various downstream
tasks are often compositional, derived from aggregating scores across granular components of the
input frame. For example, in the case of saliency-weighted PSNR, the reward is computed by
aggregating per-pixel reconstruction errors. Leveraging this decomposable nature of rewards, we
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propose augmenting the learning process with an auxiliary prediction loss for these sub-scores dur-
ing backpropagation. Specifically, we introduce a block-wise prediction loss that aims to predict
the individual block reward information that contribute to the overall task score. This approach
of incorporating auxiliary prediction loss for macro-block level reward information is expected to
enhance the agent’s performance. Firstly, it provides a more granular learning signal, allowing the
agent to understand the impact of its actions on individual components of the reward. Secondly, by
learning to predict these sub-scores, the agent develops a richer internal representation of the task
structure. Lastly, this method aligns the agent’s learning more closely with the actual composition of
the reward, potentially leading to faster convergence and more stable learning. We show the effect
of this improvement in Section 5.4.

4 EXPERIMENTS

We evaluate our approach with two downstream tasks: car detection and region of interest encoding
(Liu et al., 2008). We further study the robustness of the method, when a trained compression policy
is tested with a different car detector, or even in a segmentation task instead of detection. Finally,
we report performance of ablation experiments.

4.1 DATASET

We trained and evaluated RL-RC-DoT using a subset of video streams from the BDD100K dataset
(Yu et al., 2020), a large-scale driving video dataset, with multi-task annotations. We reconstructed
the raw data from the videos and to allow faster training time, we resized them to a smaller resolution
of 480x320 pixels. We then filtered out streams that exhibited trivial rate-task performance (RD)
curves with respect to the downstream tasks of car detection precision, when encoded with the
standard x264 codec (Wiegand et al., 2003). We specifically excluded streams that showed zero
precision across most target bit-rates. This approach ensured that our dataset presented meaningful
challenges for compression optimization. Our final dataset comprised of 172 streams in total, with
65 streams used for training our agent, 7 streams used for evaluation on different hyper-parameters
and 100 streams reserved for testing. For reproducibility, we provided a detailed list of the specific
stream used in our experiments in appendix A.2 of this paper.

4.2 EVALUATION METRICS: RD-CURVE AND BD-RATE

Since compression is a constraint optimization problem, it is standard to depict results using a Rate-
Distortion (RD) curve. An RD-curve illustrates the trade-off between bit-rate constraint and quality
in video compression (see examples in Figure 3). RD-curves are traditionally used with PSNR, but
are equally applicable to task-specific metrics like precision/recall for a detection task or saliency-
weighted PSNR for ROI-based encoding. These RD-curves allow us to evaluate compression effi-
ciency for any downstream tasks on reconstructed videos.

BD-rate (Bjøntegaard Delta rate; (Bjøntegaard, 2001)) is a widely used metric in video compres-
sion to compare the efficiency of different encoding methods. This method calculates the average
difference in bit-rate between two rate-distortion (RD) curves at the same quality level. The BD-
rate represents the percentage of bit-rate savings that one encoding method achieves over another
while maintaining equivalent video quality performance. Therefore, a negative BD-rate indicates
that the test method requires less bits than the reference method to achieve the same quality / task
performance.

4.3 EXPERIMENTAL DETAILS

All our experiments use the x264 open source encoder software (Merritt & Vanam, 2006). we used
medium preset and target bit-rates 50 − 200 kbps. To extract the MB-tree statistics we allow x264
to use look-ahead for 10 frames. For car detection, we employ YOLOv5-nano (Jocher, 2020). ROI
encoding is evaluated using saliency maps generated by TranSalNet (Lou et al., 2022). Our agent is
trained agent using PPO implemented in Stable-Baselines3 (Raffin et al., 2021) with corresponding
reward function as described in Section 3. We augment the standard PPO algorithm with a reward
per block prediction network, as described in Section 3.1. To facilitate efficient training, we utilize 8
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parallel environments running on an Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz, complemented
by an NVIDIA Tesla V100 32GB GPU. Each agent undergoes training on 20 million frames, a
process that spans approximately 4 days. Our training achieves a frame rate of roughly 50 FPS,
while evaluation in a single environment maintains around 30 FPS, demonstrating the feasibility of
real-time streaming applications.

Compared methods: To conduct a fair and meaningful comparison against existing baselines, base-
line should be solving the same task, and particularly have access to the same information. Several
previous studies developed methods for task-aware encoding, but their setup is fundamentally dif-
ferent. For instance, Xie et al. (2022) assume that compression has access to the output of a seg-
mentation module for each frame during inference. Li et al. (2021) and Fischer et al. (2020) focus
on single-frame (image) compression, without considering the overall video budget constraints. Fi-
nally, most methods did not release code Shi & Chen (2020); Fischer et al. (2020). These differences
in approach and constraints would make direct comparisons potentially misleading.

5 RESULTS

5.1 CAR DETECTION

We first assess the performance of RL-RC-DoT in the context of video compression optimized
for car detection. The reward function for training our RL agent is based on the precision score
of YOLOv5-nano (Jocher, 2020). For our additional auxiliary loss described in Section 3.1, we
compute the precision score for each individual block separately to generate block-specific reward
information. After training, we evaluate the policy on 100 test videos from the BDD100K dataset.

Table 1 compares RL-RC-DoT with the standard x264 encoder, focusing on the detection perfor-
mance of the YOLOv5-nano detector on compressed videos. The evaluation is conducted across
multiple compression rates, with results averaged over all frames in the test dataset for each target
bit-rate. We also applied the same comparative approach to assess the PSNR of the reconstructed
streams. The results demonstrating that RL-RC-DoT improves car detection precision and recall
significantly, with minimal impact on the PSNR of the compressed videos.

Figure 3 illustrates the superiority of RL-RC-DoT over the standard x264 encoder through RD
curves for three representative video streams. Figure 4, shows a qualitative example of the perfor-
mance gain. We compare the images in both types of rate-control, and the output of the downstream
task. We can see the details corresponding to the downstream task are better reconstructed yielding
a more relevant image.

To quantify the performance difference between methods, we compute the BD-rate (see 4.2), a
standard metric in the field. Our approach shows significant improvements in detection performance,
with BD-rate reductions of 24.7%(±1.38%). These gains come at a minimal cost to overall video
quality, yielding a slight increase (deterioration) in PSNR BD-rate of 1.19%(0.46%) (3). This means
that videos compressed using RL-RC-DoT remains understandable to human viewers. This aspect
is crucial for validation and debug purposes. It also provides robustness to changes of task models,
a point we elaborate on in section 5.3. The relatively small bit-rate error indicates that the encoder
maintains its ability to adhere to the requested bit-rate for the entire video.

5.2 ROI ENCODING

Precision Recall PSNR
low-rate high-rate low-rate high-rate low-rate high-rate

x264 .22± .0013 .66± .0015 .45± .002 .81± .001 28.98± .03 34.55± .03
RL-RC-DoT(ours) .36± .0015 .71 ± .0014 .63 ± .002 .83± .001 29.03± .03 34.55± .03

Table 1: Car detection precision and recall of YOLO5, and PSNR. Value are mean and s.e.m. calcu-
lated across all frames from a test set of 100 videos from BDD100K.
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(a) Precision (b) Recall (c) PSNR

Figure 3: Rate-Quality curves for Car detection task. Comparing standard x264 (dashed lines) with
RL-RC-DoT (solid lines). Curves show three example streams, demonstrating how RL-RC-DoT
improves quality across the range of bit-rate values. (a) Car detection precision (b) recall (c) PSNR.

(a) (b) (c)

Figure 4: Car detection example result. (a) detection output on x264 reconstructed frame, (b) output
on raw frame and (c) output on RL-RC-DoT reconstructed frame

We conducted similar experiments for ROI-encoding task by promoting saliency weighted PSNR
as the task score. RL-RC-DoT demonstrates significant improvements in saliency-weighted PSNR
encoding efficiency on the test-set, as shown in Table 2. RL-RC-DoT exhibits a BD-rate value of
−25.64%(±0.99%), indicating that our method achieves better quality in salient regions at lower
bit-rates compared to x264. Interestingly, the PSNR BD-rate is slightly better than the vanilla rate-
control. This may be due to the proximity between the two tasks. This also shows the sub-optimality
of the vanilla rate-control when considering specific content. Finally, RL-RC-DoT achieves similar
average bitrate error as x264.

Figure 5 illustrates the Rate-Distortion (RD) curves for three representative video streams. These
curves demonstrate that in most cases, RL-RC-DoT achieves a more favorable RD trade-off for
ROI encoding task compared to x264. Figure 6 provides qualitative examples of our method’s
performance, visually illustrating the enhanced quality in salient regions compared to the baseline
encoding.

5.3 TASK ROBUSTNESS

An important concern is that RL-RC-DoT might overfit for the training task. That would mean
that changing the model, may harshly hurt performance. We set to evaluate robustness to such
changes in RL-RC-DoT by training the policy with one downstream task ,and testing it with another.

ROI encoding Saliency-weighted PSNR Bit-rate
experiment PSNR BD-rate BD-rate error [1e− 3]

RL-RC-DoT −25.64± 0.99 −5.26± 0.36 −1.0± 0.43

Table 2: Results on RL-RC-DoT applied on the test-set for the saliency-weighted PSNR task.
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(a) (b) (c)

Figure 6: Saliency weighted PSNR results. (a) x264 reconstructed frame, (b) Saliency map of raw
frame, extracted with (Lou et al., 2022) (c) RL-RC-DoT reconstructed frame.

Precision Recall PSNR Precision
(YOLO) (YOLO) (SSD)

RL-RC-DoT −24.7± 1.57 −19.75± 2.97 1.19± 0.46 −26.2± 1.48

Recall Segmentation Bit-rate
(SSD) IOU error [1e− 3]

RL-RC-DoT −25.81± 2.03 −14.6± 1.81 0.13± 0.44

Table 3: BD-rate Results on RL-RC-DoT applied on test set for the car detection task for various
settings. Negative values mean that RL-RC-DoT improves over baseline.

More specifically, we optimized the policy for car detection using the YOLOv5-nano model, as
described in section 5.1. Then, we measured the detection performance of another model, SSD (Liu
et al., 2016). We also measure the performance on the related but distinct task of car segmentation
(DeepLab; (Chen et al., 2017)). The results are also listed in Table 3.

Figure 5: RD-curves for 3
videos for ROI-encoding.

This approach allows us to examine whether our method truly
captures fundamental aspects of visual information relevant to
automotive perception tasks, rather than overfitting to a specific
model or narrow task definition. By demonstrating performance
improvements across different models and related tasks, we aim
to show that our compression method preserves task-relevant in-
formation in a more general sense, potentially allowing for model
updates or task modifications without the need to retrain the com-
pression policy. This robustness is crucial for real-world applica-
tions where deployed systems may need to adapt to new models
or slightly different tasks over time.

For car detection evaluated with SSD, the precision BD-rate is
very similar to precision with YOLOv5-nano, which was used for
training. For car segmentation, although tested with a different
task, we still observe an improved but weaker BD-rate than the
detection task. This improvement can be attributed to the close
relation between the tasks, so meaningful macro-blocks for car
detection, are also useful for the segmentation task. In summary,
the BD-rate obtained on the PSNR and the various tasks show the robustness of our method to new
tasks and new models that solve the task.

Figure 7, shows a qualitative example of task robustness. We compare the images in both types of
rate-control, and the output of the downstream task. We can see the details corresponding to the
downstream task are better reconstructed yielding a more relevant image.

5.4 ABLATION EXPERIMENTS

To quantify the relative contribution of various components of our method, we perform ablation
studies, for both car detection and ROI encoding, and provide the results in Table 4. For both tasks,
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(a) (b) (c)

Figure 7: Car segmentation result comparison. (a) segmentation output on x264 reconstructed frame,
(b) output on raw frame and (c) output on RL-RC-DoT reconstructed frame

Precision Recall PSNR Bit-rate
Car detection BD-rate BD-rate BD-rate error [1e− 3]

RL-RC-DoT −24.7± 1.57 −19.75± 2.97 1.19± 0.46 0.13± 0.44
RL-RC-DoT w/o RI −19.4± 1.38 −11.94± 1.7 1.92± 0.41 0.4± 0.47
RL-RC-DoT γ = 0 −9.78± 1.29 −10.28± 2.14 5.44± 0.6 2.4± 0.44

Saliency-weighted PSNR Bit-rate
ROI encoding PSNR BD-rate BD-rate error [1e− 3]

RL-RC-DoT −25.64± 0.99 −5.26± 0.36 −1.0± 0.43
RL-RC-DoT w/o RI −23.46± 0.97 −4.54± 0.42 5.3± 0.48
RL-RC-DoT γ = 0 −16.01± 0.77 2.11± 0.31 6.9± 0.43

Table 4: Ablation study. (1) Full RL-RC-DoT (2) Omitting reward information (RI) from the train-
ing process and (3) Ignoring long term effects by using a myopic policy.

we first ablated the macro-block reward information as described in Subsection 3.1. Then, ran an
experiment for γ = 0 which shows what happens when optimizing for a myopic policy.

The results show that reward info improved the learning process and reduces the BD-rate even fur-
ther for both tasks. This demonstrates the benefit of exploiting additional information in the video
compression domain that is generally not available. For γ = 0, the BD-rate is significantly worse for
both tasks. As expected, ignoring the future implications of the bit-allocation can cause sub-optimal
decisions for the entire video. This also emphasizes the limitation of rate-control methods optimiz-
ing for every frame separately; a common practice by previous works. Finally, the small PSNR
BD-rate shows that the encoder does not drastically reduce the picture quality, and the requested
bit-rate is preserved as evident by the low bit-rate error (native encoder bit-rate error is −2.9 ·10−3).

6 CONCLUSIONS AND LIMITATIONS

Machine learning for videos understanding became prevalent in numerous applications, but impose
high costs of storing, making fast encoding and low bit-rate critical. Task-aware compression has
huge potential, but existing methods have critical limitations, like heavy compute or dependency on
ground truth task data for compression. We develop an efficient RL solution which encodes every
frame in real time while optimizing the future bit-rate and task performance on the reconstructed
video. Our learned policy is robust against changes in the downstream models for the same task
and to closely related tasks, showing large important potential for data collection for autonomous
vehicle, patient monitoring and robotics.

Limitations: Training our models involves encoding and performing the downstream task per
frame, and this may slow down converge depending on the complexity of the downstream task.
Also, generalizing across video resolutions may be hard because it affects the size of action space
and the complexity of the learning problem.
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7 REPRODUCIBILITY STATEMENT

Encoder environment: To apply rate-control on the environment we changed the code of the open
source x264 (Merritt & Vanam, 2006) encoder so that in each frame it can obtain delta-QP values
externally and provide relevant statistics as described in Appendix A.1.

RL Agent: We provide a description of the policy’s architecture in Appendix A.3. The agent
was trained using PPO implementation from stable-baselines3 (Raffin et al., 2021) with default
parameters, where we just added an MSE prediction loss (with weight 0.1) for reward info. We used
λ = 20 to average between the bit-rate and downstream task rewards.

Experiments: In our experiments we used the publicly available BDD100K dataset (4.1) which
was resized using the open source package ffmpeg. We provide the named list of streams we used
in Appendix A.2. In the experimental details subsection 4.3 we provide additional information on
the hardware we used and the downstream task models we used for our experiments.

8 ETHICS STATEMENT

Our method’s approach to selectively altering the quality of different regions within a frame raises
important considerations regarding the perceptual integrity of the reconstructed video. By optimiz-
ing compression for specific downstream tasks, there is a potential risk of introducing unintended
perceptual biases or distortions that may not be immediately apparent to human viewers.
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A APPENDIX

A.1 ENVIRONMENT DETAILS

Global encoder statistics used as state information
Next frame x264 selected QP value

Next frame number
Current bitstream size

Current frame x264 selected QP value
Average QP

Percentages of I type Macro Blocks
Percentages of P type Macro Blocks

Percentages of skip-type Macro Blocks
x264 calculated PSNR
x264 calculated SSIM

Percentages of bits used for Motion Vectors
Percentages of bits used for DCT coefficient

Progress of encoding
Next frame type

Next frame complexity

Table 5: Detailed components of global encoder statistic used in state information

Local (per-MB) encoder statstic used as state information
x264 energy values per Macro Block

x264 intra encoding cost per Macro Block
x264 propagating encoding cost per Macro Block

x264 inverse quantization scale factor per Macro Block

Table 6: Detailed components of per-MB encoder statistic used in state information

A.2 BDD100K STREAMS

Here we elaborate on the streams we used from bdd100k dataset (Yu et al., 2020):
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Train streams
0000f77c-6257be58 000e0252-8523a4a9
000f157f-dab3a407 000f8d37-d4c09a0f
00a04f65-af2ab984 00a0f008-3c67908e
00a0f008-a315437f 00a1176f-0652080e
00a1176f-5121b501 00a2e3ca-5c856cde
00a2e3ca-62992459 00a2f5b6-d4217a96
00a395fe-d60c0b47 00a9cd6b-b39be004
00abd8a7-ecd6fc56 00abf44e-04004ca0
00adbb3f-7757d4ea 00afa5b2-c14a542f
00afa6b9-4efe0141 00b04b30-501822fa
00b1dfed-a89dbe2b 00be7020-457a6db4
00beeb02-ba0790aa 00c12bd0-bb46e479
00c29c52-f9524f1e 00c41a61-4ba25ad4
00c497ae-595d361b 00c87627-b7f6f46c
00ca8821-db8033d5 00cb28b9-08a22af7
00ccf2e8-59a6bfc9 00ccf2e8-ac055be6
00ccf2e8-f8c69860 00ce6f6d-50bbee62
00ce8219-12c6d905 00ce8219-d0b5582e
00cef86b-204ea619 00cef86b-d8d105b9
00cf8e3d-3d27efb0 00cf8e3d-4683d983
00cf8e3d-773de15e 00cf8e3d-a7b4978c
00d0f034-6d666f7b 00d18b13-52d3e4c4
00d4b6b7-7d0a60bf 00d4b6b7-a0b1a3e0
00d7268f-fd4487be 00d79c0a-23bea078
00d79c0a-a2b85ca4 00d84b1d-21e6fe01
00d8944b-e157478b 00d8d95a-74aa476a
00d9e313-7d75bb18 00d9e313-926b6698
00dc5030-237e7f71 00de601c-858a8a8d
00de601c-cfa2404b 00e49ed1-9d41220c
00e4cae5-c0582574 00e5e793-f94de032
00e81dcc-b1dd9e7b 00e8c106-e197c4b1
00c50078-6298b9c1 00b93c6e-6298aa25
0000f77c-cb820c98

Table 7: List of streams used in training

Validation streams
00d8d95a-47d98291 00e02d60-54df99d1
00a820ef-d655700e 00ce95b0-84be34a3

00d15d58-9197cde54 00b04b12-a7d7eb85
00c17a92-d4803287

Table 8: List of streams used in validation
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Test streams
cd35ea13-f49ee278 cd389564-8be2128e cdc05b0a-3bb83a9c cd389564-9053f5fc
cd3b1173-63cb9e2e cd3dab20-1b3e564e cd3dab20-4ea3d971 cd3df92f-d04e142c
cd40cb21-18170d03 cd4ac25c-61a9eb11 cd4bf816-2abb75c9 cd4bf816-c2f9bf78
cd4ce4e5-6994fd2d cd4ce4e5-d0968ec0 cd4da443-da4fe8c7 cd4deee2-0703d1c7
cd4deee2-1d9539bd cd4deee2-37c8b95c cd4deee2-3feadd6e cd4deee2-60291439
cd4deee2-688c8bba cd4deee2-8e12e5b5 cd4deee2-9c9f6da1 cd4deee2-adc7e92a
cd4deee2-ce4f69f5 cd4deee2-d078d54a cd547736-3b63cb96 cd583365-462cca17
cd5a94cf-345f214a cd5a9e1b-86faac85 cd5b2540-465c9328 cd5b2540-913cb8f7
cd5bee17-bef4f177 cd5db4e0-1189ff83 cd6af452-e54a1e36 cd6c087e-03ca2127
cd6fdd33-ac9cb2db cd704168-1231930e cd7c12c7-7029da5d cd7c12c7-9b46c2a8
cd7c92a7-3b20257f cd7c92a7-89b23268 cd7c92a7-9222ee19 cd7c92a7-ed0d3926
cd7ee0b1-dd286a1b cd7fb8f1-3d347a66 cd828461-db8b4612 cd839842-cd859db0
cd8b00aa-4aac0701 cd8b00aa-5c017145 cd8b00aa-f00ad3b9 cd8b30b0-51369077
cd8b30b0-e8d12cc4 cd8d2fde-2d2a3211 cd9b6b86-9f62a970 cd9b6b86-be582832
cd9cd3dd-d67bf5b6 cd9d84d4-f59d3feb cd9dff27-94731aba cd9e7e2b-4b274850
cda33556-28510da1 cda33556-8dc294b4 cda33556-c6b3dd45 cda55704-362ddfea
cda55704-754aac99 cda63e8d-0afbf52b cda63e8d-76b2fa43 cda9acc1-1a92349d
cda9acc1-4469e473 cda9acc1-9d1ef61a cdac4037-afed765d cdac7315-fe37a1d9
cdae6e60-0fb06a75 cdae6e60-334ffc87 cdae6e60-b729f2e6 cdaee377-1eccb13a
cdaee377-2263611a cdaee377-2b38ae2c cdb06fa9-cfb70e11 cdb06fa9-eba5643a
cdb3b01b-673f85b7 cdb616df-393f382c cdb688d4-33f24ca3 cdb6b049-c96359c8
cdb815da-d03b9395 cdb992be-f0f1613c cdbb20a9-bdab1f4e cdbbac37-49c0a335
cdbc7842-b72c4915 cdbd1882-bdd416ea cdbeedfd-4ab64af8 cdbf4bd1-0c65ed7a
cdc05b0a-3bb83a9c cdc05b0a-c53c36a6 cdc05b0a-c6e8b6ec cdc05b0a-ce908cf7
cdc05b0a-d4ff800b cd3dab20-1b3e564e cdc05b0a-efb78be5 cdc05b0a-f2a67b44

Table 9: List of streams used in test

A.3 AGENT ARCHITECTURE

To train the policy, we use the PPO algorithm (Schulman et al., 2017), where the architecture of the
policy is as follows: The per-block statistics are processed through a compact convolutional neural
network (CNN) comprising three convolutional layers. These layers employ kernel sizes of 3x3 or
4x4 with a stride of 1. The resulting features are subsequently flattened and concatenated with the
global statistics. A fully connected layer then derives a latent representation of dimension 64. This
latent representation serves as input to three distinct fully connected networks: the value network
(critic), the policy network (actor), and the reward prediction network described in the following
subsection. A diagram of the full system is given in Figure 2.

A.4 TASK ACCURACY TO DISTORTION TRADE-OFF

As previously discussed, RL-RC-DoT gains BD-rate reductions of 24.7%(±1.38%) with respect to
car detection precision task, while paying a minimal cost to overall video quality, as evidenced by
a slight increase in PSNR BD-rate of 1.19%(0.46%). This is important since we want video to still
be watchable by human eyes, for validation purposes and robustness to changing task models.

To further illustrate this point, in Figure 8 we show the PSNR and task performance BD-rate obtained
by RL-RC-DoT for each stream in the test set. In the plots we see the PSNR varies around 0 while
the tasks performance is well below.

A.5 ACTION SPACE RESOLUTION

Since we show our results on a videos of size 480x320 with macro-blocks of size 16x16, the action
space is of size 30x20. The size of the action space drastically affects the performance of the agent
and the convergence rate of the training process. Thus, we propose to set a lower resolution action
space and upsample to the original action space by interpolation. The trade-off here is clear – if
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Figure 8: PSNR BD-rate to detection precision BD-rate, where each point represent a single stream
in the test set

Figure 9: The effect of action space resolution on the BD-rate for both tasks

we make decisions in high resolution, the agent can take a long time to converge, whereas a low
resolution decision will not provide the finer control required for accurate bit allocation for the
downstream-task resulting in a sub-optimal performance. We illustrate this notion in Figure 9. We
plot the task BD-rate for multiple choices of resolution reduction ratios for each of the tasks. The
plot indeed shows the trade-off between the two, where each task has a different optimal choice for
action space resolution. We note that these results may depend on the number of frames allotted for
training, where we expect longer training to benefit lower resolutions.
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