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ABSTRACT

Deep learning methods have shown remarkable success when training from fixed
datasets and in stationary environments. However, when models such as neu-
ral networks are sequentially trained on multiple tasks, their ability to learn pro-
gressively declines with each task. This phenomenon is known as plasticity loss.
Previous work has shown that periodically resetting a neural network’s parame-
ters, in whole or in part, often helps restore plasticity. However, this comes at
the cost of a temporary drop in performance, which can be risky in real-world
settings. We introduce AltNet, a reset-based alternating network approach that
mitigates plasticity loss without performance degradation by leveraging alternat-
ing twin networks. The use of twin networks anchors performance during resets
and prevents performance collapse through a mechanism that allows networks to
periodically switch roles: one learns as it interacts with the environment, while the
other learns off-policy from the active agent’s interactions and a replay buffer. At
fixed intervals, the active network is reset and the passive network, having learned
from the agent’s prior (online and offline) experiences, becomes the new active
network. We demonstrate that AltNet improves plasticity and sample efficiency,
enables fast adaptation, and improves safety by preventing performance drops.
In our experiments on challenging high-dimensional tasks from the DeepMind
Control Suite, we show that AltNet outperforms baseline methods and various
state-of-the-art reset-based techniques.

1 INTRODUCTION

Deep learning systems are often designed to learn and converge on a single task. In non-stationary
environments, however, the goal being optimized by the model evolves over time. Success in such
settings requires continual adaptation rather than the ability to identify a single solution. This need
motivates the field of continual learning or lifelong learning, where an agent updates, accumulates,
and exploits knowledge throughout its lifetime (Chen & Liu, 2018)). A central obstacle in continual
learning is plasticity loss—the progressive decline in an agent’s ability to learn from new data over
time (Nikishin et al., [2022} |Lyle et al., | 2022; Dohare et al., 2024; |Kumar et al.,|2020)). Plasticity loss
has been observed in non-stationary settings. For instance, |Achille et al.| (2017) showed that pre-
training on blurred CIFAR images impaired subsequent learning of the original dataset. Similarly,
Ash & Adams| (2020) found that pre-training on half of a dataset and using the resulting model as
a starting point when tackling a supervised learning task reduced accuracy compared to training on
the full dataset from scratch. More broadly, [Dohare et al.| (2021) demonstrated that when neural
networks are trained sequentially on multiple tasks, their ability to learn new tasks progressively
declines with each additional task.

Reinforcement learning (RL) compounds this difficulty. Even if the task itself is stationary, RL
agents face inherent sources of non-stationarity. First, agents collect their own data; as policies
evolve, the distribution of encountered states and actions shifts, producing input non-stationarity.
Second, many RL algorithms such as DQN, A2C, PPO, and SAC (Mnih et al.,[2015};|2016};Schulman
et al.,|2017; [Haarnoja et al.,|2018)) rely on bootstrapping, where predictions of future rewards serve
as learning targets. As these predictions evolve, the targets themselves change, creating target non-
stationarity. Together, these factors require agents to continually adapt to shifting data distributions
even when tackling a single task, thereby amplifying plasticity loss. Finally, consistent with prior
work (Nikishin et al.l [2022; D’Oro et al.| |2022), in this paper, we show that simply increasing the
number of gradient updates per environment step (the replay ratio) can also exacerbate plasticity

loss in RL (see [Figure TJ).
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Various approaches have been proposed to mitigate plasticity loss (section 2)). Among these, a partic-
ularly promising family of methods is based on periodically resetting network parameters (Nikishin
et al., 2022; [Kim et al., 2023 |Dohare et al., [2024; Sokar et al., [2023)). These methods leverage the
observation that resets restore a network’s ability to adapt. One explanation for why resets help in
such settings, and the one we investigate in this work, is that plasticity is fundamentally tied to the
initialization process of a neural network (Dohare et al., 2024). In particular, randomly initialized
weights provide high plasticity at the start of training. However, when multiple tasks are encoun-
tered sequentially, weights learned on earlier tasks effectively become the initial weights used for
solving subsequent ones. These task-specific weights often offer a worse starting point compared
to random parameters, reducing the network’s ability to adapt. Based on this empirical observation,
one could expect that Standard Resets (Nikishin et al.,[2022), which reinitialize the entire network,
should in principle be the most effective way to restore plasticity. Although effective, full network
resets come at a cost: they erase all information embedded in the network and cause immediate
performance collapses (see orange curve). This renders Standard Resets impractical for
real-world deployment. The central challenge we address in this paper is how to retain the benefits
of full network resets in restoring plasticity while avoiding the performance instability they induce.

To address this challenge, we introduce AltNet, a reset-based alternating network approach that
mitigates plasticity loss without inducing temporary and recurring performance collapses. AltNet
maintains two networks that periodically switch roles. At any given time, the active network in-
teracts with the environment, while the passive network learns off-policy from the active agent’s
experience and a shared replay buffer. At fixed intervals, the active network is fully reset and the
passive network having learned from the agent’s prior (online and offline) experiences becomes the
new active agent. This alternating structure anchors performance across resets and prevents collapse.
Importantly, AltNet successfully mitigates the negative impact of resets even in settings with a replay
ratio of 1; in these cases, by contrast, vanilla resets (Nikishin et al., [2022) fail and more sophisti-
cated methods such as RDE (Kim et al., [2023) still exhibit sharp post-reset drops (see[Figure 3| blue
curve). To understand what drives AltNet’s gains, we systematically evaluate its robustness across
design choices such as replay ratio, buffer size, and reset duration (section 5). Finally, we show
that AltNet is not limited to off-policy algorithms; it improves performance in on-policy settings, as
demonstrated by comparisons with the on-policy baseline, PPO (Schulman et al.l 2017).

AltNet can also serve as a diagnostic tool for plasticity loss. The decline in performance of baseline
SAC makes plasticity loss evident at high replay ratios (see [Figure ). However, at lower replay
ratios, the effect is less obvious. Yet, AltNet’s positive impact on performance (see and
Figure 7| green curve) at lower replay ratios, suggests that plasticity loss still impacts learning in
these settings. Viewed this way, AltNet’s performance provides an indicator of, and to what extent,
plasticity loss is constraining learning in particular lifelong learning settings. When it yields little
or no benefit, baseline agent is not substantially limited. When AltNet delivers large gains, plas-
ticity loss is the bottleneck. This diagnostic perspective parallels prior work on Plasticity Injection
(Nikishin et al 2023)) in Arcade Learning Environment (Bellemare et alJ, [2013)) and extends the
idea to continuous-control domains, illustrating how full-network reset-based methods can provide
empirical evidence of plasticity loss. We elaborate on the diagnostic role of AltNet in Section 3.

In summary, we (i) provide a thorough empirical analysis of plasticity loss in reinforcement learning
by (ii) introduce AltNet, an alternating reset method that restores plasticity without the performance
instability induced by prior approaches and achieves consistent gains in low sample complexity
scenarios, such as when learning with low replay ratios, (iii) demonstrate it can extend to on-policy
settings, and (iv) show that AltNet doubles as a diagnostic tool for identifying when plasticity loss
is the primary factor constraining learning efficiency.

2 RELATED WORK

Plasticity. Prior work uses the term plasticity to refer to the degree to which a network generalizes
to unseen data [Berariu et al.[(2021) or to refer to its ability to continue improving performance on
its training objective over time (Abbas et al [2023; Nikishin et al.l 2023} [Kumar et al., |2020; [Lyle
et al.| 2024). In this paper, we adopt the latter meaning. We say that a network has lost plasticity if
it can no longer optimize its objective as effectively as a freshly initialized counterpart.
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Plasticity loss in reinforcement learning.  Several prior works point to the same underlying
challenge: neural networks in reinforcement learning often lose their ability to adapt as training pro-
gresses. [Lyle et al.|(2022) observe a gradual loss of capacity to fit evolving targets even in the single
task, while Kumar et al.|(2020) attribute a similar effect to implicit under-parameterization. |[Nikishin
et al.| (2022) introduce the term primacy bias, referring to the tendency of agents to overfit to early
experiences, which hinders subsequent learning. Although framed in different ways, these findings
describe facets of the same phenomenon—plasticity loss. We choose the terminology plasticity loss
because it captures the common thread across these phenomena: the gradual decline in an agent’s
ability to adapt to new information.

Causes of plasticity loss. The precise cause of plasticity loss remains unknown. Several cor-
relates have been identified, such as inactive neurons, the growth of the network’s average weight
magnitude, the decrease in the expressivity of the network, and changes in the curvature of the loss
landscape (Sokar et al., [2023; Dohare et al., [2021; Kumar et al., |2020; Lyle et al.| 2023)). No single
correlate can, however, provides a consistent explanation across settings. For example, [Lyle et al.
(2023) show that for any proposed correlate, counterexamples can be constructed where the cor-
relation disappears or even reverses. Since no single underlying cause of plasticity loss has been
identified, it is difficult to determine directly whether a system has retained or lost plasticity. We
therefore use performance as a practical proxy for plasticity. Following prior work (Nikishin et al.,
2022}2023; |[Kim et al.l 2023)), we evaluate plasticity loss by focusing directly on the agent’s perfor-
mance.

Given the difficulty of pinpointing a single cause, a wide range of algorithmic strategies have been
proposed to mitigate plasticity loss. Broadly, these fall into two families: methods based on regu-
larization, which constrain or perturb weights to preserve plasticity, and methods based on resets,
which periodically reinitialize parts or the entire network. Below, we briefly review each in turn:

1. Regularization-based strategies. Prior work has explored regularization-based strategies to
maintain plasticity. While L2 penalties can slow down weight growth, they sometimes aggravate
rank collapse by biasing weights toward the origin (Dohare et al., 2021} [Lyle et al.l |2023). To
address this, methods such as Shrink-and-Perturb (Ash & Adams)},2020) and L2 Init (Kumar et al.}
2020) have been proposed, which encourage weight updates toward high-plasticity initializations
while preserving feature diversity.

2. Reset-based strategies. Another family of methods directly resets the network in part or in
whole. Nikishin et al.| (2022) propose periodic full resets, relying on the replay buffer to transfer
knowledge, but these often cause sharp performance drops. [Igl et al.| (2020) propose distilling
a trained policy into a newly initialized network, which can be seen as a form of reset with
distillation as the transfer mechanism. Continual Backprop (CBP) (Dohare et al.| 2024) and
ReDO (Sokar et al.||2023) reset subsets of neurons selected for low utility or persistent inactivity.
Reset Deep Ensembles (RDE) (Kim et al.,[2023)) leverages full resets by maintaining an ensemble
of networks, with each network reset in turn to induce plasticity. Actions are chosen through a
Q-value-weighted voting scheme, where each proposed action is weighted by the critic of the
oldest network in the ensemble. While RDE improves stability, it still suffers from significant
post-reset performance drops (see[Figure 3] orange curves) because a freshly reset, poorly trained
network can still act in the environment.

3 EVIDENCE FOR PLASTICITY LOSS

In reinforcement learning, agents learn through direct interaction with the environment, which is
often slow and costly in real-world domains such as robotics or healthcare applications. To maximize
the utility of each interaction, practitioners often increase the replay ratio (RR)—the number of
gradient updates performed per environment step (Fedus et al.| [2020; |Wang et al., 2016; |D’Oro
et al.,[2022). In theory, larger replay ratios should accelerate learning by extracting more information
from past experiences. However, prior work has shown that increasing the replay ratio exacerbates
plasticity loss (Nikishin et al., [2022; |D’Oro et al., 2022). We demonstrate the effect of increasing
RR. At high RR, the decline in performance of baseline SAC, makes plasticity loss evident (see
[Figure T)). However, at lower replay ratios, the effect is less obvious. Later, we investigate whether
plasticity loss persists in this regime and, if so, how it can be identified.
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Plasticity Loss at High Replay Ratios We investigate how increasing the replay ratio (RR)
affects the learning dynamics of the Soft Actor—Critic (SAC) algorithm in a continuous control
task from the DeepMind Control Suite. We focus on the hopper-hop environment, a chal-
lenging locomotion domain in which the agent must learn to propel itself forward by hopping.
Plasticity loss is defined as the diminishing ability of the agent to adapt to new tasks over time.
In reinforcement learning, the data distribution evolves at every update, effectively presenting the
agent with a new task and might causes the agent’s plasticity to diminish much earlier relative
to the number of samples collected. The central hypothesis is that as the number of gradient
updates per environment step increases, the agent’s plasticity diminishes. Concretely, if plastic-
ity loss is present, we should observe that performance degrades once the replay ratio becomes large.

Learning Curves in SAC with Different Replay Ratios
Mean + 1 Standard Error

RR 8

RR 32

Average return over 10 runs
5]
8

0 250,000 500,000 750,000 1,000,000
Environment Steps

Replay Ratio 1 Replay Ratio 4 == Replay Ratio 8 &4 Replay Ratio 32

Figure 1: Learning curves of SAC in the hopper—hop environment (DMC) under different replay
ratios (RR =1, 4, 8, 32). Curves show mean episodic return over 10 seeds, with shaded regions
denoting +1 standard error. Performance improves as RR increases up to 8, but collapses at RR =
32, providing direct evidence of plasticity loss.

In the hopper-hop environment, we trained SAC agents with replay ratios ranging from 1 to 32.
As expected, performance initially improved with moderate increases in replay ratio (e.g., from RR
=1 to RR = 8), reflecting better sample efficiency. However, at RR = 32, performance decreased
significantly (see[Figure ). This decline in performance arises solely from altered training dynam-
ics, not from changes in the environment, providing direct evidence of plasticity loss. These find-
ings align with explanations based on primacy bias (Nikishin et al., 2022)), where the agent overfits
to early experiences and loses adaptability as training progresses. Although prior reset-based ap-
proaches (Nikishin et al., 2022} |D’Oro et al., |2022) have demonstrated recovery of plasticity under
such extreme regimes, high replay ratios are computationally expensive. In hopper—-hop, training
for one million environment steps required approximately 5 GPU hours at RR = 1, but more than 200
GPU hours at RR = 32. Such scaling renders these settings impractical for real-world deployment,
where rapid adaptation is crucial, motivating our shift of focus toward lower replay ratios.

Plasticity Loss at Low Replay Ratios At low RR, evidence of plasticity loss is less apparent,
since standard learning curves across replay ratios do not clearly expose its presence. One natural
approach to diagnose plasticity loss is to observe how a plastic system behaves. If it provides little
or no benefit, the baseline agent is not substantially impaired. If it delivers substantial gains in
performance, then plasticity loss is the bottleneck. Hence, such a method can serve as a diagnostic
tool for plasticity loss. Though full network resets (Nikishin et al., [2022)) make the system plastic, it
erase accumulated knowledge and induce sharp drops in performance, making diagnosis difficult to
interpret in this regime. Thus, in order to determine if a system is constrained by plasticity loss, we
require a system that is both plastic and maintains stable performance.

AltNet provides precisely this combination—high plasticity without instability—making it a suit-
able tool for diagnosing plasticity loss. In Section 5, AltNet reveals agents at low replay ratios are
constrained by plasticity loss (Figure 3). [Nikishin et al.| (2023) also demonstrated the ability of
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their proposed solution, Plasticity Injection, to be used as a diagnostic tool in the Arcade Learn-
ing Environment (Bellemare et al., 2013). In this paper, we extend this diagnostic perspective to
continuous-control domains, leveraging full-network resets to demonstrate empirical evidence of
plasticity loss.

4 ALTNET
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Figure 2: AltNet maintains two networks, A; and A, which share a replay buffer and alternate
roles over time. Initially, A; (dark green) is active and collects experience by directly interacting
with the environment, while A, (light green) remains passive and undergoes off-policy updates.
At every ResetFreq steps, the active network is reset and becomes passive, while the previously
passive network becomes active. This cyclic alternation enables frequent resets to maintain plasticity
without sacrificing stability.

Central Hypothesis. Prior work has shown that full resets can restore plasticity (Nikishin et al.,
2022), but they also cause sharp performance collapses when the reset policy acts immediately (see
orange curve). We hypothesize that leveraging two insights can reconcile this plasticity-
stability dilemma: (i) resetting a neural network initializes it to a highly plastic state, from which it
may be able to learn a better policy, as compared to a trained network, and (ii) using well-trained
networks for interaction with the environment prevents performance drops. To combine the benefits
of both, AltNet introduces a dual-network architecture that allows frequent resets to occur while
avoiding performance instability.

Architecture. AltNet is composed of two networks that alternate roles at a fixed interval,
ResetFreq (Figure 2). At any given time, the active network interacts with the environment,
while the passive network learns off-policy from the experiences of the active network and a replay
buffer. The replay buffer is shared among the twin networks. Every ResetFreq steps the active
network is reset and becomes the passive network and vice versa. This alternating cycle ensures that
resets occur frequently enough to counter plasticity loss, yet performance remains stable because
only trained networks interact with the environment.

To make the reset time comparable between methods, resets are scheduled in units of gradient up-
dates, not environment steps. Following Kim et al.| (2023)); [D’Oro et al.|(2022), we define the reset
frequency in terms of U, the number of gradient updates between resets (default U = 200,000), RR,
the replay ratio (updates per environment step), and IV, the number of networks, and then convert to
environment steps. Formally, the effective reset interval is:

U

RR x N M

ResetFre env steps) —

Another crucial element of AltNet is that the shared replay buffer is preserved across resets. The
size of the replay buffer is equal to the total number of interactions with the environment. If we
were to apply resets to the entire system, including the buffer, that would be equivalent to training
from scratch after every reset operation. What makes resets work is the preservation of data that has
been collected so far in the buffer. It provides continuity of experience and serves as the medium
of knowledge transfer between successive networks. While resetting the buffer is not practical, we
experiment with reduced buffer sizes (Section[5.I)) to test if all past experiences must be preserved.
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Key Innovation. AltNet makes a structural departure from prior reset-based approaches. It prevents
recently-reset networks from immediate interaction with the environment. In contrast, Standard Re-
sets (Nikishin et al., [2022) expose the reset network directly to the environment, making perfor-
mance collapse inevitable. RDE (Kim et al., 2023)) employs ensembles with a Q-value-weighted
gating policy to reduce the likelihood of a reset agent acting prematurely, although it still allows a
recently reset agent to act. AltNet guarantees that only a trained network ever interacts with the envi-
ronment. In AltNet reset networks first train passively on the shared buffer before taking over. This
shift turns stability from a probabilistic outcome into a deterministic property. Empirically, the result
is stronger and simpler: AltNet avoids post-reset performance drops across replay ratios, achieves
higher and more stable returns (see[Figure 3). Additionally, it offers a clearer method for diagnosing
plasticity loss. More broadly, AltNet reframes reset-based learning: even with full network resets
plasticity and stability can be simultaneously achieved.

5 RESULTS AND ANALYSIS

We evaluate AltNet on continuous-control benchmarks from the DeepMind Control Suite. We com-
pare it against SAC (Haarnoja et al., 2018)), a widely used continuous-control algorithm, providing
a strong and stable baseline for comparison. We also compare it with state-of-the-art methods like
standard resets (Nikishin et al.l 2022) and Reset Deep Ensembles (RDE) (Kim et al.| 2023). All
agents are trained for 1M environment interactions. All experiments use U = 200,000 updates
between resets, with results reported for replay ratios of 1 and 4. Standard Reset employs a single
network, whereas RDE and AltNet use two. To ensure fair comparison across methods, we define
the Reset Frequency interms of the number of gradient updates between resets (U), the replay
ratio (RR), and the number of networks (IV), following [Equation 1] For example, when RR = 1,
Standard Reset applies resets every 100k steps, while RDE and AltNet reset every 50k steps. When
RR = 4, Standard Reset resets every 50k steps, while RDE and AltNet reset every 25k steps.

Table 1: Normalized AUC comparison of different methods across DMC environments. The best
method in each environment is highlighted in bold. AltNet achieves the highest normalized AUC,
outperforming SAC by ~45%, SR by ~10%, and RDE by ~6% on average.

Environment AltNet RDE SAC SR

Cheetah (RR=1) 658.27 596.62 616.12 529.94
Hopper (RR=1) 248.68 245.69 156.69 270.68
Quadruped (RR=1) 619.12 609.36 377.27 568.36
Walker (RR=1) 645.76  643.22 570.08 617.06

Cheetah (RR=4) 721.85 619.15 535.80 620.08
Hopper (RR=4) 313.78 27829 205.00 249.66
Quadruped (RR=4) 703.74 717.24 24093 687.43
Walker (RR=4) 728.49 723.64 653.82 725.44

Average (RR=1) 54296 52322 430.04 496.51
Average (RR=4) 616.47 584.58 408.89 570.65

As can be seen in[Figure 3] when RR = 1, performance of Standard Resets collapse almost imme-
diately, and RDE experiences sharp post-reset performance drops. AltNet, by contrast, avoids these
failures by anchoring resets with a passive network that learns before taking control. As a result,
AltNet yields consistently higher average returns and stable learning curves across tasks. When
RR = 4, AltNet continues to outperform SAC and Standard Resets, and matches the performance
of RDE while exhibiting markedly greater stability (Appendix [Figure 7). This stability is especially
important in safety-sensitive domains, where abrupt failures are unacceptable.

Unlike Standard Resets (Nikishin et al 2022), which require excessively high replay ratios and
abundant compute, AltNet remains effective in the practical regime of low replay ratios. Thus,
AltNet provides a scalable reset strategy that preserves plasticity, improves sample efficiency, and
enhances stability under realistic computational budgets. It is the only full-network reset-based
approach that eliminates post-reset drops even at RR = 1, demonstrating that resets can be both
effective and safe in reinforcement learning. In we report the normalized AUC, which
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Figure 3: Learning curves across four DMC environments (Walker-run, Quadruped-run, Cheetah-
run, Hopper-hop) with replay ratio = 1. Results are averaged over 10 seeds; shaded regions indicate
+1 standard error. AltNet (green curve) avoids post-reset drops and achieves higher returns com-
pared to SAC (red curve), Standard Resets (orange curve), and RDE (blue curve).

divides AUC (total return accumulated over training) by the step range to capture sample-efficiency.
A higher normalized AUC indicates that the agent achieved stronger returns earlier, while a lower
value reflects slower learning. AltNet achieves the highest normalized AUC, outperforming SAC by
~45%, SR by ~10%, and RDE by ~6% on average.

These results highlight AltNet’s stability and superior returns across replay ratios. A natural ques-
tion is whether these benefits come at prohibitive computational cost, since AltNet maintains two
networks instead of one. We find this may not always be the case. Although AltNet doubles the
number of forward and backward passes, compute can be balanced simply by adjusting the replay
ratio. For example, at RR = 1, AltNet requires 12 GPU hours compared to 6 for SAC, yet it outper-
forms not only SAC at RR = 1 but also SAC at RR = 4, which takes 26 GPU hours (see[Figure 9).
Thus, AltNet achieves higher performance even with lower computational budget. Crucially, where
prior reset-based methods demanded extreme replay ratios and high cost to remain effective, AltNet
delivers plasticity and stability under realistic budgets, making it a scalable option for practice.

5.1 BUFFER SIZE AND RESET DURATION

AltNet’s performance relies on two interacting processes: (i) periodic resets that restore network
plasticity, and (ii) preservation of a shared replay buffer that anchors performance by transferring
experiences across resets. To examine the role of each component, we perform ablations that disrupt

them individually and in combination (see [Figure 4).

Reducing buffer size. Reset-based methods typically preserve the full replay buffer across resets
(Nikishin et al.| 2022} | Kim et al., 2023). We investigate whether this is essential or whether older
experiences can be discarded with negligible impact on AltNet’s performance. Beginning with the
default buffer size of 1M transitions, we reduced replay buffer capacity to 600k and 400k by replac-
ing old samples in a FIFO manner. Reducing buffer capacity adversely affected performance (see
orange curve): although AltNet continued to outperform non-reset baselines, performance
declined relative to runs with the full buffer, showing that full replay buffer preservation is critical
for stabilizing resets.
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Figure 4: Analysis in the Quadruped-run environment (DMC). Curves show mean episodic re-
turn over 10 seeds, with shaded regions denoting +1 standard error.We compare standard AltNet
(green), reduced buffer size (orange), resets halted (blue), both interventions combined (red), and
the SAC baseline (purple). Results demonstrate that both preserving the full replay buffer and main-
taining continuous resets are essential for AltNet’s stability.

Reset Duration. Next, we investigate whether terminating resets in AltNet at some point in the
training would disrupt performance. If plasticity loss accumulates over time, halting resets should
cause learning progress to stall or decline once again. To test this hypothesis, we interrupted resets
after 400k and 600k steps while preserving the full replay buffer. Performance declined sharply
after resets were halted (see blue curve), indicating that plasticity loss re-emerges and that
resets must be employed continuously in AltNet to sustain learning and stability.

Joint stress test. Finally, we investigate the impact of both interventions mentioned above. If resets
and buffer preservation negatively impact plasticity and stability, then disrupting both should com-
pound the decline in performance. Indeed, halting resets while also reducing buffer size produced
the worst overall returns (see red curve). To ensure that these effects were not tied to a
particular optimization setting, we repeated the procedures at a different learning rate and observed
the same qualitative pattern (see [Figure §).

Together, these results show that AltNet depends on the interplay of two mechanisms: ongoing resets
to restore plasticity, and replay-buffer preservation to provide continuity. Disrupting either weakens
performance. These findings emphasize that AltNet must maintain both ingredients throughout
training.

5.2 ALTNET’S EFFICACY IN ON-POLICY SETTINGS

Research in plasticity loss has paid relatively little attention to on-policy reinforcement learning,
even though, like off-policy methods, on-policy methods lose plasticity over long horizons and dis-
tribution shifts (Juliani & Ash} 2024; Dohare et al.,[2024). Additionally, Juliani & Ash|(2024)) found
that approaches originally developed to mitigate plasticity loss in off-policy settings such as Plas-
ticity Injection (Nikishin et al., 2023 and CReLU (Abbas et al., [2023)) are ineffective in on-policy
settings. Motivated by this gap, we evaluate whether AltNet’s alternating reset mechanism can also
provide benefits to Proximal Policy Optimization (PPO) (Schulman et al., 2017)), one of the most
widely used on-policy algorithms

In on-policy reinforcement learning, agents collect trajectories by following their current policy, and
updates are based solely on those trajectories. Unlike off-policy methods, these algorithms do not
rely on a replay buffer for reusing past experience. Having shown that preserving the replay buffer
is essential for AltNet’s stability in off-policy training (see[subsection 5.1]), we investigate whether
its benefits can extend to settings which lack a replay buffer.

Although, the absence of a replay buffer removes the explicit knowledge transfer mechanism, we
find that AltNet continues to improve performance over the PPO baseline (see[Figure 3)). The key lies
in a second, subtler form of transfer enabled by AltNet’s twin-network design: while one network
interacts with the environment, the other, recently reset network, learns in parallel from the same
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Figure 5: Training performance of PPO and PPO+AltNet in the MuJoCo Ant environment. Curves
report mean episodic return over 10 seeds, with shaded regions denoting +1 standard error. AltNet
provides consistent gains over PPO by anchoring resets without destabilizing learning, demonstrat-
ing its benefits extend to on-policy settings.

trajectories. Although it does not act directly, the passive network benefits from the active network’s
updates, enabling it to recover useful representations. This subtle knowledge transfer mechanism
anchors performance across resets even without a replay buffer. Empirically, AltNet yields consis-
tent improvements over the PPO baseline (Figure 3), demonstrating that its benefits extend beyond
the off-policy setting.

6 DISCUSSION

While our work focuses on plasticity loss, it is important to situate plasticity within the broader
attributes of an effective reinforcement learning agent. Such an agent should not only remain plastic,
retaining the capacity to update its predictions over time, but also adapt rapidly when distributions
shift, make full use of past data, and achieve strong performance with limited interactions. This agent
should also ensure performance stability that preserves prior learning progress. Plasticity underpins
these other attributes: without the capacity to change, the ability to adapt quickly, exploit novel data,
and learn with high sample efficiency are negatively impacted. Viewed through this lens, AltNet
addresses more than plasticity loss. Through network resets, it restores plasticity in the system,
enabling rapid adaptation, sustained exploitation of replay buffers, and efficient use of data at low
replay ratios. And, by anchoring performance through a twin network, it is able to learn in a stable
manner without performance degradation. Together, these results suggest that preserving plasticity
is a foundational aspect for the broader qualities that define effective and practical RL agents.

Empirically, AltNet achieves higher performance without post-reset degradation at lower replay
ratios, a setting where prior full-network reset methods lack. We further show that its benefits
extend to on-policy regimes. Beyond raw performance, AltNet also functions as a more interpretable
diagnostic tool for identifying plasticity loss, owing to the stability of its learning dynamics.

7 LIMITATIONS AND FUTURE WORK

Although AltNet demonstrates strong empirical gains and stability across a range of continuous con-
trol tasks, our study has limitations. First, we focus our experiments on domains from the DeepMind
Control Suite which are representative of challenging control problems used to evaluate state-of-the-
art RL methods. That said, extending evaluation to more diverse environments could lead to further
insights. Second, AltNet introduces additional compute overhead due to maintaining twin networks.
While we show that this overhead is offset by lower replay ratios, real-world deployment may re-
quire tighter analysis of such computational trade-offs. Third, AltNet relies on the choice of reset
frequency, which currently follows a standard schedule in our experiments; how this hyperparameter
interacts with different environments and replay ratios is relevant future work.
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A LEARNING CURVES IN DMC

In Section [5} we reported that AltNet consistently achieves higher normalized AUC than baselines
across the DeepMind Control Suite. Here we provide the full learning curves to complement those
summary statistics. These plots illustrate training dynamics over 1M environment steps under dif-
ferent replay ratios, highlighting both stability and return profiles.
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Figure 6: Learning curve with replay ratio = 1. Results are averaged over 10 seeds; shaded regions
indicate +1 standard error.
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Figure 7: Learning curve with replay ratio = 4. Results are averaged over 10 seeds; shaded regions
indicate +1 standard error.
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The corresponding normalized AUC comparisons across environments are provided below to
quantify sample efficiency. These results directly extend Table 1 in the main text by showing
environment-level breakdowns at replay ratios of 1 and 4.

Table 2: Normalized AUC comparison of different methods across environments. The best method
in each environment is highlighted in bold. (RR = 1)

Environment AltNet RDE SAC SR

Cheetah 658.27 596.62 616.12 529.94
Hopper 248.68 245.69 156.69 270.68
Quadruped 619.12 60936 377.27 568.36
Walker 645.76 64322 570.08 617.06

Table 3: Normalized AUC across environments for AltNet, RDE, SAC, and SR The best method in
each environment is highlighted in bold. (RR=4).

Environment AltNet RDE SAC SR

Cheetah 721.85 619.15 535.80 620.08
Hopper 313.78 27829 205.00 249.66
Quadruped 703.74 717.24 240.93 687.43
Walker 728.49 723.64 653.82 72544
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B HYPERPARAMETERS USED

The hyperparameters for AltNet and baseline agents follow standard practice in continuous-control
reinforcement learning, with modifications only where required for resets. For reproducibility, we
report the exact values used in the DMC environment.

Table 4: Hyperparameters on the Hopper—Hop domain.

Hyperparameters Value
# of network (AltNet and RDE) 2

# of network (Baseline and Standard Reset) 1
Training steps 1 x 108
Discount factor 0.99
Warm up period 5000
Minibatch size 1024
Optimizer Adam
Optimizer : learning rate 0.0003
Networks : activation ReLU
Networks : n. hidden layers 2
Networks : neurons per layer 1024
Initial Temperature 1
Replay Buffer Size 1 x 108
Updates per step (Replay Ratio) 1,4)
Target network update period 1

7 (Polyak update) 0.005
Reset Frequency (gradient steps) for all 2 x 10°
[ (action select coefficient) for RDE 50

C BUFFER SIZE AND RESET DURATION

In Section [5.1] we argued that AltNet’s stability depends jointly on two mechanisms: preserving
the replay buffer across resets and maintaining resets throughout training. Here, we stress-test these
design choices under different learning rates. The results confirm that both ingredients are indispens-
able; disrupting either one weakens AltNet’s performance, and disrupting both leads to the largest
degradation.

200k 400k 600k 800k

Figure 8: Consistent pattern observed under a different learning rate.
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D ADDRESSING ALTNET’S COMPUTE COST

Section [3] highlighted that AltNet achieves higher returns with greater stability than SAC and other
baselines, even at low replay ratios. A natural concern is whether these gains come at dispropor-
tionate computational expense, since AltNet doubles the number of networks. Here we compare
wall-clock costs across methods and replay ratios.

Although AltNet doubles the number of forward and backward passes, compute can be balanced
simply by adjusting the replay ratio. For example, at RR = 1, AltNet requires 12 GPU hours
compared to 6 for SAC, yet it outperforms not only SAC at RR = 1 but also SAC at RR = 4,
which takes 26 GPU hours (see [Figure 9). Thus, AltNet achieves higher performance even with
lower computational budget.

Hopper Hop SAC vs AltNet

v«\/’\'\/‘v/\/

300

Return

100

0 250,000 500,000 750,000 1,000,000
Environment Steps

AltNet at RR 1 SACatRR1 — SACatRR 4

Figure 9: Compute—performance trade-off. AltNet at RR = 1 requires fewer GPU hours than SAC
at RR = 4, yet delivers higher returns.
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