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ABSTRACT

A well-known pitfall of molecular generative models is that they are not guar-
anteed to generate synthesizable molecules. Existing solutions for this problem
often struggle to effectively navigate exponentially large combinatorial space of
synthesizable molecules and suffer from poor coverage. To address this prob-
lem, we introduce ReaSyn, an iterative generative pathway refinement frame-
work that obtains synthesizable analogs to input molecules by projecting them
onto synthesizable space. Specifically, we propose a simple synthetic pathway
representation that allows for generating pathways in both bottom-up and top-
down traversal of synthetic trees. We design ReaSyn so that both bottom-up and
top-down pathways can be sampled with a single unified autoregressive model.
ReaSyn can thus iteratively refine subtrees of generated synthetic trees in a bidi-
rectional manner. Further, we introduce a discrete flow model that refines the
generated pathway at the entire pathway level with edit operations: insertion, dele-
tion, and substitution. The iterative refinement cycle of (1) bottom-up decoding,
(2) top-down decoding, and (3) holistic editing constitutes a powerful pathway
reasoning strategy, allowing the model to explore the vast space of synthesiz-
able molecules. Experimentally, ReaSyn achieves the highest reconstruction rate
and pathway diversity in synthesizable molecule reconstruction and the highest
optimization performance in synthesizable goal-directed molecular optimization,
and significantly outperforms previous synthesizable projection methods in syn-
thesizable hit expansion. These results highlight ReaSyn’s superior ability to
navigate combinatorially-large synthesizable chemical space. Our code is available
athttps://github.com/NVIDIA-Digital-Bio/ReaSyn.
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Discovering molecules with desired properties in the chemical
space comprises the core of drug discovery. However, drug dis-
covery pipelines are challenging and labor-intensive due to their
vast design space and multi-objective nature. Molecular gener-
ative models have recently emerged as a notable breakthrough
with the potential to greatly accelerate the drug discovery
process. However, their practical impact has remained limited
as they often suffer from a common shortcoming: generated 01
drug candidates are often synthetically inaccessible (Segler Diversity (Pathway)
et al., 2018b; Gao & Coley, 2020; Walters & Barzilay, 2021).  Figure 1: Synthesizable molecule re-
construction on test molecules con-
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Figure 2: (a) Bottom-up and top-down traversal of a synthetic tree. (b) Overall framework of ReaSyn.
ReaSyn’s generation cycle consists of three steps. First, an initial synthetic tree is generated by the autoregressive
model in a bottom-up direction. Next, the autoregressive model repredicts a randomly selected subtree in a
top-down direction. Finally, the Edit Flow model refines the generated tree in a holistic manner. This process can
be repeated multiple times, and the best pathway that yields a product molecule of the highest similarity to the
given target molecule is selected as the final solution. The sampling processes of the autoregressive model (the
first and the second steps) and the Edit Bridge model are depicted in Figure 3(a) and Figure 3(b), respectively.

This problem arises from neglecting synthesizability during multi-objective molecular optimization,
which often leads to exploration outside the synthesizable space. Although this issue can be
tackled by incorporating a synthesizability score as an additional optimization objective (Ertl &
Schuffenhauer, 2009; Coley et al., 2018; Thakkar et al., 2021), this approach is largely impractical
since the heuristic scores are often poor proxies. This is because synthesizability is a complex
function of molecular structure, and existing proxies cannot take available building block stocks
or reaction selectivity into account (Gao & Coley, 2020).

An alternative solution is to constrain the design space to synthetically accessible space by generating
synthetic pathways instead of solely generating final product molecules. This can be obtained either
by generating synthesizable molecules in a de novo way (Bradshaw et al., 2020; Swanson et al., 2024;
Koziarski et al., 2024; Cretu et al., 2025; Seo et al., 2025) or by projecting (possibly unsynthesizable)
input molecules into the synthesizable space (Gao et al., 2021; Luo et al., 2024; Gao et al., 2025; Sun
et al., 2025). In the latter approach, often called synthesizable projection or analog generation, a model
learns to correct unsynthesizable molecules by generating pathways that lead to synthesizable analogs
with similar structures. In contrast to the former approach, synthesizable projection benefits from
a versatile and modular design and can be used with any off-the-shelf molecule generation method.
It can also be applied to explore neighborhoods in the synthesizable space, allowing the model to per-
form different molecule optimization tasks, including hit expansion or lead optimization. Given these
benefits, in this paper, we aim to solve the synthesizable projection problem using generative models.

When generating synthetic pathways in an autoregressive setting, a key decision is the direction in
which the tree-structured pathway is generated (Figure 2(a)). Bottom-up generation (Bradshaw et al.,
2020; Gao et al., 2021; Swanson et al., 2024; Luo et al., 2024; Gao et al., 2025; Koziarski et al., 2024;
Cretu et al., 2025; Seo et al., 2025) and top-down generation (Sun et al., 2025) each have distinct
advantages: the former can start from valid building blocks, and the latter aligns with the chemist’s
intuition. In this paper, we argue that identifying synthetic pathways for a given molecule is a search
problem that benefits from unifying the two approaches: a model must navigate an exponentially large
combinatorial space of possible intermediates and reactions, reasoning over sequences of chemical
transformations that yield analogs. To this end, we introduce ReaSyn', a unified framework that can
generate synthetic pathways both bottom-up and top-down (Figure 2(b) and Figure 3). This bidirec-
tional design allows us to initialize a set of synthetic pathways given an input molecule and iteratively
refine them in both directions. This iteration is required as changes at a node must be propagated both
upward in the tree (to update the remaining synthetic pathway compatible with the new intermediate
product) and downward in the tree (to regenerate a subtree that would yield the updated product).

The upward or downward sampling given a synthetic tree can be considered as edit operations that
refine trees partially in one direction. To take these refinement operations one step further, we also
introduce a tree editing scheme based on Edit Flow (Havasi et al., 2025) which we term as Edit
Bridge (Figure 3(b)). Specifically, Edit Bridge is a novel discrete flow over pathway sequences that
further refines the given pathway generated by the autoregressive model through edit operations:
insertion, deletion, and substitution. This in turn allows ReaSyn to jointly edit both the tree skeleton

"Inspired by the reasoning nature of our problem, ReaSyn is pronounced as “reason”.
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Figure 3: ReaSyn adopts an encoder-decoder Transformer architecture. After the encoder encodes the input
molecule, the decoder predicts the synthetic pathways of its synthesizable analogs. [ START] and [END] tokens
are omitted for simplicity. (a) Bidirectional synthetic pathway generation of ReaSyn. ReaSyn’s autoregressive
model predicts the synthetic pathways in the sequential representation. ReaSyn’s training and inference scheme
tailored for the bidirectional synthetic pathway generation enables to designate a specific sampling direction
using a single autoregressive model. (b) Holistic pathway editing of ReaSyn. ReaSyn’s Edit Bridge model
takes the full pathway generated by the autoregressive model and jointly edits the tree skeleton and semantics.

and semantics at the entire pathway level. To the best of our knowledge, this paper is the first to
bridge between learned and data distributions via editing operations.

Generative modeling over synthetic pathways requires choosing a pathway representation. Prior
works (Bradshaw et al., 2020; Gao et al., 2021; Swanson et al., 2024; Luo et al., 2024; Gao et al., 2025;
Koziarski et al., 2024; Cretu et al., 2025; Seo et al., 2025; Sun et al., 2025) have used hierarchical
representation, including node type (i.e., reaction vs. building block) and node features (i.e., reaction
class or building block features like Morgan fingerprints (Morgan, 1965). Striving for simplicity,
ReaSyn introduces a simple sequential representation for traversing synthetic trees. ReaSyn eliminates
(1) information loss in molecular fingerprints by directly using SMILES to represent building blocks
and (2) error accumulation and architectural complexity arising from the hierarchical representations.
Using this representation, ReaSyn adopts a novel training and inference scheme that can enforce a
specific traversal direction in a single encoder-decoder Transformer (Vaswani et al., 2017).

We experimentally validate the effectiveness and versatility of ReaSyn on various tasks including
synthesizable molecule reconstruction, synthesizable goal-directed molecular optimization, and
synthesizable hit expansion. ReaSyn outperforms existing methods with superior reconstruction
rates and pathway diversity in synthesizable molecule reconstruction, and achieves state-of-the-art
performance in finding synthesizable chemical optima in synthesizable goal-directed molecular
optimization and hit expansion. For example, as shown in Figure 1, ReaSyn significantly outperforms
existing methods in exploring the synthetic chemical space to reconstruct synthesizable molecules
(87.9% vs. 18.0% reconstruction rate) with greater sampling diversity (0.658 vs. 0.181 building
block diversity). All these results indicate that ReaSyn has broader coverage of the synthesizable
chemical space, highlighting its efficacy as a practical tool in real-world drug discovery scenarios.
We summarize our contributions as follows:

* We introduce a simple synthetic pathway representation that enables traversal of synthesis trees
in both bottom-up and top-down directions.

* We propose a new bidirectional search strategy in synthetic pathway space that unifies bottom-up
and top-down sampling.

» We propose Edit Bridge, a novel discrete flow that bridges between the learned distribution in a
generative model and the data distribution through edit operations.

* We propose ReaSyn, a framework that integrates bottom-up decoding, top-down decoding, and
holistic editing to establish a multi-view pathway generation method for synthesizable projection.

* We demonstrate the effectiveness and versatility of ReaSyn in various synthesizable molecule
generation and optimization tasks through extensive experiments.

2 RELATED WORK

Synthesizable molecule design. Molecular synthesizability is a vital problem in drug discovery and
therefore has received a lot of attention. In synthesizable molecule design, the synthesizable chemical
space is defined by sets of reaction rules and building blocks, and the design space is constrained to this
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space. Various algorithms have been proposed to navigate the space to find synthesizable drug candi-
dates, including autoencoders (AEs) (Bradshaw et al., 2020), variational autoencoders (VAEs) (Pedawi
et al., 2022), Bayesian optimization (Korovina et al., 2020), genetic algorithms (GAs) (Gao et al.,
2021), Monte Carlo tree search (MCTS) (Swanson et al., 2024), and GFlowNets (Koziarski et al.,
2024; Seo et al., 2025; Cretu et al., 2025). However, most of them are either only capable of con-
sidering single-step synthetic pathways or require extensive oracle calls to perform goal-directed
molecular optimization. Furthermore, these de novo generation methods directly generate molecules
in the synthesizable space exhibit poor explorability and optimization performance against the target
chemical properties. An alternative approach is projecting given molecules into the synthesizable
space to suggest synthesizable analogs (Gao et al., 2021; Luo et al., 2024; Gao et al., 2025; Sun et al.,
2025). However, these methods are unable to reliably suggest synthetic pathways that reconstruct syn-
thesizable molecules. All of these results indicate a lack of explorability in the synthesizable chemical
space, largely due to their insufficient reasoning capability on the generated synthetic pathways.

Retrosynthesis planning. A related area is retrosynthesis planning, which aims to predict synthetic
pathways of given synthesizable molecules in a top-down direction (Coley et al., 2019; Genheden
etal., 2020; Kim et al., 2024; Sathyanarayana et al., 2025). Yu et al. (2024) addressed another problem,
double-ended starting material-constrained synthesis planning, with bidirectional node expansion
in AND-OR graph search. Retrosynthesis planning methods, however, cannot suggest synthesizable
analogs given unsynthesizable molecules, because the target molecule is an invariable starting point
for the search. In addition, since they are typically a combination of a single-step reaction prediction
model and a search algorithm, they cannot consider the entire pathway to optimize the end products for
target chemical property. In contrast, ReaSyn solves the problem of synthesizable projection that can
be considered as loose single-ended synthesis planning. The target molecule guides synthesis rather
than being a strict constraint, allowing flexible handling of the target molecule regardless of its syn-
thesizability and enabling optimization of the entire pathway based on the end molecule’s properties.

3 BACKGROUND

Problem definition. A set of building blocks 5 and a set of reactions R together define a synthe-
sizable chemical space. A reaction R € R is a function that maps reactants to a product, and the
synthesizable space is defined as the set of product molecules that can be formed by the iterative appli-
cation of reactions on compatible combinations of building blocks in B. A reaction rule is described
by SMILES Arbitrary Target Specification (SMARTS) (Daylight Chemical Information Systems,
2019), a regular expression-like representation for Simplified Molecular Input Line Entry System
(SMILES) (Weininger, 1988) patterns of reactants and products. A reaction step is defined by convert-
ing the matching pattern in the reactant SMILES to a specified pattern in the product SMILES (e.g.,
using RDKit (Landrum et al., 2016)), and the synthetic pathway p is defined as a specific ordering of
these reaction steps. Given the target molecule « as input, the goal of synthesizable projection is to
generate the pathway p that produces the end product molecule that is similar to x:

p* = argmax sim(prod(p), x), (1)
P
where sim is the molecular similarity and prod is the function that gets the end product by executing p.

Edit Flow (EF) for sequence generation. Recently, Havasi et al. (2025) proposed a new discrete
flow model to overcome the fixed-length problem of discrete diffusion models while preserving
their advantage of processing full sequences. Edit Flow defines a Continuous-Time Markov Chain
(CTMC) (Campbell et al., 2024) at the full sequence level rather than at the token level. The CTMC
transports sequences from a source (e.g., noise) distribution p(p) to a target (e.g., data) distribution
q(p) via edit operations: token insertions, deletions, and substitutions. Its CTMC transition is defined
as edit rates, uY (ins(p, i,a)|p), uf(del(p, i)|p), and uf (sub(p,i,a)|p) for the insertion, deletion,
and substitution operations, respectively, where 6 denotes the model parameters. Here, ¢ is the token
index where the operations are performed, and a is the token to be inserted or substituted.

The distribution of source (pg) and target (p;) sequence pairs is called coupling 7(po, p1), whose
marginals are p and ¢, i.e., Zpo m(po,p1) = q(p1) and Zpl 7(po, p1) = p(po). Edit Flow uses the
empty coupling where py is an empty sequence or the uniform coupling where p(py) is uniform over
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tokens. Another important component in Edit Flow training is alignment, which is the process of align-
ing po and p; to identify a set of edit operations that transform p to p;. Given the aligned (po, p1)
pairs, Edit Flow can be trained using a Bregman divergence loss. More details are in Section B.

4 METHOD

The traverse direction is the key decision in generation of tree-structured synthetic pathways (Fig-
ure 3(a)). Most existing synthetic pathway generation methods adopt bottom-up (BU) generation,
which starts with building blocks and progressively predicts more complex molecules toward the
target product molecule. Although the BU approach guarantees starting from valid building blocks in
B, it inevitably faces a harder problem than top-down (TD) generation because (1) it needs to search
in B rather than R during the most challenging initial few steps, where |B| > |R| (e.g., 211,220
vs. 115), and (2) it is easier to reason backward from the given target molecule. However, although
TD solves an easier task and is in line with how chemists infer pathways, it lacks the guarantee of
reaching legitimate building blocks included in B at leaf nodes, making it a less popular choice in
existing synthetic pathway generation methods. The distinct characteristics of the two approaches
highlight the need for a new bidirectional framework that can complement and integrate them.

To this end, we introduce ReaSyn, a synthesizable projection framework that integrates BU decoding,
TD decoding, and holistic editing. We start with introducing the bidirectional pathway representation
of ReaSyn in Section 4.1. Next, we describe the bidirectional iterative cycle of ReaSyn in Section 4.2.
Finally, we describe the holistic refinement scheme of ReaSyn using Edit Bridge in Section 4.3.

4.1 REPRESENTING SYNTHETIC PATHWAYS IN BOTTOM-UP AND TOP-DOWN DIRECTIONS

We first introduce a new sequential representation that can represent synthetic pathways in both BU
and TD directions. Prior works (Luo et al., 2024; Gao et al., 2025) represent a synthetic pathway p
using a post-order traversal of its corresponding synthetic tree (Figure 7(a)) and autoregressively gener-
ate p instead of directly generating the SMILES of the product molecule (Segler et al., 2018a). Unlike
in the previous notation, synthetic trees are traversed in both post-order and reverse post-order in
ReaSyn’s notation. While post-order traversal yields the BU pathway representation (i.e., from leaves
to root), the reverse post-order yields the TD pathway representation (i.e., from root to leaves) by re-
versing the post-order-traversed sequence (Figure 3(a) and Figure 7(b)). Specifically, a BU pathway se-
quence pgy consisting of B blocks (i.e., subsequences), where each block b € {1,..., B} represents
either a molecule or a reaction, is represented as pgy := p' ®p? @ - -- O p”. Here, @ denotes the con-
catenation operation and p? denotes the b-th block of p. The TD sequence of the same pathway prp
is then represented as prp := p® ® pP~1 @ --- @ p'. Molecular blocks are represented by SMILES
with delimiter tokens indicating the start and end of the block ([MOL: START] and [MOL:END]),
while reaction blocks consist of a single token indicating the reaction type. These complementary
sequences, pgy and prp, use a single unified token vocabulary for molecular and reaction blocks.
More details on the pathway representation and examples of pgy and prp are provided in Section C.1.

Not only can the new notation represent pathways in both directions, but it also resolves drawbacks of
pathway representations in existing methods. First, existing representations use molecular fingerprints
to represent building blocks to handle large 13, but since the mapping between a molecule and its
fingerprints is not bijective, there exists information loss in processing building blocks. In addition,
molecular fingerprints are sparse and a mistake in a single entry in the fingerprints can result in a
significantly different molecule. Our notation eliminates these problems by directly representing
building blocks using SMILES, which is a smoother representation than molecular fingerprints.
Secondly, existing methods employ hierarchical representations that first determine the node/token
type (i.e., building block or reaction) and then predict specific node/token features (i.e., building block
fingerprints or the reaction class). This scheme is prone to error accumulation and requires additional
architectural complexity. For example, Luo et al. (2024) uses separate classifier heads for token type,
reaction, and building block fingerprints, and Gao et al. (2025) uses a Bernoulli diffusion head for
building block fingerprints. Our notation circumvents these problems by using a unified vocabulary.
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4.2 REASONING SYNTHETIC PATHWAYS IN BOTTOM-UP AND TOP-DOWN DIRECTIONS

Bidirectional training and inference. Based on the developed notations pgy and prp, we propose
a simple yet effective training and inference scheme that does not require additional computational
costs. Specifically, we adopt an encoder-decoder Transformer (Vaswani et al., 2017) where the
encoder encodes x and the decoder aims to autoregressively generate p. The dataset D consists of
(z, p) pairs, and we randomly switch between p = pgy and p = prp with a probability of p = 0.5
during training to equip a single autoregressive model with the ability to handle both directions. The
model is trained with the next token prediction loss. Importantly, since molecular blocks consist of
multiple SMILES tokens while reaction blocks (and [ START]/[END]) consist of a single token, we
introduce a loss weighting scheme based on token type:

1
E -
(z,p)~D ‘Imol|
p~{DBU,PD}

L=- > logmo(pila, pri—1) + L > logmo(psla, prj1) |, ()
ieT |Iother| .
mol J€Loter

where 7,01 and Zoer are the sets of token indices of molecular blocks and token indices of other blocks,
respectively, and p; denotes the ¢-th token of p. This balances the learning of synthesis pathways in
accordance with the number of building blocks and reactions in them. During inference, we introduce
a simple scheme to control the direction. We first note that pgy starts with the [MOL : START] token
whereas prp starts with a reaction token. To enforce a particular BU or TD direction, we simply bias
the categorical distribution for the first token to sample from [MOL: START] for BU and a reaction for
TD sequences. The bias is simply enforced by setting the log probabilities (e.g., logits) of non-reaction
tokens to —oo. This simple bidirectional training/inference scheme allows ReaSyn to perform bidirec-
tional sampling with a single model while achieving performance comparable to two standard unidi-
rectional models (Table 6 and Table 7). Training and inference details are included in Section D and E.

Reasoning with bidirectional iterative cycles. Based on the bidirectional model capable of
generating pathways in both directions, we propose to complement and integrate BU and TD
approaches through an iterative cycle that alternates between the two sampling directions (Figure 2).
The iterative approach is designed to walk through the vast synthesizable space to discover analogs.
Given the target product molecule, the cycle starts with generating an initial synthetic pathway pgy of
B blocks in a BU direction. Next, a block index b is randomly drawn from {1,..., B—1}, and starting

from the b-th block, ReaSyn predicts the right-hand subsequence of its complementary sequence pT>1§’

(= p;(JB*b)) again in a TD direction. This allows the generated synthetic tree to be refined at the

subtree level. This cycle can be run multiple times until a pathway is found for a molecule sufficiently
similar to the input target molecule. Searching in the synthetic tree space is challenging because
nodes in the tree are interconnected with each other, and the bidirectional iterative cycle ensures that
updates made at any node in the tree propagate properly all the way to the root and leaf nodes.

4.3 REFINING SYNTHETIC PATHWAYS IN HOLISTIC VIEW WITH EDIT BRIDGE

The bidirectional iterative cycle that combines BU and TD generation enables deepened reasoning
on synthetic pathways. ReaSyn takes this test-time search strategy one step further with Edit Flow
(Havasi et al., 2025). Edit Flow suggests edits at the entire sequence level to transport the sequence
toward the target distribution via edit operations (Eq. (4)). Taking full advantage of its holistic and flex-
ible nature, we propose adding a step to the cycle that provides another perspective on the generation.

We propose Edit Bridge, an extension of Edit Flow that forms a bridge from a pretrained distribution to-
wards the data distribution. Recall that Edit Flows build couplings from the source sequence pg to the
target sequence p; . In the original Edit Flows, pg is assumed to be an empty or uniformly random se-
quence which has no or minimally random overlap with p; . Instead, in this paper, we form a coupling
between a sample generated by our bidirectional autoregressive model (Section 4.2) and the target se-
quence p; . Specifically, we assume that pg is generated via the aforementioned generative cycle of the
autoregressive model and train Edit Flow to generate the target p; using coupling formed between the
two. We term this model Edit Bridge as it bridges between the autoregressive model and data distribu-
tion. As shown in Table 8, our Edit Bridge coupling shows much higher py-p; alignment rate than the
empty or uniform couplings (70.6% vs. 0.0% or 2.6%). Consequently, it requires much less edit opera-
tions to convert pg to p; than the two couplings, resulting in much less sampling steps during inference
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Table 1: Synthesizable molecule reconstruction results. The results are the means and the standard deviations
of 3 runs. The best results are highlighted in bold.

Dataset Method Reconstruction rate (%) Similarity Div. (Pathway) Div. (BB)
Enamine  SynNet (Gao et al., 2021) 252 +£0.1 0.661 +0.000 0.014 £0.001  0.239 + 0.002
SynFormer (Gao et al., 2025) 66.3 + 0.6 0913 £0.001 0.101 £0.001  0.587 £ 0.002
ReaSyn (ours) 95.0 + 0.0 0.987 +£0.001 0.118 +0.002  0.753 £+ 0.004
ChEMBL  SynNet (Gao et al., 2021) 79+0.0 0.542 +£0.000  0.009 £+ 0.000  0.090 £ 0.001
SynFormer (Gao et al., 2025) 197+ 04 0.668 £ 0.002  0.039 +0.000 0.192 £ 0.002
ReaSyn (ours) 31.7+0.3 0.751 £ 0.001  0.050 + 0.000  0.321 £ 0.002
ZINC1k SynNet (Gao et al., 2021) 12.6 £ 0.1 0.456 £0.001  0.001 +0.000  0.089 £ 0.000
SynFormer (Gao et al., 2025) 180+ 1.2 0.624 +£0.003  0.020 + 0.000  0.181 £ 0.001
ReaSyn (ours) 87.9+0.2 0.958 +0.003  0.071 + 0.001  0.658 + 0.002

Table 2: Synthesizable molecule reconstruction results with the ChEMBL test set in Luo et al. (2024). The
results of SynNet (Gao et al., 2021) and ChemProjector (Luo et al., 2024) are taken from Luo et al. (2024).

Method Reconstruction rate (%) Sim. (Morgan) Sim. (Scaffold)  Sim. (Gobbi)
SynNet (Gao et al., 2021) 5.4 0.427 0.417 0.268
ChemProjector (Luo et al., 2024) 13.4 0.616 0.603 0.564
SynFormer (Gao et al., 2025) 19.54+0.2 0.698 £0.002 0.673 =0.002 0.643 £ 0.003
ReaSyn (ours) 33.0+0.2 0.762 + 0.002  0.754 +0.001  0.722 + 0.001

(30.0 vs. 94.6 or 142.9). In our paper, Edit Bridge is implemented using the same encoder-decoder
Transformer (Vaswani et al., 2017) architecture as the autoregressive model, with additional heads to
predict the edit operation rates u{ (ins(p, i, a)|p), u¢ (del(p, i)|p), and u¢ (sub(p, i, a)|p) (Eq. (4)).

Since both (1) the sampling process of py and (2) the alignment process that computes the edit oper-
ations converting pg to p; are computationally expensive, we prepare 10.5M training data (i.e., (pg,
p1) pairs and their align operations) offline. Further details are included in Section D. Unlike autore-
gressive generation, Edit Bridge allows ReaSyn to holistically consider the entire synthetic pathway.
As shown in Figure 8 and Figure 9, Edit Bridge plays a significant role in refining pathways by jointly
editing the tree skeleton and semantics. We summarize ReaSyn’s single iterative refinement cycle
consisting of (1) bottom-up decoding, (2) top-down decoding, and (3) holistic editing in Algorithm 1.

5 EXPERIMENTS

Following Gao et al. (2025), we adopt the set of 115 reactions that include common uni-, bi- and
tri-molecular reactions, and the set of 211,220 purchasable building blocks in the Enamine’s U.S.
stock catalog retrieved in October 2023 (Enamine, 2023), together covering a synthesizable chemical
space broader than 100 molecules. The details on the model architecture are included in Section C.2.

5.1 SYNTHESIZABLE MOLECULE RECONSTRUCTION

Setup. Even given a vast synthesizable space, previous synthesizable molecule generation
methods have struggled to cover this space extensively. We evaluate the coverage of ReaSyn in
the synthesizable chemical space with synthesizable molecule reconstruction, where the goal is
to reconstruct given molecules by proposing synthetic pathways. Following Gao et al. (2025), the
reconstruction is evaluated on randomly selected 1,000 molecules from the Enamine REAL diversity
set (Enamine, 2023) and ChEMBL (Gaulton et al., 2012). In addition, to simulate common real-world
scenarios in which the set of purchasable building blocks expands after the model is trained, we
include another challenging benchmark by expanding the building block set with unseen building
blocks. Concretely, we add 37,386 molecules with fewer than 18 heavy atoms from ZINC250k (Irwin
et al., 2012), yielding a total of 248,606 building blocks. 1,000 molecules generated using the defined
reaction rules and the new building blocks are used as the test set, which we denote as ZINC1k. We
also experiment with another test set of ChEMBL molecules introduced by Luo et al. (2024). Further
details are included in Section E.1.

Metrics. Following Gao et al. (2025), reconstruction rate, the fraction of generated pathways
that yield the identical product molecule to the input molecule, and similarity, the average Tanimoto
similarity on the Morgan fingerprint (Morgan, 1965; Rogers & Hahn, 2010) between the generated
molecule and the input molecule, are used to evaluate the model. We further report diversity
(pathway), the average molecular diversity of end products from analogous pathways, and diversity
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Figure 4: Ablation study on synthesizable molecule reconstruction. SynFormer uses the beam width of 96,
exhaustiveness of 256, and multiple cycles.

(BB), the average diversity of unique building blocks in analogous pathways, to assess diversity
of generation. Here, analogous pathways are defined as pathways that yield a product molecule
with a Tanimoto similarity > 0.8 to the input molecule. For the experiment with the test set of Luo
et al. (2024), similarity between the input target molecule and the projected analog is measured
using the Tanimoto similarity on three molecular fingerprints: (1) Morgan fingerprint (Morgan,
1965), (2) Morgan fingerprint of Murcko scaffold, and (3) Gobbi pharmacophore fingerprint (Gobbi
& Poppinger, 1998), following Luo et al. (2024).

Results. In Table | and Table 2, we compare ReaSyn with state-of-the-art synthesizable analog
generation methods, SynNet (Gao et al., 2021) and SynFormer (Gao et al., 2025). ReaSyn significantly
outperforms the baselines across all metrics. Specifically, ReaSyn shows a high reconstruction rate and
similarity, demonstrating that it successfully reconstructs input molecules by extensively exploring
a synthesizable chemical space. It also shows high diversity in Table 1, demonstrating its ability
to propose diverse pathways. Note that unlike the Enamine and ZINC1k test sets, molecules in the
ChEMBL test set may lie beyond the defined synthesizable space (i.e., may require reactions or
building blocks beyond 5 and R), so the performance is generally low on ChEMBL. Notably, ReaSyn
outperforms the prior works by a particularly large margin on the ZINC1k test set, which simulates
challenging scenarios with out-of-distribution test molecules and unseen building blocks. This result
highlights the strong generalizability of ReaSyn in generating out-of-distribution synthetic pathways.

5.2 ABLATION STUDY

To examine the effect of each component in ReaSyn’s generative cycle, i.e., (1) BU decoding, (2) TD
decoding, and (3) Edit Bridge (EB) editing, we conduct ablation studies on the synthesizable molecule
reconstruction task (Section 5.1) in Figure 4. The cycle is proposed as an effective method for scaling
test-time compute, and there is generally a trade-off between reconstruction rate and sampling time.
, TD, and EF are ReaSyns that each use only one component of the cycle. Note that since the
EB coupling requires a pretrained source distribution, EF instead uses the empty coupling.
is ReaSyn that uses the bidirectional iteration in the cycle, and BU+TD+EB is the complete ReaSyn
that leverages all the three components. First, comparing to or TD, we observe that using
the autoregressive model in a bidirectional way shows much better performance than unidirectional
sampling. The unidirectional schemes fail to reconstruct a large portion of the test molecules even
when the test-time compute is increased, demonstrating the importance of the proposed bidirectional
iteration. Secondly, we can reconfirm the effectiveness of the bidirectional iteration when we compare
BU+TD+EB to EF. Lastly, we observe significant improvements with the additional refinement step
using EB, when we compare BU+TD+EB to . Overall, these results together highlight the
importance of leveraging multiple perspectives in synthetic pathway generation.

5.3 SYNTHESIZABLE GOAL-DIRECTED MOLECULAR OPTIMIZATION

While goal-directed molecular optimization methods aim to address essential drug discovery tasks,
their practicality is limited as the generated molecules are often not synthesizable (Gao & Coley,
2020). To overcome this problem, synthesizable projection can be applied to goal-directed molecular
optimization. Similar to Gao et al. (2025), we demonstrate the application of ReaSyn in exploring
the local synthesizable space in conjunction with an off-the-shelf molecular optimization method.
Specifically, we use synthesizable projection of ReaSyn as an additional mutation operator of a
genetic algorithm (GA) by projecting the offspring molecules after every reproduction step of Graph
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Table 3: Synthesizable goal-directed molecular optimization results on the TDC oracles. The results are
the means of AUC top-10 and average top-10 SA scores of 3 runs. The results for the baselines other than Graph
GA-SF and Graph GA are taken from Sun et al. (2025). The best synthesis-based results are highlighted in bold.

Method Graph GA-ReaSyn Graph GA-SF SynthesisNet SynNet DoG-Gen DoG-AE | Graph GA
Synthesis v v v v v v X
amlodipine_mpo 0.620 0.696 0.608 0.567 0.537 0.509 0.651
celecoxib_rediscovery 0.810 0.559 0.582 0.443 0.466 0.357 0.682
drd2 0.977 0.972 0.960 0.969 0.949 0.944 0.970
fexofenadine_mpo 0.788 0.786 0.791 0.764 0.697 0.681 0.785
gsk3b 0.889 0.803 0.848 0.790 0.832 0.602 0.838
jnk3 0.695 0.658 0.639 0.631 0.596 0.470 0.693
medianl 0.274 0.308 0.305 0.219 0.218 0.172 0.261
median2 0.259 0.258 0.257 0.237 0.213 0.183 0.257
osimertinib_mpo 0.823 0.816 0.810 0.797 0.776 0.751 0.829
perindopril_mpo 0.561 0.530 0.524 0.559 0.475 0.433 0.533
ranolazine_mpo 0.752 0.751 0.741 0.743 0.712 0.690 0.745
sitagliptin_mpo 0.314 0.338 0.313 0.026 0.048 0.010 0.524
zaleplon_mpo 0.460 0.478 0.528 0.341 0.123 0.050 0.458
Average score 0.633 0.612 0.608 0.545 0.511 0.450 0.633

GA (Jensen, 2019), thus ensuring all the resulting offspring molecules lie in the synthesizable space.
We denote the resulting GA as Graph GA-ReaSyn. We emphasize that this approach is universal and
other molecular optimization methods can also be used. Further details are included in Section E.2.

5.3.1 OPTIMIZATION OF TDC ORACLES

Setup. Following Sun et al. (2025), we conduct 15 goal-directed molecular optimization tasks
of the benchmark of Gao et al. (2022) that simulate real-world drug discovery with the TDC oracle
functions (Brown et al., 2019; Huang et al., 2021), and use the AUC top-10 to assess the optimization
performance.

Results. The results are shown in Table 3. We compare Graph GA-ReaSyn with synthesis-based
baselines that restrict the generation to the synthesizable chemical space. We also include Graph
GA (Jensen, 2019) to examine the impact of the synthesizable projection. Graph GA-ReaSyn outper-
forms all synthesis-based baselines in optimization performance, showing its effectiveness in discover-
ing chemical optima in the synthesizable space. Notably, it achieves comparable optimization perfor-
mance to Graph GA even with the synthesizability constraint, validating that the proposed synthesiz-
able projection can generate synthesizable analogs while maintaining the core molecular properties.

5.3.2 OPTIMIZATION OF SEH BINDING AFFINITY

Setup. Following Cretu et al. (2025), we conduct optimization of the binding affinity against the
protein target soluble epoxide hydrolase (SEH), measured by a pretrained proxy model (Bengio
et al., 2021). As the evaluation metrics, the average SEH binding affinity, synthetic accessibility
(SA) score (Ertl & Schuffenhauer, 2009), quantitative estimate of drug-likeness (QED) (Bickerton
et al., 2012), and the AiZynthFinder success rate (Genheden et al., 2020) of generated molecules
are reported. AiZynthFinder is a widely used retrosynthesis planning method, and its success rate is
considered a more reliable synthesizability proxy than SA score.

Results. The results are shown in Table 4. FragGFN (Bengio et al., 2021) and SynFlowNet (Cretu
et al., 2025) are GFlowNets (Bengio et al., 2021) with a fragment action space and a reaction action
space, respectively, and SyntheMol (Swanson et al., 2024) is a property predictor-guided MCTS
method. ‘(SA)’ or ‘(QED)’ denote using a modified optimization objective with SA score or QED.
All baselines except FragGFN take the approach of constraining the design space to the synthesizable
space. As shown in the table, FragGFN shows a very poor SA score because it does not consider
synthesizability. ReaSyn outperforms previous methods in terms of all the metrics, verifying that syn-
thesizable projection using ReaSyn is a more effective strategy to find synthesizable chemical optima.

5.4 SYNTHESIZABLE HIT EXPANSION

Setup. Synthesizable projection of ReaSyn can suggest multiple synthesizable analogs for a given
target molecule with a beam search, and thus can be applied to hit expansion to find synthesizable
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Table 4: Synthesizable goal-directed molecular optimization Table 5: JNK3 hit expansion results.
results on the sEH proxy. The results are the means and the The results are the means and the standard
standard deviations of 3 runs. The results for the baselines are taken deviations of 3 runs. The best results are

from Cretu et al. (2025). The best results are highlighted in bold.  highlighted in bold.

Method Syn.  sEH SA | QED AiZynth.

FragGFN X 077 +0.01 628 +0.02 030+0.01  0.00 Method Analog  Improve  Success
FragGFN (SA) x 070 +£0.01 5.4540.05 0.29 & 0.01 0.00 rate (%)  rate (%) rate (%)
SyntheMol v 0.64+0.01 3.084+0.01 0.63+001  0.82

SynFlowNet v 092+£001 2.92+£001 059+£002 065 SynNet 37401 12£00 1000
SynFlowNet (SA) v 094 +£0.01 2.67+0.03 0.68 +0.01 0.93 SynFormer 314+19 60+0341+£03
SynFlowNet (QED) v 0.86 + 0.03 4.02+ 026 0.74+0.04  0.55

Graph GA-ReaSyn v 0.96 + 0.00 2.05 + 0.01 0.75+0.01 0.97 +0.01  ReaSyn (ours) 75.7 4+ 1.8 11.8 + 04 8.8 + 0.7
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analogs of hit molecules. Following Gao et al. (2025), we conduct hit expansion on the identified
hit molecules for c-Jun NH2-terminal kinase 3 (JNK3) inhibition. Specifically, the proxy from the
TDC library (Huang et al., 2021) is used as the oracle function that scores the inhibition of JNK3,
and the top-10 scoring molecule from ZINC250k (Irwin et al., 2012) are selected as the hits. The
JNK3 proxy is set as the reward model to guide the search and 100 analogs are generated for each
hit, yielding a total of 1,000 synthesizable molecules. Analog rate, the fraction of generated unique
analogs that have Tanimoto similarities > 0.6 to the input hit, improve rate, the fraction of generated
unique analogs that have higher JNK3 scores than the original hit, and success rate, the fraction of
generated unique analogs that satisfy both, are computed by averaging over the generated molecules.

Results. The results are shown in Table 5. ReaSyn exhibits superior performance to the previous
synthesizable projection methods in terms of all the metrics. The high analog rate shows that ReaSyn
can broadly search the synthesizable space to suggest close analogs, while the high improve rate
shows that ReaSyn can find chemical optima in terms of the target property thanks to the goal-directed
search. We also provide the distribution of suggested molecules in Figure 5 and examples in Figure 6.
Compared to SynFormer, ReaSyn generates synthesizable molecules with high similarities and high
JNK3 inhibition scores, highlighting its effectiveness in hit expansion.

6 CONCLUSION

A major weakness of molecular generative models is the generation of synthetically inaccessible
molecules. In our paper, we introduced ReaSyn, an effective framework for synthesizable projection
with deepened reasoning on synthetic pathways. The iterative refinement cycle of (1) bottom-up
decoding, (2) top-down decoding, and (3) holistic editing constitutes a powerful pathway reasoning
strategy from multiple viewpoints. ReaSyn showed superior performance on a variety of synthesis-
constrained drug discovery tasks. These results demonstrate ReaSyn’s strong applicability as a
tool to navigate combinatorially-large synthesizable chemical space in real-world drug discovery.
Considering higher-level compatibility in ReaSyn, such as selectivity or functional groups, is left as
future work. To facilitate research in this space, we will release code and models publicly.
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Appendix

A ITERATIVE REFINEMENT CYCLE OF REASYN

Algorithm 1 A Single Generation Cycle of ReaSyn

Input: Trained bidirectional autoregressive model Mpyrp, trained Edit Bridge model Mg,
the input target molecule x, the number of pathways to refine with Edit Bridge Ngg
Set P « {}
> Bottom-up generation (refinement)
Set Ppu start < [[START], [MOL: START]|
with beam search
Generate pgy by sampling and appending tokens to pgy sart Using Mpyrp given x
SetP +— PU {pgu}
end beam search
Calculate scores of p € P as sim(prod(p), x) (Eq. (6))
> Top-down refinement
with beam search
Sample p from P based on their scores
Get prp, the TD representation of p
Randomly draw a block index b from the block indices of prp
Repredict pT>]§ by sampling using Mpyrp given x
(if p75 = [[START]] then set the non-reaction logits to —o0)
SetP < P U {pTD}
end beam search
Calculate scores of p € P as sim(prod(p), x) (Eq. (6))
> Edit Bridge refinement
fori=1,..., Ngg do
Sample p from P based on their scores
Generate pgg by refining p using Mgg
Set P+ PU {pEB}
end for
Calculate scores of p € P as sim(prod(p), ) (Eq. (6))
Output: Generated pathways P and their similarity scores with x

We summarize a single refinement cycle of ReaSyn in Algorithm 1.

B OVERVIEW OF EDIT FLOW

Recently, Edit Flow (Havasi et al., 2025), has been proposed to overcome the fixed-variable length
problem of discrete diffusion models in sequence generation. By defining a discrete flow on sequences,
Edit Flow enjoys flexible and position-relative sequence generation. Specifically, Edit Flow defines a
Continuous-Time Markov Chain (CTMC) (Campbell et al., 2024) at the full sequence level rather
than at the token level.

A CTMC transports sequences from a source (e.g., noise) distribution p(p) to a target (e.g., data)
distribution ¢(p), and this transition is characterized by a rate ;. The distribution of source (po) and
target (p;) sequence pairs is called the coupling 7(po, p1) distribution, whose marginals are p and ¢°:

> wo,p1) =a(p1), Y 7m(po,p1) = p(po). 3)

Edit Flow in the original paper uses the empty coupling where pg is an empty sequence or the
uniform coupling where p(pg) is uniform over tokens. These couplings are independent couplings,

2A sequence is denoted as z in the original paper, but we instead use p to maintain consistent notation with
the synthetic pathway sequences.
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i.e., m(po, p1) = p(Po)q(p1), and the source sequence py does not contain information about the
target sequence pj.

Edit Flow models the transition via edit operations: token insertions, deletions, and substitutions. The
CTMC rate uf, where 6 denotes the model parameters, is defined as follows:

uf (ins(p, i,a)|p) = N (p) QY (alp) fori € {1,...,n(p)}
u (del(p, i)|p) = A{(p) forie {1,...,n(p)} 0))
uf (sub(p, i,a)|p) = A\ (p)Q}"F (alp) fori € {1,...,n(p)}

where p is a sequence of length n(p) and ins(p, 7, a), del(p, i), and sub(p, ¢, a) denote the insertion,
substitution, and deletion operations, respectively. ¢ is the token index where the operations are
performed, and a is the token to be inserted or substituted. A, ; > 0 are the total rates of inserting,
deleting, or substituting any token at ¢. ();; are the distributions over tokens given insertion or
substitution occurs at position .

There exist multiple possible sets of edit operations that transition from pg to p;. To handle this, Edit
Flow introduces an auxiliary sequence z that additionally has a special blank token €. The process of
identifying the set of edit operations using z is called the alignment process. Given the pair (pg, p1),
the aligned pair is denoted as (zg, z1), where zo and z; have the same length. As an example, if
(po, p1) is (‘kitten’, ‘smitten’), the optimal (2o, z1) is (‘keitten’, ‘smitten’). Edit operations can be
easily recovered given the aligned pair as the token conversion ¢ — b is an insertion if a = ¢, a
deletion if b = ¢, or a substitution if a # ¢ and b # «.

Given the aligned pairs, Edit Flow can be trained using a Bregman divergence loss:

L(0) = E > (plpe) Zl 17£zt]1 logul(p(ze,i.z)lpy) |+ 9

m(20,21)
t,pt(Pt,2t|20,21) P7 Pt

where p(zy,1, z}) is the operation that substitutes the i-th token in z; with z{ and then removes all €
in z;, which corresponds to one edit operation of Eq. (4).

For a more detailed explanation on Edit Flow, please refer to the original paper (Havasi et al., 2025).

C DETAILS ON PATHWAY REPRESENTATION AND MODEL

C.1 BIDIRECTIONAL PATHWAY NOTATION

Prior works (Luo et al., 2024; Gao et al., 2025) represent a synthetic pathway p using a post-order
traversal of its corresponding synthetic tree (Figure 7(a)). This representation captures synthesis as a
bi-level sequence consists of the token type level and the token feature level. At the token type level,
each token is one of four types: [START], [BR] (building block), [RXN] (reaction), or [END]. At
the token feature level, different embedding strategies are used based on the token types: [BB] tokens
are embedded using Morgan fingerprints since the set of purchasable building blocks is large and
depends on purchasable stock catalogs, while [RXN] and other fixed tokens use the standard lookup
embeddings. To match this bi-level representation, inference is performed hierarchically: a classifier
first predicts the token type, then depending on the outcome, either a fingerprint network predicts
the building block or a classifier selects the reaction. This representation can describe both linear and
convergent synthetic pathways, and has been shown effective in bottom-up synthesis planning (Luo
et al., 2024; Gao et al., 2025), especially due to its compatibility with autoregressive generation.

However, this notation and other previous notations on synthetic pathways (1) use molecular finger-
prints to represent building blocks to handle large B and (2) are hierarchical (Bradshaw et al., 2020;
Gao et al., 2021; Swanson et al., 2024; Luo et al., 2024; Gao et al., 2025; Koziarski et al., 2024;
Cretu et al., 2025; Seo et al., 2025; Sun et al., 2025). These characteristics have several drawbacks,
therefore we have proposed a new representation that directly uses SMILES, is non-hierarchical, and
is able to represent pathways in both bottom-up and top-down directions (Section 4.1).

Our bidirectional notation is parsed using a unified token vocabulary of size 272, including [ START],
[END], [MOL:START], [MOL:END], 153 SMILES tokens and 115 reaction tokens. The SMILES
tokens include the following:
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. . RXN3 .
Token type classification | Bottom-up representation
RXN dassification RXN2 a - Top-down representation
3 o
X . _— -]
BB fingerprint prediction |—|—| § §_
RXN1 BB3 2 S
BB1 BB2
O Step 1 Single-step classification Pru
BB1 BB2 RXN1 BB3 RXN2 RXN3
43 43 RXN 12 RXN RXN SMILES SMILES SMILES
Step2 PtD
BB1 BB2 RXN1 BB3 RXN2 RXN3 RXN3 RXN2 BB3 RXN1 BB2 BB1
(a) Postfix notation (b) Our notation

Figure 7: Comparison of the postfix notation and our notation. [ START] and [END] tokens are omitted
for simplicity. The postfix notation (Luo et al., 2024; Gao et al., 2025) represents a synthetic pathway with a
bi-level sequence consists of the token type level and the token feature level (i.e., the Morgan fingerprints for
[BB] tokens and the reaction class for [RXN] tokens). Consequently, the synthetic pathways are embedded
and generated in a hierarchical way in each autoregressive step. In contrast, our proposed notation uses a unified
vocabulary without hierarchy to represent the complementary sequences pgu and prp.

H, He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar,

K, Ca, Sc¢, Ti, Vv, Cr, Mn, Fe, Co, Ni, Cu, %n, Ga, Ge, As, Se, Br,
Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te,
I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm,
Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, T1l, Pb, Bi, Po, At, Rn,
Fr, Ra, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr,
rRf, Db, Sg, Bh, Hs, Mt, Ds, Rg, Cn, Nh, Fl, Mc, Lv, Ts, Og, b, c,
n, o, s, P, OI ll 2/ 3! 4/ 5/ 6! 7/ 8/ 9/ [r ]I (I )r cr = #I T
+, \I /I S~y @I ?/ >y, xy, $I %

The input target molecules are also encoded using the above tokens.

We provide examples of p in the bidirectional notation. An example synthetic pathway of
[N-]=[N+]=NCCIC[N+] (C(=0)C(CC(=0)0)C2CCCO2)=C (N)Nlclcccc (F)cl (the tar-
get molecule of Figure 8) is as follows:

PBU = [N=]=[N+]=NCC1C[NH+]=C(N)Nlclcccc (F)cl
0=C1CC (C2CCC02)C(=0)01 [RXN:44]

PTD = [RXN:44] [N=]=[N+]=NCC1C[NH+]=C(N)Nlclccc

c(F)cl O=C1CC (C2CCC02)C(=0)01

An example synthetic pathway of Cclccc (S (=0) (=0) c2ccc (C (CO) CCOCC (F) (F)F) cc2)
c (0CC2C02) c1 (the target molecule of Figure 9) is as follows:

PBU = OCC (CCOCC(F) (F)F)clccc(Cl)ccl
Cclccc (Cl)c(0OCC2C02)cl [RXN:32]
PTD = [RXN:32] OCC (CCOCC(F) (F)F)clccc(Cl)ccl

Cclccc (Cl)c(oCcc2coz)cl

Here, special tokens other than SMILES tokens and reaction tokens are displayed in . Note
that the first token after the [START] token (the first token sampled during inference) is always
[MOL: START] and a reaction token in pgy and prp, respectively.
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C.2 MODEL ARCHITECTURE

ReaSyn has two models, one for the bidirectional autoregressive pathway generation and one for the
Edit Bridge pathway editing. For both models, we adopt the standard encoder-decoder Transformer
architecture, following Gao et al. (2025). Specifically, the encoder has 6 layers, with a hidden
dimension of 768, 16 attention heads, a feed-forward dimension of 4096, and the maximum sequence
length of 256. The decoder has 10 layers, with a hidden dimension of 768, 16 attention heads, a feed-
forward dimension of 4096, and the maximum sequence length of 512. Overall, the autoregressive
model has 166M parameters and the Edit Bridge model has 174M parameters. The Edit Bridge model
has three additional heads for A¢; := (A}, \{<, Xi'0), QP, and Q3*F, respectively (Eq. (4)). Note
that ReaSyn’s models have fewer parameters than SynFormer (Gao et al., 2025) of 230M parameters,
because they do not require heads for fingerprint diffusion and reaction classification.

D DETAILS ON TRAINING

In our paper, following Gao et al. (2025), we used the set of 211,220 purchasable building blocks
in the Enamine’s U.S. stock catalog retrieved in October 2023 (Enamine, 2023), and the set of 115
reactions that include common uni-, bi- and tri-molecular reactions curated by Gao et al. (2025)°.
Given the sets of building blocks and reactions B and R, the dataset of p can be generated on-the-fly
during training by iteratively executing compatible reactions to random building blocks. A stack is
maintained for each pathway to keep track of intermediate products during data generation, and the
corresponding token blocks of building blocks and reactions are concatenated to construct a sequence
p as described in Section 4.1.

ReaSyn’s autoregressive model was trained using the dataset of (x, p) pairs with the next token
prediction loss (Eq. (2)). The AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate
of 3e — 4 for 500k steps was used. A batch size per GPU was set to 64, and 8 NVIDIA A100 GPUs
were used. The training took about 5 days.

We implement Edit Bridge based on the codebase*. ReaSyn’s Edit Bridge model was trained using
the dataset of (, 2o, 1) triplets. The dataset was generated offline using our proposed Edit Bridge
coupling. Specifically, given a (x, p;) pair where p; corresponds to the true pathway of molecule ,
we first generate py with the autoregressive model pretrained with the training procedure described
above. In this paper, we used pgy without the bidirectional iterative cycle as pg. Then the aligned
(20, z1) pair is obtained via the alignment process (explained in Section B). Generating 10.5M data
points with 120 NVIDIA A100 GPUs took about 3 days. Using the dataset, the Edit Bridge model
was trained with the Bregman loss objective (Eq. (5)). The AdamW optimizer (Loshchilov & Hutter,
2019) with a learning rate of 3e — 4 for 500k steps was used. A batch size per GPU was set to 128,
and 8 NVIDIA A100 GPUs were used.

E DETAILS ON INFERENCE

The proposed bidirectional iterative cycle explained in Section 4.2 and Algorithm 1 can be viewed
as a variant of Gibbs sampling (Geman & Geman, 1984). To sample a synthetic pathway p from
the distribution p(p) = p(p*, ..., p?), ReaSyn repeats the process of uniformly drawing the block
index b ~ {1,..., B — 1} and (1) sampling p>® from the distribution p(p~°|p=?) or (2) sampling
p=’ from the distribution p(p=’|p>?). This is equivalent to performing Gibbs sampling with the
kernels p(p~°|p=?) and p(p=t|p="?), allowing ReaSyn to extensively search the neighborhood of
the synthetic tree space.

Inference of ReaSyn was implemented similarly to the official codebase® of Gao et al. (2025).
Specifically, the Transformer decoder of ReaSyn autoregressively generates a pathway block-by-
block, and a stack is maintained for each pathway p being generated. If the generated block p®
corresponds to a molecule (x), a building block is retrieved from the building block set B by
conducting the nearest-neighbor search, and then pushed to the stack. Here, the nearest-neighbor

*https://github.com/wenhao-gao/synformer (Apache-2.0 license)
*nttps://github.com/TheMatrixMaster/edit-flows—demo
‘https://github.com/wenhao-gao/synformer (Apache-2.0 license)
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search uses the following similarity function:

1

dist(z,2’) + 0.1’ ©

sim(z, ') =

where dist(x, ') is the 1-norm distance between the Morgan fingerprints (Morgan, 1965) (radius 2,
length 2048) of « and &’ if &’ is valid. If «’ is an invalid SMILES, dist(x, ') is calculated as the
character-wise edit distance between the SMILES strings of  and ’. If the generated block p® is a
reaction, the required number of reactants are popped from the top of the stack, then the reaction is
executed using the RDKit (Landrum et al., 2016) library. Unlike in Gao et al. (2025), if the predicted
reation is incompatible with the reactants in the current stack, ReaSyn chooses the next reaction with
the next highest prediction logit. The resulting intermediate product is pushed back to the stack.

To extensively explore the synthesizable chemical space with multiple synthesizable analog sug-
gestions, beam search is employed. Following previous works (Luo et al., 2024; Gao et al., 2025),
ReaSyn employs beam search which tracks the top-scoring stacks being generated and expands them
block-by-block. Molecular blocks are scored by the aforementioned similarity used in the building
block retrieval step (Eq. (6)). Reaction blocks are scored by the classification probability predicted
by the model, and a stack’s score is defined as the sum of the scores of its blocks.

All experiments were conducted using 4 NVIDIA A100 GPUs.

E.1 SYNTHESIZABLE MOLECULE RECONSTRUCTION

Similarity in Table 1 and similarity (Morgan) in Table 2 are measured as the Tanimoto similarity
on the Morgan fingerprint (Morgan, 1965) with radius 2 and length 4096. We used Therapeutics
Data Commons (TDC) library (Huang et al., 2021) to calculate diversity. In Figure 4, for BU, TD,
BU+TD, and BU+TD+EB, the test-time compute was scaled using different values of number of the
bidirectional iterative cycles. The search width, exhaustiveness, and number of Edit Bridge samples in
each cycle were set to 8, 4, and 100, respectively. The best values of BU+TD+EB were also reported
in Table 1, which used 12, 24, and 16 cycles for Enamine, ChEMBL, and ZINC250k, respectively.
We used the default search width of 64 and exhaustiveness of 24 for ChemProjector (Luo et al., 2024)
and SynFormer (Gao et al., 2025), and used a search width of 12 for SynNet (Gao et al., 2021).

E.2 SYNTHESIZABLE GOAL-DIRECTED MOLECULAR OPTIMIZATION

In Table 3, a population size of 100 and an offspring size of 100 were used. The rate of the mutation
operation of Graph GA was set to 0.1. Following Gao et al. (2022) and Sun et al. (2025), the
maximum number of oracle calls was set to 10k the optimization performance was evaluated with
the area under the curve (AUC) of the top-10 average score versus oracle calls. We performed the
grid search (search width) € {1, 2} for each oracle function. For drd2, gsk3b, perindopril_mpo,
sitagliptin_mpo, and zaleplon_mpo, the search width was set to 1; for all others, it was set to 2. The
exhaustiveness, the number of bidirectional cycle, and the number of Edit Bridge samples for cycle
was set to 4, 1, and 4 for all oracle functions.

In Table 4, a population size of 400 and an offspring size of 100 were used. The rate of the mutation
operation of Graph GA was set to 0.1. The search width, exhaustiveness, the number of bidirectional
cycle, and the number of Edit Bridge samples for cycle was set to 2,4, 1, and 4, respectively. The

objective function to optimize is set to sEH score - SA - QED where sEH score is the normahzed
binding affinity of the sEH protein target predicted by a proxy model (Bengio et al., 2021), and SA

and @) are normalized SA score (Ertl & Schuffenhauer, 2009) and QED (Bickerton et al., 2012)

defined as:
—~ 10— SA P — .
SA = —9 €[0,1], QED = 2-clip(QED,0,0.5) € [0, 1]. @)

We used Therapeutics Data Commons (TDC) library (Huang et al., 2021) to calculate SA and QED.
Note that in Table 4, the baselines used a total of 300k oracle calls and the average values of 1k
generated molecules were reported. In contrast, Graph GA-ReaSyn used only 5k oracle calls and

the average values of top-1k generated molecules generated among the 5k molecules were reported,
showing very high sampling efficiency compared to the baselines.
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Table 6: Reconstruction rate (%) results in synthesizable molecule reconstruction with different
train/inference schemes.

Trai Inf Dataset

fam erenee — amine ChEMBL _ ZINC250k
BU BU 753 25 513
D TD 85.2 25.6 414
BU+TD BU 78.3 2.4 38.8
BU+TD TD 82.5 25.4 44.0

Table 7: Synthesizable molecule reconstruction results of ReaSyn that uses two separate autoregressive
models for BU and TD and ReaSyn that uses a single autoregressive model that does both BU and TD sampling.

Dataset Method Reconstruction rate (%) Similarity Div. (Pathway) Div. (BB)
Enamine ReaSyn-separate BU+TD 95.2 0.987 0.118 0.757
ReaSyn 95.0 0.987 0.118 0.753
ChEMBL  ReaSyn-separate BU+TD 31.4 0.750 0.050 0.321
ReaSyn 31.7 0.751 0.050 0.321
ZINC250k  ReaSyn-separate BU+TD 88.1 0.960 0.074 0.681
ReaSyn 87.9 0.958 0.071 0.658

Table 8: Comparison of different couplings of Edit Flow. The values are the average of 10,000 random
training data.

Rate of align operations (%)

Coupling Aligned rate (%) T # of edit ops./seq. | Insertion  Deletion  Substitution
Empty (Havasi et al., 2025) 0.00 94.55 100.00 0.00 0.00
Uniform (Havasi et al., 2025) 2.59 142.87 14.75 36.90 48.35
Edit Bridge (ours) 70.56 30.01 26.75 25.24 48.01

E.3 SYNTHESIZABLE HIT EXPANSION

In the synthesizable hit expansion experiment, The search width, exhaustiveness, the number of
bidirectional cycle, and the number of Edit Bridge samples for cycle was set to 12, 128, 12, and 100,
respectively. Up to 100 synthesizable analogs were collected for each input molecule.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 COMPARISON OF UNIDIRECTIONAL AND BIDIRECTIONAL TRAINING

We compared the standard unidirectional and our proposed bidirectional training/inference scheme of
ReaSyn’s autoregressive model in Table 6. The top two rows (BU train, TD train) are the models
that use a single fixed direction during training and inference. The bottom two rows (BU+TD train)
correspond to the model that uses the bidirectional training/inference scheme explained in Section 4.2.
Note that the BU train and TD train are separate models, while BU+TD train is a single model
that can do both BU and TD inference. As shown in the table, the bidirectional model shows no
significant difference in performance compared to the unidirectional models despite using only a
single checkpoint.

This result can be reconfirmed in Table 7. ReaSyn-separate BU+TD indicates the method that uses
two autoregressive models (BU train and TD train in Table 6) to implement the bidirectional iterative
cycle, and ReaSyn indicates the method that only uses a single autoregressive model (BU+TD train
in Table 6). As shown in the table, the proposed bidirectional learning/inference scheme exhibits
no significant performance difference compared to the unidirectional method, with much higher
memory efficiency.

F.2 COMPARISON OF DIFFERENT COUPLINGS IN EDIT FLOW

We provide a comparison of different couplings in Edit Flow in Table 8. Empty coupling and uniform
coupling are the proposed in the original paper (Havasi et al., 2025). Since these are independent
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Table 9: Reconstruction rate (%) results in synthesizable molecule reconstruction of AiZynthFinder (Gen-
heden et al., 2020) and ReaSyn. The results are the means and the standard deviations of 3 runs. The best results
are highlighted in bold.

Dataset
Enamine = ChEMBL  ZINC250k
AiZynthFinder (Genheden et al., 2020) 34.0+0.3 551+£0.1 11.4+£0.1
AiZynthFinder (our BBs) 792+04 443+02 205402
ReaSyn (ours) 95.0£0.0 31.7+03 879402

Method

couplings, p; does not contain information about py, resulting in low aligned rates and requiring
many edit operations. On the contrary, the proposed Edit Bridge coupling starts from p, which is
already partially aligned with p; (aligned rate fo 70.56%), therefore requires significantly fewer edit
operations (30.01).

F.3 COMPARISON WITH RETROSYNTHESIS PLANNING METHOD

Assuming all input molecules are synthesizable, the synthesizable analog generation problem can be
applied to the problem of retrosynthesis planning. Since the pathways that successfully reconstruct
a given input molecule in synthesizable analog generation correspond to the solved pathways in
retrosynthesis planning, we compare the reconstruction rates of ReaSyn with those of a state-of-
the-art retrosynthesis planning method in Table 9. AiZynthFinder (Genheden et al., 2020) is an
MCTS-based method that recursively breaks down a given product molecule into reactant molecules
to find pathways to building blocks. Note that it uses 42,554 reaction templates extracted from the
USPTO reaction set (Lowe, 2017) and 17,422,831 building blocks from the ZINC stock (Irwin et al.,
2012), so its solution space is much larger than that of ReaSyn, which is defined by 115 reactions and
211,220 building blocks in this paper. We also include AiZynthFinder results which uses the same
building blocks as ReaSyn. We used the official codebase® to run AiZynthFinder.

As shown in the table, ReaSyn shows higher reconstruction rate on the Enamine and ZINC250k
test sets and lower reconstruction rate on the ChEMBL test set. We suspect that this is because
the synthesizable space of AiZynthFinder is more in line and compatible with the ChEMBL test
set than that of ReaSyn. Nevertheless, ReaSyn outperforms AiZynthFinder by a large margin
in the other two test sets, despite its much smaller design space. Notably, ReaSyn outperforms
AiZynthFinder by a particularly large margin on the ZINC250k test set, which requires out-of-
distribution generalization on unseen building blocks. Retrosynthesis planning methods adopt a
TD approach which sequentially infers simpler molecules to arrive at building blocks, making
them unsuitable for inferring pathways that consider out-of-distribution building blocks. Moreover,
we emphasize that the synthesizable analog generation approach is much more versatile. Only
reconstruction rate can be measured using retrosynthesis planning methods, and they cannot be
applied to other tasks, such as suggesting synthesizable analogs given unsynthesizable molecules,
goal-directed optimization of the end products, or synthesizable hit expansion.

F.4 GENERATED EXAMPLES

We provide examples of reconstructed Enamine molecules in synthesizable molecule reconstruction
in Figure 8 and Figure 9. In generating these examples, the search width, exhaustiveness, number of
bidirectional cycles, and number of Edit Bridge samples in each cycle were set to 2, 4, 1, and 100,
respectively, and ZINC250k building blocks were included. We also provide additional examples of
hit molecules and generated synthesizable analogs in JNK3 hit expansion (Section 5.4) in Figure 10.

*https://github.com/MolecularAI/aizynthfinder (MIT license)
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Target molecule

[N-]=[N+]=NCC1C[N+](C(=0)C(CC(=0)0)C2CCCO2)=C(N)N1clcccc(F)cl

Similarity: 0.189

H
-~y

[Clgd)—C1 + 2

—

NN —ﬁ'\’O,_NH, Q
a

[N-]=[N+]=NC[C@H]1CC[C@@H](N)CC1 Fclccee(Cl)cl RXN:103 [N-]=[N+]=NC[C@ H]1CC[C@@H](N)CC1

C1— N2

Similarity: 0.530
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{'Jk'l
0
N
o o
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[N-]=[N+]=NC[C@ H]1CC[C@@H](N)CC1 Fclccee(Cl)cl RXN:103

Similarity: 1.000

o

7

I 0=C1CC(C2€CC02)C(=0)01 RXN:44

Figure 8: Examples of ReaSyn’s generation cycle. All sequences are represented in a bottom-up order.
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Target molecule

Ccleec(S(=0)(=0)c2cec(C(CO)CCOCC(F)(F)F)cec2)c(0CC2C02)cl

Similarity: 0.776

B2 + Bal—? R

C:2

OC[C@H](O)clccc(Cl)ccl RXN:108 Ccleec(Cl)c(0CC2CO2)cl RXN:32 FC(F)(F)cOCCBr RXN:95

Similarity: 0.779

Cclcce(Cl)c(0CC2C02)cl RXN:32 FC(F)(F)COCCBr RXN:95

Similarity: 1.000

2

Cclcec(Cl)c(0CC2C02)cl RXN:32

Figure 9: Examples of ReaSyn’s generation cycle (continued). All sequences are represented in a bottom-up
order.
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Figure 10: Examples of hit molecules and generated synthesizable analogs by ReaSyn in JNK3 hit expansion.
JNK3 inhibition score measured by the JNK3 proxy and similarity to the input hit are provided at the bottom of
each generated analog.
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