
SPARSE-PIVOT: Dynamic correlation clustering for node insertions

Mina Dalirrooyfard * 1 Konstantin Makarychev * 2 Slobodan Mitrović * 3

Abstract
We present a new Correlation Clustering algo-
rithm for a dynamic setting where nodes are added
one at a time. In this model, proposed by Cohen-
Addad, Lattanzi, Maggiori, and Parotsidis (ICML
2024), the algorithm uses database queries to ac-
cess the input graph and updates the clustering
as each new node is added. Our algorithm has
the amortized update time of Oε(log

O(1)(n)). Its
approximation factor is 20+ε, which is a substan-
tial improvement over the approximation factor
of the algorithm by Cohen-Addad et al. We com-
plement our theoretical findings by empirically
evaluating the approximation guarantee of our al-
gorithm. The results show that it outperforms the
algorithm by Cohen-Addad et al. in practice.

1. Introduction
In this paper, we present a new dynamic algorithm with node
updates for the Correlation Clustering problem with com-
plete information.1 Correlation Clustering is a well-studied
problem that seeks to partition a set of objects into clusters
based on their similarity. The problem is defined on a set of
items represented as nodes in a graph, with similarity infor-
mation provided through a set of edges. We assume that all
pairs of nodes are classified as either “similar” or “dissim-
ilar” by a noisy classifier. For every pair of similar nodes
u and v, there is an edge (u, v) between them (sometimes
referred to as a positive edge). For every pair of dissimilar
nodes u and v, no edge exists between them (such pairs are
sometimes called negative edges). The objective is to find
a clustering that minimizes the number of disagreements

*Equal contribution 1Machine Learning Re-
search, Morgan Stanley, Canada. minad@mit.edu.
2Northwestern University, Chicago, USA.
konstantin@northwestern.edu. 3University of
California, Davis, USA. smitrovic@ucdavis.edu. Corre-
spondence to: Mina Dalirrooyfard <minad@mit.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1By complete information, it is meant that for each pair of
nodes there is information on their similarity.

with the given edge set. An edge (u, v) disagrees with the
clustering if u and v are placed in different clusters, while a
non-edge (u, v) disagrees if u and v are placed in the same
cluster.

The problem was introduced by Bansal, Blum, and Chawla
(2004). It can be easily solved if a disagreement-free cluster-
ing exists, as each cluster then corresponds to a connected
component of the similarity graph G. However, when the
classifier makes mistakes, and a disagreement-free solution
does not exist, the problem becomes NP-hard. In their origi-
nal paper, Bansal, Blum, and Chawla proposed a constant-
factor approximation, which was subsequently improved
in a series of works Charikar et al. (2005); Demaine et al.
(2006); Chawla et al. (2015); Cohen-Addad et al. (2022;
2023); Cao et al. (2024). In 2005, Ailon, Charikar, and
Newman introduced combinatorial and LP-based algorithms
with approximation factors of 3 and 2.5, respectively. The
best-known approximation factor for Correlation Clustering
with Complete Information is currently 1.437 (Cao, Cohen-
Addad, Lee, Li, Newman, and Vogl, 2024). Nevertheless,
the combinatorial algorithm by Ailon et al. (2008), known
as PIVOT, remains one of the preferred choices in practice
due to its simplicity and good empirical performance.

Researchers have proposed various variants of PIVOT that
operate in parallel and streaming settings (Bonchi et al.,
2014; Chierichetti et al., 2014; Pan et al., 2015; Cohen-
Addad et al., 2021; Cambus et al., 2022; Behnezhad
et al., 2022; 2023; Cambus et al., 2022; Chakrabarty &
Makarychev, 2023). Recently, there has been growing inter-
est in algorithms that support dynamic updates. Consider a
scenario where similarity information is received over time,
requiring the clustering to be updated dynamically. Dalir-
rooyfard, Makarychev, and Mitrovic (2024) showed how to
maintain a (3 + ε)-approximation clustering with constant
update time per edge insertion or deletion (see also papers
by Behnezhad et al. (2019) and Chechik & Zhang (2019)).

Cohen-Addad, Lattanzi, Maggiori, and Parotsidis proposed
an algorithm designed for a setting where nodes and edges
are stored in a database. Over time, new nodes are added to
the database along with their incident edges. After nodes
are added, the dynamic algorithm updates the existing clus-
tering. In this model, each edge is included in the database
immediately after both its endpoints are inserted; no ad-

1

Sparse-pivot: Dynamic correlation clustering for node insertions

ditional edges can be inserted or deleted afterward. The
sequence of inserted nodes is non-adaptive, meaning it does
not depend on the decisions of the clustering algorithm.
Formally, we assume that the graph and the order of node ar-
rivals are fixed in advance. Cohen-Addad et al. showed how
to achieve a constant (albeit very large) approximation with
an update time of logO(1) n, measured in terms of database
operations defined as follows: (1) retrieving the degree of
a node v; (2) selecting a random neighbor of v; and (3)
checking whether two nodes u and v are connected by an
edge. The database model was introduced by Assadi and
Wang (2022). The algorithm by Cohen-Addad et al. was the
first dynamic algorithm for node insertions with sublinear
update time. Although it provides a constant approximation,
the proof suggests that the constant is very large (the paper
does not estimate it). In this work, we propose a (20 + ε)-
approximation algorithm for Correlation Clustering with an
update time of Oε(log

O(1) n) database operations per node
insertion.

In addition to node insertion, the algorithm by Cohen-Addad
et al. supports deleting random nodes. Our algorithm sup-
ports a slightly weaker type of deletion: soft deletions of
random vertices. When a node is soft-deleted from the
graph, it initially remains in the database but is marked as
soft-deleted. Moreover, the classifier continues creating
edges between newly arriving and soft-deleted nodes. Only
when the algorithm requests their deletion are they purged
from the database.

To motivate the model, consider the following example: An
online store adds new items to its stock daily and aims to
cluster all items based on similarity. Whenever a new item
is added, the store runs a classifier to identify items similar
to the new one. A record for the new item is then created
and inserted into the database, along with edges connecting
it to similar items. Instead of reclustering the entire dataset,
the dynamic algorithm efficiently updates the clustering,
requiring only O(logO(1) n) operations per item insertion.

2. Algorithm
Our algorithm is based on the 5-approximation variant of
PIVOT, developed by Behnezhad, Charikar, Ma, and Tan
(2023) for the semi-streaming model. Their algorithm in
the static setting works as follows: First, it selects a random
ordering π of all nodes. For each node u, it picks the neigh-
bor of u with the smallest rank and stores this neighbor in
the pivot array p: p(u) = argminw∈N(u) π(w). Next, the
algorithm identifies all nodes u such that p(u) = u, which
we refer to as pivots. We call p(v) the pivot for node v.
Then, the algorithm creates a new cluster for every pivot
u and assigns to it nodes v with p(v) = u. All remaining
unassigned nodes are placed in singleton clusters. Note that
for each node u in a singleton cluster, p(u) remains equal

to the neighbor of u with the smallest rank. To reiterate,
in this variant of PIVOT, each vertex u belongs to the clus-
ter of p(u) if p(u) = p(p(u)), and to a singleton cluster if
p(u) ̸= p(p(u)).

Behnezhad, Charikar, Ma, and Tan (2023) provide a dy-
namic edge-insertion version of this algorithm with constant
update time. A dynamic implementation of this algorithm
for node insertions can be easily inferred and is presented
in Algorithm 1. In this version, when the node u being
inserted is a pivot, the algorithm runs the EXPLORE pro-
cess. This process updates the pivot of each neighbor w of
u and reassigns w and its neighbors to the cluster of u or
singleton clusters, if necessary. We refer to the clustering
produced by this algorithm as REFERENCE CLUSTERING,
as our algorithm aims to approximate this clustering.

Algorithm 1 Insertion for REFERENCE CLUSTERING

1: input node u, graph G, ordering π, pivot array p.
2: Compute p(u) = argminw∈N [u] π(w).
3: if p(u) = u:
4: Mark u as a pivot.
5: Create a new cluster with u in it.
6: Run EXPLORE(u,G, π, p)
7: else if p(u) is a pivot:
8: Put u in p(u)’s cluster.
9: else:

10: Make u a singleton.

2.1. Making the REFERENCE CLUSTERING algorithm
faster

The challenge with REFERENCE CLUSTERING is that, af-
ter each insertion, it scans the entire neighborhood of the
inserted node u, which can be as large as Θ(n), where n is
the size of the current graph. This makes this REFERENCE
CLUSTERING prohibitively expensive. To improve the ef-
ficiency, we perform this exhaustive search only for pivots.
For non-pivot nodes u, we attempt to recover the unknown
pivot v by sampling O(log n) neighbors of u, examining the
set of pivots of these sampled neighbors, and setting p(u) to
the neighbor with the smallest ranked among the neighbors
scanned in this process (which could be the samples or their

Algorithm 2 EXPLORE

1: input pivot u, graph G, ordering π, pivot array p.
2: for all w ∈ N [u]:
3: if π(p(w)) > π(u):
4: if w is a pivot, i.e., p(w) = w:
5: for all z where p(z) = w:
6: if z ∈ N(u), then p(z)← u,
7: else make z a singleton
8: p(w)← u.

2

Sparse-pivot: Dynamic correlation clustering for node insertions

pivots). We show that this approach succeeds when the clus-
ter C in the reference clustering is sufficiently dense and u
does not have too many neighbors outside of C.

Instead of selecting a random ordering of vertices π, our al-
gorithm assigns each value π(u) uniformly at random from
the interval [0, 1]. This simplifies maintaining a random
ordering in dynamic settings, where the exact number of
nodes is not known in advance and also makes the logic of
our algorithm a bit simpler.

We present our algorithm for node insertion in Algorithm 3.
We use three main ideas:

(1) For vertices u with π(u) ≤ L
d(u) , where L = O(log n),

we run EXPLORE on u if u is a pivot, similarly to REFER-
ENCE CLUSTERING. If u is not a pivot, we run EXPLORE
on its pivot to update its cluster.

(2) For vertices u with π(u) > L
d(u) , we find a pivot by

examining the set of pivots of Θ(log n) random neighbors
of u and selecting the neighbor of u with smallest ranked in
that set as a pivot for u.

(3) In the obtained tentative clustering, we identify certain
nodes, remove them from their clusters, and place them into
singleton clusters. Specifically, we remove nodes whose
in-cluster degree is below a threshold t. The optimal value
of t is determined by trying out O(log n) possible choices.
In particular, when a new cluster is made upon arrival of a
pivot node, the subroutine BREAK-CLUSTER removes some
nodes from the cluster and makes them singletons. When
the node inserted is not a pivot and is assigned to pivot v,
the subroutine UPDATE-CLUSTER updates the set of nodes
assigned to v that are put in singletons upon insertion of the
new node (See Appendix A for details).

We now provide some motivation for the algorithm. First,
we observe that the expected time required for finding pivots
in items (1) and (2) is logO(1) n. In item (1), we spend
d(u) log n time with probability log n/d(u). In item (2), we
always spend O(log n) time by examining O(log n) random
neighbors and their pivots.

We run the step described in item (3) after (roughly) every
ϵs insertions, where s is the size of the cluster. In this
step, we test O(log n) different thresholds t and, for each
choice of t, estimate the cost of the split defined by t by
sampling random edges within the cluster (see Appendix A
for details). Hence, the total running time of one such
step is s logO(1) n, and the amortized cost per insertion is
logO(1) n.

We now discuss the approximation factor. Item (1) ensures
that all pivots in the reference clustering are marked as
pivots by our algorithm with high probability. Specifically,
for every pivot u in the reference clustering, we have π(u) ≤
L/d(u) with probability at least 1 − poly(1/n), ensuring

that EXPLORE is called on every pivot u. This follows from
the observation that if π(u) > L/d(u), then π(v) > L/d(u)
for all neighbors v ∈ N [u]. The probability of this event is
at most (1− L/d(u))d(u) ≤ poly(1/n).

We define good nodes as follows: loosely speaking, a node
is good if it is connected to most nodes within its cluster
and to relatively few outside of it. We show that good nodes
in our clustering are assigned the same pivots as in the
reference clustering (when our algorithm and REFERENCE
CLUSTERING use the same ordering π). For now, let us
assume that all nodes are good. If a good node u arrives
after its pivot w, then u will join w’s cluster when w scans
all its neighbors, including u. If u arrives after w while more
than 25% nodes in w’s cluster have yet to arrive, then for
at least one node v arriving after u, we will call EXPLORE,
which will assign u the correct pivot w. Here, we rely on
the assumption that all nodes are good. Finally, if u arrives
among the last 25% of nodes in w’s cluster, then by the
time u arrives, the algorithm will have assigned the correct
pivot w to most of its neighbors in the reference cluster.
Consequently, a high fraction of u’s neighbors will have w
as their pivot, and some of these neighbors will be included
in the random sample of neighbors (see item (2)). Hence, u
will also be assigned the correct pivot. Our full analysis can
be found in Section 3.

Let us now consider bad (not good) nodes. These nodes
incur a very substantial cost in the reference clustering. If
we could remove them from their reference clusters and
place them into singleton clusters, the overall clustering
cost would not increase significantly—in fact, it might even
decrease. Unfortunately, our algorithm cannot identify these
bad nodes; as a result, they may join clusters other than their
own reference clusters. This can substantially increase the
cost of those clusters. To address this issue, we partition
each tentative cluster into two parts (see item (3)): the first
part remains a cluster, while the second part is broken into
singleton clusters.

Theorem 2.1 provides the approximation guarantees of our
algorithm which we call SPARSE-PIVOT.

Theorem 2.1. For any ϵ < 1/1000, the expected cost of
SPARSE-PIVOT with parameter ϵ is at most 4(1 + O(ϵ))
times the expected cost of the REFERENCE CLUSTERING.

Our algorithm for soft deletions is very simple: We ignore
them! In fact, we recompute the whole clustering again
after Θ(ε)N many updates, where N is the number of nodes
when we last recomputed the clustering. The recomputation
is only necessary for deletions. Our running time guarantees
are provided in Theorem 2.2.

Theorem 2.2. Let T be the total number of updates.
With high probability, Algorithm 3 runs in amortized
poly(log T, 1

ε) time.

3

Sparse-pivot: Dynamic correlation clustering for node insertions

Algorithm 3 INSERT-NODE-SPARSE-PIVOT

1: input node u to be inserted, current graph G of size n,
ordering π, pivot vector p.

2: Let π(u) ∈ [0, 1] be chosen uniformly at random.
3: Let p(·) indicate the lowest rank neighbor of each

node.
4: Let Bv indicate the set of nodes with pivot v, and let

Cv ⊆ Bv be the nodes of Bv that are in v’s cluster.
5: if π(u) ≤ L

d(u) :
6: Find v = argminw∈N [u] π(w).
7: if v = u:
8: Make u a pivot: p(u) ← u, and make a new

cluster with u in it: Bu = {u}, tv = 0
9: EXPLORE(u,G, π, p)

10: Cu ← BREAK-CLUSTER(Bu).
11: else if v ̸= u and v is a pivot:
12: p(u)← v, Bv ← Bv ∪ {u}.
13: Cv ←UPDATE-CLUSTER(u,Bv)
14: if d(v) ≤ L

π(u) :
15: EXPLORE(v,G, π, p)
16: else if v ̸= u and v is not a pivot:
17: make u a singleton.
18: else:
19: Let S be a O(log n)-sized sample of N [u].
20: Let s∗ = argmins∈S,{p(s),u}∈E(G) π(p(s)). Let

v := p(s∗)
21: if π(v) < π(u):
22: p(u)← v, Bv ← Bv ∪ {u}.
23: Cv ←UPDATE-CLUSTER(u,Bv)
24: if u did not get clustered:
25: make u a singleton, u does not have a pivot.

2.2. Analysis Preliminaries

We use subscript ref to refer to REFERENCE CLUSTERING.
We fix time, and we compare the cost of our algorithm to
the cost of REFERENCE CLUSTERING at this time. We refer
to the current graph as G. For a node v, ordering π and
clustering algorithm A, let Cπ

A(v) be the cluster of v in A
with respect to the ordering π. We drop the superscript π
and subscript A when it is clear from the context. The clus-
tering algorithms that we consider throughout our analysis
all define pivots for all non-singleton clusters.

Given a ordering π and clustering algorithm A, let pπA(u)
denote the pivot of u chosen by algorithm A. For a set of
nodes S, let dS(v) be the degree of v in S, and let d(v)
be the degree of v in the graph G. We will classify nodes
depending on how their neighborhoods intersect the cluster
to which they are assigned.

Definition 2.3. Let α < 1 and β > 1. Let A be a clustering
algorithm. For a fixed ordering π, we call vertex u

• A-light if dC(u) ≤ |C|
3 , where C = Cπ

A(u).

• (A,α)-poor if d(u) ≤ αd(pA(u)) and u is not light.

• A-heavy if d(u) ≥ β|C|, where C = Cπ
A(u).

• A-bad if u is (A, 3αβ)-poor, A-heavy or A-light, and
A-good otherwise.

• A-lost if the number of A-bad neighbors of u in Cπ
A(u)

is at least β times the number of A-good neighbors of
u in Cπ

A(u).

We drop A- if the clustering algorithm is clear from the
context.

Definition 2.4 (Poor clusters). For a fixed ordering π and
clustering algorithm A, let C be a cluster with pivot v. We
call C an (A,α)-poor cluster if C has at least one (A,α)-
poor node.

Definition 2.5 (Good and bad clusters). Let γ < 1 be a
constant. For a fixed ordering π and clustering algorithm A,
we call a cluster Cπ

A good if it is not (A,α)-poor, and it has
at least γ|Cπ

A| good nodes. Otherwise, we call it bad.

Remark 2.6. Note that instead of fixing the clustering algo-
rithm A and ordering π, we can still have the above defini-
tions if we fix the clusters and pivots.

Definition 2.7 (Cost of a cluster). Given a clustering, the
cost of a cluster C is the number of non-edges inside C, and
half of the number of edges with exactly one endpoint in C.

The cost of a clustering is the sum of the cost of its clusters.

3. Analysis
3.1. Analysis outline

First, we explain the intuition behind classifying nodes in
Definition 2.3. Let the cost of a node be half the number of
non-neighbors it has in its cluster, plus half the number of
neighbors it has outside the cluster. Note that the sum of
the costs of nodes in a cluster equals the cost of the cluster.
Consider A to be the reference clustering in Definition 2.3.
A light node in cluster C has a lot of non-edges attached
to it in C, and a heavy node has a lot of edges attached to
it that leave the cluster C. So both have a high cost. In
fact, we show that if we make them singletons, the cost
of the clustering does not change much. So, in a sense, in
our algorithm, we do not care how ref -heavy or ref -light
nodes are being clustered as long as their cost is somewhat
comparable to their cost as singletons.

Consider poor nodes. A poor node has a much lower degree
than its pivot. We show that if a cluster has at least one poor
node, then any node in this cluster that is not heavy or light
must be poor (Lemma 3.1). Then we show that, in fact, if we

4

Sparse-pivot: Dynamic correlation clustering for node insertions

make the whole cluster singleton, the cost of the clustering
does not change much on average. This is because the pivot
of this cluster has a very high cost, and any node becomes
the pivot of a poor cluster with low probability.

In summary, we have shown that if we make the bad
nodes (heavy, poor, or light) in the reference clustering
singleton, the cost of the clustering does not change much
(Lemma 3.2). We further show that we can make all the
nodes in a bad cluster singleton as well since the cost of this
cluster is already too high. We call this clustering ref ′.

We then show that in SPARSE-PIVOT, not only do we detect
pivots correctly with high probability (Lemma 3.4), but also
all the good nodes that are not lost, i.e., they do not have
many bad neighbors, are assigned the correct pivot. We
show this in two parts: Consider a pivot v, and suppose C
is the set of all the ref -good nodes with pivot v that are
not ref -lost. First, we show that if a good node u ∈ C
arrives rather early compared to other nodes in C, at some
point its pivot runs EXPLORE and it detects if u is clustered
incorrectly (Lemma 3.5). If u arrives rather late, then the
sampling procedure will hit one of the neighbors of u in C
that is correctly clustered and so correctly assigns v as the
pivot of u (Lemma 3.6).

Now since we cluster the ref -good nodes correctly with
high probability, if we could detect ref -bad nodes in
SPARSE-PIVOT, we could make them singletons, and thus
get ref ′. However, instead, if Bv is the set of nodes that
have v as their pivot, we make a dense subset Cv of Bv

one cluster, and make the rest of Bv singleton. This step
is crucial since there might be many (bad or lost) nodes
incorrectly assigned to v that increase the number of the
non-edges in Bv significantly. We show that the cost of
making Bv \ Cv singleton is at most 4 times the cost of
making the ref -bad nodes in Bv singleton (Lemma 3.7).

Now we begin our formal analysis. Let β ≥ 4+ϵ
ϵ , α <

min(ϵ
24β ,

1
39β), and γ ≤ ϵ

2 . Let L ≥ 4cβ
ϵγα log n for some

arbitrary large constant c. Let the number of samples
when the inserted u satisfies π(u) > L/d(u) be at least
100 log(1

1−x) = O(log n), where x = (1
β+1 − ϵ)/β.

3.2. Making all the bad and lost nodes singleton in
Reference clustering

We show that if a cluster has one α-poor node, then all the
nodes in that cluster are 3αβ-poor.

Lemma 3.1. Let π be an ordering and A be a clustering
algorithm. If Cπ

A is an (A,α)-poor cluster, then any u ∈ Cπ
A

which is not light or heavy is (A, 3αβ)-poor.

Proof. Let v be the pivot of C = Cπ
A. First, since C is an

(A,α)-poor cluster there is a node w ∈ C that is (A,α)-
poor. Since, by definition of poor nodes, w is not light,

we have that |C|/3 ≤ d(u) ≤ αd(v). So 3αd(v) ≥ |C|.
Now for any u that is not heavy we have d(u) ≤ β|C| ≤
3αβd(v). Thus if u is not light, then u is (A, 3αβ)-poor.

The following lemma shows that if, in REFERENCE CLUS-
TERING, we make all the bad nodes and lost nodes singleton,
the cost only increases by a factor of (1 +O(ϵ)).

Lemma 3.2 (Cost of making bad and lost nodes singletons).
Consider a clustering algorithm A where the probability
of any node v being a pivot is at most 1/d(v). Let B be
the algorithm that first runs A, and then makes A-heavy,
A-light, (A, 3αβ)-poor and A-lost nodes singletons. Then
Eπ [costB] ≤ (1 + 7ϵ)Eπ [costA]

Proof. Let α′ = 3αβ, and let A′ be the algorithm that runs
A and then makes the A-heavy and A-light nodes singleton.
Let A′′ be the algorithm that runs A′, and makes all the
(A,α′)-poor nodes singleton. For the clarity and brevity of
notation, we use δ

def
= 4α′ 1+3/2·α′

1−5/2·α′ . For any fixed ordering

π, by Lemma C.2, costπA′ ≤ β+1
β−1cost

π
A, and

costA′ ≤ β + 1

β − 1
costA.

Now note that the probability of any node v being a pivot
in A′ is at most the probability of any node being a pivot
in A, which is at most 1/d(v). The cost of making (A,α′)-
poor nodes singletons is, at most, the sum of their degrees.
By Lemma C.1, that expected sum of (A,α′)-poor nodes
degrees is upper bounded by δ ·Eπ [costA]. Hence, we have

Eπ [costA′′] ≤ (1 + δ)Eπ [costA′] .

Finally, note that any A-lost node is a A′′-light node or A′′-
heavy node with parameter β/3. To see this, fix a ordering π.
Consider a A-lost node u, and let C = Cπ

A(u). Let C ′ ⊆ C
be the set of A-bad nodes in C. Let C ′′ := Cπ

A′′(u) =
C\C ′. By the definition of A-lost nodes, we have dC′(u) ≥
βdC′′(u). If u is not A′′-light, then dC′′(u) ≥ |C ′′|/3.
So d(u) ≥ dC′(u) ≥ βdC′′(u) ≥ β

3 |C
′′|. So u is A′′-

heavy node with parameter β/3. By Lemma C.2, costπB ≤
β+3
β−3cost

π
A′′ . So costB ≤ β+3

β−3costA′′ . Putting all the steps
together yields

Eπ [costB] ≤
β + 1

β − 1
· (1 + δ) · β + 3

β − 3
·Eπ [costA] .

Now since β ≥ 4+ϵ
ϵ , we have β+1

β−1 < β+3
β−3 ≤ (1 + ϵ),

and since α′ < 1/13, we have 1+3/2·α′

1−5/2·α′ < 2, and α′ <

ϵ/8 gives us 4α′ 1+3/2·α′

1−5/2·α′ < ϵ. So Eπ [costB] ≤ (1 +

ϵ)3Eπ [costA] ≤ (1 + 7ϵ)Eπ [costA].

5

Sparse-pivot: Dynamic correlation clustering for node insertions

Lemma 3.3. Consider a fixed ordering π and a clustering
algorithm A. If B is a clustering algorithm that runs A
and makes all A-bad and A-lost nodes, as well as all the
nodes in bad clusters in A singleton, then cost(B) ≤ (1 +
8ϵ)cost(A).

Proof. Let A′ be the algorithm that runs A and makes the
A-bad nodes and A-lost nodes singleton. Then we can see
B as running A′ and making all the good nodes remain-
ing in A-bad clusters singleton. Note that by Lemma 3.2
cost(A′) ≤ (1 + 7ϵ)cost(A). Note that in A′ all poor
clusters are singletons, since a poor cluster has at least one
(A,α) poor node, and by Lemma 3.1 all the non-pivot nodes
in this poor cluster that are not heavy or light are (A, 3αβ)-
poor. By definition of bad nodes, all the nodes in a poor
cluster are bad.

Consider a bad cluster C in A. The cost of C in A is at
least 2

3 (1− γ)|C|2 by Lemma C.3. Making the good nodes
in C singleton in A′ adds at most γ2|C|2 to the cost of
A′ since there are at most γ|C| good nodes in C, and the
only cost added by making these nodes singleton is through
the edges between them. So the total cost added to the
cost of A′ by making these good nodes singleton is at most

3γ2

2(1−γ)cost(A). So cost(B) ≤ cost(A′) + 3γ2

2(1−γ)cost(A).

Since γ ≤ ϵ/2, we have 3γ2

2(1−γ) ≤
4γ2

(1−γ)2 ≤ ϵ2 < ϵ. So
cost(B) ≤ (1 + 8ϵ)cost(A).

3.3. SPARSE-PIVOT comparison to REFERENCE
CLUSTERING

Let Pπ
alg be the pivot set of our algorithm and Pπ

ref be the
pivot set of the reference clustering.

Lemma 3.4. Let L′ = L/2β. If v ∈ Pπ
ref , then π(v) ≤

L′/d(v) holds with probability at least 1− 1/nc−1.

Note that not only does Lemma 3.4 say that each pivot
in REFERENCE CLUSTERING is also a pivot in SPARSE-
PIVOT, but it also provides a stronger guarantee on π(v).

For the next Lemma, note that the definitions of light, poor,
etc, are well-defined if the clustering is fixed (and not neces-
sarily the ordering π). We show that with high probability,
one of the good nodes in Cref (v) triggers EXPLORE func-
tion for v so that v can correct its cluster.

Lemma 3.5. Fix a clustering and its pivots that REFER-
ENCE CLUSTERING algorithm can produce. Consider a
pivot v whose cluster Cref (v) is good. Let Cref (v)[good]
be the good nodes in Cref (v). Then, with high proba-
bility, our algorithm assigns v as the pivot of u, for any
(1− ϵ)|Cref (v)[good]| first nodes u of Cref (v)[good]. The

“first” here is taken with respect to the dynamic ordering and
the probability taken over rankings that produce the fixed
clustering.

Lemma 3.6 shows that SPARSE-PIVOT identifies the pivot
of all the good nodes that are not lost correctly.
Lemma 3.6. Fix a clustering and its pivots that the ref-
erence algorithm can produce. Let v be a pivot in that
reference clustering and u be in the v’s cluster. With high
probability, any u that is ref-good and not ref-lost is as-
signed to v by Algorithm 3.

Proof. Let C = Cref (v). First, if u is among the first
(1− ε) fraction of the nodes of C[good] with respect to the
dynamic ordering, then by Lemma 3.5, with high probability
Algorithm 3 assigns u to v’s cluster.

So, second, consider the case when u is in the last ε fraction
of C[good]. Let D refer to the ref -good neighbors of u that
are among the first 1− ε fraction of the nodes of C[good].
By Lemma 3.5, with high probability Algorithm 3 assigns
the nodes in D to v’s cluster. We now lower-bound |D|. We
will use that lower bound to show that the sampling process
in Algorithm 3 (when π(u) < L/d(u)) will sample at least
one node from D, and hence assign v to u’s cluster.

Since u is not ref -lost, by Definition 2.3, u has at most
β times more ref -bad than ref -good neighbors in C.
Hence, at least 1/(1 + β) · |C| neighbors of u in C
are ref -good. Also, observe that 1/(1 + β) · |C| − ε ·
|C[good]| ≥ (1/(1 + β)− ε) · |C| of those neighbors are
among the first 1 − ε fraction of C[good]. Therefore,
|D| ≥ (1/(1 + β)− ε) · |C|. On the other hand, since
u is a ref -good node, we have that d(u) < β · |C|.

Finally, we conclude that

|D|
dinsert(u)

≥ |D|
d(u)

≥ 1/(1 + β)− ε

β
.

where dinsert(u) is the degree of u at the time of insertion.
Let n̄ be the number of nodes when inserting u. If x :=
1/(1+β)−ε

β , the probability of not sampling any node in D

is at most (1 − x)|S|, where S is the sample set. Recall
that |S| ≥ 100 log(1

1−x) · log n̄, so this probability is at
most 1/n̄100. Note that if n is the current number of nodes,
n̄ ≥ n/(1 + ϵ) since we recompute everything when the
number of updates is at most ε times the number of nodes
at last RECOMPUTE. So the probability that u is clustered
correctly is at most 1− (1 + ϵ)/n100.

Next, Lemma 3.7 aids us to compare REFERENCE CLUS-
TERING with SPARSE-PIVOT clustering. Given pivot v and
set Bv , let Ct be the set of nodes in Bv with degree at least t.
Let cost(Bv|Ct) be the cost of the clustering on Bv where
all the nodes in Ct are clustered as one cluster and the nodes
in Bv \ Ct as singletons. In particular, this cost equals half
of the number of edges from Bv to outside of Bv, plus the
number of edges with at least one endpoint in Bv \ Ct, plus
the number of non-edges in Ct.

6

Sparse-pivot: Dynamic correlation clustering for node insertions

Lemma 3.7. Consider a pivot v, and let C∗ be the set
of good nodes that are not lost in Cref (v). There is a
threshold t ∈ {1, (1 + ϵ), . . . , (1 + ϵ)⌈logn⌉+1}, such that
cost(Bv|Ct) ≤ 4

1−2εcost(Bv|C∗).

3.4. Putting it all together

Proof of Theorem 2.1. We refer to REFERENCE CLUSTER-
ING as ref and the clustering of SPARSE-PIVOT by B. Let
A be the clustering algorithm that runs REFERENCE CLUS-
TERING to obtain ref , and then makes all ref -bad, ref -lost
nodes as well as all the nodes in ref -bad clusters singleton.
By Lemma 3.3, E(cost(A)) ≤ (1+8ϵ)E(cost(ref)). Note
that all the nodes that are not singletons in A are good nodes
that are not lost and are not in bad clusters in ref .

Next we show that E(cost(B)) ≤ 4(1 +O(ϵ))E(cost(A)).
Consider a pivot v in REFERENCE CLUSTERING. By
Lemma 3.4 v is also a pivot in SPARSE-PIVOT with high
probability. We will compare clustering costs by dividing
up the clusters into groups: We consider all the nodes that
are in Bv for a pivot v together and compare the cost of
clustering these nodes in A and in B. We have two cases:

Case 1: Cref (v) is a good cluster. Consider Bv, the set
of nodes that are assigned to v as their pivot, and Cv ⊆ Bv ,
the set of nodes in Bv that are clustered with v and are not
singletons.

Let Ct = {u ∈ Bv|d(u) ≥ t}, and let cost(Bv|Ct) be the
cost of clustering all nodes in Ct as one cluster and the nodes
in Bv \ Ct as singletons. Let t∗ be the threshold in {1, (1 +
ϵ), . . . , (1+ ϵ)⌈logn⌉+1} where cost(Bv|Ct∗) is minimized.
By Theorem A.5, cost(Bv|Cv) ≤ (1+220ε)cost(Bv|Ct∗).

If C∗
v is the set of good nodes that are not lost in

Cref (v), then by Lemma 3.6 all the nodes in C∗
v are

correctly assigned to v, and so they are in Bv. Note
that A clusters the node in Bv as follows: put all the
nodes in C∗

v in one cluster and make all the nodes
in Bv \ Cv singleton. By Lemma 3.7, we have that
cost(Bv|Ct∗) ≤ 4

1−2εcost(Bv|C∗
v), so cost(Bv|Cv) ≤

4(1+220ε)
(1−2ε) cost(Bv|C∗

v) ≤ 4(1 + 230ε)cost(Bv|C∗
v) since

ε ≤ 1/1000.

Case 2: Cref (v) is a bad or poor cluster. We
know that all the nodes in Cref (v) are singletons in
A. Let t∗ be the threshold in {1, (1 + ϵ), . . . , (1 +
ϵ)⌈logn⌉+1} where cost(Bv|Ct∗) is minimized. So
cost(Bt∗ |Cv) is at most the cost of making Bv single-
ton, i.e. cost(Bv|C(1+ϵ)⌈log n⌉+1) = cost(Bv|∅). By The-
orem A.5 cost(Bv|Cv) ≤ (1 + 220ε)cost(Bv|Ct∗). So
cost(Bv|Cv) ≤ (1 + 220ε)cost(Bv|∅).

Finally, note that a node not in any Bv is a singleton in both
B and A. Putting the above two cases together, So we have

E(cost(B)) ≤ 4(1 + 50ϵ)E(cost(A)) ≤ 4(1 + 230ϵ)(1 +
8ϵ)E(cost(ref)) ≤ 4(1 + 1000ϵ)E(cost(ref)), where the
last inequality uses the fact that ϵ < 1/1000.

4. Random deletions
Let n0 be the number of nodes in the graph just after the last
recomputation. Our algorithm for deletions is quite simple:

1. Ignore deletions.

2. After εn0/6 updates, counting both insertions and dele-
tions, recompute the clustering from scratch by treating all
non-deleted nodes as if they had been inserted one by one
again. These insertions are processed by Algorithm 3. Our
recomputing procedure is described in Appendix B.

Recall that on a deletion update, a node to be deleted is cho-
sen uniformly at random among the existing nodes. Observe
that the choice of deletions is independent of the randomness
used by our algorithm. At time t of the algorithm, let Dt

be the nodes deleted since the last clustering recomputation.
We think of Dt as the nodes waiting to be deleted.

By construction, we have |Dt| ≤ εn0/6. Since after the
recomputation there are n0 nodes in the graph, Dt is a
subset of (at least) n0 nodes, and hence Pr (u ∈ Dt) ≤
|Dt|/n0 ≤ ε/6. There is inequality instead of equality, as
the εn0/6 updates might contain insertions, resulting in a
reduced probability of a node appearing in Dt.

Let CNO-DEL be the clustering obtained by 5-approximate
REFERENCE CLUSTERING at time t where deletions Dt are
ignored. Let CDEL be the clustering obtained by REFERENCE
CLUSTERING at time t in which deletions Dt are considered.
Let Pt ⊆ V ×V be the node pairs that CNO-DEL pays for. We
aim to lower-bound the expected number of pairs in Pt that
CDEL also pays for. Consider a pair e = {u, v} ∈ Pt. We
will lower-bound the probability that the clustering of u and
v is the same in CDEL as in CNO-DEL

Consider a node u; the exact same analysis applies to v.

First, assume that u is a singleton in CNO-DEL. This im-
plies that the neighbor of u with smallest rank, w, is not
a pivot. Node w is not a pivot because it has a neigh-
bor w′ with a rank smaller than w. If none of w,w′,
or u is in Dt, then u is a singleton in CDEL. Since we
have Pr (w ∈ Dt or w′ ∈ Dt or u ∈ Dt) ≤ Pr (w ∈ Dt)+
Pr (w′ ∈ Dt) + Pr (u ∈ Dt) ≤ ε/2, then in this case, the
clustering of u in CDEL is the same as in CNO-DEL with proba-
bility at least 1− ε/2.

Second, assume that u is not a singleton in CNO-DEL. This
implies that the highest-rank neighbor w of u is a pivot. By
deleting nodes, and unless w is deleted, w remains a pivot.
So, unless u or w are in Dt, the clustering of u is the same in
CDEL and CNO-DEL. Since we have Pr (w ∈ Dt or u ∈ Dt) ≤

7

Sparse-pivot: Dynamic correlation clustering for node insertions

ε/3, in this case, the clustering of u in CDEL is the same as
in CNO-DEL with probability at least 1− ε/3.

This analysis implies that the clustering of a pair {u, v}
is the same in CDEL as in CNO-DEL with probability at least
1− 5ε/6. Hence, by the linearity of expectation,

E [cost(CDEL)] ≥ (1− 5ε/6)|Pt| ≥ (1− ε) cost(CNO-DEL).

5. Experiments
In this section, we empirically demonstrate that our ap-
proximation guarantee is better than that of REFERENCE
CLUSTERING and the algorithm of (Cohen-Addad et al.).
In the rest, we use DYNAMIC AGREEMENT to refer to the
approach in (Cohen-Addad et al.).

Algorithm Parameters In SPARSE-PIVOT, for the
BREAK-CLUSTER and UPDATE-CLUSTER subroutines we
do the following: in BREAK-CLUSTER we consider
O(log n) many candidates for Cv, estimate their costs and
pick one with the lowest cost. In UPDATE-CLUSTER we
update our O(log n) estimates by adding the new node, and
again pick the one with lowest cost. To simplify the code,
we heuristically alter the BREAK-CLUSTER and UPDATE-
CLUSTER subroutines as follows. In BREAK-CLUSTER, for
each node u ∈ Bv, we sample O(log n) nodes in Bv. If u
is attached to half of them, we add u in Cv. In UPDATE-
CLUSTER, we add u to Cv, even though u might not be
attached to many nodes in Cv. After at least ε|Bv| nodes
are added to Bv, we rerun BREAK-CLUSTER. Note that
the reason we get a (20 +O(ε)) approximation instead of
a (5 +O(ε)) approximation is the BREAK-CLUSTER sub-
routine, so depending on the application, one can replace
this subroutine with a version that one sees fit. Furthermore,
we run RECOMPUTE every time the number of deletions
reaches εN , instead of the total number of updates. We ob-
serve that this does not degrade the approximation guarantee
and slightly improves the running time.

We set the experiment parameters and the parameters for
DYNAMIC-AGREEMENT to be the same as in (Cohen-Addad
et al.). We choose a random ordering for the arrival of
the nodes, and at each step, with probability 0.8, we insert
the next node, and with probability 0.2, we delete a ran-
dom node. If all the nodes have been inserted once, we
delete them until no node is left. We set the parameter ε for
SPARSE-PIVOT to be 0.1.

Datasets We use the same datasets as in (Cohen-Addad
et al.) for a complete comparison. We evaluate the algo-
rithms on two types of graphs.
(1) Sparse real-world graphs from SNAP (Jure, 2014): a
social network (musae-facebook), an email network (email-
Enron), a collaboration network (ca-AstroPh), and a paper
citation network (cit-HepTh)

(2) The drift dataset (Vergara et al., 2012; Rodriguez-Lujan
et al., 2014) from ICO Machine Learning Repository (Dua
et al., 2017), which includes 13,910 points embedded in a
space of 129 dimensions. A graph is constructed by placing
an edge between two nodes if their Euclidean distance is
less than a certain threshold. This setup is used to easily
change the density of the graph and test how it affects the
algorithms. The thresholds we choose are the same as in
(Cohen-Addad et al.), and they are the mean of the distances
between all nodes divided by c ∈ {10, 15, 20, 25, 30}. The
lower the threshold, the sparser the graph. The density of a
graph is the ratio of the number of edges and the number of
nodes.

Baselines We use three baselines: making all nodes single-
tons, which we call SINGLETONS, DYNAMIC-AGREEMENT,
and REFERENCE CLUSTERING. We divide the cost of each
algorithm by the cost of SINGLETONS. Since REFERENCE
CLUSTERING handles only node insertions, we process dele-
tions in a way similar to (Cohen-Addad et al.). Note that
our results slightly differ from that of (Cohen-Addad et al.)
since they depend on the randomness of node arrivals. More-
over, the running time depends on the machine in which the
algorithm is being run. Nevertheless, the scale of results we
obtain does reproduce that of (Cohen-Addad et al.).

Results: Approximation Guarantee For all the datasets,
our approximation guarantee is better than DYNAMIC-
AGREEMENT and SINGLETONS. For SNAP graphs, we
plot the correlation clustering objective every 50 steps. Fig-
ure 1 shows this objective for one of these graphs, and the
rest can be found in Appendix F. The average clustering

Figure 1. Comparison of the correlation clustering objective across
the four algorithms. The lower the plot, the better.

objective for the drift dataset graphs is shown in Table 1.

Results: Running time Our experiments focus on the so-
lution quality of SPARSE-PIVOT. Nevertheless, we com-
pare the running times for completeness and illustrate that
SPARSE-PIVOT is faster than DYNAMIC-AGREEMENT in
practice, see Appendix F.

8

Sparse-pivot: Dynamic correlation clustering for node insertions

Density DA RC SP
235.36 0.69 0.59 0.6
114.87 0.59 0.64 0.49
69.74 0.5 0.5 0.41
52.17 0.39 0.42 0.32
42.25 0.35 0.35 0.29

Table 1. Clustering Objective of DYNAMIC-AGREEMENT (DA),
REFERENCE CLUSTERING (RF) and SPARSE-PIVOT (SP). The
smaller the number, the better.

Acknowledgements
K. Makarychev was supported by the NSF Awards CCF-
1955351 and EECS-2216970.

S. Mitrović was supported by the NSF Early Career Program
No. 2340048 and the Google Research Scholar Program.

Impact Statement
This paper presents work that aims to advance algorithmic
tools for data partitioning, a method used in the field of
Machine Learning. There are many potential societal con-
sequences of our work, none of which we feel must be
specifically highlighted here.

References
Ailon, N., Charikar, M., and Newman, A. Aggregating

inconsistent information: ranking and clustering. Journal
of the ACM (JACM), 55(5):1–27, 2008.

Assadi, S. and Wang, C. Sublinear time and space al-
gorithms for correlation clustering via sparse-dense de-
compositions. In 13th Innovations in Theoretical Com-
puter Science Conference (ITCS 2022). Schloss-Dagstuhl-
Leibniz Zentrum für Informatik, 2022.

Bansal, N., Blum, A., and Chawla, S. Correlation clustering.
Machine learning, 56:89–113, 2004.

Behnezhad, S., Derakhshan, M., Hajiaghayi, M., Stein, C.,
and Sudan, M. Fully dynamic maximal independent set
with polylogarithmic update time. In 2019 IEEE 60th
Annual Symposium on Foundations of Computer Science
(FOCS), pp. 382–405. IEEE, 2019.

Behnezhad, S., Charikar, M., Ma, W., and Tan, L.-Y. Almost
3-approximate correlation clustering in constant rounds.
In 2022 IEEE 63rd Annual Symposium on Foundations
of Computer Science (FOCS), pp. 720–731. IEEE, 2022.

Behnezhad, S., Charikar, M., Ma, W., and Tan, L.-Y. Single-
pass streaming algorithms for correlation clustering. In
Proceedings of the 2023 Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), pp. 819–849. SIAM,
2023.

Bonchi, F., Garcia-Soriano, D., and Liberty, E. Correlation
clustering: from theory to practice. In KDD, pp. 1972,
2014.

Cambus, M., Pai, S., and Uitto, J. A parallel algorithm for
(3+ε)-approximate correlation clustering. arXiv preprint
arXiv:2205.07593, 2022.

Cao, N., Cohen-Addad, V., Lee, E., Li, S., Newman, A.,
and Vogl, L. Understanding the cluster lp for correlation
clustering. In STOC, 2024.

Chakrabarty, S. and Makarychev, K. Single-Pass Pivot
Algorithm for Correlation Clustering. Keep it simple! In
NeurIPS 2023, 2023.

Charikar, M., Guruswami, V., and Wirth, A. Clustering with
qualitative information. Journal of Computer and System
Sciences, 71(3):360–383, 2005.

Chawla, S., Makarychev, K., Schramm, T., and Yaroslavtsev,
G. Near optimal lp rounding algorithm for correlation
clustering on complete and complete k-partite graphs. In
Proceedings of the forty-seventh annual ACM symposium
on Theory of computing, pp. 219–228, 2015.

Chechik, S. and Zhang, T. Fully dynamic maximal indepen-
dent set in expected poly-log update time. In 2019 IEEE
60th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 370–381. IEEE, 2019.

Chierichetti, F., Dalvi, N., and Kumar, R. Correlation clus-
tering in mapreduce. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pp. 641–650, 2014.

Cohen-Addad, V., Lattanzi, S., Maggiori, A., and Parotsidis,
N. Dynamic correlation clustering in sublinear update
time. In Forty-first International Conference on Machine
Learning.

Cohen-Addad, V., Lattanzi, S., Mitrović, S., Norouzi-Fard,
A., Parotsidis, N., and Tarnawski, J. Correlation clus-
tering in constant many parallel rounds. In Interna-
tional Conference on Machine Learning, pp. 2069–2078.
PMLR, 2021.

Cohen-Addad, V., Lee, E., and Newman, A. Correlation
clustering with sherali-adams. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS),
pp. 651–661. IEEE, 2022.

Cohen-Addad, V., Lee, E., Li, S., and Newman, A. Han-
dling correlated rounding error via preclustering: A 1.73-
approximation for correlation clustering. arXiv preprint
arXiv:2309.17243, 2023.

9

Sparse-pivot: Dynamic correlation clustering for node insertions

Dalirrooyfard, M., Makarychev, K., and Mitrovic, S. Pruned
pivot: Correlation clustering algorithm for dynamic, par-
allel, and local computation models. In Forty-first Inter-
national Conference on Machine Learning, 2024.

Demaine, E. D., Emanuel, D., Fiat, A., and Immorlica,
N. Correlation clustering in general weighted graphs.
Theoretical Computer Science, 361(2-3):172–187, 2006.

Dua, D., Graff, C., et al. Uci machine learning repository,
2017. URL http://archive. ics. uci. edu/ml, 7(1):62, 2017.

Jure, L. Snap datasets: Stanford large network dataset
collection. Retrieved December 2021 from http://snap.
stanford. edu/data, 2014.

Pan, X., Papailiopoulos, D., Oymak, S., Recht, B., Ram-
chandran, K., and Jordan, M. I. Parallel correlation clus-
tering on big graphs. Advances in Neural Information
Processing Systems, 28, 2015.

Rodriguez-Lujan, I., Fonollosa, J., Vergara, A., Homer, M.,
and Huerta, R. On the calibration of sensor arrays for
pattern recognition using the minimal number of experi-
ments. Chemometrics and Intelligent Laboratory Systems,
130:123–134, 2014.

Vergara, A., Vembu, S., Ayhan, T., Ryan, M. A., Homer,
M. L., and Huerta, R. Chemical gas sensor drift compen-
sation using classifier ensembles. Sensors and Actuators
B: Chemical, 166:320–329, 2012.

10

Sparse-pivot: Dynamic correlation clustering for node insertions

A. Implementing cost estimates
Our clustering procedures, e.g., Algorithm 3, for each pivot v maintain two sets of nodes: Bv and Cv . The set Bv is a set of
nodes whose pivot is v. However, having Bv as one cluster might sometimes be very far from an optimal clustering of the
nodes within Bv . So, our algorithm computes a cluster Cv ⊆ Bv for which we can guarantee a relatively low cost; details of
this analysis are provided in our proof of Theorem 2.1. To compute a cluster Cv , our algorithm estimates the costs of several
clusters and chooses Cv as the cluster with the lowest estimated cost. In this section, we describe how to estimate the cost of
a cluster efficiently, that is, in only poly(log n, 1/ε) time. We need to handle two cases: how to estimate the cost of a given
cluster C from scratch, i.e., in a static manner, and how to maintain the cost estimate of a cluster C under node insertions.

We need the former case for our recomputation or when we create an entirely new Bv because v is just becoming a pivot. It
might be tempting to create new Bv by “pretending” that the nodes of Bv have been inserted one by one. However, this
approach has a small subtlety. Namely, when a node v is inserted, only at that point are the edges incident to v included in
our graph, and no edge between v and a node inserted in the future is known. On the other hand, if we “pretend” that an
already existing sequence of nodes is just now inserted, then a currently processed node also has edges to its neighbors that
have yet to be processed/inserted. This scenario slightly affects how we count edges and non-edges within Bv or Cv .

A.1. Static version

A.1.1. WITHIN-CLUSTER COST ESTIMATE

We first design a procedure to estimate the cost within a cluster C, i.e., the number of non-edges within C, by spending only
O(log n) time per edge. It is provided as Algorithm 4. As shown by Lemma A.1, this estimate is tightly concentrated as

Algorithm 4 IN-CLUSTER-COST-ESTIMATE

1: Input set C ⊆ V

2: τC
def
= 5 · |C| · log(n)/ε3

3: for i = 1 . . . τC :
4: Uniformly at random, sample two distinct nodes v and w from C
5: if {w, v} is a non-edge, then S ← S + 1

6: return S ·
(|C|

2

)
/τC

long as the number of non-edges is in Ω(|C|). If the number of non-edges is lower, then their actual number is irrelevant to
our algorithm. Updating this cost dynamically is more involved, and we elaborate on details in Appendix A.2.

Lemma A.1 (In-cluster cost estimate). Let C ⊆ V be a set of nodes. Then, for ε < 1/2, Algorithm 4 (IN-CLUSTER-COST-
ESTIMATE) uses O(|C| log(n)/ε2) running time and outputs Y for which with high probability the following holds:

• If the number of non-edges within C if at least 2ε|C|, then Y is a 1± ε multiplicative approximation of that number of
non-edges.

• Otherwise, Y < 3ε|C|.

Proof. Let t be the number of non-edges in C. Let Xi be a random 0/1 variable equal 1 iff the i-th {v, w} pair sampled by
Algorithm 4 is a non-edge. Then,

E [Xi] = Pr (Xi = 1) =
t(|C|
2

) .
Let S′ be the value of S at the end of Algorithm 4. Since S′ =

∑τC
i=1 Xi, we have

E [S′] = τC ·
t(|C|
2

) . (1)

Let

Y
def
=

S′ ·
(|C|

2

)
τC

11

Sparse-pivot: Dynamic correlation clustering for node insertions

be the output of Algorithm 4. Observe that E [Y] = t. Therefore, the expected value of Y is the desired one. In the rest, we
analyze the concentration bounds of this estimator.

Consider two cases based on the value of t.

Case t ≥ 2ε|C|. Recall that τC = 5|C| log(n)/ε3. Replacing the bounds on t and τC in Equation (1) yields

E [S′] ≥ 10|C|2 · log n
ε2
(|C|

2

) ≥ 20 log n

ε2
. (2)

Since S′ is a sum of independent 0/1 random variables, by the Chernoff bound, it holds that2

Pr (|S′ −E [S′] | < εE [S′]) ≤ n−6.

This now implies that for t ≥ 2ε|C|, with probability at least 1− n−6, Y is a (1± ε) multiplicative approximation of t.

Case t < 2ε|C|. In this case, we would like to claim that very likely it holds that Y < 3ε|C|. This can be argued by
applying the Chernoff bound as follows.

Observe that for this value of t we have
E [S′] <

20 log n

ε2
.

Hence,

Pr

(
S′ > (1 + ε)

20 log n

ε2

)
≤ n−6.

Therefore, with probability at least 1− n−6, it holds that

Y ≤
(1 + ε) 20 logn

ε2 ·
(|C|

2

)
τC

< (1 + ε)2|C| < 3ε|C|,

for ε < 1/2.

A.1.2. SINGLE-CLUSTER + SINGLETONS COST ESTIMATE

We now discuss how to estimate the cost of B for a given C, where C is taken as a single cluster, while all the nodes in
B −C are singletons. By cost of B we mean the number of edges with at least one endpint in B −C and the other endpoint
in B, plus the number of non-edges in C. Note that the true correlation clustering cost of B is the above cost plus half of the
edges from B to outside of B, but since we need these costs to compare different choices of B and the number of edges
going outside of B is indipendent of this choice, it does not influence our comparison.

In this section, given two node subsets X and Y , we use e(X,Y) to denote the number of edges with one endpoint in X
and the other in Y . In particular, e(X,X) is the number of edges in G[X]. We abbreviate e(X,X) to e(X).

First, the entire cost of C, denoted by cost(C), equals the sum of e(C, V − C) and the number of non-edges within C.
Observe that

e(C) =

(
|C|
2

)
− [the number of non-edges within C].

So, we have∑
w∈C

d(w) = e(C, V − C) + 2e(C) = e(C, V − C) + 2

(
|C|
2

)
− 2 · [the number of non-edges within C].

This now implies that

cost(C) =
∑
w∈C

d(w)− 2

(
|C|
2

)
+ 3 · [the number of non-edges within C].

2The constant −6 can be made arbitrarily large by increasing the constant in τC .

12

Sparse-pivot: Dynamic correlation clustering for node insertions

Second, it remains to account for making the nodes in B −C singletons. The edges E(C,B −C) are already accounted for
by
∑

w∈C d(w). To account for the cost of making B − C singletons, the following procedure can be used:

• For each node w ∈ B − C, iterate over all the edges in its adjacency list and

• to an edge from E(w,C) assign weight 0; to an edge from E(w,B − C) assign weight 1/2; and to an edge from
E(w, V −B) assign weight 1.

Observe that an edge {x, y} with x, y ∈ B − C is counted twice: once in the adjacency list of x and once in the adjacency
list of y. Hence, the sum of these edge weights and cost(C) equals the cost of clustering B.

However, using the above procedure directly can result in a running time that is too long. Instead, we would like a procedure
with the running time of O(|B| · poly(log n, 1/ε)). Nevertheless, estimating the sum of the edge weights in the desired time
is simple. We outline one such approach in Algorithm 5.

Algorithm 5 COST-ESTIMATE

1: Input node sets B and C ⊆ B.
2: c̃ost =

∑
w∈C d(w)− 2

(|C|
2

)
+ 3 · IN-CLUSTER-COST-ESTIMATE(C)

3: Let η def
= 10 · log(n)/ε3

4: for w ∈ B − C:
5: Sample η edges incident to w, each edge sampled independently and uniformly at random
6: For S ∈ {C,B − C, V −B}, let ZS(w) be d(w)/η multiplied by number of sampled edges incident to S

7: c̃ost = c̃ost+ ZB−C(w)
2 + ZV−B(w)

8: return (c̃ost+ 9ε|C|)/(1− 37ε)

Let ZS(w) be as defined in Algorithm 5. Observe that E [ZS(w)] = e(w, S). A straightforward analysis, and identical to
that presented in the proof of Lemma A.1, shows that for e(w, S) ≥ 2εd(w) the value of ZS(w) computed in Algorithm 5 is
with high probability a (1± ε) factor approximation of e(w, S). For e(w, S) < 2εd(w), the same analysis yields that with
high probability, it holds that ZS(w) < 3εd(w). Hence, when e(w, S) < 2εd(w), the estimate ZS(w) is not necessarily
within 1± ε factor of its expected value, and thus the error has to be accounted for differently. Next, we explain how to
account for it.

Trivially, at least one among e(w,C), e(w,B − C), and e(w, V − B) is at least d(w)/3 > 2εd(w), for ε < 1/6. If
e(w,C) ≥ d(w)/3, we charge each ZS(w) < 3εd(w) to the cost of E(w,C) paid by

∑
w∈C d(w). This incurrs an

extra cost of at most (2 · 3εd(w))/(d(w)/3) = 18ε per an edge in E(w,C). The analogous analysis applies to the case
e(w, V −B) ≥ d(w)/3 and e(w,B − C) ≥ d(w)/3. The only difference is that ZB−C(w) is divided by 2 in Algorithm 5,
so for that case, the analysis yields a 36ε increased cost per edge.

Overall, this analysis implies that, with high probability, c̃ost in COST-ESTIMATE is a (1± 37ε) multiplicative and 9ε|C|
additive approximation of the cost of clustering B. The additive approximation comes from Lemma A.1 and the fact that
3 · IN-CLUSTER-COST-ESTIMATE(C) figures in the output of COST-ESTIMATE.

Lemma A.2 (Cost estimate of single-cluster + singletons). Let ε < 1/111. Given two node sets B and C ⊆ B, let
cost∗(B|C) be the cost of clustering B in which C is a single cluster and B − C are singletons, which is defined to be the
number non-edges in C plus the number of edges in B with at least one endpoint in B−C. Then, if COST-ESTIMATE(B,C)
(Algorithm 5) outputs X , we have cost∗(B|C) ≤ X ≤ (1 + 111ε)cost∗(B|C) + 27ε|C|. Moreover, the algorithms run in
O(|B| · log(n)/ε3) time.

Note that since (1−37ε)cost∗(B|C)−9ε|C| ≤ c̃ost ≤ (1+37ε)cost∗(B|C)+9ε|C| and X = (c̃ost+9ε|C|)/(1−37ε),
and ε < 1/111 we have that cost∗(B|C) ≤ X ≤ (1 + 111ε)cost∗(B|C) + 27ε|C|.

A.1.3. COST COMPARISON

Let the estimate that Algorithm 5 makes for cost∗(B|C) be c̃ost(B|C). We show that c̃ost(B|C) is a good enough measure
for choosing a C with low cost(∗B|C).

Lemma A.3. If cost∗(B|C) ≥ |C|/4 then cost∗(B|C) ≤ c̃ost(B|C) ≤ (1 + 219ε)cost∗(B|C).

13

Sparse-pivot: Dynamic correlation clustering for node insertions

Algorithm 6 COST-COMPARISON

1: Use Algorithm 5 to compute c̃ost(B|C) and c̃ost(B|C ′).
2: if c̃ost(B|C) < c̃ost(B|C ′):
3: return C
4: else:
5: return C ′.

Proof. Since |C| ≥ 4cost(B|C), by Lemma A.2, we have that c̃ost(B|C) ≤ (1 + 111ε)cost∗(B|C) + 27ε|C| ≤
(1 + 111ε)cost∗(B|C) + 108εcost∗(B|C) ≤ (1 + 219ε)cost∗(B|C).

Lemma A.4. If cost∗(B|C) ≤ |C|/4, then for any C ′ such that C ′ ⊂ C or C ⊂ C ′, we have cost∗(B|C) < cost∗(B|C ′)
and c̃ost(B|C) ≤ c̃ost(B|C ′).

Proof. First suppose that C ′ ⊂ C. Take a node u ∈ C \C ′, we know that cost(B|C) ≥ |C|− 1−dC(u) ≥ |C|/2−dC(u).
So |C|/2 ≤ dC(u). Now we have cost∗(B|C ′) ≥ dC(u) ≥ |C|/2 > cost∗(B|C). Similarly, suppose C ⊂ C ′. Take a node
u ∈ C ′ \C. We know that cost∗(B|C) ≥ dC(u), so dC(u) ≤ |C|/4. Moreover, cost∗(B|C ′) ≥ |C| − 1− dC(u) > |C|/2.
So in both cases cost∗(B|C ′) > |C|/2 > cost∗(B|C).

Furthermore, by Lemma A.2 c̃ost(B|C) ≤ (1 + 111ε)|C|/4 + 27ε|C| and by Lemma A.3 we have c̃ost(B|C ′) ≥
(1 + 219ε)cost∗(B|C) ≥ (1 + 219ε)|C|/2. So we have c̃ost(B|C ′) < c̃ost(B|C).

We use Algorithm 6 to develop Algorithm 7 that finds a dense cluster Cv inside Bv , where Bv is the set of all the nodes that
are assigned to pivot v. Recall that Ct is the set of nodes in Bv with degree at least t.

Algorithm 7 BREAK-CLUSTER

1: Input Set Bv .
2: For any t > 0, let Ct = {u ∈ Bv, d(u) ≥ t}.
3: initialize tv = 0, Cv = Bv .
4: for t ∈ {1, (1 + ϵ), (1 + ϵ)2, . . . , (1 + ϵ)⌈logn⌉}:
5: Cv ←COST-COMPARISON(Bv, Ct, Cv).
6: return Cv .

For any C ⊆ B, let cost(B|C) be the cost of making C a cluster, and B − C singletons. This cost is equal to half the
number of edges with exactly one endpoint in B, plus the number of edges with one endpoint in B − C and the other
endpoint in B, plus the number of non-edges in C. In fact, cost(B|C) is cost∗(B|C) plus half the number of edges that
leave B.

Theorem A.5. Let t∗ be the threshold among 1, (1+ε), . . . , (1+ε)⌈logn⌉ where cost(Bv|Ct∗) is minimized. If Algorithm 7
returns Ct̃, then cost(Bv|Ct̃) ≤ (1 + 219ε)cost(Bv|Ct∗).

Proof. First note that since cost(Bv|Ct) is cost∗(Bv|Ct) plus half the number of edges that leave Bv , for any t, t′ we have
cost(Bv|Ct)− cost(Bv|Ct′) = cost∗(Bv|Ct)− cost∗(Bv|Ct′), and thus we can use cost∗ for comparing the costs, i.e. t∗

minimizes cost∗(Bv|Ct) as well as cost(Bv|Ct).

We prove the Theorem by induction: Suppose that for any j, tj is the threshold among 1, (1 + ε), . . . , (1 + ε)j such that
cost∗(Bv|Ctj) is minimized, and the output of the for loop in Algorithm 7 for t ∈ {1, (1+ε), . . . , (1+ε)j} is Ct̃j

. Fix some
i. Suppose that cost∗(Bv|Ct̃i

) ≤ (1 + 219ε)cost∗(Bv|Cti). Note that Ct̃i+1
= COST-COMPARISON(Bv, C(1+ε)i+1 , Ct̃i

).
We show that cost∗(Bv|Ct̃i+1

) ≤ (1 + 219ε)cost∗(Bv|Cti+1).

For ease of notation let C1 = Cti , C2 = Cti+1
, and C ′ = C(1+ε)i+1 . So we have C2 = argminC∈{C1,C′} cost

∗(Bv|C).
Let C̃1 = Ct̃i

and C̃2 = Ct̃i+1
. Assuming that cost∗(Bv|C̃1) ≤ (1 + 219ε)cost∗(Bv|C1), we need to show that

cost∗(Bv|C̃2) ≤ (1 + 219ε)cost∗(Bv|C2), where C̃2 = COST-COMPARISON(Bv, C
′, C̃1).

Note that C ′ ⊆ C̃1. This is because C̃1 = Ct̃i
and C ′ = C(1+ε)i+1 where t̃i ≤ (1 + ε)i < (1 + ε)i+1. We prove the rest of

the theorem in the following cases.

14

Sparse-pivot: Dynamic correlation clustering for node insertions

Case 1: cost∗(B|C ′) < |C ′|/4. In this case, by Lemma A.4 we know that cost∗(B|C ′) < cost∗(B|C̃1) and
c̃ost(B|C ′) < c̃ost(B|C̃1). So C̃2 = C ′. By induction hypothesis, we have cost∗(B|C ′) < cost∗(B|C̃1) <
(1 + 219ε)cost∗(B|C1). Since cost∗(B|C ′) < (1 + 219ε)cost∗(B|C ′) and C2 ∈ {C ′, C1}, we have cost∗(B|C̃2) =
cost∗(B|C ′) ≤ (1 + 219ε)cost∗(B|C2).

Case 2: cost∗(B|C̃1) < |C̃1|/4: Similar to case 1, in this case by Lemma A.4 we know that cost∗(B|C̃1) < cost∗(B|C ′)
and c̃ost(B|C̃1) < c̃ost(B|C ′). So C̃2 = C̃1. By induction hypothesis, we have cost∗(B|C̃1) < (1 + 219ε)cost∗(B|C1).
Since cost∗(B|C̃1) < (1 + 219ε)cost∗(B|C ′) and C2 ∈ {C ′, C1}, we have cost∗(B|C̃2) = cost∗(B|C̃1) ≤ (1 +
219ε)cost∗(B|C2).

Case 3: cost∗(B|C ′) ≥ |C ′|/4 and cost∗(B|C̃1 > |C̃1|/4: In this case, by Lemma A.3 we have that c̃ost(B|C ′) and
c̃ost(B|C̃1) are (1 + 219ε) approximations of cost∗(B|C ′) and cost∗(B|C̃1).

If c̃ost(B|C ′) < c̃ost(B|C̃1), then we have C̃2 = C ′. If C2 = C ′, then we are done. So assume that C2 = C1, which means
that cost∗(B|C1) < cost∗(B|C ′). So we have cost∗(B|C ′) ≤ c̃ost(B|C ′) ≤ c̃ost(B|C̃1) ≤ (1 + 219ε)cost∗(B|C1)
where the last inequality comes from the induction hypothesis. So we have cost∗(B|C̃2) ≤ (1 + 219ε)cost∗(B|C2)

Similarly if c̃ost(B|C ′) > c̃ost(B|C̃1), then we have C̃2 = C̃1. If C2 = C1, then we are done by induction hypothsis.
So assume that C2 = C ′, which means that cost∗(B|C1) > cost∗(B|C ′). So we have cost∗(B|C̃1) ≤ c̃ost(B|C̃1) <
c̃ost(B|C ′) ≤ (1 + 219ε)cost∗(B|C ′). So cost∗(B|C̃2) ≤ (1 + 219ε)cost∗(B|C2).

Theorem A.6. Algorithm 7 runs in |Bv|poly(log n, 1/ε) time.

Proof. Note that Algorithm 7 calls Algorithm 6 O(log n) times. Each run of Algorithm 6 takes |Bv|poly(log(n), 1/ε)
time: this is because estimating c̃ost(B|Ct) by Algorithm 5 for a set C takes O(|C| log(n)/ε3) time.

A.2. Dynamic version: UPDATE-CLUSTER(Bv, u)

The previous section describes how to estimate the cost of clustering B in which C ⊆ B is a cluster, while B − C are
singletons. When a node is inserted, we cannot afford to estimate these costs from scratch. Rather, we want to update the
estimate based on the inserted node.

A.2.1. INSERTING A NODE INTO B − C

Assume that we already have an estimate of the cost of clustering B as guaranteed by Lemma A.2; let c̃ost be that estimate.
Assume that a node z is inserted in B − C. Hence, z will be a singleton. When c̃ost was computed no edge incident to
z was in the graph. Thus, updating the cost estimate is easy in this case: the cost estimate of clustering C together and
B − C + z as singletons equals c̃ost+ d(z).

A.2.2. INSERTING A NODE INTO C

Assume that we already have an estimate of the cost of clustering B as guaranteed by Lemma A.2; let c̃ost be that
estimate. Assume that a node z is inserted in C. Let c̃ost

′
be the new cost estimate we aim to obtain. Based

on Line 2 of Algorithm 5, the difference c̃ost
′
− c̃ost contains three components: d(z); −2

(|C|+1
2

)
+ 2

(|C|
2

)
; and,

3 · IN-CLUSTER-COST-ESTIMATE(C + z) − 3 · IN-CLUSTER-COST-ESTIMATE(C). The first two components can be
updated in O(1) time. Even 3 · IN-CLUSTER-COST-ESTIMATE(C) can be updated in O(1) time – together with c̃ost,
we store the value of IN-CLUSTER-COST-ESTIMATE(C) that led to c̃ost itself. So, it remains to describe how to obtain
IN-CLUSTER-COST-ESTIMATE(C + z) in poly(log n, 1/ε) time, as we do next.

Let SC be the value of S at the end of IN-CLUSTER-COST-ESTIMATE(C) invocation. Let SC+z be a value of S correspond-
ing to IN-CLUSTER-COST-ESTIMATE(C + z) that we aim to obtain. We initialize SC+z = SC , and then update SC+z as
follow.

First, given definition of τC on Line 2 of Algorithm 4, to compute SC+z we sample 5 · log(n)/ε3 pairs (v, w) ∈ (C + z)×
(C + z), and for each non-edge {v, w} we increment SC+z – the same as Algorithm 4 does.

15

Sparse-pivot: Dynamic correlation clustering for node insertions

However, the (v, w) pairs sampled by Algorithm 4 to compute SC are simple from C × C, while for SC+z we would like
each pair to be sampled from (C + z)× (C + z). So, second, to account for that, we resample some of the pairs used in
computing SC . This also implies that while our algorithm estimates the cost of C by Algorithm 4, it also stores in an array
all the {v, w} pairs it sampled within the for-loop. Let that array of samples be called AC .

When computing SC , a pair {v, w} is sampled with probability pC = 1/
(|C|

2

)
. However, when computing SC+z , that

same pair is sampled with probability pC+1 = 1/
(|C|+1

2

)
. Let q = pC/pC+1 So, in AC , we resample a pair {v, w} with

probability 1−q, and otherwise, with probability q, {v, w} is not resampled. With this process, we have that {v, w} ∈ C×C
remains unchanged with probability 1/

(|C|+1
2

)
, as desired.

If a pair is resampled, then the new pair is {z, u}, where u is a node from C chosen uniformly at random. So, we have

Pr ({z, u} is sampled) =
1

|C|
·

(
1−

(|C|
2

)(|C|+1
2

)) =
1

|C|
· 2

|C|+ 1
=

1(|C|+1
2

) ,
as we aim to achieve. But how many pairs are resampled? How does one choose which pairs to resample in poly(log n, 1/ε)
time?

The expected number of resampled pairs is

E [|AC | · (1− q)] = τC ·
2

|C|+ 1
= O(log(n)/ε3).

Hence, by a direct application of the Chernoff bound, with high probability, the number of resampled pairs from AC is
poly(log n, 1/ε).

The final piece elaborates on efficiently finding pairs to resample. Consider a process that iterates over the elements in AC

and resamples each with probability 1− q. A downside is that this approach takes Θ(|C|) time, which is too slow for our
goal. Instead, we observe that the index of the first element resampled in AC is drawn from the geometric distribution with
parameter 1− q. This observation leads to the following efficient procedure for resampling elements from AC :

1. Initialize i = 0.

2. Repeat while i ≤ |AC |:

• sample an index j from the Geometric distribution with parameter 1− q;
• i = i+ j;
• if i ≤ |AC |, resample the i-th {v, w} pair in AC .

This latter approach enables us to spend time proportional to the number of resampled pairs – as opposed to |AC | – which
we know is poly(log n, 1/ε) with high probability.
Lemma A.7 (Dynamic cost estimate of single-cluster + singletons). There exists an algorithm that, on a node insertion,
updates COST-ESTIMATE(B,C) in poly(log n, 1/ε) time with high probability. The approximation guarantees are the
same as those stated in Lemma A.2.

A.2.3. UPDATE-CLUSTER(Bv, u)

Subroutine UPDATE-CLUSTER(Bv, u) is essentially BREAK-CLUSTER with the costs of C and B − C updated dynamically
as explained in Appendices A.2.1 and A.2.2.

More precisely, when BREAK-CLUSTER is invoked, we store all the estimates c̃ost(Bv|Ct), the sets Bv and Ct, for
t = 1, (1 + ϵ), . . . , (1 + ϵ)logn. Then, we use Lemma A.7 to update these costs when u is inserted into Bv in poly(log n, ε)
time. Note that if d(u) ≥ t, then u joins Ct, and otherwise u joins Bv\Ct. So each run of Algorithm 6 takes poly(log n, 1/ε),
and so UPDATE-COST(Bv, u) works in poly(log n, 1/ε) time.

B. Recompute
Let n0 be the number of nodes in the graph just after the last recompute. After εn0/6 updates, we perform a recomputation.
Our RECOMPUTE procedure is as follows:

16

Sparse-pivot: Dynamic correlation clustering for node insertions

• Purge from the database soft-deleted nodes.

• Assign to each node u a rank π(u) chosen uniformly at random from [0, 1].

• Initialize p(u) = u for all nodes u.

• Sort the nodes in the increasing order with respect to π.

• Insert the nodes, one by one, in this sorted order. The insertions are handled by Algorithm 3, except that a new π(u)
value is not obtained within Algorithm 3, but is used the one computed in the first step of RECOMPUTE.

The nodes are processed in the ordering based on their π values for the following reasons. Given a node u, Algorithm 3
performs updates or exploration only when ranks are smaller than π(u). In particular, the node v defined in that algorithm is
used only if π(v) ≤ π(u).

The running time of RECOMPUTE is a constant factor of the running time used to process the insertions. To see that, charge
a recomputation running time to the εn0/6 most recent updates. Observe that this kind of charge is applied to each update
during only one RECOMPUTE. Hence, at most n0 + εn0/6 < 2n0 insertions are charged to εn0/6 updates. So, each
update is charged 12/ε insertions. Since an insertion takes poly(log n, 1/ε) amortized time, this additional charge also
takes poly(log n, 1/ε) time per update.

C. Auxilary Lemmas
Lemma C.1. Let α < 1 be a constant. Let A be a clustering algorithm, where the probability of a node v being a pivot
over all orderings is at most 1/d(v). The expected sum of the degrees of (A,α)-poor nodes is at most 4α 1+3/2·α

1−5/2·α times the
total expected cost of A.

Proof. Let Nlow(v) be the neighbors of v with degree at most αd(v). Observe that Nlow(v) is independent of π and A.

The sum of poor-node degrees in a cluster. First, we show that for any π and v such that v is a pivot in A wrt to π, the
sum of the degrees of the (A,α)-poor nodes in v’s cluster is at most αd(v) ·min(3αd(v), |Nlow(v)|).

Fix a ordering π of nodes where v is a pivot in A. Note that if Nlow(v) = ∅, then there are no (A,α)-poor nodes in
v’s cluster, and the sum of degrees of all its (A,α)-poor nodes is zero. Hence, assume Nlow(v) ̸= ∅. The size of v’s
cluster is at most 3αd(v) since the cluster size is at most three times the degree of an (A,α)-poor node. The latter is the
case as an (A,α)-poor node u in a cluster C is not light by definition. Hence, dC(u) > |C|/3, which further implies
|C| < 3dC(u) ≤ 3d(u) ≤ 3αd(v), where d(u) ≤ αd(v) be definition of (A,α)-poor nodes. So, the sum of degrees of all
(A,α)-poor nodes in v’s cluster is at most αd(v) ·min(3αd(v), |Nlow(v)|).

The expected sum of poor-node degrees in A. Let Qπ be the set of (A,α)-poor nodes wrt the ordering π. Let Pivotv be
the event that v is a pivot in A. We have

Eπ

 ∑
u∈Qπ

d(u)

 =
∑
π

1

n!

∑
v∈Pπ

ref

∑
u∈Qπ∩Cπ

v

d(u)

=
∑
v

∑
π : v∈Pπ

ref

1

n!

∑
u∈Qπ∩Cπ

v

d(u)

≤
∑
v

∑
π : v∈Pπ

ref

1

n!
· αd(v) ·min(3αd(v), |Nlow(v)|)

=
∑
v

αd(v) ·min(3αd(v), |Nlow(v)|) ·
∑

π : v∈Pπ
ref

1

n!


=
∑
v

Pr (Pivotv) · αd(v) ·min(3αd(v), |Nlow(v)|).

17

Sparse-pivot: Dynamic correlation clustering for node insertions

Note that Pr (Pivotv) ≤ 1
d(v) in A. Hence, the expected sum of degrees of (A,α)-poor nodes in A is at most∑

v

α ·min(|Nlow(v)|, 3αd(v)) =
∑

v,Nlow(v)̸=∅

α ·min(|Nlow(v)|, 3αd(v)). (3)

Lower bounding the cost of A. Now, we compare the above value to the cost of A. (The analysis we provide applies to
the cost of any clustering, even the one incurred by the optimal solution.) Fix a ordering π. All the costs below are defined
wrt π, and we avoid the superscript π.

Recall that for a vertex w, CA(w) denotes the cluster of w in A. We define a cost function ĉostA to redistribute the cost
costA as follows

ĉostA(w)
def
=

1

2

(
costA(w) +

∑
u∈CA(w) costA(u)

|CA(w)|

)
.

In other words, in ĉostA, a node w distributes 1/2 · costA(w) over the |CA(w)| nodes in CA(w), and w itself pays for the
remaining 1/2 · costA(w). Note that 2 · ĉostA(w) ≥ costA(w) and

∑
w costA(w) =

∑
w ĉostA(w).

Now we compute E
[
ĉostA(v)

]
for v with Npoor(v) ̸= ∅. Note that we are not conditioning on v being a pivot here. Let

t = |Npoor(v)|, and let t′ = min(t, 3αd(v)). We consider three cases based on |CA(v)|:

• Case |CA(v)| ≥ d(v) + t′

2 : then, there are at least t′

2 non-neighbors of v in CA(v) and hence costA(w) ≥ t′

2 . Also,
2 · ĉostA(w) ≥ costA(w) ≥ t′

2 .

• Case |CA(v)| ≤ d(v) − t′

2 : then, at least t′

2 neighbors of v are outside of CA(v) and hence costA(w) ≥ t′

2 . Again,
2 · ĉostA(w) ≥ costA(w) ≥ t′

2 .

• Case d(v) − t′

2 ≤ |CA(v)| ≤ d(v) + t′

2 : Let t′′ = |Nlow(v) ∩ CA(v)|. The number of non-neighbors of a node
u ∈ Npoor(v) ∩ CA(v) is least |CA(v)| − d(u) ≥ d(v)− t′/2− αd(v) ≥ (1− 5/2 · α)d(v), where we used the fact
that t′/2 ≤ 3/2 · αd(v). So∑

u∈CA(v)

costA(u) ≥
∑

u∈Nlow(v)∩CA(v)

costA(u) ≥ t′′(1− 5/2 · α)d(v).

Moreover, for each node u ∈ Nlow(v)\CA(v), v incurs one unit of cost. Also, by definition, t ≥ |Nlow(v)|. Therefore,
costA(v) ≥ t− t′′. Recall that this case assumes |CA(v)| ≤ d(v) + t′/2 ≤ d(v) + 3/2 · αd(v) = (1 + 3/2 · α)d(v).
This yields

2 · ĉostA(v) ≥ t− t′′ +
t′′(1− 5/2 · α)d(v)

|CA(v)|
≥ t− t′′ + t′′

1− 5/2 · α
1 + 3/2 · α

. (4)

Observe that for x ∈ [0, 1] and t ≥ t′′ we have (1− x)t ≥ (1− x)t′′, and hence t− t′′ + t′′x ≥ tx. Thus, Equation (4)
implies

2 · ĉostA(v) ≥ t
1− 5/2 · α
1 + 3/2 · α

≥ t′
1− 5/2 · α
1 + 3/2 · α

.

Therefore, in any case, ĉostA(v) ≥ 1
4 t

′ 1−5/2·α
1+3/2·α . So, the total cost of clustering A is at least

∑
v,Npoor(v)̸=∅

1

4
min(|Npoor(v)|, 3αd(v))

1− 5/2 · α
1 + 3/2 · α

.

Note that the above lower bound is deterministic; in particular, it holds for any randomness used by A. Comparing this
lower bound to Equation (3), we conclude that the expected sum of degrees of poor nodes is at most 4α 1+3/2·α

1−5/2·α times the
(expected) total cost of A, as advertised by the claim.

18

Sparse-pivot: Dynamic correlation clustering for node insertions

Lemma C.2 (Cost of making light and heavy singletons). Consider a fixed ordering π and a clustering algorithm A. Let A′

be the algorithm that first runs A and, after, makes a subset of A-light and A-heavy nodes singletons. The cost of A′ is at
most β+1

β−1 the cost of A.

Proof. For any algorithm B, let dBin(u), d
B
out(u) and d̄Bin(u) be the number of neighbors of u inside its cluster, number of

neighbors of u outside its cluster, and the number of non-neighbors of u inside its cluster, respectively. Note that since
π is fixed, algorithm B determines the clusters. Let costB denote the cost of algorithm B (with respect to π). We have
2 · costB =

∑
u[d

B
out(u)+ d̄in(u)]. Let L be the set of A-light nodes that A′ makes singletons, and H be the set of A-heavy

nodes that A′ makes singletons.

We can write the cost of algorithm A′ as follows:

2costA′ =
∑

u∈L∪H

d(u) +
∑

u/∈L∪H

[dA
′

out(u) + d̄A
′

in (u)] ≤
∑

u∈L∪H

[d(u) + dAin(u)] +
∑

u/∈L∪H

[dAout(u) + d̄Ain(u)]

where the inequality comes from the fact that going from A′ to A, any new cost on a node u /∈ L∪H is due to an edge inside
u’s cluster in A that it attached to a node in L ∪H . We prove that

∑
u∈L∪H [d(u) + dAin(u)] ≤

β+1
β−1

∑
u∈L∪H [dAout(u) +

d̄Ain(u)]. Given this, we will have that costA′ ≤ β+1
β−1costA.

If u is A-heavy, then d(u) ≥ β|CA(u)| ≥ βdAin(u). So dAout(u) ≥ (β − 1)dAin(u), and hence d(u) + dAin(u) = dAout(u) +
2dAin(u) ≤

β+1
β−1d

A
out(u).

If u is a light node, then we have that dAin(u) ≤ |CA(u)|/3, so dAin(u) ≤ 1
2 d̄

A
in(u), and hence d(u) + dAin(u) = dAout(u) +

2dAin(u) ≤ dAout(u) + d̄Ain(u).

Lemma C.3. Consider a fixed ordering π and a clustering algorithm A, and consider a A-bad cluster Cπ
A. Then, its cost is

at least 2
3 (1− γ)|Cπ

A|2.

Proof. Recall that a bad cluster does not have any (ref, α)-poor nodes. So, all the bad nodes in a bad cluster are either light
or heavy. Let C = Cπ

ref .

For a light node u ∈ C, the cost of u is at least 2|C|/3, since dC(u) ≤ |C|/3. For a heavy node u ∈ C, the cost of
u is at least (β − 1)|C|/2, since u has at least (β − 1)|C| neighbors outside C. So the cost of any bad node in C is at
least min {(β − 1)/2, 2/3} · |C|. There are at least (1− γ)|C| many bad nodes in C. Thus, the total cost of C is at least
min {(β − 1)/2, 2/3} · (1− γ) · |C|2. Since β ≥ 4, min {(β − 1)/2, 2/3} = 2/3.

D. Ommited proofs
D.1. Proof of Lemma 3.4

It holds that Pr
(
π(v) ≤ L′/d(v)

∣∣∣ v ∈ Pπ
ref

)
= 1 − Pr

(
π(v) > L′/d(v)

∣∣∣ v ∈ Pπ
ref

)
, and we upper-bound the latter

probability:

Pr
(
π(v) > L′/d(v)

∣∣ v ∈ Pπ
ref

)
=

Pr
(
π(v) > L′/d(v) and v ∈ Pπ

ref

)
Pr
(
v ∈ Pπ

ref

)
= d(v) · Pr (π(v) > L′/d(v) and ∀u ∈ N(v) : π(u) > π(v))

≤ d(v) ·
(
1− L′

d(v)

)d(v)+1

≤ d(v) · e−L′
.

In the derivation, we used the fact that the entries of π are chosen independently and uniformly from range [0, 1]. Now note
that d(v)e−L′ ≤ nec logn < n−c+1, so Hence, Pr

(
π(v) ≤ L′/d(v)

∣∣∣ v ∈ Pπ
ref

)
≥ 1− n−(c−1), as desired.

19

Sparse-pivot: Dynamic correlation clustering for node insertions

D.2. Proof of Lemma 3.5

Let L′ = L/2β. Let A be the set of first (1 − ϵ)Cref (v)[good] good nodes in Cref (v) and let B be the set of last
ϵCref (v)[good] good nodes in Cref (v). So Cref (v)[good] = A ∪B.

First we introduce some notation: For two nodes u and w where w is inserted before u, the degree of a vertex w at the time
where u is inserted is denoted by d(u)(w). Recall that the current degree of w is denoted by d(w), and d(w) ≥ d(u)(w).

Next, note that if the pivot v comes after all the nodes in A, then since v is a pivot in REFERENCE CLUSTERING by
Lemma 3.4 we have that whp π(v) ≤ L′/d(v) ≤ L/d(v) and so it scans its neighborhood and invokes EXPLORE(v) which
assigns all these nodes to v as their pivot. So suppose that v comes before the nodes in B.

Now consider a good node u ∈ Cref (v)[good] and suppose that u comes after v in the dynamic ordering. Since u is not
heavy, we have d(u) ≤ β|Cref (v)| ≤ βd(v).

We compute the probability that u is assigned to v’s cluster and also that u invokes EXPLORE(v). In particular, we want
to lower-bound the probability that π(v) < π(u) ≤ L

d(u)(u)
and d(u)(v) ≤ L

π(u) , conditioned on π(v) < π(u), i.e., in
REFERENCE CLUSTERING u is in Cv .

First note that if d(v) ≤ L and d(u) ≤ L, then both these conditions are satisfied. So we assume that max(d(u), d(v)) >
L > L′β.

Next, recall that since v is a pivot in the REFERENCE CLUSTERING, by Lemma 3.4, we have that π(v) ≤ L′/d(v) holds
with probability 1 − 1/nc−1 for a large constant c by Lemma 3.4. Moreover, since d(u)(v) ≤ d(v), the probability that
d(u)(v) ≤ L

π(u) is at least the probability that d(v) ≤ L
π(u) . Similarly, the probability that π(u) ≤ L

d(u)(u)
is at least the

probability that π(u) ≤ L
d(u) as d(u)(u) ≤ d(u). So:

Pr (u invokes EXPLORE(v) | u ∈ Cref (v))

=Pr

(
π(v) < π(u) ≤ L

d(u)(u)
and d(u)(v) ≤ L

π(u)
| π(v) < π(u) ≤ 1

)
≥Pr

(
π(v) < π(u) ≤ L

d(u)
and d(v) ≤ L

π(u)
| π(v) < π(u) ≤ 1

)
=Pr

(
π(v) < π(u) ≤ L

max(d(u), d(v))
| π(v) < π(u) ≤ 1

)
=Pr

(
π(v) < π(u) ≤ L

max(d(u), d(v))
| π(v) < π(u) ≤ 1, π(v) ≤ L′/d(v)

)
· Pr (π(v) ≤ L′/d(v))

+ Pr

(
π(v) < π(u) ≤ L

max(d(u), d(v))
| π(v) < π(u) ≤ 1, π(v) > L′/d(v)

)
· Pr (π(v) > L′/d(v))

≥Pr

(
L′

d(v)
< π(u) ≤ L

max(d(u), d(v))
| L′

d(v)
< π(u) ≤ 1

)
·
(
1− n−c+1

)

If d(v) ≤ d(u), then since d(u) ≤ β|Cref (v)| ≤ βd(v) and L′β = L/2, we have

Pr (u invokes EXPLORE(v) | u ∈ Cref (v)) ≥ Pr

(
L′β

d(u)
< π(u) ≤ L

d(u)
| L

′β

d(u)
< π(u) ≤ 1

)
·
(
1− n−c+1

)
=

L− L′β

d(u)− L′β
·
(
1− n−c+1

)
≥ L− L′β

d(u)
·
(
1− n−c+1

)
≥ L/2

d(u)
·
(
1− n−c+1

)
≥ αL/2

d(u)
·
(
1− n−c+1

)
Nnote that d(u)− L′β > 0 since we assume that max(d(u), d(v)) > L > L′β.

20

Sparse-pivot: Dynamic correlation clustering for node insertions

If d(v) ≥ d(u), we use the fact that since u is not (α,A)-poor, we have d(u) ≥ αd(v), and so

Pr (u invokes EXPLORE(v) | u ∈ Cref (v)) ≥ Pr

(
L′

d(v)
< π(u) ≤ L

d(v)
| L′

d(v)
< π(u) ≤ 1

)
·
(
1− n−c+1

)
≥ L− L′

d(v)− L′ ·
(
1− n−c+1

)
≥ L/2

d(v)
·
(
1− n−c+1

)
≥ αL/2

d(u)
·
(
1− n−c+1

)
The above inequality holds for each u ∈ B. We show that with high probability, a node in B invokes EXPLORE(v). First
recall that Cref (v) is a good cluster, so |Cref (v)[good]| ≥ γ|C| ≥ γd(u)/β. Thus we have |B| ≥ γϵd(u)/β. Let t = ϵγα

4β .
Since (1− n−c+1) > 1/2, we have:

Pr (u invokes EXPLORE(v)) ≥ tL

|B|

So the probability that none of u ∈ B invokes EXPLORE(v) is at most (1 − tL
|B|)

|B| ≤ e−tL ≤ n−c, where we use

L ≥ 4cβ
ϵγα log n = c

t log n. So with probability 1− n−c, EXPLORE(v) is invoked by a node in B, and so all the nodes in A
are going to be assigned to v as their pivot.

D.3. Proof of Lemma 3.7

Let k = C∗ and let t be the smallest power of (1 + ϵ) no smaller than 2k
3 . So 2k

3 ≤ t ≤ 2k(1+ϵ)
3 . Let S = C∗ \ Ct, and let

T = Ct \ C∗. We refer to the clustering where Ct is one cluster and all Bv \ Ct is singleton as C1 and the clustering where
C∗ is one cluster and all Bv \ C∗ is singleton as C∗.

The cost of C1 and C∗ differ in edges and non-edges with one endpoint in S or T . They share any other cost associated to an
edge or non-edge that is in disagreement with the clustering. So we only need to compare the excess cost that is not part of
this common cost.

By the cost of a node u ∈ S ∪ T , we mean the number of v /∈ S ∪ T where uv is in disagreement with the clustering plus
half the number of v ∈ S ∪ T where uv is in disagreement with the clustering. We let cost(u)C denote the cost of u in a
clustering C ∈ {C1,C

∗}. Let cost(C). Note that the total cost of C is the sum of the individual costs of u ∈ S ∪ T , plus the
common cost between C1 and C∗.

First, assume that |T | ≤ k. We show that cost(C1) ≤ 4
1−2ϵcost(C

∗).

Consider a node u ∈ S. In C1, the cost of u is at most t since each node in S has degree at most t, and u is a singleton in C1.
In C2, the cost of u is at least k−t

2 since there are at least k − t non-edges attached to u in C∗. Note that for t ≤ 2k(1+ϵ)
3 , we

have cost(u)C1
≤ t ≤ 4

1−2ϵ · (k − t)/2 ≤ 4
1−2ϵcost(u)C2

.

To compute the cost of u ∈ T , for a set C recall that dC(u) is the degree of u inside C. So d(u)− dCt
(u) is the number of

edges attached to u outside Ct. In C1 the cost of u is the number of nodes attached to u outside of Ct plus the number of
nodes v not attached to u inside Ct \ T , plus half of the number of nodes v ∈ T that are not attached to u. So

cost(u)C1
= d(u)− dCt

(u) + (|Ct| − |T | − dCt\T) + (|T | − 1− dT (u))/2

≤ d(u)− dCt
(u) + (|Ct| − |T | − dCt\T) + (|T | − 1− dT (u))

= |Ct|+ d(u)− 1− 2dCt
(u)

≤ |T |+ |C∗ ∩ Ct|+ d(u)− 2dT (u)

≤ 2k + t− 2dT (u)

Meanwhile we have that there are at least d(u)− dT (u) nodes attached to u outside of T , so we have

cost(u)C2 = d(u)− dT (u) + dT (u)/2 ≥
t− dT (u)

2

Note that when for t ≥ 2k/3, we have 2k + t− 2dT (u) ≤ 4(t−dT (u)
2), so cost(u)C1 ≤ 4cost(u)C2 . And so cost(C1) ≤

4
1−2ϵcost(C

∗).

21

Sparse-pivot: Dynamic correlation clustering for node insertions

Now suppose that |T | > k. Let cluster C2 be the clustering where all the nodes in Bv are singleton. In fact, C2 is the
clustering for when t = n. In this case, the cost of C2 is the cost of C∗ plus the number of edges between the nodes in C∗.
We have cost(C2) ≤ cost(C∗) + k2/2. Now to bound cost(C∗), the cost of cost(C∗) is at least the number of edges with at
least one endpoint in T . This value is at least t|T |/2. So cost(C∗) ≥ t|T |/2. Now since |T | ≥ k and t ≥ 2k/3, we have
3 · t|T |/2 ≥ k2/2, so cost(C2) ≤ cost(C∗) + k2/2 ≤ cost(C∗) + 3 · t|T |/2 ≤ 4cost(C∗).

E. Running Time Analysis
In Appendix B, we show that our RECOMPUTE subroutine takes poly(log n, 1/ε) amortized time per update. Next, we
analyze the running time of Algorithm 3 and prove Theorem 2.2.

Proof. We first introduce some notation: Let the degree of a node w at the time of the insertion of node u be d(u)(w). Recall
that d(w) is the current degree of w and d(w) ≥ d(u)(w).

First note that if π(u) > L/d(u)(u), then the running time is O(log n) plus the running time of UPDATE-CLUSTER, which is
in poly(log n, 1

ε) ≤ poly(log T, 1
ε) time; see Appendix A.2.3 for details.

Next, consider the case where π(u) ≤ L/d(u)(u). For each such u, we set aside a budget of L/π(u) · poly(log n, 1/ε). In
this case, the algorithm scans all the neighbors of u, which takes d(u)(u) < L/π(u) time.

Next, we analyze the running time of EXPLORE. For this, consider a pivot node v. Note that when we run EXPLORE on a
node v, we scan all its neighbors, and if a neighbor w is also a pivot, we scan all of the neighbors of w as well and remove w
from being a pivot. Observe that once a node is removed from being a pivot, it can never be a pivot until the next recompute,
when nodes get new ranks. We pay for scanning the neighbors of w from the budget of w, not v. This way, when a node v
runs EXPLORE, it only needs to pay at most d(v) from its budget.

Now note that a node v might run EXPLORE multiple times. In particular, v runs EXPLORE either when we are processing v,
or when a neighbor of v, say u is being processed, and d(u)(v) < L/π(u). In the first case, we pay the cost of EXPLORE
from v’s budget. In the second case, we pay the cost from u’s budget. Note that for a pivot node v, not only we have
d(v)(v) < L/π(v), but also we have d(v) < L/π(v) (see Lemma 3.4) whp.

So, in total, a pivot node v only spends a budget of at most d(v) · poly(log n, 1/ε) < L/π(v) · poly(log n, 1/ε): it spends
d(v)(v) ≤ d(v) for scanning all its neighbors when it is being inserted, d(v)(v) ≤ d(v) when it runs EXPLORE, at most
d(v) (possibly) when another pivot w runs EXPLORE and removes v from being a pivot, and d(v)(v) poly(log n, 1/ε) ≤
d(v) poly(log n, 1/ε) for running BREAK-CLUSTER (Theorem A.6).

A non-pivot node u spends at most 2L/π(u): once for scanning all its neighbors and once for paying for EXPLORE for its
pivot v.

Since L = O(log n), each node u spends poly(log n, 1/ε) + O(log n/π(u)). Given that π(u) is chosen uniformly at
random from the range [0, 1], in expectation, a node spends poly(log n, 1/ε) ≤ poly(log T, 1/ε) running time.

F. Experiments-continued
F.1. Approximation guarantee results

Below we include the approximation guarantee on the three remaining SNAP graphs.

F.2. Running Time

Even though theoretically, our running time (and DYNAMIC-AGREEMENT running time) is faster than REFERENCE
CLUSTERING, this advantage only appears in very big graphs. This is because both algorithms have a lot of bookkeeping,
which means that the constant behind the O(log n) running time is rather big. Nevertheless, we show in Table 2 and Table 3
that SPARSE-PIVOT is faster than DYNAMIC-AGREEMENT.

22

Sparse-pivot: Dynamic correlation clustering for node insertions

Figure 2. Correlation clustering cost for ca-astroph graph

Figure 3. Correlation clustering cost for cit-hepth graph

Density DA SP
253.36 36.75 31.91
114.87 43.08 29.69
69.74 50.77 26.36
52.17 49.27 23.36
42.25 41.23 25.14

Table 2. Running time comparison on Drift dataset

Graph DA SP
facecbook 8.14 3.31

email-Enron 9.69 4.48
cit-HepTh 20.24 11.53
ca-AstroPh 15.15 3.84

Table 3. Running time comparison on SNAP datasets

23

Sparse-pivot: Dynamic correlation clustering for node insertions

Figure 4. Correlation clustering cost for facebook graph

24

