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Abstract

Noisy correspondence that refers to mismatches in001
cross-modal data pairs, are prevalent on human-annotated002
or web-crawled datasets. Prior approaches to leverage003
such data mainly consider the application of uni-modal004
noisy label learning without amending the impact on both005
cross-modal and intra-modal geometrical structures in mul-006
timodal learning. Actually, we find that both structures007
are effective to discriminate noisy correspondence through008
structural differences when being well-established. Inspired009
by this observation, we introduce a Geometrical Struc-010
ture Consistency (GSC) method to infer the true correspon-011
dence. Specifically, GSC ensures the preservation of geo-012
metrical structures within and between modalities, allowing013
for the accurate discrimination of noisy samples based on014
structural differences. Utilizing these inferred true corre-015
spondence labels, GSC refines the learning of geometrical016
structures by filtering out the noisy samples. Our experi-017
ments across three well-known cross-modal datasets con-018
firm that GSC effectively identifies noisy samples under var-019
ious conditions of noisy correspondence, and significantly020
outperforms the current leading methods.021

1. Introduction022

Cross-modal retrieval [22, 30, 31] that focuses on query-023
ing the most relevant samples across modalities, has gar-024
nered considerable interest in multimodal scenarios [3, 39].025
Most current methods presuppose that a large quantity026
of well-annotated data is available. However, real-world027
datasets [4, 16, 37], often own non-expert annotation or are028
collected by web crawling, which are prone to noisy corre-029
spondence. Such discrepancy can cause severe degradation030
to retrieval models if without proper handling [15, 34].031

Recently, learning with noisy correspondence has gath-032
ered increasing attention. The majority of these efforts033
share a common target of accurately learning the true soft034
correspondence labels that can reliably indicate the match-035

Figure 1. Noisy correspondence impacts both cross-modal and
intra-modal geometrical structures. Left: Cross-modal dis-
tance between mismatched text and image is initially distant but
wrongly reduced. Right: Intra-modal structures of mismatched
image(above) and text(below) are initially distinct but wrongly
aligned, thus similar samples within the modality are pulled apart.

ing degree between data pairs. For example, NCR [15] pi- 036
oneered this area by employing a co-teaching approach to 037
classify samples with higher losses as noisy. Such method, 038
which has been further refined by [11, 41] by introducing 039
meta-learning and leveraging clean data subsets, however 040
fundamentally remains a variation of the uni-modal sample 041
selection philosophy [25]. They may not be very effective 042
to identify the accurate correspondence and finally overfit 043
on noise in face of the intricacies of multimodal learning. 044

Noisy correspondence affects multimodal representa- 045
tions in a more complicated way than uni-modal noisy label 046
problem. As illustrated in Fig. 1, in the perspective of the 047
cross-modal geometrical structure that refers to the similari- 048
ties between representations across modalities, the presence 049
of noisy correspondence can disrupt this structure by er- 050
roneously reducing the distance between mismatched data 051
pairs. On the other hand, in the perspective of the intra- 052
modal geometrical structure that refers to the similarities 053
within the modality, as different samples exhibit asymmet- 054
ric intra-modal structures, attempting to align the distinct 055
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structures across mismatched modalities can lead to intra-056
model collapse. Fortunately, we have observed significant057
differences between clean and noisy samples within well-058
established cross-modal and intra-modal geometrical struc-059
tures where clean samples tend to show better alignments,060
as detailed in Sec. 3.2. These differences conversely offer061
a promising strategy for discriminating noisy samples and062
accurately predicting true correspondence labels.063

Inspired by the distinct structural characteristics, we064
introduce the Geometrical Structure Consistency (GSC)065
method to mitigate the issue of noisy correspondence.066
Specifically, GSC maintains the integrity of geometrical067
structures by optimizing a contrastive loss that aligns the068
intra-modal geometrical structures along with the tradi-069
tional loss for cross-modal alignment. Benefiting from the070
memorization effect of DNNs [1, 38], geometrical struc-071
ture can be well-established in the early stage. During this072
phase, GSC assesses the true soft correspondence labels073
based on the differences in geometrical structure within and074
across modalities. For the cross-modal aspect, GSC identi-075
fies potential noise by recognizing data pairs with low cross-076
modal similarities, while in the case of intra-modal aspect,077
the similarity between the queried sample and other sam-078
ples are calculated to determine the intra-modal geometrical079
structure, and data pairs with inconsistent structures across080
modalities are considered as noisy. These assessed labels081
are then used to clarify the learning of the geometrical struc-082
ture, creating a positive feedback loop. To conclude, the083
contributions of this work are summarized as follows:084

• We identify the impact of noisy correspondence on both085
cross-modal and intra-modal geometrical structures, and086
find the significant difference between clean samples and087
noisy samples within a well-established overall structure.088

• We introduce the novel Geometrical Structure Consis-089
tency (GSC) approach, which utilizes the structural differ-090
ences to accurately predict true correspondence labels and091
counteract the adverse effects of noisy correspondences.092

• Our proposed GSC method is compatible with existing093
approaches for handling noisy correspondences. Through094
extensive experiments on three benchmark datasets, we095
have proven the consistent superiority of GSC over cur-096
rent state-of-the-art methods.097

2. Related Works098

2.1. Cross-modal Retrieval099

Cross-modal retrieval [8, 14, 29, 33], which focuses on100
using information from one modality to query the most rele-101
vant data in other modalities, has been a key area of research102
in multi-modal learning [2, 9, 13, 36]. Due to the restriction103
of large-scale annotated multi-modal corpus [18, 21, 32],104
the unsupervised guided framework that directly aligns rep-105
resentations across modalities has always been the main-106

stream. VSE++ [7] strategically incorporates hard negatives 107
in their approach to enhance retrieval efficacy. SCAN [24] 108
implements a stacked cross-attention framework which fa- 109
cilitates a dual-context attention mechanism to effectively 110
dissect the intricate interplay between different modalities. 111
SGRAF [6] introduces Graph Neural Network to establish 112
graph correspondences and an attention mechanism to se- 113
lect the most representative alignments, enhancing the pre- 114
cision of cross-modal similarity assessments. However, 115
these cross-modal retrieval methods highly rely on well- 116
aligned data while amending the existence of noisy cor- 117
respondence. In recent works, direct alignment between 118
modalities has been argued as sub-optimal for inconsistent 119
downstream predictions. To combat, CYCLIP [10] explic- 120
itly optimizes representations to maintain geometric consis- 121
tency, incorporating two additional cycle consistency con- 122
straints. Jiang et al. [17] further improves the method by 123
introducing additional loss functions for inter-modal and 124
intra-modal regularization. This emphasis on geometric 125
consistency not only directly benefits cross-modal retrieval 126
learning, but also aids in distinguishing noisy correspon- 127
dences in our own work. 128

2.2. Noisy Correspondence Learning 129

Noisy correspondence (NC) is first aroused in [15], 130
which is a novel paradigm in the field of noise learn- 131
ing [12, 19, 28, 40], referring to the mismatched pairs 132
within the multi-modal dataset. To tackle this problem, 133
NCR [15] utilizes DivideMix [25] to distinguish clean pairs 134
from noisy ones and rectify correspondence based on the 135
memorization effect of DNNs. Yang et al. [41] further im- 136
proves NCR by switching to Beta Mixture Model and esti- 137
mates soft correspondence labels by sample-wise compar- 138
ison. Han et al. [11] proposes a meta-similarity correc- 139
tion network that reinterprets binary classification of cor- 140
respondence as a meta-process, enhancing the process of 141
data purification. Despite NCR-based models, other at- 142
tempts like robust loss based methods have also been under- 143
taken. Qin et al. [34] combines the idea of evidential learn- 144
ing with NC and puts forward a confidence-based method. 145
Chuang et al. [5] introduces one effective robust symmet- 146
ric contrastive loss. Although these models have showcased 147
promising performances, they only cast their spotlight on 148
interactions across modalities, which is insufficient in uti- 149
lizing the semantic-abundant cross-modal data, further mo- 150
tivating us to take not only cross-modal but also intra-modal 151
together into consideration to help mitigate NC. 152

3. Proposed Method 153

3.1. Preliminary 154

We start by defining notations for cross-modal retrieval 155
in the presence of noisy correspondences, employing the 156
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widely studied image-text retrieval task as a generalized ex-157
emplar. Consider a multimodal dataset D = {Ii, Ti, yi}Ni=1,158
where each Ii, Ti represents the i-th image-text pair, stan-159
dard retrieval models project these data pairs into a shared160
representation space using separate encoders f for images161
and g for texts. Then similarity scores between the rep-162
resentations are computed through cosine similarity or an163
inference model, denoting as S(f(I), g(T )), or ⟨I, T ⟩ in164
brief. The associated label yi indicates whether the pair is165
positively correlated (yi = 1) or not (yi = 0). Note that166
these labels may contain noise, as pairs in the dataset are167
often presumed to be matched.168

3.2. Geometrical Structure Consistency Learning169

To address the above issue, we introduce the Geometri-170
cal Structure Consistency (GSC) learning method to iden-171
tify and correct noisy correspondences, which is detailed in172
the following sections.173
Motivation. The core concept of GSC is to preserve the174
consistency of geometrical structures and distinguish sam-175
ples with noisy correspondence through structural differ-176
ences. Initially, we demonstrate these differences through177
a straightforward experiment. As shown in Fig. 2, a re-178
trieval model is optimized on a clean dataset to maintain179
consistent cross-modal and intra-modal structures, which180
is then assessed on a dataset with simulated noise. Dur-181
ing the experiment, significant discrepancy between clean182
and noisy samples can be observed in both cross-modal183
and intra-modal structures. Specifically, for cross-modal184
structure, clean samples typically possess higher similarity185
scores than those noisy ones, exhibiting a disparity in distri-186
bution. For intra-modal structure, the calculated similarities187
between intra-modal structures of clean and noisy samples188
manifest a bimodal distribution with most values of noisy189
samples lower than 0.5 threshold, suggesting noisy samples190
tend to have asymmetric intra-modal structures.191
Geometrical Structure Consistency. Here, we give def-192
initions to both cross-modal and intra-modal geometrical193
structures and the corresponding training objectives. From194
the cross-modal aspect, the geometrical structure is defined195
by the similarities between representations across different196
modalities. Considering an example of a given query image197
Ii, the cross-modal geometrical structure can be represented198
as Gi

CM = {⟨Ii, Tj⟩}Nj=1. GSC preserves the consistency199
of this structure by minimizing the expected risk for cross-200
modal objective, as expressed in the following equation,201

RLCM(f, g) = min
f,g

E(I,T,y)∼D [LCM(⟨I, T ⟩, y)] (1)202

where LCM is the cross-modal loss function, typically a203
contrastive or triplet loss in line with conventional retrieval204
models. The goal is to align the cross-modal representations205
according to the correspondence label y, thus the similarity206

Figure 2. Geometrical Structure Consistency helps discriminate
samples with noisy correspondence. The model is first trained
on clean Flickr30K dataset, then evaluated on the same dataset
with 40% simulated noise. Left: Calculated cross-modal simi-
larity scores of both clean and noisy samples. Right: Calculated
intra-modal similarity scores of both clean and noisy samples.

between matching data pairs can be maximized, contrasting 207
to other data pairs. 208

From the intra-modal aspect, the geometrical structure 209
refers to the similarities within the modality. The intra- 210
model structure for the i-th sample then denotes as Gi

IM = 211
{⟨Ii, Ij⟩, ⟨Ti, Tj⟩}Nj=1, where ⟨Ii, Ij⟩ and ⟨Ti, Tj⟩ represent 212
the pairwise similarities among images and texts, respec- 213
tively. To uphold the consistency of such structure, GSC 214
incorporates the intra-modal objective as following, 215

RLIM(f, g) = min
f,g

E(I,T,y)∼D [LIM(⟨I, I⟩, ⟨T, T ⟩, y)] (2) 216

In this equation, LIM denotes the intra-modal loss func- 217
tion. The intra-modal objective ensures that the intra-modal 218
structures of matching samples are constrained to be similar 219
across modalities. Notably, optimizing without maintaining 220
intra-modal structure is considered sub-optimal for incon- 221
sistent reasoning [10, 17]. Thus the introduction of intra- 222
modal structure consistency can also directly benefit mul- 223
timodal representation learning. As illustrated in Fig. 3(a), 224
GSC simultaneously optimizes both objectives to establish 225
stable cross-modal and intra-modal structures. 226

3.3. Noise Discrimination & Purification 227

Deep neural networks typically exhibit the memoriza- 228
tion effect that tends to initially learn the clean patterns 229
within the dataset before over-fitting on noise. Leveraging 230
this, GSC is able to learn a well-established structure in the 231
early stage, which can be further utilized to predict accurate 232
correspondence indicator. 233

Cross-modal Discrimination. As illustrated in Fig. 3(b), 234
based on the well-established cross-modal structure in the 235
early stage, clean data pairs are expected to exhibit more 236
closely aligned cross-modal representations compared to 237
noisy pairs. GSC leverages this structural discrepancy and 238
introduces a function to signify a cross-modal bidirectional 239
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Figure 3. An overview of GSC. Left: The framework of GSC. GSC first extracts image and text representations through separate encoders,
then simultaneously optimizes cross-modal and intra-modal objectives to preserve geometrical structure consistency. GSC leverages both
structures to discriminate noisy samples and estimate the true correspondence indicator y, which can be further utilized to purify the overall
learning. Right: GSC discriminates noisy samples by structural differences from both cross-modal and intra-modal aspects.

correspondence indicator.240

yiCM =
1

2

[ exp (
〈
Ii, Ti

〉
/τ1)∑N

j exp (
〈
Ii, Tj

〉
/τ1)

+
exp (

〈
Ii, Ti

〉
/τ1)∑N

j exp (
〈
Ij , Ti

〉
/τ1)

]
(3)241

where τ1 is the temperature coefficient. Take the former half242
as an example, it measures the proportion of similarity be-243
tween the current data pairs Ii and Ti against the sumation244
of similarity between the Ii and all text data. For a clean245
sample, the similarity between current Ii and Ti should246
dominate the proportion, thus the value of indicator should247
approach 1. Conversely, for a noisy sample, the similarity248
between current Ii and Ti would be close to 0, resulting in249
the indicator’s value trending toward 0.250
Intra-modal Discrimination. For the intra-modal as-251
pect, as illustrated in Fig. 3(c), matched image-text pairs252
should have similar intra-modal structures that mirror each253
other, whereas mismatched pairs would possess distinct254
structures that reflect their divergent positions. Specif-255
ically, we employ cosine similarity to measure the re-256
semblance between intra-modal structures as Si

IM =257
cos({⟨Ii, Ij⟩, ⟨Ti, Tj⟩}Nj=1). During experiments, the co-258
sine similarity scores of clean samples are observed con-259
sistently higher than those of noisy samples during experi-260
ments, presenting a bimodal distribution of scores across the261
dataset (demonstrated in Fig. 5(b)). This distribution can be262
accurately modeled using a two-component Gaussian Mix-263
ture Model (GMM) [25], described by the equation:264

p(SIM) =

K∑
k=1

αkϕ(SIM|k), yi
IM =

αklϕ(S
i
IM|kl)∑K

k=1 αkϕ(Si
IM|k)

(4)265

Specifically, αk denotes the k-th coefficient and ϕ(sIM|k)266
is the probability density for that component. The sec-267

ond equation is the estimation of the intra-modal correspon- 268
dence indicator yiIM. It calculates the probability of an ob- 269
served sample belonging to the cleaner component, denoted 270
by k = kl. This probability approaches 1 for clean samples 271
and 0 for noisy samples, thereby enabling the distinction of 272
samples with noisy correspondence. 273

So far, we have estimated the true correspondence la- 274
bels, yCM and yIM, by leveraging the structural differences in 275
both cross-modal and intra-modal contexts. Our objective 276
is to optimally utilize these two labels to surmount the re- 277
spective challenges and accurately identify all samples with 278
noisy correspondence. Therefore, we define the final corre- 279
spondence label for each sample as the minimum of the two 280
labels, which can expressed as below, 281

yi = min{yiCM, yiIM} (5) 282

Noise purification. We address the issue of noisy corre- 283
spondence by refining both cross-modal and intra-modal 284
objectives. Since the estimated label is a soft label with 285
values in the range of [0, 1] which can directly reflect the 286
degree of true correspondence, we can seamlessly apply it 287
to the loss functions on a sample-wise basis. For the cross- 288
modal objective, we choose the widely-applied contrastive 289
loss as the loss function. The purified cross-modal loss can 290
be denoted as follows, 291

LCM =− 1

2N

N∑
i=1

yi log
exp (

〈
Ii, Ti

〉
/τ1)∑N

j=1 exp (
〈
Ii, Tj

〉
/τ1)

− 1

2N

N∑
j=1

yj log
exp (

〈
Ij , Tj

〉
/τ1)∑N

i=1 exp (
〈
Ii, Tj

〉
/τ1)

(6) 292

where y is directly applied before the sample-wise loss. For 293
the intra-modal side, in addition to sample-wise purification 294
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Algorithm 1 Pipeline of learning with our GSC method.
Input: Multi-modal dataset D = {Ii, Ti, yi}Ni=1

1 Initialize parameters for networks A and B separately
2 for each epoch t = 1, 2, . . . , T do
3 for network k = A,B do
4 for each minibatch B from D do
5 Compute modality representations: f(I), g(T )
6 Estimate cross-modal indicator yCM[t]k by Eq. 3
7 Estimate intra-modal indicator yIM[t]k by Eq. 4
8 Calaulate cross-modal loss by Eq. 6
9 Calculate intra-modal loss by Eq. 7

10 Train Netk by optimizing the combination of
two losses using Eq. 9

11 Update yCM[t] and yIM[t] by Eq. 10
12 Update the final y[t] for the other network.

Output: Refined networks NetA, NetB

for the intra-modal loss, it is crucial to prevent the impact295
of noisy correspondences from distorting the calculation of296
the geometrical structure. Specifically, the distances from297
the queried sample to those samples with noisy correspon-298
dences should be excluded. The purified intra-model loss299
denotes as,300

LIM = − 1

N

N∑
i=1

log
exp(

∑N
k=1 y

k
〈
Ii, Ik

〉
yk

〈
Ti, Tk

〉
/τ2)∑N

j=1 exp (
∑N

k=1 y
k
〈
Ii, Ik

〉
yk

〈
Tj , Tk

〉
/τ2)
(7)301

where τ2 is also a temperature coefficient and yk is mul-302
tiplied to both ⟨Ii, Ik⟩ and ⟨Ti, Tk⟩ to precisely filter out303
the noise. Furthermore, noisy correspondences can also in-304
terfere with the discrimination of noisy samples during the305
computation of cosine similarity scores for intra-modal dis-306
crimination. Similar modifications are employed as follows,307

Si
IM =

∑N
j=1 y

j⟨Ii, Ij⟩yj⟨Ti, Tj⟩√∑N
j=1(y

j⟨Ii, Ij⟩)2
√∑N

j=1(y
j⟨Ti, Tj⟩)2

(8)308

where yj is similarly multiplied. Considering the high com-309
putational cost for the entire dataset, we employ a Monte310
Carlo sampling approach to relax size N to size B of a311
mini-batch. The overall loss function of GSC is formulated312
as a weighted sum of two loss functions, as expressed in the313
following equation,314

L = LCM + γLIM (9)315

where γ is the hyper-parameter keeping the balance be-316
tween two losses to reach the best optimization.317

3.4. Training Schedule318

To integrate the estimation of true correspondence labels319
with the enhancement of cross-modal retrieval learning, we320

adopt the temporal ensembling technique, drawing inspira- 321
tion from Liu et al. [27], to iteratively update the estimated 322
correspondence labels. Specifically, both yCM and yIM are 323
updated through a momentum-based combination of the es- 324
timates from the current epoch t and the previous epoch t−1 325
before taking minimum as shown below, 326

yiCM[t] = β1y
i
CM[t] + (1− β1)y

i
CM[t− 1],

yiIM[t] = β2y
i
IM[t] + (1− β2)y

i
IM[t− 1]

(10) 327

where β1 and β2 are separate momentum. The estimation 328
of true correspondence labels can be further improved by 329
utilizing two separate neural networks, where the true cor- 330
respondence labels for each network are computed from 331
the output of the other network. The ablation in Section 4 332
shows that both strategies can significantly improve the per- 333
formance. In conclusion, the overall procedure of our Ge- 334
ometrical Structure Consistency (GSC) method is depicted 335
in the pseudo-algorithm 1. 336

3.5. Discussion 337

The improvement of our proposed GSC mainly comes 338
from preserving the geometrical structure consistency and 339
better optimizing strategies, which is compatible with most 340
existing methods. In terms of computational complex- 341
ity, GSC does not introduce additional computational costs 342
when integrated with a backbone that calculates similarity 343
scores directly from representations, while it necessitates 344
two extra forward passes when the backbone computes sim- 345
ilarity scores using a similarity module. This requirement is 346
significantly less demanding compared to MSCN, which in- 347
volves computations for an additional meta-learning model, 348
or BiCro, which compares each sample against a clean sub- 349
set. While RINCE shares similar computational cost as 350
GSC, the robust loss function without explicitly excluding 351
noisy samples underperforms at higher noise levels. Fur- 352
thermore, methods based on NCR framework, i.e. NCR, 353
MSCN and BiCro, rely on an inseparable dual-network 354
structure, while GSC is effective with a single model. This 355
attribute makes GSC more adaptable to larger models. 356

4. Experiment 357

4.1. Datasets and Evaluation Metrics 358

Datasets. Following the experimental settings and dataset 359
splits in Huang et al. [15], three widely-used image-text re- 360
trieval datasets are introduced to evaluate our method: 361

• Flickr30K [42] contains 31,000 images with five captions 362
each, collected from the Flickr website. We assign 1,000 363
image-text pairs for validation, 1,000 image-text pairs for 364
testing and the rest for training. 365

• MS-COCO [26] includes 123,287 images with five cap- 366
tions each. We assign 5,000 image-text pairs for valida- 367
tion, 5,000 image-text pairs for testing and the rest for 368
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Table 1. The retrieval performance on Flickr30K and MS-COCO datasets under 20%, 40% and 60% noise rates separately. The best results
and the second best results are respectively marked by bold and underline.

Flickr30K MS-COCO
Noise Methods Image → Text Text → Image Image → Text Text → Image

R@1 R@5 R@10 R@1 R@5 R@10 Sum R@1 R@5 R@10 R@1 R@5 R@10 Sum

SGR 55.9 81.5 88.9 40.2 66.8 75.3 408.6 25.7 58.8 75.1 23.5 58.9 75.1 317.1
SGRAF 72.8 90.8 95.4 56.4 82.1 88.6 486.1 75.4 95.2 97.9 60.1 88.5 94.8 511.9

NCR-SGR 73.5 93.2 96.6 56.9 82.4 88.5 491.1 76.6 95.6 98.2 60.8 88.8 95.0 515.0
20% DECL-SGRAF 77.5 93.8 97.0 56.1 81.8 88.5 494.7 77.5 95.9 98.4 61.7 89.3 95.4 518.2

RINCE-SGR 72.1 92.2 95.7 54.9 79.8 85.3 480.0 73.8 95.6 98.5 61.7 89.2 94.7 513.5
MSCN-SGR 77.4 94.9 97.6 59.6 83.2 89.2 501.9 78.1 97.2 98.8 64.3 90.4 95.8 524.6

BiCro-SGRAF 78.1 94.4 97.5 60.4 84.4 89.9 504.7 78.8 96.1 98.6 63.7 90.3 95.7 523.2
GSC-SGR 78.3 94.6 97.8 60.1 84.5 90.5 505.8 79.5 96.4 98.9 64.4 90.6 95.9 525.7

SGR 4.1 16.6 24.1 4.1 13.2 19.7 81.8 1.3 3.7 6.3 0.5 2.5 4.1 18.4
SGRAF 8.3 18.1 31.4 5.3 16.7 21.3 101.1 15.8 23.4 54.6 17.8 43.6 54.1 209.3

NCR-SGR 68.1 89.6 94.8 51.4 78.4 84.8 467.1 74.7 94.6 98.0 59.6 88.1 94.7 509.7
40% DECL-SGRAF 72.7 92.3 95.4 53.4 79.4 86.4 479.6 75.6 95.5 98.3 59.5 88.3 94.8 512.0

RINCE-SGR 71.2 90.7 95.6 52.7 78.5 85.6 474.3 71.2 95.8 97.9 59.1 88.6 94.3 506.9
MSCN-SGR 71.6 92.8 96.2 54.8 80.7 87.4 483.5 75.3 95.4 98.2 60.3 88.6 94.8 512.6

BiCro-SGRAF 74.6 92.7 96.2 55.5 81.1 87.4 487.5 77.0 95.9 98.3 61.8 89.2 94.9 517.1
GSC-SGR 76.5 94.1 97.6 57.5 82.7 88.9 497.3 78.2 95.9 98.2 62.5 89.7 95.4 519.9

SGR 1.5 6.6 9.6 0.3 2.3 4.2 24.5 0.1 0.6 1.0 0.1 0.5 1.1 3.4
SGRAF 2.3 5.8 10.9 1.9 6.1 8.2 35.2 0.2 3.6 7.9 1.5 5.9 12.6 31.7

NCR-SGR 13.9 37.7 50.5 11.0 30.1 41.4 184.6 0.1 0.3 0.4 0.1 0.5 1.0 2.4
60% DECL-SGRAF 65.2 88.4 94.0 46.8 74.0 82.2 450.6 73.0 94.2 97.9 57.0 86.6 93.8 502.5

RINCE-SGR 64.5 86.8 92.9 46.5 72.8 79.7 443.2 72.3 94.0 97.9 58.4 86.6 92.5 501.7
MSCN-SGR 68.8 90.3 94.4 50.8 77.4 84.4 466.1 72.5 93.6 97.1 57.7 87.0 93.9 501.8

BiCro-SGRAF 67.6 90.8 94.4 51.2 77.6 84.7 466.3 73.9 94.4 97.8 58.3 87.2 93.9 505.5
GSC-SGR 70.8 91.1 95.9 53.6 79.8 86.8 478.0 75.6 95.1 98.0 60.0 88.3 94.6 511.7

training. Notably, MS-COCO can be either evaluated by369
using the whole 5,000 test set or the average of 5-fold370
1,000 test sets [20].371

• Conceptual Captions [37] is a large-scale dataset with372
real-world noisy correspondence problem. It contains373
3.3M images with one caption each. All the data374
pairs in the Conceptual Captions dataset are automati-375
cally harvested from the Internet, therefore about 3%-376
20% image-text pairs in the dataset are mismatched or377
weakly-matched [37]. We use a subset of the Concep-378
tual Captions dataset named CC152K in our experiments,379
in which we assign 1,000 image-text pairs for validation,380
1,000 image-text pairs for testing and 150,000 image-text381
pairs for training.382

Evaluation Protocol. We evaluate the retrieval perfor-383
mance with the recall rate at K (R@K) metric. In a nutshell,384
R@K measures the proportion of relevant items retrieved385
within the top K items closest to the query. In our experi-386
ments, we take image and text as queries, respectively, and387
report R@1, R@5, R@10 results and their sum for a com-388
prehensive evaluation.389

4.2. Implementation Details 390

For all experiments, we apply the Adam optimizer [23] 391
with the initial learning rate of 2 × 10−4 which decays by 392
0.2 in 15 epochs. We train the model on one NVIDIA A100 393
GPU and select the model that performs best on the valida- 394
tion set for testing. The dimension of the common represen- 395
tation is set to 1024. For experiments besides ablation study, 396
we set the batch size B as 128. The two temperature coef- 397
ficients τ1 and τ2 are set to 0.07 and 1 in default. The hy- 398
perparameter λ serving as the balancing ratio between LCM 399
and LIM is set to 0.01, and the two momentum β1 and β2 400
are set to 0.7 respectively. 401

4.3. Comparison with the State-of-the-Art 402

We conducted extensive evaluations against seven con- 403
temporary state-of-the-art methods on three benchmark 404
datasets to validate the effectiveness of our proposed GSC 405
model. These comparisons include two baseline models, 406
i.e., SGR and SGRAF [6], and five robust learning methods 407
designed to handle noisy correspondences, i.e., NCR [15], 408
DECL [34], RINCE [5], MSCN [11] and BiCro [41]. No- 409
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Table 2. The retrieval performance on CC152K dataset. The
best results and the second best results are respectively marked
by bold and underline.

CC152K
Methods Image → Text Text → Image

R@1 R@5 R@10 R@1 R@5 R@10 Sum

SGR 11.3 29.7 39.6 13.1 30.1 41.6 165.4
SGRAF 32.5 59.5 70.0 32.5 60.7 68.7 323.9

NCR-SGR 39.5 64.5 73.5 40.3 64.6 73.2 355.6
DECL-SGRAF 39.0 66.1 75.5 40.7 66.3 76.7 364.3
RINCE-SGR 35.9 63.0 73.8 37.6 65.0 73.4 348.7
MSCN-SGR 40.1 65.7 76.6 40.6 67.4 76.3 366.7

BiCro-SGRAF 40.8 67.2 76.1 42.1 67.6 76.4 370.2
GSC-SGR 42.1 68.4 77.7 42.2 67.6 77.1 375.1

Table 3. Comparison with CLIP and NCR on MS-COCO 5K.
CLIP-L and CLIP-B are abbreviations for CLIP (ViT-L/14) and
CLIP (ViT-B/32). The best results are marked by bold.

Noise Methods
Image → Text Text → Image

R@1 R@5 R@10 R@1 R@5 R@10 Sum

0% CLIP-L 58.4 81.5 88.1 37.8 62.4 72.2 400.4
Zeroshot CLIP-B 50.2 74.6 83.6 30.4 56.0 66.8 361.6

20% CLIP-B 21.4 49.6 63.3 14.8 37.6 49.6 236.3
Finetune NCR 56.9 83.6 91.0 40.6 69.8 80.1 422.0

GSC 58.9 84.9 91.7 42.0 71.4 81.8 430.8

50% CLIP-B 10.9 27.8 38.3 7.8 19.5 26.8 131.1
Finetune NCR 53.1 80.7 88.5 37.9 66.6 77.8 404.6

GSC 55.5 81.8 90.1 40.0 69.1 79.7 416.3

tably, both DECL and BiCro are built upon a stronger410
SGRAF backbone, which is an ensemble of SGR and SAF.411
To thoroughly assess the robustness of GSC, we simulate412
various levels of noisy correspondences, namely 20%, 40%,413
and 60%, by randomly shuffling the captions on MSCOCO414
and Flickr30K like [15]. In addition, we extend our ex-415
periments to real-world noisy conditions using the CC152K416
dataset. Comprehensive comparison results are detailed in417
the supplementary material for fully demonstration of GSC.418

Results on Flickr30K and MS-COCO. To evaluate the ro-419
bustness of all methods under different extents of noise,420
we quantify the noise rate to 20%, 40% and 60% on421
both well-annotated MS-COCO and Flickr30K datasets,422
as recorded in Tab. 1. The results demonstrate that GSC423
significantly outperforms established noisy correspondence424
methods such as NCR, DECL, RINCE, MSCN, and BiCro,425
achieving an average increase in recall sum score of 7.5%426
on Flickr30K and 3.4% on MS-COCO to the second best427
results, which indicates the better robustness of GSC. No-428
tably, GSC also excels over BiCro and DECL under various429
conditions, even though they are implemented on the en-430
hanced SGRAF backbone. Moreover, GSC can carry about431
more enhancement at higher noise rates, especially under432
60% noise level, proving that our method remains stable433
and reliable even in severely noisy conditions.434

Results on CC152K. To further validate GSC in handling435
with noisy correspondence in real-world scenarios, we addi-436
tionally conduct tests on CC152K dataset, detailed in Tab. 2.437
According to the results, GSC achieves the best perfor-438
mance with an overall score of 375.1%, surpassing the sec-439
ond best method BiCro by 4.9%. Moreover, GSC brings440
about a larger gain of 209.7% to its backbone SGR, which is441
significantly higher than the improvement of 46.3% brought442
about by BiCro to its backbone SGRAF. The results affirm443
GSC’s capability to manage not only simply simulated but444
also complex, real-world noisy correspondences.445

Table 4. Ablation study on Flicker30K with 40% noise with dif-
ferent components in GSC. The best results are marked by bold.

Momen. Dual LIM
Image → Text Text → Image

R@1 R@5 R@10 R@1 R@5 R@10 Sum

✓ ✓ 72.3 92.8 96.5 56.5 82.1 88.8 489.0
✓ ✓ 73.0 91.5 95.9 54.5 80.4 87.6 482.9

✓ ✓ 74.5 92.5 96.9 57.0 82.0 88.3 491.1
✓ ✓ ✓ 76.5 94.1 97.6 57.5 82.7 88.9 497.3
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Figure 4. Analysis of different hyper-parameter combinations on
Flicker30K with 40% noise. Left: γ is the balancing parameter
between LCM and LIM. Right: β1 and β2 are separate momentums
for the cross-modal and intra-modal temporal ensembling.

Comparison to pre-trained model. In line with Huang 446
et al. [15], we compare GSC to the pre-trained CLIP 447
model [35] on the MS-COCO dataset. CLIP is a well- 448
known large pre-trained model trained on a massive 400 449
million image-text pair dataset harvested from the Internet, 450
which can inevitably include samples with noisy correspon- 451
dence. Here, we report the zero-shot and fine-tuning perfor- 452
mances of different CLIP models, together with NCR. Re- 453
sults indicate a notable performance decline in CLIP mod- 454
els when fine-tuning with 20% and 50% noise levels. On 455
the contrary, GSC not only withstands but excels over zero- 456
shot CLIP under 50% noise, emphasizing the importance of 457
addressing data mismatches and the robustness of GSC. 458
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Figure 5. (a) The changing values of clean and noisy sample weight when the noise rate is 20%, 40%, and 60%. (b) Distribution of
intra-modal geometrical similarity, including PDFs of clean and noisy pair similarities and estimated Gaussian distribution components.
(c) Cross-modal weight distributions of GSC on clean and noisy pairs. (d) Intra-modal weight distributions of GSC on clean and noisy
pairs. Experiments from (b) to (d) are conducted on Flickr30K with the noise rate of 0.4.

Table 5. Analysis of different batch sizes on Flicker30K with 40%
noise. The best results are marked by bold.

Batch Size
Image → Text Text → Image

R@1 R@5 R@10 R@1 R@5 R@10 Sum

32 73.6 92.1 95.4 54.4 81.0 87.4 483.9
64 75.3 94.0 96.7 55.9 81.7 88.2 491.8
128 76.5 94.1 97.6 57.5 82.7 88.9 497.3
192 76.7 94.0 97.7 57.6 82.7 89.1 497.8

4.4. Experimental Analysis459

Ablation study. We show the effect of each component of460
GSC in Tab. 4. The ablation studies are conducted without461
temporal ensembling (Momen. in the table), dual networks462
or intra-modal learning separately. Specifically for the ab-463
lation study for temporal ensembling, we use a 5-epoch464
warm-up stage to replace the technique. According to the465
results, all components are important to achieve advanta-466
geous results. Notably, the performance of GSC with sin-467
gle model still outperforms most robust methods, including468
methods with dual networks like NCR and DECL, which469
further proves the effectiveness and high efficiency.470

Impacts of hyper-parameters γ, β1 and β2. The GSC471
method incorporates three main hyper-parameters includ-472
ing γ, β1 and β2 with their effects detailed in Fig. 4. γ473
strikes a balance between cross-modal and intra-modal op-474
timization. According to the results, GSC shows stability475
for γ ∈ [0.005, 0.1], while γ = 0.01 is chosen for optimal476
performance. β1 and β2 are the momentum coefficients en-477
suring steady updates for temporal ensembling. The results478
indicate stable performance with parameter values higher479
than 0.5. Lower beta values may laten timely updates, po-480
tentially causing the model to overfit on noise.481

Impact of batch size. We also explore the model perfor-482
mance under different batch sizes during training. As shown483
in Tab. 5, as the batch size increases, the retrieval perfor-484

mance of the model steadily improves. Specifically, when 485
the batch size is increased from 32 to 128, there is a signifi- 486
cant enhancement from 483.9% to 497.3% as to the sum of 487
recall, and further expanding the batch size from 128 to 192 488
results in only marginal growth, which indicates that larger 489
batch size helps in consolidating the stableness of model 490
structure until reaching a proper point. 491
Experimental visualization. To further offer insights of 492
GSC against noisy correspondence, we visually present the 493
value curves and weight distributions of predicted corre- 494
spondence labels in Fig. 5. Figure (a) shows the stability 495
of predicted labels across varying noise levels, with mini- 496
mal fluctuation for clean samples and consistently low val- 497
ues for noisy ones. Figure (b) depicts a bimodal distribution 498
of intra-modal cosine similarities, which can be well-fitted 499
by a two-component GMM. Figures (c) and (d) confirm that 500
both cross-modal and intra-modal structures effectively dis- 501
tinguish noisy samples, with discrimination accuracy of ap- 502
proximately 0.96 for cross-modal and about 0.91 for intra- 503
modal, culminating in an overall accuracy of about 0.98. 504
Such visualization explains the reason for the steady and 505
reliable performance of GSC under different noise rates. 506

5. Conclusion 507

In this paper, we propose Geometrical Structure Con- 508
sistency (GSC) learning framework to mitigate the problem 509
brought by noisy correspondence. Specifically, we identify 510
the impact of noisy correspondence on both cross-modal 511
and intra-modal geometrical structures. Leveraging the 512
structural differences between noisy and clean pairs within 513
a well-established structure, our approach infers accurate 514
correspondence labels for each data pair. The inferred la- 515
bels are further utilized to refine the consistent learning of 516
structures. GSC can seamlessly integrate with most exist- 517
ing retrieval methods. Extensive experiments across vari- 518
ous cross-modal benchmark datasets showcase the robust- 519
ness and effectiveness of our proposed GSC method across 520
diverse settings. 521
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