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ABSTRACT

Uncertainty quantification is essential for deploying reliable Graph Neural Net-
works (GNNs), where existing approaches primarily rely on Bayesian inference
or ensembles. In this paper, we introduce the first credal graph neural networks
(CGNNs), which extend credal learning to the graph domain by training GNNs
to output set-valued predictions in the form of credal sets. To account for the
distinctive nature of message passing in GNNs, we develop a complementary ap-
proach to credal learning that leverages different aspects of layer-wise information
propagation. We assess our approach on uncertainty quantification in node clas-
sification under out-of-distribution conditions. Our analysis highlights the critical
role of the graph homophily assumption in shaping the effectiveness of uncertainty
estimates. Extensive experiments demonstrate that CGNNs deliver more reliable
representations of epistemic uncertainty and achieve state-of-the-art performance
under distributional shift on heterophilic graphs.

1 INTRODUCTION

In safety-critical applications, a machine learning (ML) model must not only be accurate but also
aware of its own limitations. The central challenge in making ML models reliable for real-world de-
ployment is particularly acute for Graph Neural Networks (GNNs), where the inherent dependencies
between data points violate the standard i.i.d. assumption. In a classical ML model, its confidence
is often conflated into a single predictive probability, which fails to distinguish different sources of
uncertainty (Gawlikowski et al., 2023). This lack of specificity is critical on graphs, where a model
can be uncertain about a node’s class either because its local neighborhood is genuinely ambiguous
(a property of the data) or because the node and its connections are entirely novel and outside the
training distribution (a property of the model’s knowledge) (Kendall & Gal, 2017; Hüllermeier &
Waegeman, 2021). To build more robust systems, we must formally disentangle the two primary
sources of uncertainty: aleatoric uncertainty, the inherent and often irreducible randomness in the
data-generating process, and epistemic uncertainty, which stems from the model’s limited knowl-
edge and is potentially reducible with additional data or improved models (Gal & Ghahramani,
2016; Valdenegro-Toro & Mori, 2022). This decomposition underpins many modern approaches for
uncertainty-aware learning and OOD detection (Kendall & Gal, 2017).

The Bayesian framework provides a natural and powerful lens for uncertainty disentanglement (Ma-
linin & Gales, 2018). The predictive posterior distribution, which gives the probability vector y for
a new input x given the training data D, is formulated by marginalizing over the entire space of
plausible model parameters θ:

P (y|x,D) =

∫
P (y|x,θ)︸ ︷︷ ︸

Aleatoric

· p(θ|D)︸ ︷︷ ︸
Epistemic

dθ. (1)

The integral in Equation 1 explicitly separates the two uncertainty sources. The likelihood term,
P (y|x,θ), represents the aleatoric uncertainty. It captures the stochasticity of the output for a sin-
gle, fixed model configuration θ. Even if we knew the true model parameters perfectly, this term
would remain, as it models the inherent ambiguity in the data. The posterior distribution over the
model’s parameters, p(θ|D), represents the epistemic uncertainty. It quantifies the model’s lack of
knowledge by describing a set of plausible parameter configurations consistent with the observed
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data D. When data is scarce, this distribution is wide and diffuse, reflecting high epistemic un-
certainty; as more data is observed we expect it to sharpen and concentrates around the optimal
parameters, thereby reducing the model’s ignorance. The final predictive distribution is thus an av-
erage of many possible models, weighted by their posterior probability, which correctly accounts
for both what the model has learned and what it still does not know.

The most principled approach to uncertainty quantification, Bayesian Neural Networks (BNNs)
(Goan & Fookes, 2020), places probability measures over network parameters, thereby defining
a probabilistic model over models. This results in predictive outputs described by second-order
probabilities, which capture uncertainty over all possible likelihoods. However, such methods incur
substantial computational overhead during both training and inference (Wang et al., 2024a); further
discussion is provided in Appendix D.

Despite the progress of existing approaches (see Section 2), a critical gap remains. Most current
frameworks, particularly those based on message passing or uncertainty diffusion, implicitly assume
graph homophily, i.e., that connected nodes tend to share similar features or labels (Ma et al.). As
a result, their performance and the reliability of their uncertainty estimates deteriorate significantly
in heterophilic settings, a challenge only recently beginning to be systematically addressed (Fuchs-
gruber et al., 2025). This highlights the need for new, robust uncertainty quantification frameworks
that do not rely on homophily and can operate effectively across diverse graph structures.

Main Contributions. We address the problem of uncertainty estimation in graph learning task,
by proposing an approach based on credal learning, and assessing specifically the underlooked
aspect of graph heterophily. Our main contributions are: (i) we introduce Credal Graph Neural
Networks (CGNNs), the first framework that extends credal learning to the graph domain; (ii) we
develop a credal graph learning architecture that leverages layer-wise message passing to provide
more faithful uncertainty representations; and (iii) we conduct extensive experiments on both ho-
mophilic and heterophilic benchmarks, showing that CGNNs achieve state-of-the-art performance
in out-of-distribution detection and highlight the critical role of graph structure in shaping uncer-
tainty estimates.

2 RELATED WORKS

Quantifying uncertainty in Graph Neural Networks (GNNs) (Bacciu et al., 2020) is a relevant and
rapidly developing research direction, with several methods being proposed recently to capture the
reliability of GNN predictions (Wang et al., 2024a; Chen et al., 2024). The inherent dependencies
among nodes in a graph introduce unique challenges, leading to a diverse landscape of quantification
strategies. Existing approaches can be broadly organized into three main families, each with distinct
computational and modeling characteristics.

The most computationally efficient family consists of Single Deterministic Models. The simplest
methods in this category are post-hoc heuristics applied to a standard GNN’s output, such as using
the maximum softmax probability as a measure of confidence or calculating the predictive entropy.
While easy to implement, these approaches provide a single, undifferentiated measure of uncertainty
and are often sensitive to model miscalibration (Guo et al., 2017). A more principled deterministic
approach is evidential deep learning, where the GNN learns to output the parameters of a higher-
order Dirichlet distribution. This allows for directly modeling uncertainty over the categorical output
space in a single forward pass, providing a richer characterization of the predictive uncertainty (Zhao
et al.; Stadler et al.).

A second major paradigm is Bayesian Graph Neural Networks (Bayesian GNNs), which adapt the
Bayesian framework specifically to graph-structured data. In these models, one places priors not
only over standard network parameters (e.g., weights) but also over graph-specific components
such as edge connectivity or node feature propagation. For example, adaptive connection sam-
pling (Hasanzadeh et al., 2020) treats edges (or adjacency masks) probabilistically, and inference
techniques like Monte Carlo Dropout (Gal & Ghahramani, 2016) or Variational Inference (Hoffman
et al., 2013) are used to sample over both weights and possible graph instantiations during prediction.
This both reflects uncertainty in what the graph structure (and features) imply, and in the model’s
parameters. Works such as Munikoti et al. (2023) illustrate how Bayesian methods in graphs model
uncertainty over graph structure, node features, and edge sampling, not just traditional weights. This
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provides a theoretically grounded framework for capturing uncertainty stemming from the model’s
own parameters and from uncertainty in the graph data (structure or features), but at the cost of
higher computational complexity (Jia et al., 2020) and the challenge of defining suitable priors for
graph structures.

Bridging the gap between theoretical rigor and practical scalability, Ensemble Methods have become
a powerful and popular alternative. This approach averages the predictions from multiple GNNs
that are trained independently. Uncertainty is then quantified by measuring the disagreement or
variance among the predictions of the individual models in the ensemble (Mallick et al., 2022; Busk
et al., 2023). While empirically powerful and often outperforming more complex Bayesian methods,
ensembles also carry a significant computational and memory burden, as they require training and
storing multiple full models.

3 CREDAL GRAPH NEURAL NETWORKS

This section introduces our Credal Graph Neural Network (CGNN) framework. We begin by outlin-
ing the principles of credal learning, which models uncertainty using sets of probability distributions
to disentangle its aleatoric and epistemic sources (Section 3.1). We then present our novel architec-
ture for Credal Graph Learning in Section 3.2. Our primary model, CredalLJ, leverages a joint
latent representation from all GNN layers, and we introduce two variants for comparison: Credal
Final and the post-hoc Credal Ensemble. Finally, Section 3.3 describes the training proce-
dure, which is based on a Distributionally Robust Optimization (DRO) objective to ensure robustness
to distributional shifts.

3.1 CREDAL LEARNING

We begin by providing the basics of definitions behind our credal-based approach to uncertainty in
graph learning. Credal learning has been proposed to address the limitations of BNNs and Ensemble-
based approaches by explicitly modeling uncertainty as a convex set of probability distributions,
known as a credal set P (Caprio et al., 2024). In practice, the model constructs this set by outputting
a probability interval for each class, with each interval being defined by a lower and an upper bound.
Figure 1 provides a visual example for 3-class classification task. The shaded area represents the
credal set, which can be interpreted as the region of the hypothesis that is coherent with the training
data.

Instead of averaging distributions, as needed by Bayesian Model Averaging or Ensembles (details
in Appendix E), uncertainty can be defined by the size and location of P inside the simplex. Sim-
ilarly to Wang et al. (2024b), we quantify this using generalized entropy, which defines the total
uncertainty TU and the aleatoric uncertainty AU as the maximum and minimum possible Shannon
entropy for any distribution p within the credal set (Abellán et al., 2006):

TU := H(P) = max
p∈P

H(p), AU := H(P) = min
p∈P

H(p). (2)

The epistemic uncertainty is the difference, EU := H(P)−H(P), which intuitively depends on the
volume of the credal set and on its position inside the simplex. A confident prediction (Figure 1(a))
corresponds to a small set near a vertex. High data uncertainty (Figure 1(b)) is a small set near the
center. High epistemic uncertainty is a large set covering a significant portion of the simplex (Figure
1 (c and d)), indicating that many different probability distributions are considered plausible.

3.2 CREDAL GRAPH LEARNING

Credal graph layer. To move beyond single-point probability predictions, we build on the Credal
Layer proposed by Wang et al. (2024c) as a replacement for the classification layer of a GNN. Let zv
be a generic embedding of node v (as computed by some layer of a GNN), the Credal Layer would
then take zv as input and, for each of the C classes, output two values: an interval midpoint mc

v and
a half-length hc

v ≥ 0. Collecting these for all classes gives two vectors mv = (m1
v, . . . ,m

C
v ) and

hv = (h1
v, . . . , h

C
v ), each of length C. This is achieved using the transformation:

mv = g(W × zv + b), hv = g′(W ′ × zv + b′), (3)
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(a) Confident Prediction
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(b) Data Uncertainty
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(c) Out-of-distribution
A
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(d) Out-of-distribution

A
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A

B C

A

B C

A
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Figure 1: Visualization of aleatoric uncertainty (AU) and epistemic uncertainty (EU) for a 3-class
classification problem, corresponding to the disentanglement in Equation 1. The top row shows
a Bayesian continuous representation, while the bottom row shows the corresponding credal set
representation. (a) Low AU and low EU: the model is confident in its prediction. (b) High AU,
low EU: the model attributes uncertainty to noisy data. (c) High AU and high EU: the model faces
out-of-distribution data. (d) Low AU, high EU: the model encounters novel data and attributes
uncertainty to its parameters rather than to noise. In the credal set representation (bottom row), the
shaded regions inside the simplex correspond to lower and upper probability bounds for each class.

where g and g′ are activation functions, with g′ ≥ 0. These values define an interval for each class,
[aL

v ,a
U
v ] := [mv − hv,mv + hv]. To transform these into valid lower and upper probability

bounds, [qL
v , q

U
v ], that satisfy the necessary convexity conditions, a specialized Interval SoftMax

activation (Wang et al., 2025) is applied:

qLi
v =

exp(aLi
v )

exp(aLi
v ) +

∑
k ̸=i exp(a

Uk
v )

, qUi
v =

exp(aUi
v )

exp(aUi
v ) +

∑
k ̸=i exp(a

Lk
v )

. (4)

The resulting probability intervals define a credal set Pv = {q|qi ∈ [qLi
v , qUi

v ],
∑C

i=1 q
i = 1}, which

constitutes the final credal prediction for node v.

Information propagation on graphs. A fundamental question is which representation zv to use
for a node v. For models processing independent and identically distributed (i.i.d.) data, the layer-
wise processing can be described by the Data Processing Inequality (DPI) (Polyanskiy & Wu, 2017).
This principle states that the mutual information between a layer’s latent representation Zl and the
target label Y cannot increase with network depth: I(Y ;Zl+1) ≤ I(Y ;Zl). Information is pro-
gressively filtered and compressed, and any information about Y lost at layer i cannot be recovered
later.

The mechanism of information propagation within GNNs differs fundamentally from that in stan-
dard feed-forward networks. The DPI model of information flow is insufficient for GNNs, where
the message-passing mechanism violates the i.i.d. assumption by design. A node’s v representa-
tion at layer l, namely zlv , is updated using information from its neighbors, effectively expanding its
receptive field with each layer according to:

zlv = Φl
(
zl−1
v ,Ψ

({
Ωl(zl−1

q ) | q ∈ Nv

}))
. (5)

In this formula, Nv is the set of neighbors of node v, their representation in the layer l−1 is projected
into a new space via the function Ω and aggregated into a single neighborhood representation using
a permutation-invariant function Ψ (such as max, mean, or sum). Finally, the function Φ combines
this aggregated neighborhood representation with the embedding of node v to produce the updated
representation.
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Fuchsgruber et al. (2025) formalize this with a Data Processing Equality for Message Passing Neu-
ral Networks, which shows that the information about a node’s label Y in its representation Zl+1 at
layer l + 1 decomposes as:

I(Y ;Zl+1) = I(Y ;Zl)−∆
[0:l]
− +∆l+1

+ . (6)

Here I(Y ;Zl) is the information about the target Y contained in the node’s own representation at
the previous layer l. ∆[0:l]

− is the relative information loss or recovery term. It quantifies how much
information about Y from the node’s ego-graph up to l hops is lost (while also accounting for the
recovery of previously lost information retained in node’s neighbors) during the l + 1-th message-
passing step. ∆l+1

+ is the information gain term, representing new, additional information about Y
that is incorporated from the newly included l + 1-hop neighbors.

This decomposition is key to understanding the difficulty of graph GNNs in particular in heterophilic
learning, as observed by many authors (Micheli & Tortorella, 2023; Liang et al., 2023; Ma et al.,
2021; Zhu et al., 2020; Luan et al., 2024; Lim et al., 2021). In homophilic settings, neighbors
are semantically similar, so the information gain ∆l+1

+ is often low (i.e. information tends to be
redundant). In contrast, in heterophilic settings, neighbors are semantically different, meaning the
information gain ∆l+1

+ can be substantial at each layer. Each latent representation zl
v thus provides

unique and crucial information. The fundamental flaw of standard message-passing in this regime is
that it acts as a local smoothing operator, indiscriminately mixing the central node’s signal with these
diverse neighboring signals. This corruption leads to representations of different classes becoming
indistinguishable.

Motivated by these observations we propose to use in input to the credal layer zjoint
v , that is the joint

latent representation of a node v, computed by concatenating the node’s embeddings from all layers:

zjoint
v = [z0

v ||z1
v || . . . ||zL

v ], (7)

where z0
v are the initial (input) node features.

By using zjoint
v as node’s v embedding, we ensure the credal prediction is conditioned on all the

information the GNN has processed, allowing for a more faithful and robust estimation of both the
prediction and its associated uncertainty. The full architecture, named CredalLJ for Latent Joint,
is depicted in Figure 2.

To isolate the effect of the credal output layer in a more standard GNN setting, we evaluate a variant
where it is applied only to the final hidden layer. In this model, which we term Credal Final,
we remove the concatenation of embeddings from all layers. The credal output layer, takes only the
final latent representation, zL

v , of the GNN backbone as its input.

Post-hoc credal graph learning. The credal graph learning approach outlined above requires to
modify the original GNN architecture, hence it cannot be applied post-hoc to already trained model.
As an alternative method, we also explore a post-hoc approach for generating credal predictions
from a set of GNNs trained for a standard classification task. Inspired by (Wang et al., 2024b), we
define a Credal Ensemble leveraging an ensemble of vanilla GNNs that requires no changes to
their training. For a given input node v, each model hm produces a standard probabilistic prediction
in the form of a softmax vector. The core principle of the Credal Ensemble is to interpret the
set of these predictions, {p1, . . . ,pM}, as the vertices of a credal set. The final credal prediction
for node v, Pv , is therefore defined as the convex hull of the ensemble’s outputs:

Pv = Conv({p1, . . . ,pM}). (8)

This resulting set contains all possible convex combinations of the individual model predictions,
thereby capturing the epistemic uncertainty expressed through the disagreement among the ensemble
members. This method offers a straightforward way to obtain a credal prediction from any existing
pre-trained GNN ensemble.

3.3 TRAINING

To train a model capable of output predictions in the form of a credal set we frame our
problem within the setting of learning from a collection of data sets {D1, . . . ,DQ}, Di =
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GNN Latent
Joint

Credal 
Layer

Input Graph Credal Prediction

Figure 2: Overview of the proposed credal prediction framework. An input graph is processed by
a Graph Neural Network (GNN), which iteratively aggregates node representations across layers
(Z0, . . . , ZL), gaining and losing information at each step. The latent joint representation Z joint

allows recovery of the full trajectory of each node across layers. A credal layer then maps Z joint to
a credal prediction, providing an informative representation of uncertainty. Green credal sets corre-
spond to reliable predictions, while red credal sets indicate nodes that are likely out-of-distribution
(OOD) due to high aleatoric or epistemic uncertainty.

{(xi,1,yi,1), . . . , (xi,ni ,yi,ni)}, where each Di is issued from a different “domain” character-
ized by its own unknown data-generating probability distribution (Caprio et al., 2024). The idea is
that by leveraging the available evidence Di the model is able to elicit a credal set that contains the
true data generating process for a new set of data DQ+1. In practice, however, we are often limited to
a single training set D, which can be viewed as an aggregation of data from these various underlying
domains. We adopt, following Wang et al. (2024c), a strategy inspired by Distributionally Robust
Optimization (DRO) (Ben-Tal et al., 2013). Instead of minimizing only the classical empirical risk,
the objective is to also find model parameters θ that minimize the worst-case risk over an uncertainty
set of distributions U around the empirical distribution P̂ :

min
θ∈Θ

{
sup
U∈U

E(x,y)∼U [L(hθ, (x,y))]

}
, (9)

where L is a given loss function and hθ is the hypothesis parameterized by θ. Training the model to
be robust against this internally-generated adverse distribution compels it to produce predictions in
the form of a credal set, represented by a collection of probability intervals.

Following heuristics (Huang et al., 2022; Oren et al., 2019), the DRO loss can be approximated as:

L =
1

N

N∑
n=1

CE(qU
n ,yn) +

1

δN

∑
n∈Hδ

CE(qL
n ,yn), (10)

where
Hδ = arg top

δN

{
CE(qL

n ,yn)
∣∣ n = 1, . . . , N

}
, (11)

N is the number of training points, CE is the cross-entropy and δ is an hyper-parameter that in-
dicates the proportion of difficult training examples to consider for an estimate of test distribution
divergence. The first component of Equation 10 relies on the training distribution as is, and there-
fore tends to encourage more optimistic or upper-bound predictions for the class scores (qU ). In
contrast, the second component emphasizes the boundary cases and training outliers by operating
on qL, simulating potential shifts between training and test distributions. This encourages the model
to produce more pessimistic or lower-bound predictions. As a consequence, the width between qU

and qL reflects the model’s ignorance about how much the future test distribution may differ from
the training distribution. By leveraging the outlier cases observed at training time we approximate
the DRO loss (Equation 9), allowing the model to better estimate the uncertainty it may encounter
at test time.

4 EXPERIMENTAL ANALYSIS

In this section, we empirically validate our proposed Credal Graph Neural Networks. We first in-
troduce the datasets used for our evaluation (Section4.1) and define the experimental setting for
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out-of-distribution (OOD) node detection in Section 4.2. We then describe the baselines and abla-
tion studies used for comparison (Sections 4.3 and 4.4), and finally, present and analyze the results
in Section 4.5.

4.1 DATASETS

We evaluate our method on a diverse suite of six benchmark graph datasets, encompassing various
domains and structural properties, as summarized in Table 1.

Table 1: Statistics and OOD splits for the benchmark datasets. Validation and test set sizes are
reported as in-distribution (ID) / out-of-distribution (OOD).

Dataset # Nodes # Edges # Classes Homophily OOD Classes ID Classes Train (ID) Val (ID/OOD) Test (ID/OOD)

Chameleon 2,277 31,421 5 He {0,1} {2,3,4} 647 438 / 291 276 / 180
Squirrel 5,201 198,493 5 He {0,1} {2,3,4} 1,515 982 / 682 622 / 419
ArXiv 169,343 1,166,243 5 He {0,1} {2,3,4} 69,523 23,415 / 10,453 23,245 / 10,625
Patents 2,923,922 13,975,788 5 He {0,1} {2,3,4} 1,053,055 351,259 / 233,525 350,730 / 234,055
Coauthor 18,333 163,788 15 Ho {0,. . . ,3} {4,. . . ,14} 8,813 2,907 / 759 2,964 / 704
Reddit2 232,965 23,213,838 41 Ho {0,. . . ,10} {11,. . . ,40} 109,517 17,343 / 6,356 40,601 / 14,733

The Coauthors dataset is a computer science co-authorship network where nodes represent au-
thors, connected by an edge if they have co-authored a paper (Shchur et al., 2018). Node features
are derived from paper keywords, and the task is to predict each author’s primary field of study. The
Chameleon and Squirrel datasets are Wikipedia networks where nodes are web pages linked
by hyperlinks (Rozemberczki et al., 2021). Their features are derived from informative nouns on
each page, and the classification task is to categorize pages based on their average monthly traffic.
Reddit2 is a dataset constructed from Reddit posts, where nodes represent individual posts with
features generated from text embeddings (Hamilton et al., 2017). An edge connects two posts if the
same user has commented on both, and the prediction task is to identify the subreddit to which each
post belongs. ArXiv is a citation network where nodes are academic papers and directed edges
represent citations (Hu et al., 2020; Ma et al.). Node features are embeddings of the paper’s title
and abstract, and the objective is to predict the publication year. Finally, Patents is a citation
network of U.S. utility patents, where each node is a patent and edges indicate citations between
them (Leskovec et al., 2005; Lim et al., 2021; Ma et al.). Features are derived from patent metadata,
and the task is to predict the patent’s grant date.

4.2 SETTING

We address the problem of node-level out-of-distribution (OOD) detection in a transductive setting
using a Leave-Out-Class strategy during training. Let G = (V, E , X) denote a single attributed
graph, where V is the set of nodes, E is the set of edges, and X ∈ R|V|×d is the node feature matrix.
The set of all node classes is partitioned into in-distribution (ID) classes CID and out-of-distribution
(OOD) classes COOD, such that CID ∩ COOD = ∅.

The node set V is divided into training, validation, and test subsets. During training, nodes belonging
to OOD classes in COOD are masked, i.e., their labels are treated as unknown. Consequently, the
model is trained to solve a classification problem over only the ID classes CID. Importantly, in this
setting, the true labels of test nodes may include both ID and OOD classes, i.e., the test classes form
a superset of the training classes.

The objective is to learn a model that classify the in-distribution nodes into their respective classes
within CID and produce a high uncertainty score for nodes belonging to the OOD classes.

4.3 BASELINES

We evaluate our proposed credal learning approaches against a suite of established baselines for
uncertainty estimation and OOD detection (Ma et al.). These include a family of widely-used post-
hoc methods that operate on a single pre-trained GNN, such as the Energy-based score, which is
calculated from the pre-softmax logits (Liu et al., 2020); ODIN, which applies temperature scaling
and input perturbations (Liang et al., 2017); and the Mahalanobis baseline, which measures the
distance of a test sample’s latent representation from the training data’s class-conditional distribu-
tions (Lee et al., 2018). Similarly, we employ a K-Nearest Neighbors (KNN) approach,
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where uncertainty is derived from the average latent-space distance to the nearest training samples
(Sun et al., 2022). We also compare against a method specifically designed for graph data, namely
GNNSafe, a graph-specific Energy-Based Model that incorporates a label propagation mechanism
(Wu et al., 2023).

However, the de-facto reference model against which new uncertainty quantification methods are
measured is the Classical Ensemble. Despite its conceptual simplicity, this approach con-
sistently achieves state-of-the-art performance across a wide range of tasks and datasets, making it
the target method to outperform (Lakshminarayanan et al., 2017; Gustafsson et al., 2020; Ovadia
et al., 2019; Abe et al., 2022). Its strength, lies in its combination of high performance with practical
simplicity: it is easy to implement, scales effectively, and is largely hyperparameter-free, requiring
only the independent training of multiple standard models.

Additional details on model selection are reported in Appendix C.

4.4 ABLATED MODELS

To better understand the effect of each component in our proposed CredalLJ GNN model, we
conduct a series of ablation studies.

The Credal Final describes in Section 3.2 removes the effect of the joint trajectory of the em-
bedding so that the credal module is constrained to rely solely on the final node representation.

To test whether the performance of our model stems primarily from its latent joint representation
rather than the credal module itself, we conduct a second ablation. We replace our credal output
layer with a simple KNN density estimator, a method inspired by the Joint Latent Density Estimation
(JLDE) principle recently proposed by Fuchsgruber et al. (2025). Specifically, we compute the OOD
score based on the k-Nearest Neighbors (KNN) distance within the joint latent space, zjoint

v , used by
our full model. We refer to this model as KNNLJ.

Finally, the Credal Ensemble introduced in Section 3.2 removes the specialized training proce-
dure for the credal module, aiming to estimate the credal set from a set of standard prediction.

4.5 RESULTS

The OOD detection performance of our proposed methods and all baselines is presented in Table 2,
with results reported in AUROC. The experiments span six diverse datasets, including both ho-
mophilic and highly heterophilic graphs, allowing for a comprehensive evaluation of robustness to
different graph structures. Additional results are reported in Appendix B.

Table 2: OOD detection performance across all datasets (AUROC ↑). For models that al-
low uncertainty disentanglement, both aleatoric and epistemic uncertainty scores are reported
(aleatoric/epistemic). Best results are highlighted in bold, second-best results are underlined, and
third-best results are shown with a light gray background. Results with variance are reported in
Appendix B.

Method Chameleon Squirrel ArXiv Patents Coauthor Reddit2

Energy 58.25 44.47 50.16 43.33 94.47 43.93
KNN 56.81 52.79 56.86 52.55 88.23 65.63
ODIN 57.98 47.28 48.16 43.21 94.17 43.09
Mahalanobis 51.82 53.79 59.52 58.72 82.49 68.98
GNNSafe 50.42 35.88 35.30 27.35 94.82 61.99
Classical ensemble 74.00/30.22 58.32/59.13 58.20/ 65.45 48.23/60.35 95.30/94.81 58.84/72.09
KNNLJ 70.06 71.06 45.35 46.74 32.37 36.55

Credal final 76.29/67.27 75.02/65.85 64.65/65.66 68.92/69.73 74.80/50.74 70.57/69.35
Credal ensemble 74.98 /29.54 59.03/53.66 58.05/50.97 47.41/ 64.64 93.85/93.72 61.16/57.72
CredalLJ 72.37/77.67 73.89/77.04 65.77/63.79 70.78/60.06 86.58/70.88 66.35/67.31

The results highlight the limitations of existing uncertainty quantification methods, particularly on
heterophilic graphs. Our CredalLJ achieves the best performance on all heterophilic benchmarks

8
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(Chameleon, Squirrel, ArXiv, Patents), while remaining competitive on homophilic ones, being only
a few percentage points below the Classical Ensemble, which stands out as the best baseline.

The Credal Final consistently ranks second on all heterophilic benchmarks, being only 1–2
percentage points below the CredalLJ, which highlights the importance of the Credal module.

Credal Ensemble and KNNLJ performed worse than expected. In particular, KNNLJ proved
to be an unreliable uncertainty estimator, achieving good performance only on two datasets, while
Credal Ensemble slightly underperformed the Classical Ensemble, with the exception
of the Patents dataset. This suggests that a simple post-hoc application of credal theory offers limited
gains without architectural and training modifications.

As expected, the Classical Ensemble outperformed all baselines on both homophilic and
heterophilic datasets. However, the baselines maintained competitiveness in the homophilic setting.

On the homophilic Coauthors dataset, many standard post-hoc methods, including Energy,
and the graph-specific GNNSafe, achieve strong performance. Similarly for Reddit2 where
Mahalanobis and KNN are competitive. However, the performance of nearly all single-model
baselines collapses dramatically on the heterophilic datasets, especially for GNNSafe which relies
on homophilic smoothing kernels.

A deeper analysis of the results reveals several intriguing patterns. First, the optimal type of uncer-
tainty for OOD detection is highly dataset-dependent. For our state-of-the-art CredalLJ model,
epistemic uncertainty provides the strongest signal on the smaller heterophilic graphs, whereas
aleatoric uncertainty is more effective on the larger ones. This suggests that as the scale of the graph
increases, the most reliable OOD indicator may shift from the model’s own ignorance (epistemic) to
the inherent ambiguity of the data itself (aleatoric).

We observe that, in general, models rely on different uncertainty types for different graphs. This
highlights the practical value of our proposed methods, which can successfully disentangle and
leverage both aleatoric and epistemic uncertainty to adapt to a wide variety of graph properties and
complexities.

This interplay between aleatoric and epistemic uncertainty in the context of OOD detection has been
noted in prior work (Stadler et al., 2021; Fuchsgruber et al., 2024; 2025) and requires further study.

5 CONCLUSIONS

In this paper, we introduced Credal Graph Neural Networks, the first framework to extend credal
learning to the graph domain for robust uncertainty quantification. Our approach addresses the
limitations of existing methods, which often falter on graphs that violate the homophily assumption.
We proposed a novel architecture that leverages a joint latent representation of the full information
propagation trajectory across all GNN layers. This, combined with a training objective inspired by
Distributionally Robust Optimization, allows our models to produce set-valued predictions in the
form of credal sets, enabling a principled disentanglement of aleatoric and epistemic uncertainty.

Our experiments demonstrate the effectiveness of our approach, particularly on challenging het-
erophilic graphs. The proposed framework sets a new state-of-the-art for out-of-distribution de-
tection across all heterophilic benchmarks, where the performance of most single-model baselines
collapses dramatically. Furthermore, our models remain highly competitive on homophilic datasets,
showcasing their robustness and versatility across diverse graph structures. These results highlight
the importance of both the novel joint latent architecture and the specialized credal training proce-
dure for achieving reliable uncertainty estimates.

By introducing the first credal GNNs, this work opens a new and promising research direction for
uncertainty-aware graph machine learning. Our findings also underscore the need for a deeper in-
vestigation into the complex interplay between aleatoric and epistemic uncertainty in the context of
OOD detection. Future work should therefore focus on better understanding this relationship, ex-
ploring how these distinct sources of uncertainty can be optimally combined or selectively leveraged
to build more reliable and trustworthy GNNs for safety-critical applications.
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Reproducibility statement To ensure the reproducibility of our research, we have made our com-
plete source code and experimental setup publicly available. The repository, which includes the im-
plementation of our proposed Credal GNN and all other benchmarked models, can be accessed at the
following anonymous link: https://anonymous.4open.science/r/CGNN-ICLR26/.
The repository contains detailed instructions for setting up the required environment and scripts to
replicate the experiments presented in this paper. Furthermore, all datasets utilized in our study are
established, open-source benchmarks from the graph machine learning community. These datasets
can be retrieved from their original publications, which are cited in our manuscript where each
dataset is first introduced. We believe that the provided code and the public nature of the datasets
offer sufficient resources for the research community to verify our findings and build upon our work.

Ethics Statement The research conducted in this paper conforms in every aspect with the ICLR
Code of Ethics. Our study does not involve human subjects, sensitive personal data, or applications
with foreseeable harmful consequences. No ethical concerns are anticipated regarding data usage,
methodology, or findings.
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A LLM USAGE

Large Language Models (LLMs) were used as general-purpose assistive tools during the preparation
of this paper. Their role was limited to two aspects: (i) improving the writing quality (e.g., grammar
correction, rephrasing for clarity, and suggesting minor improvements to text structure), and (ii)
assisting with retrieval and discovery of related work (e.g., suggesting potentially relevant references
for further manual inspection by the authors).

All content generated or suggested by LLMs was carefully reviewed, verified, and, where necessary,
edited by the authors to ensure accuracy and faithfulness to the intended scientific contributions.
LLMs were not used to generate scientific content, including research ideas, hypothesis formulation,
experimental design, data analysis, or interpretation of results.

The authors take full responsibility for all parts of the paper.

B ADDITIONAL RESULTS

Table 3: In-distribution (ID) test classification performance (F1-score ↑). For our credal models, we
report results based on two predictions, using the vectors qL and qU . We report mean ± standard
deviation over 5 runs. Best results are highlighted in bold, second-best results are underlined, and
third-best results are shown with a light gray background.

Method Chameleon Squirrel ArXiv Patents Coauthor Reddit2

Vanilla GNN 57.61 ± 0.98 46.46 ± 2.25 51.81 ± 0.90 53.35 ± 0.43 95.23 ± 1.41 79.47 ± 0.36
Credal Final (qL) 53.99 ± 1.42 39.55 ± 0.74 51.03 ± 0.40 51.20 ± 0.41 50.53 ± 0.89 27.38 ± 0.36
Credal Final (qU ) 55.43 ± 0.38 39.55 ± 0.43 51.03 ± 0.42 51.94 ± 0.40 28.60 ± 0.81 24.63 ± 0.36
CredalLJ (qL) 42.75 ± 0.41 39.71 ± 0.45 52.39 ± 0.39 49.34 ± 0.40 75.44 ± 0.98 23.83 ± 0.37
CredalLJ (qU ) 36.96 ± 0.39 36.17 ± 1.44 51.01 ± 0.40 49.34 ± 0.41 43.76 ± 0.42 27.29 ± 0.37

We report the in-distribution (ID) classification performance, measured by the F1-score, in Table 3.
The results show that the Vanilla GNN baseline generally outperforms our credal models on ID data.
This outcome is expected and highlights a known trade-off in robust machine learning: the Vanilla
GNN is optimized solely for empirical risk minimization, maximizing performance on data from the
training distribution. Our credal models, in contrast, are regularized via a Distributionally Robust
Optimization (DRO) objective to enhance out-of-distribution (OOD) robustness, which naturally
results in more conservative predictions and a slight decrease in ID performance.

Notably, the performance degradation on ID classification appears correlated with the number of
classes. The degradation is most pronounced on datasets with a high number of classes, such as
Reddit2 (41 classes) and Coauthor (15 classes), while the performance is much more com-
petitive on the 5-class datasets like ArXiv. This suggests that deriving a single, accurate point
prediction from a credal set becomes inherently more challenging as the dimensionality of the target
space grows. While methods exist to address this, such as using an Intersection Probability to map
a credal set to a single probability (Wang et al., 2024b), or employing Probability Interval Dimen-
sion Reduction (PIDR) to manage the computational complexity in many-class settings (Wang et al.,
2024c), our focus in this work remains on the quality of the uncertainty representation itself rather
than on optimizing the point-prediction decision rule.

The OOD detection results with standard deviation are presented in Table 4.

C MODEL SELECTION

To ensure a fair and robust comparison, we performed extensive hyperparameter tuning for all base-
line and proposed models, with the search spaces detailed in Table 5. For the Vanilla GNN and our
Credal models (Final Layer and Latent Joint), we employed a Bayesian optimization strategy with
30 trials for each dataset and model combination. The Vanilla GNN was optimized to maximize the
validation F1-score, reflecting its primary goal of in-distribution accuracy. In contrast, our Credal
models were optimized to maximize the validation AUROC based on their epistemic uncertainty
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Table 4: OOD detection performance across all datasets (AUROC↑). We report the mean and stan-
dard deviation over 5 runs. For models that allow uncertainty disentanglement, we report aleatoric
(AU) and epistemic (EU) scores separately.

Method Chameleon Squirrel ArXiv Patents Coauthor Reddit2

Energy 58.25 ± 4.63 44.47 ± 1.62 50.16 ± 4.71 43.33 ± 3.48 94.47 ± 0.45 43.93 ± 1.24
KNN 56.81 ± 6.28 52.79 ± 1.55 56.86 ± 1.39 52.55 ± 1.24 88.23 ± 2.39 65.63 ± 1.50
ODIN 57.98 ± 2.46 47.28 ± 2.05 48.16 ± 2.37 43.21 ± 0.98 94.17 ± 0.22 43.09 ± 0.26
Mahalanobis 51.82 ± 3.31 53.79 ± 0.75 59.52 ± 1.47 58.72 ± 1.25 82.49 ± 0.47 68.98 ± 1.21
GNNSafe 50.42 ± 0.86 35.88 ± 0.67 35.30 ± 0.34 27.35 ± 0.27 94.82 ± 0.98 61.99 ± 0.96

Classical ensemble (AU) 74.00 ± 0.96 58.32 ± 1.19 58.20 ± 0.93 48.23 ± 0.93 95.30 ± 1.15 58.84 ± 1.46
Classical ensemble (EU) 30.22 ± 1.23 59.13 ± 0.86 65.45 ± 1.07 60.35 ± 0.86 94.81 ± 1.47 72.09 ± 0.86

KNNLJ 70.06 ± 0.50 71.06 ± 0.50 45.35 ± 0.70 46.74 ± 1.09 32.37± 1.07 36.55 ± 0.83

Credal ensemble (AU) 74.98 ± 1.23 59.03 ± 0.86 58.05 ± 0.50 47.41 ± 0.83 93.85 ± 1.46 61.16 ± 0.50
Credal ensemble (EU) 29.54 ± 0.70 53.66 ± 1.07 50.97 ± 0.70 64.64 ± 1.09 93.72 ± 0.70 57.72 ± 0.50

Credal final (AU) 79.29 ± 0.30 75.02 ± 6.20 64.65 ± 0.20 68.92 ± 2.74 74.80 ± 6.97 70.57 ± 1.47
Credal final (EU) 67.27 ± 2.32 65.85 ± 0.57 65.66 ± 1.27 66.73 ± 0.23 50.74 ± 1.36 69.35 ± 2.24

CredalLJ (AU) 72.37 ± 7.16 73.89 ± 0.47 65.77 ± 0.21 70.78 ± 7.34 86.58 ± 1.43 66.35 ± 0.11
CredalLJ (EU) 77.67 ± 1.32 77.04 ± 8.25 63.79 ± 0.08 60.06 ± 0.47 70.88 ± 1.92 67.31 ± 0.69

Table 5: Hyperparameter search spaces for the proposed models. U(a, b) denotes a uniform distri-
bution between a and b.

Hyperparameter Vanilla GNN Classical & Credal Ensemble Credal Final & LJ KNNLJ

Learning Rate (lr) U(10−5, 10−1) — U(10−5, 10−1) —
Hidden Channels {64, 128, 256} — {64, 128, 256} —
Num Layers {2, 3} — {2, 3} —
Weight Decay U(10−7, 10−1) — U(10−7, 10−1) —
GNN Type {GCN, SAGE} — {GCN, SAGE} —
Ensemble Size (M) — {2, . . . , 15} — —
Delta (δ) — — U(0.5, 1.0) —
k — — — {5, 10, 20, 50, 100, 200}

score, directly tuning them for OOD detection performance. The Classical/Credal Ensemble base-
line was constructed following a two-stage process to ensure its strength. First, we trained a large
pool of 100 Vanilla GNNs using an extended Bayesian search. From this pool, we selected the top-
performing models (based on their validation F1-score) to construct ensembles of varying sizes M .
For the KNNLJ we used the best Vanilla model to compute the embeddings.

For the baseline models, we used the hyperparameter range in their original papers.

D BAYESIAN MODEL AVERAGING

Bayesian neural networks impose significant challenge due to computational complexity both during
training and inference. Bayesian Model Averaging (Wasserman, 2000) is often applied in practice.
This entails approximating the predictive distribution by drawing M samples of the parameter vector
θi from the posterior distribution and averaging their corresponding predictions pi:

p̃ =
1

M

M∑
i=1

pi =
1

M

M∑
i=1

hbnn
θi

(x). (12)

In practice, these M predictive samples may arise either from repeated posterior sampling of a single
Bayesian Neural Network or from an ensemble of M independently trained models. The ensem-
ble interpretation is particularly attractive in large-scale applications, as it offers a straightforward,
parallelizable, and empirically effective approach to approximate Bayesian Model Averaging while
providing robust uncertainty estimates.
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E UNCERTAINTY DECOMPOSITION IN ENSEMBLE AND BAYESIAN MODELS

Given M models sampled with Bayesian Model Averaging or trained independently in an ensemble,
the uncertainty can be decomposed using Shannon entropy (Hüllermeier & Waegeman, 2021). The
total uncertainty TU is the entropy of the final averaged prediction, while the aleatoric uncertainty
AU is the average entropy of the individual sample predictions:

TU := H(p̃) = −
C∑

k=1

p̃k log2 p̃k, (13)

AU := H̃(p) =
1

M

M∑
i=1

H(pi) = − 1

M

M∑
i=1

C∑
k=1

pik log2 pik , (14)

where C is the number of classes. The epistemic uncertainty EU is then the difference, EU :=
TU−AU, which quantifies the disagreement among the posterior samples (Hüllermeier et al., 2022).
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