

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ARE REASONING LLMs ROBUST TO INTERVENTIONS ON THEIR CHAIN-OF-THOUGHT?

Anonymous authors

Paper under double-blind review

ABSTRACT

Reasoning LLMs (RLLMs) generate step-by-step chains of thought (CoTs) before giving an answer, which improves performance on complex tasks and makes reasoning transparent. But how robust are these reasoning traces to disruptions that occur *within* them? To address this question, we introduce a controlled evaluation framework that perturbs a model’s own CoT at fixed timesteps. We design seven interventions (benign, neutral, and adversarial) and apply them to multiple open-weight RLLMs across MATH, SCIENCE, and LOGIC tasks. Our results show that RLLMs are generally robust, reliably recovering from diverse perturbations, with robustness improving with model size and degrading when interventions occur early. However, robustness is not style-invariant: paraphrasing suppresses doubt-like expressions and reduces performance, while other interventions trigger doubt and support recovery. Recovery also carries a cost: neutral and adversarial noise can inflate CoT length by more than 200%, whereas paraphrasing shortens traces but harms accuracy. These findings provide new evidence on how RLLMs maintain reasoning integrity, identify doubt as a central recovery mechanism, and highlight trade-offs between robustness and efficiency that future training methods should address.

1 INTRODUCTION

Large language models (LLMs) have recently gained strong reasoning abilities through test-time scaling, where they “think” before providing a final answer (Wei et al., 2022; Huang & Chang, 2023; Yao et al., 2023; Zhang et al., 2024b; Guo et al., 2025). These Reasoning-LLMs (RLLMs) are trained to solve problems using Chain-of-Thought (CoT) reasoning, which breaks down solutions into intermediate steps (Jie et al., 2024; Paul et al., 2024; Kumar et al., 2025b). The resulting traces can increase user trust and enable error diagnosis in human-in-the-loop workflows (Mosqueira-Rey et al., 2023). Yet, an open question remains: how robust are these models to perturbations *within* their own reasoning as it unfolds?

As statistical models, RLLMs can make mistakes or hallucinate (Xu et al., 2024; Huang et al., 2025b), and their CoTs can be affected by noisy tool outputs or adversarial injections (Shen, 2024; Wang et al., 2024b; Zhan et al., 2024; Kumar et al., 2025a; Shayegani et al., 2023; Liu et al., 2023). Beyond correctness, the *efficiency* of reasoning matters: longer CoTs increase cost and latency (Arora & Zanette, 2025; Sui et al., 2025). Understanding whether RLLMs recover from localized disruptions, and at what computational price, is important both scientifically and for deployment.

Therefore, we introduce a controlled framework to probe robustness *during* reasoning. Starting from correct CoTs produced by several RLLMs, we intervene at fixed timesteps by modifying only the current reasoning step. Our interventions span (i) *benign* changes that preserve semantics (e.g., paraphrasing, continuation by another model), (ii) *neutral* noise (random characters, unrelated Wikipedia text), and (iii) *adversarial* perturbations (incorrect continuation, fabricated fact, unrelated CoT start). After each intervention, the same model resumes its own chain, allowing us to faithfully measure recovery. We evaluate open-weight RLLMs across three domains (MATH, SCIENCE, LOGIC) using sampling-based robustness metrics that capture success under different strictness levels.

In summary, our contributions are: (1) We introduce a controlled benchmark that perturbs a model’s *own* chain of thought at fixed timesteps to test robustness during reasoning; (2) we design seven interventions (benign, neutral, and adversarial) and evaluate them across multiple open-weight RLLMs

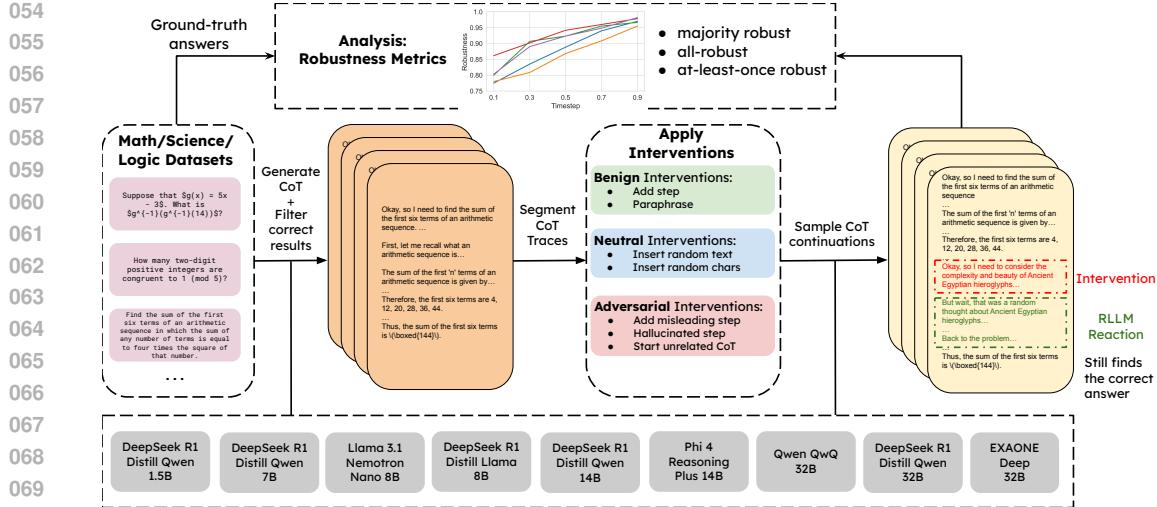


Figure 1: Overview over our evaluation method. We generate CoTs from 5 RLLMs using prompts from NuminaMath and curate a subset of 600 suitable prompts that all models answer correctly. Then, we segment the CoTs into reasoning steps and perform various interventions at fixed timesteps in the reasoning chains. We sample continuations from the intervened chains to probe the RLLMs’ robustness and analyze whether models still reach the correct answer.

and three domains (MATH, SCIENCE, LOGIC); (3) we analyze recovery mechanisms and uncover the central role of short, local *doubt expressions* (e.g., ‘‘wait’’, ‘‘let me check’’) in enabling self-correction, alongside a consistent *non-invariance to style* under paraphrasing; and (4) we quantify the compute cost of recovery, showing substantial CoT-length inflation under neutral/adversarial noise (up to 250% in some settings), while paraphrasing shortens traces but reduces accuracy.

Together, these results clarify when and how RLLMs maintain reasoning integrity under realistic disruptions, and at what price. They reveal concrete trade-offs between robustness and test-time compute, highlight that stylistic shifts, and not just semantic errors, can impair recovery, and point to actionable training targets: preserving appropriate doubt, improving style robustness, and developing recovery strategies that control token cost in noisy tool-use pipelines.

2 RELATED WORK ON RLLMS AND LLM SELF-CORRECTION

Reasoning LLMs. While the concept of CoT prompting emerged early (Wei et al., 2022; Kojima et al., 2022; Wang et al., 2023), we define RLLMs as LLMs that are post-trained to natively support reasoning. Most prominently, these models are trained using supervised finetuning (SFT) and reinforcement learning (RL) techniques such as PPO (Schulman et al., 2017) and DPO (Rafailov et al., 2024). RLLMs also make use of recent advances in online RL that greatly improve performance, such as reinforcement learning from verifiable rewards (RLVR) (Shao et al., 2024; Wang et al., 2025; Su et al., 2025), process reward models (PRMs) (Setlur et al., 2024; Zhang et al., 2024a; Cui et al., 2025; Zhang et al., 2025), and actor-critic methods (Le et al., 2022; Yuan & Xie, 2025; Kumar et al., 2025b). In this study, we define RLLMs as LLMs that are either trained directly with online RL to output long-form CoTs or are distilled from another LLM trained using online RL, such as models distilled from DeepSeek-R1 (Guo et al., 2025).

LLM Self-Correction. Previous work (Zhou et al., 2024; Singh et al., 2024) has shown that conventional (non-reasoning) LLMs have limited reliability in reasoning and self-correction. Huang et al. (2024) find models often change correct answers to incorrect ones when self-correcting without external hints. Tyen et al. (2024) report LLMs can fix errors if their location is known but struggle to identify the first error in a faulty reasoning chain. Smaller models especially lack robustness to incorrect few-shot examples and problem perturbations (Singh et al., 2024; Zhou et al., 2024; Huang et al., 2025a; Yu et al., 2025), and counterfactual interventions hurt deductive reasoning (Hoppe et al., 2025). However, RL-based methods show promise: *ScorE* (Kumar et al., 2024) trains

108 multi-turn second-attempt corrections, improving reasoning tasks, while S^2R (Ma et al., 2025) uses
 109 combined rewards to verify and self-correct, boosting math reasoning accuracy with limited data.
 110

111 In the context of Chain-of-Thought, Zhou et al. (2024) construct noisy rationales and provide them
 112 as in-context examples to an LLM, showing this can increase errors, but do not modify the LLM’s
 113 reasoning trace itself. Yang et al. (2025) show that reasoning LLMs struggle to recover when the
 114 initial part of their CoT is misleading. However, this setup is less realistic and more similar to prompt
 115 attacks (Kumar et al., 2025a), as it does not use the model’s own CoT in any way. Therefore, we
 116 expand on these insights by intervening at various timesteps of the model’s own CoT and introducing
 117 more diverse interventions. Finally, Shah et al. (2025) use similar interventions to measure when in
 118 the pretraining process this self-reflection skill is first observed.

119 To better understand the robustness of the CoTs of reasoning LLMs, we conduct a systematic study
 120 of their ability to recover from benign, neutral, and adversarial interventions in their reasoning trace.
 121 We also evaluate how these interventions affect the length of the CoT to measure the cost of er-
 122 rors and misleading injections. Our methods establish a new standard for benchmarking reasoning
 123 robustness and will inform future improvements in LLM training.
 124

125 3 INTERVENING ON COTs TO EVALUATE ROBUSTNESS

126
 127 **LLMs Can’t Find Reasoning Errors. Can RLLMs?** Tyen et al. (2024) introduce *BIG-Bench Mistake*,
 128 a benchmark that measures how well models can detect errors in CoTs. The benchmark con-
 129 tains five tasks: Dyck Languages, Logical Deduction, Multistep Arithmetic, Tracking Shuffled Ob-
 130 jects, and Word Sorting, where the model must identify the location of the first incorrect reasoning
 131 step. Conventional (non-reasoning) LLMs perform poorly across all tasks, highlighting their limited
 132 ability to monitor their own reasoning. A natural question is whether RLLMs, with their explicitly
 133 trained reasoning traces, overcome this limitation. To test this, we evaluate several RLLMs on BIG-
 134 Bench Mistake. Results are shown in Table 1 (full results in Appendix A.3). RLLMs outperform
 135 non-reasoning models of comparable and even larger size, and they approach saturation on some
 136 tasks. These findings suggest that RLLMs have developed emerging *metacognitive* capabilities like
 137 self-reflection and self-correction, allowing them to identify and reason about their own errors.
 138

139 Model	140 Dyck	141 Logical Ded.	142 Multistep Arith.	143 Track Shuffled Obj.	144 Word Sorting
145 Phi-4-reasoning-plus (14B)	56.5	65.6	91.4	92.0	59.2
146 QwQ-32B	66.7	66.9	90.3	94.6	53.2
147 R1-Distill-Qwen-32B	42.4	31.4	89.4	86.3	30.7
148 R1-Distill-Llama-70B	35.8	25.0	78.3	86.8	29.2
149 Qwen3-30B-A3B-Thinking	38.1	76.8	76.4	83.8	50.8
150 Qwen3-30B-A3B-Instruct	15.2	57.2	76.0	82.9	2.8
151 GPT-4	17.1	40.7	44.0	62.3	35.0
152 gpt-oss-120b	73.5	78.3	90.7	92.0	50.7
153 o3	88.7	82.7	91.0	92.0	64.3

154 Table 1: BIG-Bench-Mistake error-localization accuracies (in %). RLLMs substantially outperform
 155 the non-reasoning GPT-4 baseline.
 156

157 **A New Benchmark for Reasoning Robustness.** Inspired by these findings, the natural question
 158 arises: What is the extent of these improved self-correction and self-reflection capabilities as the
 159 model is “thinking”, and how robust are they? Therefore, different to the BIG-Bench Mistake
 160 benchmark, we evaluate not only the ability to locate errors but also the ability to self-correct during
 161 the reasoning process. To simulate different reasoning errors, we design a new benchmark with
 162 seven interventions that we apply to the Chains of Thought (CoTs) to probe the robustness and self-
 163 correction capabilities of RLLMs. These interventions are either *benign* (not intended to deliberately
 164 harm the reasoning process), *neutral* (similar to injecting random noise), or *adversarial* (deliberately
 165 trying to undermine the model’s ability to solve the given problem). To create an evaluation set, we
 166 collect reasoning chains from all models in this study, apply these interventions, and then sample
 167 continuations from the model that originally generated the reasoning chain.
 168

Category	Intervention Description	LLM-based
Benign	Continuation with other model: complete one reasoning step.	✓
	Paraphrasing reasoning: rephrase the chain of thought.	✓
Neutral	Random character insertion at arbitrary positions in step R_k .	✗
	Wikipedia text insertion: add unrelated factual content.	✗
Adversarial	Incorrect reasoning continuation: add a wrong reasoning step.	✓
	Hallucinated fact: insert a false mathematical fact.	✓
	Unrelated CoT: insert the start of unrelated chain of thought.	✓

Table 2: Interventions in our experiments, categorized by their expected impact on model reasoning.

3.1 DESIGNING INTERVENTIONS TO PROBE RLLM ROBUSTNESS

We design seven interventions to probe the robustness of reasoning LLMs (RLLMs) to perturbations of their CoT. Interventions are grouped into three categories: *benign*, *neutral*, and *adversarial*. An overview is given in Table 2, with illustrative examples in Table 3. Prompts used to generate LLM-based interventions are in Appendix D.1, and generation hyperparameters are in Appendix D.6. Therefore, 4 interventions of ours take into account the context of the previous trace, while 3 interventions (all neutral interventions and "Unrelated CoT") do not. All interventions based on trace context use Qwen-2.5-32B-Instruct to generate the interventions

Benign interventions preserve correctness of reasoning but alter its form, allowing us to study how sensitive RLLMs are to harmless variations. We consider: (1) *Continuation with another model*: we add one reasoning step produced by a different, non-reasoning LLM. This tests whether RLLMs remain consistent when continuing from reasoning written in a potentially different style. (2) *Paraphrasing reasoning*: we use an LLM to rewrite the entire chain (R_1, \dots, R_k) while preserving its content. This tests robustness to changes in wording and structure. To validate semantic preservation, we manually compared 100 paraphrased CoTs against their original CoT.

Neutral interventions introduce irrelevant information into the CoT. They allow us to measure how well RLLMs can filter noise, whether incoherent or coherent. We apply: (1) *Random character insertion*: randomly selected characters are inserted into step R_k until they constitute one-third of its total length, rendering it unreadable. (2) *Wikipedia text insertion*: we replace R_k with a randomly chosen paragraph from a subset of English Wikipedia.

Adversarial interventions aim to mislead the model by introducing structured errors or distractions. We design: (1) *Incorrect reasoning continuation*: an LLM generates a faulty reasoning step (e.g., incorrect arithmetic or flawed logic) appended to the chain. (2) *Hallucinated fact*: we insert a fabricated mathematical statement that, if adopted, will propagate errors and bias the final answer. (3) *Unrelated CoT*: we replace R_k with the opening of a reasoning chain on an unrelated topic. These openings mimic typical CoT phrasing (e.g., "Okay, so I need to explain ...") but continue with a random topic drawn from a list of 100 candidates (Appendix D.5).

3.2 PROMPT AND CHAIN-OF-THOUGHT COLLECTION

Prompts. We collect prompts from three domains to ensure valid evaluation: MATH, SCIENCE, and LOGIC. For MATH, we use the `olympiads` subset of NuminaMath (Li et al., 2024), which contains 150,581 competition problems. We filter to 2,360 problems with numerically parsable answers, retaining only those where the reference answer can be parsed as a floating-point number or integer. We then restrict to problems that DeepSeek-R1 671B solved correctly, using traces from GENERALTHOUGHTS (General Reasoning, 2025). Next, we generate answers with all evaluated models, using each model's recommended hyperparameters (Appendix D.6). From these, we select 600 problems that all models solved correctly. This ensures that robustness is tested only on problems within the models' capabilities, so that observed errors arise only from interventions.

However, the 20 most common answers account for 52.78% of responses. Because of this skewed distribution, we downsample by keeping at most 20 problems per unique answer. This reduces the

Original CoT Start	Paraphrasing CoT	Continuation	Wikipedia Text	Random Character
Okay, so I need to solve this problem where a two-digit number, when you put a 5 in front of it to make a three-digit number, is 12 less than nine times the original number. Hmm, let me break this down step by step.	To solve this problem, I need to find a two-digit number such that when the digit 5 is placed in front of it to form a three-digit number, the new number is 12 less than nine times the original two-digit number. Let's approach this step by step.	I need to represent the three-digit number formed by placing 5 in front of the original two-digit number as $500 + 10a + b$, where $10a + b$ is the original two-digit number.	The Federal government's power to end slavery was limited by the Constitution, which before 1865 was understood to reserve the issue to...	If ;I wr{iteT a a5 Einjx fTGrongt offe thies 6t6%o-xdigiCht 1ngumb4er9, iP4ft be?pxcomfzes Ba(mth)creea-dAigOitH jnuLmbpbefr...
First, let me denote the original two-digit number as something. Since it's a two-digit number, I can represent it as $10a + b$, where 'a' is the tens digit and 'b' is the units digit. But maybe there's a simpler way to think about it without breaking it into digits. Let me see.	Let's denote the original two-digit number as N . Since N is a two-digit number, it can be expressed as $10a + b$, where a and b are the tens and units digits, respectively. However, for simplicity, we can directly use N in our calculations.	I can see that if we place 5 in front of the two-digit number, the three-digit number formed is $500 + \text{the original number}$, which is 12 less than 9 times the original number.	I know that when you multiply any two-digit number by 9, the result is always 10 less than appending the digit 5 in front of it.	Okay, so I need to consider the various ways bias can be inadvertently introduced into machine learning models through skewed datasets or algorithmic decisions.

Table 3: Examples of all 7 interventions used in this study. (Left) The original CoT start until segmentation at $t = 30$. (Right) Interventions colored by type, i.e. green are benign interventions, blue neutral ones, and red adversarial interventions.

chance of models succeeding by guessing frequent answers. We also discard traces missing a closing `</think>` tag and remove the top 2% longest traces.

For SCIENCE, we use SciBench (Wang et al., 2024a) and JEEBench (Arora et al., 2023). For LOGIC, we use challenging BigBench-Hard subsets (Suzgun et al., 2022), including *Causal Judgement*, *Dyck Languages*, *Logical Deduction with 7 Objects*, *Tracking 7 Shuffled Objects*, and *Formal Fallacies*. In both cases, we keep only the intersection of problems solved correctly by all models, yielding 231 SCIENCE and 326 LOGIC problems.

Segmentation. To apply interventions at controlled points in reasoning, we segment CoTs into steps. Following the common convention that RLLMs separate steps with two newline characters, we split each reasoning trace R into $R = R_1, R_2, \dots, R_n$. We define the timestep t_i of step R_i as the fraction of cumulative character length up to R_i relative to the full chain length:

$$t_i = \frac{1}{Z} \sum_{j=1}^i |R_j|, \quad \text{where} \quad Z = \sum_{j=1}^n |R_j| \quad (1)$$

We set target timesteps $T = 0.1, 0.3, 0.5, 0.7, 0.9$ and align each to the nearest reasoning step. At timestep t , the chain includes all steps up to R_k where $|t_i - t|$ is minimized.

Applying interventions. At each selected timestep, we modify the reasoning trace up to R_k and remove subsequent steps. For all interventions except *Paraphrasing reasoning*, only the last step R_k is altered. This isolates the effect of localized modifications at specific stages of reasoning. After intervention, the model resumes reasoning from this point. Importantly, each model continues only from its own original CoT; we do not prompt models with CoTs generated by others.

For each problem, we apply 7 intervention types at 5 timesteps, yielding $7 \times 5 = 35$ variants of interventions per reasoning chain. With 600 MATH problems, this results in 21,000 intervened chains per model. We sample 8 independent completions per chain, producing 168,000 completions per model. With 9 models, this results in 1.52 million reasoning chains for MATH. SCIENCE and LOGIC contain 231 and 326 problems respectively, to which we apply the same process. This results in 582,120 and 821,520 intervened reasoning chains respectively, and 2.923 million reasoning chains in total.

3.3 SAMPLING-BASED ROBUSTNESS METRICS

After applying an intervention at a given timestep, we restart the reasoning process and sample $N = 8$ independent continuations from the model, to see how it reacts to our intervention. Let K denote the number of completions that produce the correct final answer. We define robustness under three criteria: *at-least-once-robust* iff $K \geq 1$, *majority-robust* iff $K \geq \lfloor N/2 \rfloor + 1$, and *all-robust* iff $K = N$. These metrics capture robustness at different strictness levels. We focus on *majority robustness*, a metric that provides a good indication of how disruptive our interventions are, as it is

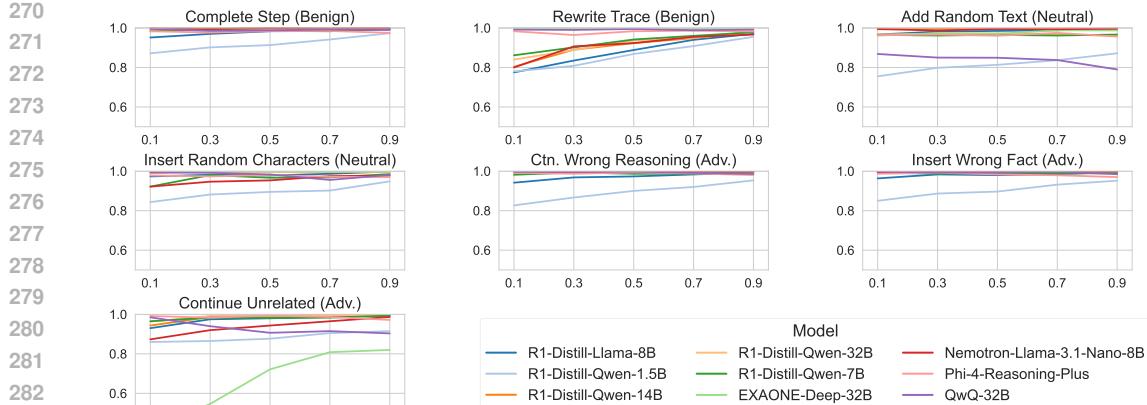


Figure 2: *Majority robustness* scores for all 5 models and 7 interventions across different timesteps. A score of 1.0 indicates for all problems, the model was able to generate a correct answer ≥ 5 out of 8 times. Models are robust to all interventions, and larger models are more robust than smaller models.

less sensitive to answers that were wrong due to chance in the sampling process, and thus provides a good indication of the genuine disruptiveness of our interventions.

4 STRENGTHS AND LIMITATIONS OF RLLM ROBUSTNESS TO INTERVENTIONS

We evaluate robustness across a diverse set of open-weight reasoning models, including DEEPSEEK-R1-DISTILL-QWEN variants (1.5B, 7B, 14B) and DEEPSEEK-R1-DISTILL-LLAMA-8B (Guo et al., 2025), LLAMA-3.1-NEMOTRON-NANO-8B-v1 (Bercovich et al., 2025), PHI-4-REASONING and PHI-4-REASONING-PLUS (Abdin et al., 2025), EXAONE-DEEP-32B (LG AI Research et al., 2025), and QwQ-32B (Qwen Team, 2025).

4.1 RLLMs ARE MOSTLY ROBUST TO INTERVENTIONS

Fig. 2 shows *majority robustness* for all interventions. We find that all RLLMs we evaluate generally recover from our interventions, showing near-perfect robustness in most cases. Interventions applied at earlier timesteps tend to have a greater impact on the correctness of the final answer, and larger models are generally more robust. In every case, the smallest model in our study, DEEPSEEK-R1-DISTILL-QWEN-1.5B, shows weakest recovery performance, while other models perform similarly. Some interventions are particularly disruptive to some models, such as “Continue Unrelated” for EXAONE-DEEP-32B or “Add Random Text” for QwQ-32B.

When comparing interventions, we observe similar performance across all intervention types, showing that RLLMs are robust regardless of whether the intervention is benign, neutral, or adversarial. Only *Rewrite Trace* results in generally lower robustness scores compared to the other interventions. The results for *All robustness* and *At-least-once robustness* in the supplementary material support our observations: RLLMs successfully recover from all interventions evaluated in this study. As before, *Rewrite Trace* yields the lowest robustness scores, but they are still generally high. Qualitative examples illustrating how models recover from interventions are shown in Table 4. For the *Continuation* intervention, where we insert a correct reasoning step from a different model, the RLLM recognizes the unfamiliar content by outputting “Wait”, but then proceeds correctly after realizing the information is accurate. When Wikipedia text is inserted, the RLLM identifies it as unrelated and ignores it. When an incorrect mathematical statement is added, the RLLM correctly detects the error and continues with proper reasoning. Finally, when an unrelated CoT is introduced, the RLLM follows it for a few steps, then recognizes its irrelevance and recovers.

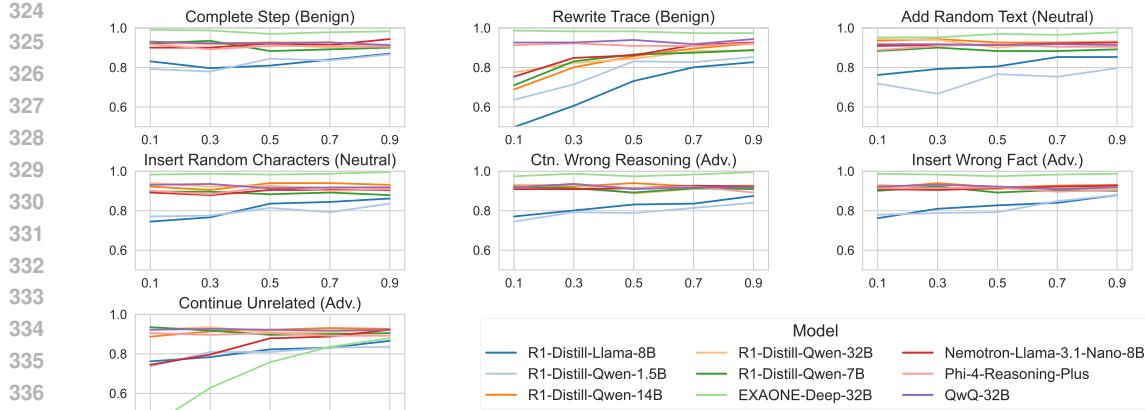


Figure 3: Per-model majority robustness by intervention on the SCIENCE domain. We observe that models maintain high robustness across all intervention types, with performance patterns largely consistent with those seen in mathematical reasoning, confirming that recovery mechanisms generalize beyond mathematics.

To assess whether the recovery mechanisms we observe on mathematical problems extend to other domains, we evaluate the same interventions on the SCIENCE and LOGIC datasets. Figures 3 and 4 report per-model majority robustness by intervention. Patterns are similar to those on mathematics: models remain highly robust across intervention types, neutral insertions impose the largest degradation, and style rewrites tend to have smaller but noticeable dips for some models. Across all domains, robustness remains high, with QwQ-32B, Phi-4-reasoning-plus, and the larger Distill-Qwen variants staying close to ceiling across interventions. The smallest model exhibits the most degradation, particularly under neutral insertions and adversarial wrong continuations. **This robustness extends to repeated perturbations: when we apply up to 5 consecutive “Wrong Continuation” interventions with reasoning between each, most models degrade gracefully while the strongest (EXAONE-Deep-32B, QwQ-32B) maintain >99% accuracy (see Appendix A.2).**

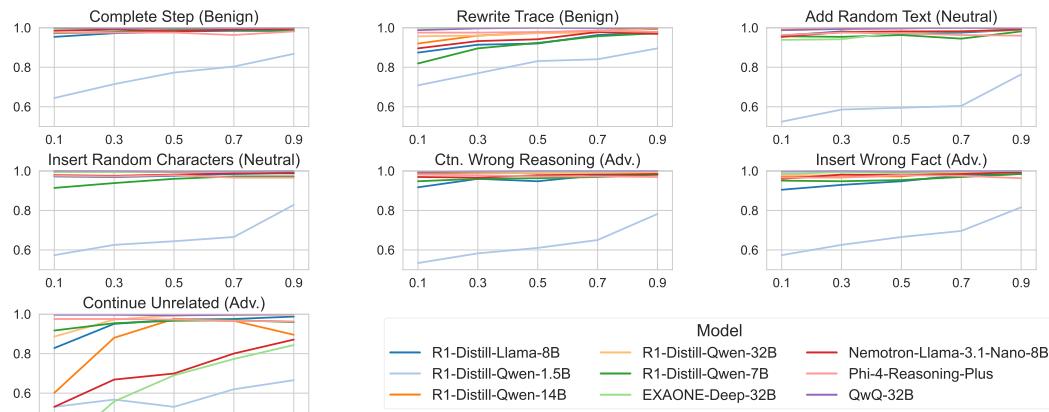


Figure 4: Per-model majority robustness by intervention on the LOGIC domain. Again, we observe that models maintain high robustness across all intervention types, with performance patterns largely consistent with those seen in mathematical and scientific reasoning.

4.2 RLLMs ARE NOT STYLE-INVARIANT

The role of doubt in reasoning. Manual inspection of intervened chains reveals that RLLMs often insert expressions of doubt immediately after the intervention point. To test whether this pattern holds systematically, we analyze the 20 sentences following each intervention. Each sentence is

Continuation	Wikipedia Text Insertion	Hallucinated Fact	Unrelated CoT
I need to represent the three-digit number formed by placing 5 in front of the original two-digit number as $500 + 10a + b$, where $10a + b$ is the original two-digit number.	The Federal government's power to end slavery was limited by the Constitution, which before 1865 was understood to reserve the issue...	I know that when you multiply any two-digit number by 9, the result is always 10 less than appending the digit 5 in front of it.	Okay, so I need to consider the various ways bias can be inadvertently introduced into machine learning models through skewed datasets or algorithmic decisions.
Wait, actually, that's correct because putting 5 in front would be like adding 500 to the original number. So, if the original number is, say, 23, putting 5 in front would make it 523, which is $500 + 23$. Yeah, that makes sense.	Wait, hold on, that's about slavery and the Civil War, but my problem is about a two-digit number. Let me refocus.	Wait, no, that's not quite right. The problem says that the three-digit number ($500 + N$) is 12 less than 9 times the original number (9^*N). So, mathematically, that can be written as: ...	For example, if a facial recognition system is trained mostly on images of light-skinned individuals, ...

Table 4: Responses of DISTILL-QWEN-14B to 4 interventions (at $t = 30$). Intervention names are colored by type (benign, neutral, adversarial). Top row shows the intervened text, and the bottom row the response.

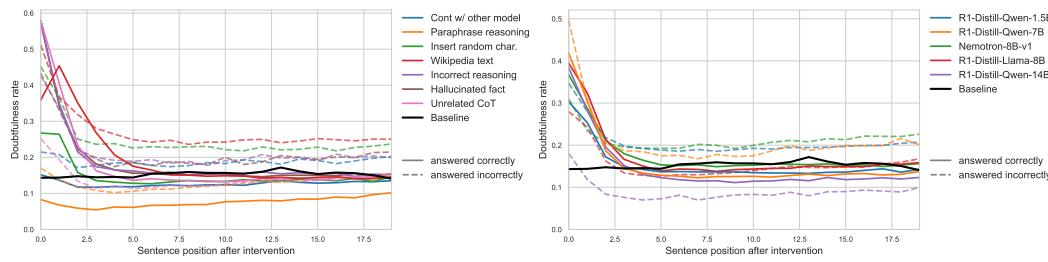


Figure 5: Average doubtfulness scores in the next 20 sentences after intervention, grouped by intervention type (left) and model (right).

automatically classified by an LLM as either expressing doubt about the preceding reasoning or not (see Appendix D.2 for prompts and Appendix D.6 for hyperparameters). To validate whether our classifier correctly classifies doubtful and non-doubtful sentences, we validate it on a dataset of 200 doubtful sentences similar to the ones in our dataset, and 200 non-doubtful sentences randomly sampled from CoT traces, achieving a Cohen’s Kappa score of 0.8742 between the classifier and a majority of 4 human annotators. Details can be found in Appendix D.3 We extract the classifier’s responses and compute doubtfulness as the proportion of sentences labeled “Yes.” As a baseline, we measure doubtfulness in non-intervened CoTs by sampling 20 consecutive sentences at random positions. This yields a baseline probability of 0.153 for doubt expressions in unperturbed reasoning.

Fig. 5 reports doubtfulness scores by intervention type and model. Across all models, doubt reliably spikes immediately after intervention, with the magnitude depending on the type: *benign* interventions induce the smallest increase, while *neutral* and *adversarial* ones trigger strong signals of self-questioning. Doubt levels are slightly higher in traces that eventually reach the correct answer, suggesting that doubt supports recovery but is not by itself sufficient. Larger models display more consistent doubt responses than smaller ones, indicating that this recovery mechanism strengthens with scale. Importantly, doubt returns to baseline within about five sentences, showing that interventions are handled locally rather than derailing the entire reasoning process.

Effects of paraphrasing on doubt and performance. The *Paraphrasing reasoning* intervention shows the opposite pattern. Instead of increasing doubt, it reduces it below baseline (0.153), with pre-intervention traces at 0.068 and post-intervention traces at 0.076. This suggests that the rewriting process removes hedging and self-corrective markers, producing a more assertive but less cautious style. RLLMs then continue in this style, adopting a consistently lower level of doubt throughout the trace. The effect is not only stylistic but also functional: paraphrasing yields the most consistent drop in final correctness across all interventions (Fig. 2). When applied early ($t = 0.1$), paraphrasing also shortens CoT length by 59–61% for four out of five models, even though only a few initial steps are rewritten. We validate that paraphrasing preserves semantic content in Appendix D.4.

432	Model	Benign: Complete	Benign: Rewrite	Neutral: Add Text	Neutral: Insert Chars	Adv.: Wrong Cont.	Adv.: Wrong Fact	Adv.: Unrelated
433	R1-Distill-Qwen-1.5B	13.7904	-37.1508	665.1573	111.3570	32.2084	65.6070	146.1395
434	R1-Distill-Qwen-7B	-0.2889	-59.7096	124.1208	33.7908	8.7741	15.0112	21.3786
435	R1-Distill-Qwen-14B	1.0633	-61.8132	53.8024	6.1558	10.4307	14.7904	22.0273
436	R1-Distill-Llama-8B	4.5620	-61.0430	57.3516	17.7029	19.9724	21.4973	31.7228
437	Llama-Nemotron-8B	9.3646	237.6901	158.4411	78.3807	18.1226	20.6923	74.4161
438	R1-Distill-Qwen-32B	5.0183	-35.2607	158.7107	9.6448	13.7296	20.3014	30.1166
439	EXAONE-Deep-32B	5.7053	-21.6329	53.1555	7.0757	9.0331	10.6520	60.7617
440	Phi-4-Reasoning-Plus	403.6356	330.6803	624.7056	502.0216	390.2922	391.8410	441.4929
441	QwQ-32B	8.0356	-43.5604	167.2304	6.2049	16.3954	17.7185	34.7878

Table 5: Percentage change in CoT length by model and intervention (relative to the same instance’s original trace). Larger positive values indicate higher token-cost overhead during recovery.

443	Time	Benign Complete	Benign Rewrite	Neutral Add Text	Neutral Insert Chars	Adv. Wrong Cont.	Adv. Wrong Fact	Adv. Unrelated
444	0.1	35.0215	51.0047	236.2198	89.1292	40.9407	45.1593	90.2289
445	0.3	50.7103	33.4112	217.6404	76.9579	53.8168	50.0287	102.0900
446	0.5	55.8506	17.9422	226.2052	104.6446	63.0294	67.4898	88.0440
447	0.7	59.7273	15.0093	227.1901	85.5540	62.7264	83.3565	90.7110
448	0.9	49.1825	20.5443	238.6753	72.7888	67.7971	75.1385	108.2835

Table 6: Percentage change in CoT length by intervention timestep (relative to the same instance’s original trace). Neutral insertions drive the largest overhead across timesteps.

Taken together, these results indicate that doubt expressions are an important recovery mechanism in RLLMs. When they are triggered, models can often reorient and return to a correct reasoning path. When they are suppressed, as in paraphrased traces, models lose this self-corrective signal, leading to shorter but less accurate reasoning. Thus, robustness in RLLMs depends not only on semantic content but also on stylistic features of reasoning traces. This highlights a key limitation of current models: they are not invariant to style, and interventions that alter surface form can impair performance by suppressing metacognitive strategies. Understanding how RLLMs acquire, use, and sustain such strategies is an important direction for future work.

4.3 INTERVENTIONS SIGNIFICANTLY IMPACT REASONING EFFICIENCY

Robust final-answer accuracy can conceal significant computational overhead during recovery. To quantify efficiency, we measure the percentage change in chain-of-thought (CoT) length after an intervention relative to the original trace of the same model and problem, after removing the part inserted through our intervention. Positive values indicate longer, more costly reasoning, while negative values indicate shortened reasoning traces. This analysis reveals how models trade off thoroughness and efficiency when confronted with perturbations that could plausibly arise during tool use, where external outputs are injected into the CoT. Two consistent patterns emerge: neutral perturbations inflate cost, with adding random text and inserting random characters causing the largest overheads, often exceeding +50% across models and soaring for smaller ones, and style rewrites shorten reasoning, with paraphrasing the CoT tending to shorten traces markedly (about -60% for most models), aligning with our observation that reduced doubt leads to prematurely terminated reasoning and lower robustness.

We also summarize how the overhead evolves with the intervention timestep. Table 6 shows percentage changes relative to the pre-intervention trace. Neutral insertions consistently impose the highest cost across timesteps; unrelated continuations and wrong facts also increase length substantially. The benign rewrite pushes in the opposite direction, shortening traces.

5 ABLATIONS

Does forcing doubt immediately after intervention improve recovery rates? We measure how much appending “Wait” immediately after an intervention increases the recovery rate. To evaluate this, we sample traces for the entire LOGIC dataset, sampling $5 \times 7 \times 326 \times 8 = 91280$ traces per model. We then calculate the change in majority robustness. Tables 7 and 8 show the changes in majority robustness. We observe that for some intervention types, this simple intervention significantly im-

486
487
488
489
490
491

Time	R1-Distill Llama-8B	R1-Distill Qwen-1.5B	R1-Distill Qwen-14B	R1-Distill Qwen-32B	R1-Distill Qwen-7B	EXAONE Deep-32B	Llama Nemotron	Phi-4 Reasoning	QwQ 32B
0.1	3.86	5.00	6.40	1.80	3.81	10.91	6.57	1.88	0.31
0.3	1.27	2.02	2.45	0.96	2.54	7.23	4.65	1.17	0.09
0.5	1.53	2.72	0.83	0.39	1.53	4.69	3.77	1.52	-0.09
0.7	-0.13	7.06	0.48	0.44	1.05	3.33	2.19	1.61	-0.09
0.9	0.53	4.21	1.58	-0.09	1.01	2.19	1.75	1.78	0.04

492
493
494
Table 7: Percentage point change in majority robustness when appending “Wait” after the intervention, averaged across interventions. Results are on the LOGIC domain.495
496
497
498
499
500
501

Time	Adv.: Wrong Cont.	Adv.: Unrelated	Adv.: Wrong Fact	Benign: Complete	Benign: Rewrite	Neutral: Add Text	Neutral: Rand Chars
0.1	0.91	20.51	1.05	0.57	3.03	3.23	2.18
0.3	0.61	10.87	0.47	-0.00	1.97	2.01	1.46
0.5	0.71	8.00	0.88	-0.04	1.50	1.46	0.61
0.7	0.92	6.64	0.54	0.30	0.24	2.35	1.39
0.9	0.64	6.68	0.44	0.10	0.17	1.40	0.68

502
503
Table 8: Percentage point change in majority robustness when appending “Wait” after the intervention, averaged across models. Results are on the LOGIC domain.504
505
506
507
508
509

proves the recovery rate of the model, yielding improvements of single-digit percentages for many interventions. This suggests that training the model to increase the likelihood of “Wait” tokens after various interventions could increase robustness, e.g. by augmenting reasoning traces with recovery examples through SFT or rewarding models for more diverse reasoning styles during RL.

510
511
512
513
514
515
516
517
518

Do traces from strong models help weak models recover? We fix the timestep to $t = 0.3$ and generate a trace from an original model. After the intervention, we swap the model and continue generation to measure how well a strong model can recover from a weak model’s trace, and vice versa. Table 9 shows that swapping to QwQ-32B yields near-perfect recovery ($\sim 98\%$) regardless of the original model, while swapping to the weaker R1-Distill-Qwen-1.5B degrades performance to $\sim 67\%$. We observe that continuing the trace of a weak model with a strong model helps the model recover almost fully, with only slight decrease in performance, while continuing the trace of a strong model using a weak model also only yields modest improvements of 2%, supporting our finding that the primary factor in robustness is overall model capability.

519
520
521
522
523
524
525

Original	Swapped Model		
	DS-R1-1.5B	R1-Llama-8B	QwQ-32B
DS-R1-1.5B	65.3	90.8	97.1
R1-Llama-8B	67.5	94.0	98.4
QwQ-32B	67.1	93.8	99.3

526
527
528Table 9: Majority Robustness after swapping traces (%) at $t=0.3$.529
530

6 CONCLUSION

In this paper, we investigate the robustness of RLLMs when applying benign, neutral or adversarial interventions to their CoT traces. We demonstrate that RLLMs are robust, largely due to the self-corrective role of expressing doubt. However, RLLMs are not invariant to style transformations, which can suppress reasoning, and recovery mechanisms incur significant computational overhead. Furthermore, our analyses highlight the importance of doubt in recovering from errors. These findings suggest future work should focus on improving recovery speed and stylistic stability. By uncovering these metacognitive properties, this research advances the understanding of LLM robustness and supports their safe deployment in high-stakes environments.

538
539

540 REPRODUCIBILITY STATEMENT
541

542 We will release our code and data upon acceptance. All implementation details, hyperparameters,
543 and evaluation settings are fully specified in the supplementary material. To improve clarity, the
544 manuscript was polished for grammar and style using a large language model, with all final text
545 reviewed and validated by the authors.

546
547 REFERENCES
548

549 Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao
550 Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, Piero Kauffmann, Yash
551 Lara, Caio César Teodoro Mendes, Arindam Mitra, Besmira Nushi, Dimitris Papailiopoulos, Olli
552 Saarikivi, Shital Shah, Vaishnavi Shrivastava, Vibhav Vineet, Yue Wu, Safoora Yousefi, and Guo-
553 qing Zheng. Phi-4-reasoning technical report. In *arXiv*, 2025.

554 Daman Arora and Andrea Zanette. Training language models to reason efficiently. In *arXiv*, 2025.

555 Daman Arora, Himanshu Gaurav Singh, and Mausam. Have llms advanced enough? a challenging
556 problem solving benchmark for large language models. In *arXiv*, 2023.

558 Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil,
559 Zach Moshe, Tomer Ronen, Najeeb Nabwani, et al. Llama-nemotron: Efficient reasoning models.
560 In *arXiv*, 2025.

561 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
562 Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. In *arXiv*, 2025.

563 General Reasoning. GeneralThought-430K, 2025.

565 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
566 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
567 via reinforcement learning. In *arXiv*, 2025.

568 Fabian Hoppe, Filip Ilievski, and Jan-Christoph Kalo. Investigating the robustness of deductive
569 reasoning with large language models. In *arXiv*, 2025.

571 Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
572 In *ACL Findings*, 2023.

573 Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
574 and Denny Zhou. Large language models cannot self-correct reasoning yet. In *ICLR*, 2024.

576 Kaixuan Huang, Jiacheng Guo, Zihao Li, Xiang Ji, Jiawei Ge, Wenzhe Li, Yingqing Guo, Tianle
577 Cai, Hui Yuan, Runzhe Wang, et al. Math-perturb: Benchmarking llms' math reasoning abilities
578 against hard perturbations. In *arXiv*, 2025a.

579 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
580 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large lan-
581 guage models: Principles, taxonomy, challenges, and open questions. In *ACM Transactions on*
582 *Information Systems*, 2025b.

584 Yeo Wei Jie, Ranjan Satapathy, Rick Goh, and Erik Cambria. How interpretable are reasoning
585 explanations from prompting large language models? In *NAACL Findings*, 2024.

586 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
587 language models are zero-shot reasoners. In *NeurIPS*, 2022.

588 Abhinav Kumar, Jaechul Roh, Ali Naseh, Marzena Karpinska, Mohit Iyyer, Amir Houmansadr, and
589 Eugene Bagdasarian. Overthink: Slowdown attacks on reasoning llms. In *arXiv*, 2025a.

591 Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
592 Shariq Iqbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang, Kay McKinney, Disha Shrivastava,
593 Cosmin Paduraru, George Tucker, Doina Precup, Feryal Behbahani, and Aleksandra Faust. Train-
ing language models to self-correct via reinforcement learning. In *arXiv*, 2024.

594 Komal Kumar, Tajamul Ashraf, Omkar Thawakar, Rao Muhammad Anwer, Hisham Cholakkal,
 595 Mubarak Shah, Ming-Hsuan Yang, Phillip HS Torr, Fahad Shahbaz Khan, and Salman Khan.
 596 Llm post-training: A deep dive into reasoning large language models. In *arXiv*, 2025b.
 597

598 Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven C. H. Hoi. Coderl:
 599 Mastering code generation through pretrained models and deep reinforcement learning. In *arXiv*,
 600 2022.

601 LG AI Research, Kyunghoon Bae, Eunbi Choi, Kibong Choi, Stanley Jungkyu Choi, Yemuk Choi,
 602 Seokhee Hong, Junwon Hwang, Hyojin Jeon, Kijeong Jeon, Gerrard Jeongwon Jo, Hyunjik Jo,
 603 Jiyeon Jung, Hyosang Kim, Joonkee Kim, Seonghwan Kim, Soyeon Kim, Sunkyoung Kim,
 604 Yireun Kim, Yongil Kim, Youchul Kim, Edward Hwayoung Lee, Haeju Lee, Honglak Lee, Jinsik
 605 Lee, Kyungmin Lee, Sangha Park, Yongmin Park, Sihoon Yang, Heuiyean Yeen, Sihyuk Yi, and
 606 Hyeongu Yun. Exaone deep: Reasoning enhanced language models. In *arXiv*, 2025.

607 Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
 608 Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
 609 Fleureau, Guillaume Lample, and Stanislas Polu. Numinamath, 2024.

610

611 Yi Liu, Gelei Deng, Yuekang Li, Kailong Wang, Zihao Wang, Xiaofeng Wang, Tianwei Zhang,
 612 Yepang Liu, Haoyu Wang, Yan Zheng, et al. Prompt injection attack against llm-integrated appli-
 613 cations. *arXiv preprint arXiv:2306.05499*, 2023.

614 Ruotian Ma, Peisong Wang, Cheng Liu, Xingyan Liu, Jiaqi Chen, Bang Zhang, Xin Zhou, Nan Du,
 615 and Jia Li. S²r: Teaching llms to self-verify and self-correct via reinforcement learning. In *arXiv*,
 616 2025.

617

618 Claudia Malzer and Marcus Baum. A hybrid approach to hierarchical density-based cluster selec-
 619 tion. In *International Conference on Multisensor Fusion and Integration for Intelligent Systems*,
 620 2020.

621 Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
 622 projection for dimension reduction. In *arXiv*, 2020.

623

624 Eduardo Mosqueira-Rey, Elena Hernández-Pereira, David Alonso-Ríos, José Bobes-Bascarán, and
 625 Ángel Fernández-Leal. Human-in-the-loop machine learning: a state of the art. In *Artificial
 626 Intelligence Review*, 2023.

627

628 Debjit Paul, Robert West, Antoine Bosselut, and Boi Faltings. Making reasoning matter: Measuring
 629 and improving faithfulness of chain-of-thought reasoning. In *EMNLP Findings*, 2024.

630

631 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
 632 <https://qwenlm.github.io/blog/qwq-32b/>.

633

634 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
 635 Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
 In *arXiv*, 2024.

636

637 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 638 optimization algorithms. In *arXiv*, 2017.

639

640 Amrit Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
 641 Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
 642 process verifiers for llm reasoning. In *arXiv*, 2024.

643

644 Darsh J Shah, Peter Rushton, Somanshu Singla, Mohit Parmar, Kurt Smith, Yash Vanjani, Ashish
 645 Vaswani, Adarsh Chaluvvaraju, Andrew Hojel, Andrew Ma, et al. Rethinking reflection in pre-
 646 training. In *arXiv*, 2025.

647

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 648 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 649 reasoning in open language models. In *arXiv*, 2024.

648 Erfan Shayegani, Md Abdullah Al Mamun, Yu Fu, Pedram Zaree, Yue Dong, and Nael Abu-
 649 Ghazaleh. Survey of vulnerabilities in large language models revealed by adversarial attacks.
 650 In *arXiv*, 2023.

651

652 Zhuocheng Shen. Llm with tools: A survey. In *arXiv*, 2024.

653 Joykirat Singh, Akshay Nambi, and Vibhav Vineet. Exposing the achilles' heel: Evaluating llms
 654 ability to handle mistakes in mathematical reasoning. In *arXiv*, 2024.

655

656 Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Günther, Bo Wang, Markus Krim-
 657 mel, Feng Wang, Georgios Mastrapas, Andreas Koukounas, Nan Wang, and Han Xiao. jina-
 658 embeddings-v3: Multilingual embeddings with task lora. In *arXiv*, 2024.

659

660 Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong Yu.
 661 Crossing the reward bridge: Expanding rl with verifiable rewards across diverse domains. In
 662 *arXiv*, 2025.

663

664 Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
 665 Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient
 666 reasoning for large language models. In *arXiv*, 2025.

667

668 Mirac Suzgun, Nathan Scales, Nathanael Schärl, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 669 Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-
 670 bench tasks and whether chain-of-thought can solve them. In *arXiv*, 2022.

671

672 Gladys Tyen, Hassan Mansoor, Victor Cărbune, Yuanzhu Peter Chen, and Tony Mak. Llms cannot
 673 find reasoning errors, but can correct them given the error location. In *ACL (Findings)*, 2024.

674

675 Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R.
 676 Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level sci-
 677 entific problem-solving abilities of large language models. In *arXiv*, 2024a.

678

679 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
 680 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 681 models. In *ICLR*, 2023.

682

683 Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai
 684 He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuhang Wang, Simon Shaolei Du, and Yelong
 685 Shen. Reinforcement learning for reasoning in large language models with one training example.
 686 In *arXiv*, 2025.

687

688 Zhiruo Wang, Zhoujun Cheng, Hao Zhu, Daniel Fried, and Graham Neubig. What are tools anyway?
 689 a survey from the language model perspective. In *COLM*, 2024b.

690

691 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 692 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In *NeurIPS*,
 693 2022.

694

695 Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is inevitable: An innate limitation of
 696 large language models. In *arXiv*, 2024.

697

698 Lei Yang, Renren Jin, Ling Shi, Jianxiang Peng, Yue Chen, and Deyi Xiong. Probench: Benchmark-
 699 ing large language models in competitive programming. In *arXiv*, 2025.

700

701 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
 702 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
 703 *NeurIPS*, 2023.

704

705 Tong Yu, Yongcheng Jing, Xikun Zhang, Wentao Jiang, Wenjie Wu, Yingjie Wang, Wenbin Hu,
 706 Bo Du, and Dacheng Tao. Benchmarking reasoning robustness in large language models. In
 707 *arXiv*, 2025.

708

709 Yurun Yuan and Tengyang Xie. Reinforce llm reasoning through multi-agent reflection. In *arXiv*,
 710 2025.

702 Qiusi Zhan, Zhixiang Liang, Zifan Ying, and Daniel Kang. Injecagent: Benchmarking indirect
703 prompt injections in tool-integrated large language model agents. In *ACL Findings*, pp. 10471–
704 10506, 2024.

705

706 Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
707 self-training via process reward guided tree search. In *arXiv*, 2024a.

708

709 Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang, Yan Xia, Wenshan Wu, Ting Song, Man Lan,
710 and Furu Wei. LLM as a mastermind: A survey of strategic reasoning with large language models.
711 In *COLM*, 2024b.

712

713 Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
714 Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
715 reasoning. In *arXiv*, 2025.

716

717 Zhanke Zhou, Rong Tao, Jianing Zhu, Yiwen Luo, Zengmao Wang, and Bo Han. Can language mod-
718 els perform robust reasoning in chain-of-thought prompting with noisy rationales? In *NeurIPS*,
719 2024.

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 Supplementary Material

A EXTENDED RESULTS FROM THE MAIN PAPER

A.1 ADDITIONAL ROBUSTNESS SCORE RESULTS

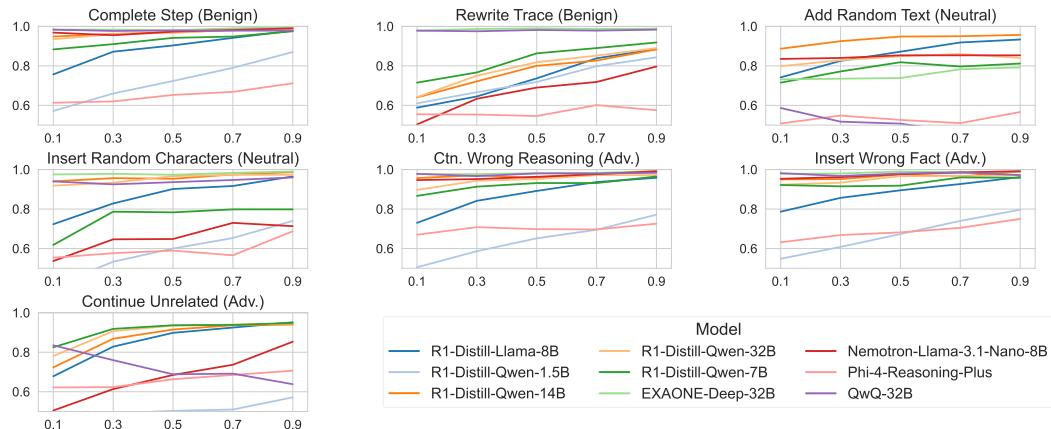


Figure 6: Per-model *all robustness* by intervention on the MATH domain. Models generally sustain high robustness across interventions, with consistent trends over timesteps.

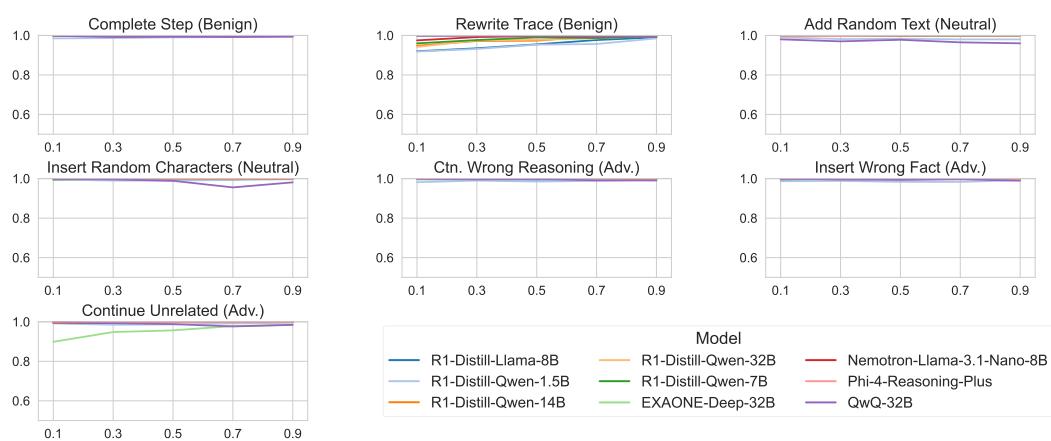


Figure 7: Per-model *at-least-once robustness* by intervention on the MATH domain. Even under challenging interventions, models often reach the correct verifier decision at least once across samples.

We plot the *all robustness* and *at-least-once robustness* scores for the 9 models and 7 interventions in our study. These results confirm our observations in Section 4.1, i.e. RLLMs are robust to various interventions. Like for *majority robustness*, the *rewrite trace* interventions yield the lowest robustness scores, albeit still on a high level.

A.2 ROBUSTNESS UNDER MULTIPLE INTERVENTIONS

To evaluate robustness under repeated perturbations, we measure how model accuracy degrades as we increase the number of interventions from 1 to 5, with one paragraph of model reasoning between each intervention. We use the LOGIC dataset at timestep $t = 0.3$ with the “Wrong Continuation” intervention, evaluating all 326 problems \times 8 samples per problem for each intervention count. Table 10 shows the results.

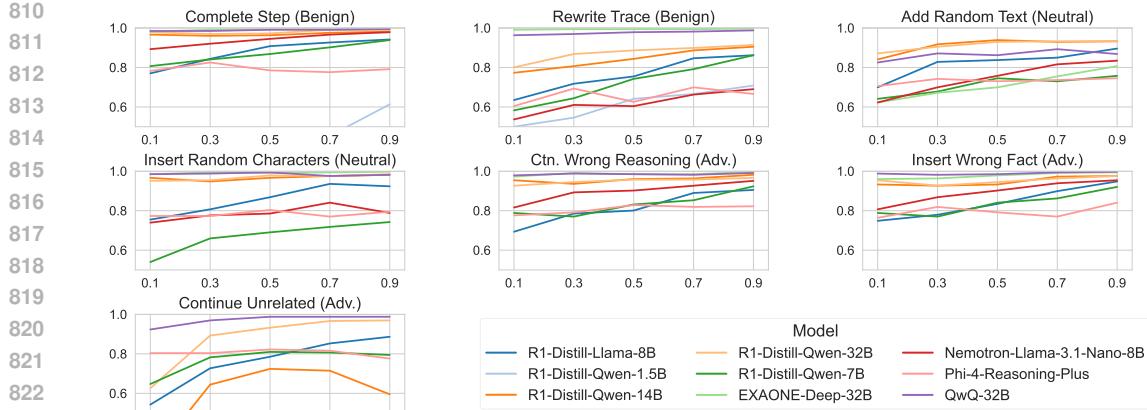


Figure 8: Per-model *all robustness* by intervention on the LOGIC domain. Robustness patterns mirror those in math and science, with modest variation by intervention type.

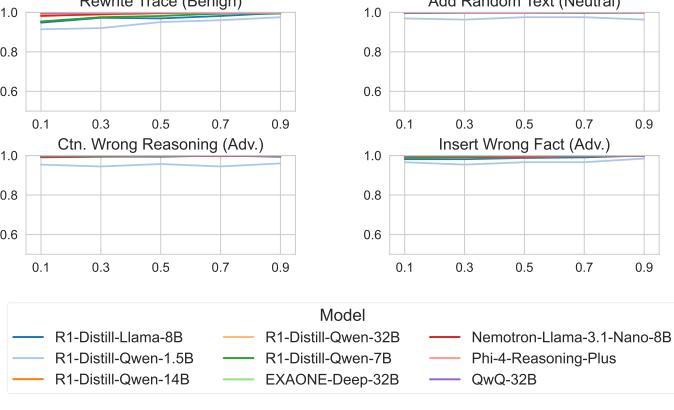


Figure 9: Per-model *at-least-once robustness* by intervention on the LOGIC domain. Most models reliably achieve at least one robust outcome per configuration across timesteps.

Most models exhibit graceful degradation: EXAONE-Deep-32B, QwQ-32B, and Phi-4-reasoning-plus maintain $> 97\%$ accuracy even after 5 consecutive interventions, demonstrating remarkable resilience. The larger R1-Distill models (14B, 32B) also remain above 93%. However, the smallest model (R1-Distill-Qwen-1.5B) shows substantial degradation, dropping from 63% to 46% accuracy. These results suggest that robustness to repeated perturbations scales with model capability.

A.3 COMPLETE RESULTS ON BIG-BENCH MISTAKE

Full results for 13 open-weight RLLMs and 3 API models on BIG-Bench Mistake are in Table 11. Results on the extended set affirm our observations in Section 3.

B ANALYSIS OF DOUBTFUL PHRASES

In this section, we perform an in-depth analysis of doubting strategies of RLLMs and analyze the internal activations of RLLMs after interventions. Here, we gain insights into how RLLMs respond to interventions, and we take first steps towards a more detailed understanding of how RLLMs realize that there is misleading information or errors in the reasoning chain that need to be corrected.

Analyzing doubtful phrases. We seek to further understand the exact ways the model expresses doubt when faced with an intervention in its CoT and uses it to recover from our interventions.

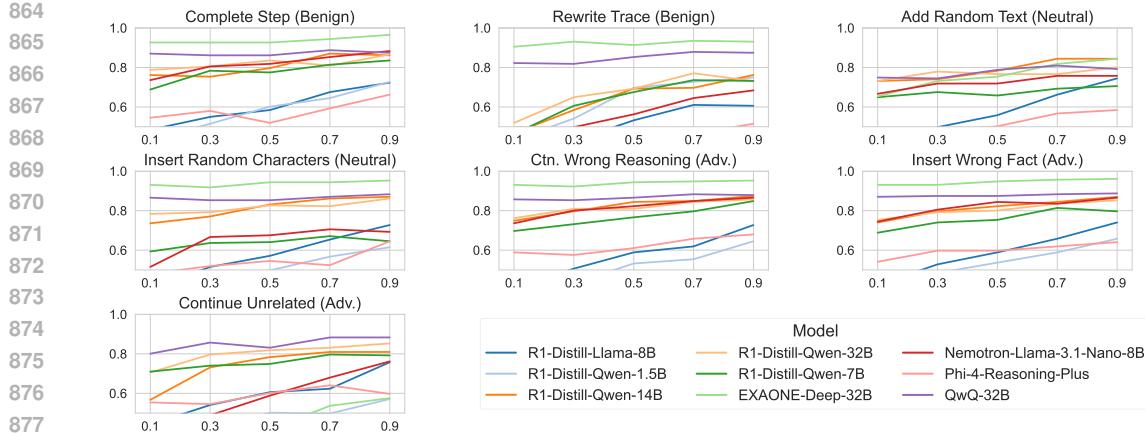


Figure 10: Per-model *all robustness* by intervention on the SCIENCE domain. We observe high overall robustness, with intervention-specific dips aligning with domain difficulty.

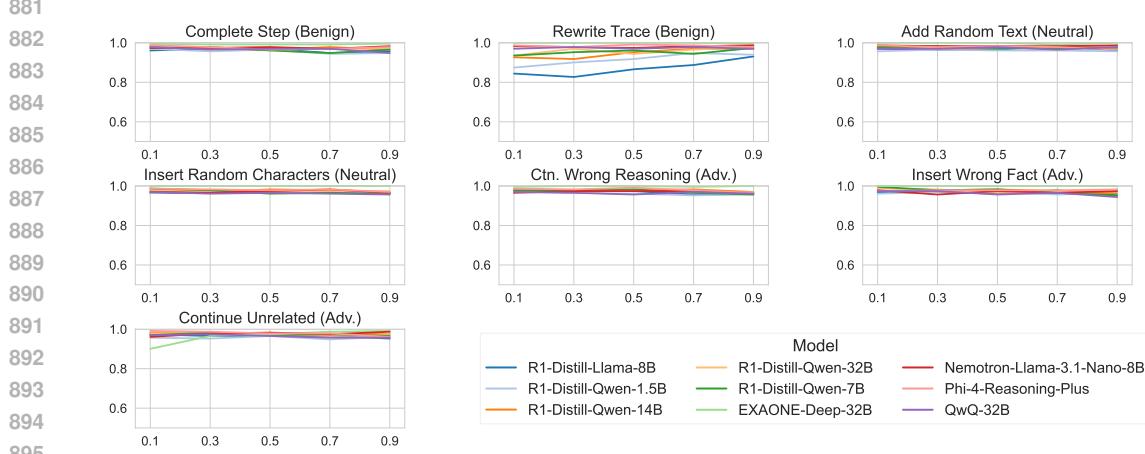


Figure 11: Per-model *at-least-once robustness* by intervention on the SCIENCE domain. Across interventions, models frequently achieve at least one robust verification per timestep.

For this, we take all sentences classified as doubtful in Section 4.1 within the 20 steps after an intervention was performed. We then sample 100,000 sentences for further analysis and embed them using `jina-embed-v3`, a state-of-the-art text embedding model Sturua et al. (2024). We project embeddings to 50 dimensions using UMAP (McInnes et al., 2020), and cluster them by HDBSCAN (Malzer & Baum, 2020).

Table 12 shows the most common categories of reactions, along with summaries of the clusters generated using an LLM. We describe our process for generating summaries in Appendix E.1. We observe that the model shows an awareness of our interventions, often signaling that it needs to return to solving the problem, abruptly rejects what was asserted in the intervention, and pauses to reconsider. These behaviors highlight that RLLMs seem to have acquired an inherent reflection skill during the training process, which helps them recover from interventions, as we observe similar patterns of intervention rejection across all interventions we perform.

C ACTIVATION ANALYSIS

We record the pre-attention residual stream activations of the final token at each layer, denoted $\mathbf{r}^{(l)} := \mathbf{h}_n^{(l)} \in \mathbb{R}^d$, where n is the sequence length. A decoder-only transformer embeds the input tokens (t_1, \dots, t_n) as $\mathbf{h}_i^{(1)} = E t_i$ and propagates the residual vector $\mathbf{h}_i^{(l)}$ through L identical layers.

Model	1	2	3	4	5
R1-Distill-Llama-8B	95.0	92.6	91.5	89.1	88.1
R1-Distill-Qwen-1.5B	63.4	52.0	48.4	47.2	45.6
R1-Distill-Qwen-14B	98.4	95.7	94.3	94.1	93.4
R1-Distill-Qwen-32B	98.9	98.1	96.9	95.9	94.7
R1-Distill-Qwen-7B	94.2	90.5	89.4	86.3	84.9
EXAONE-Deep-32B	99.8	99.5	98.8	99.0	99.1
Llama-Nemotron-8B	96.8	94.9	92.1	92.3	91.4
Phi-4-reasoning-plus	95.9	98.3	97.6	97.9	98.2
QwQ-32B	99.8	99.5	99.3	99.0	99.1

Table 10: Model accuracy (%) under multiple consecutive “Wrong Continuation” interventions (1–5) on the LOGIC dataset at $t = 0.3$, with one paragraph of reasoning between interventions.

Model	Dyck	Logical Ded.	Multistep Arith.	Track Shuffled Obj.	Word Sorting
R1-Distill-Qwen-1.5B	9.4	7.3	55.3	51.6	11.8
R1-Distill-Qwen-7B	19.6	17.5	88.2	72.8	16.1
R1-Distill-Llama-8B	10.3	14.0	70.8	54.7	13.8
Llama-Nemotron-8B	18.5	5.2	26.8	67.7	1.4
R1-Distill-Qwen-14B	39.7	30.1	86.8	87.8	25.9
Phi-4-reasoning (14B)	50.7	63.5	90.5	89.6	53.8
Phi-4-reasoning-plus (14B)	56.5	65.6	91.4	92.0	59.2
QwQ-32B	66.7	66.9	90.3	94.6	53.2
R1-Distill-Qwen-32B	42.4	31.4	89.4	86.3	30.7
EXAONE-Deep-32B	52.3	54.3	89.5	94.5	54.8
R1-Distill-Llama-70B	35.8	25.0	78.3	86.8	29.2
Qwen3-30B-A3B-Thinking	38.1	76.8	76.4	83.8	50.8
Qwen3-30B-A3B-Instruct	15.2	57.2	76.0	82.9	2.8
GPT-4-Turbo	15.3	21.3	38.3	39.3	36.3
GPT-4	17.1	40.7	44.0	62.3	35.0
gpt-oss-20b	59.3	72.0	91.0	93.3	45.0
gpt-oss-120b	73.5	78.3	90.7	92.0	50.7
o3	88.7	82.7	91.0	92.0	64.3

Table 11: BIG-Bench-Mistake error-localization accuracies (in %). Reasoning models and recent reasoning-style open-weight lines substantially exceed non-reasoning GPT-4 baselines. All reasoning models were evaluated in a zero-shot setting, GPT-4 and GPT-4-Turbo were evaluated in a few-shot setting.

At layer l the vector is transformed by multi-head self-attention and by an MLP:

$$\tilde{\mathbf{h}}_i^{(l)} = \mathbf{h}_i^{(l)} + \text{Attn}^{(l)}(\mathbf{h}_{1:i}^{(l)}), \quad \mathbf{h}_i^{(l+1)} = \tilde{\mathbf{h}}_i^{(l)} + \text{MLP}^{(l)}(\tilde{\mathbf{h}}_i^{(l)}).$$

Sampling $\mathbf{r}^{(l)}$ just before the attention block gives us a proxy of understanding how well the embeddings of activations between intervened and non-intervened tokens can be discriminated in the embedding space the model uses to make the final prediction as the forward pass of the transformer is performed. For this, we craft a dataset of 600 traces at random ends in a non-intervened trace, and 600 traces for each intervention type. To record the activations just before the start of a new thought, we also append `\n\n` immediately after the final segment R_k . We then pre-fill the sequence, record the residual activations, and train linear classifiers on top of a training set of $0.8 \times 1200 = 960$ activation embeddings for each layer and intervention type. We measure the accuracy of the classifiers on a test set of the remaining 240 embeddings.

Fig. 12 shows the accuracies of classifiers across interventions, along with the classifier accuracies across different models. The classifier accuracies significantly increase immediately after the first attention layer, and then remain consistently accurate, with slight increases in later layers for larger models. We observe that unlike for most other interventions, the accuracy of classifiers for *Para-*

972	Size	Example	Summary	Size	Example	Summary
973	1105	“Wait, no.”	Abrupt negation.	342	“Did I set up the equations right?”	Reflects on equations.
974	978	“Let me switch gears and focus on that.”	Redirects focus.	333	“So, $f(8) + f(2) = \dots = 12$.”	Periodicity reasoning.
975	517	“Wait, actually, is that correct?”	Checks correctness.	297	“If $m = n$, then $\gcd(m, n) = m$.”	GCD reasoning.
976	400	“Wait, no, wait, that’s a different topic.”	Flags digression.	249	“Alright, now I need to get back on track.”	Gets back on track.
977	347	“Wait, is that equal to something?”	Equality probe.	239	“Wait, no, no, hold on.”	Reconsiders.
978						
979						
980						
981						
982						

Table 12: Condensed view of the ten largest clusters of doubtful sentences found in the 20 sentences following our interventions. A more detailed table with more examples appears in Table 16 in the supplementary material.

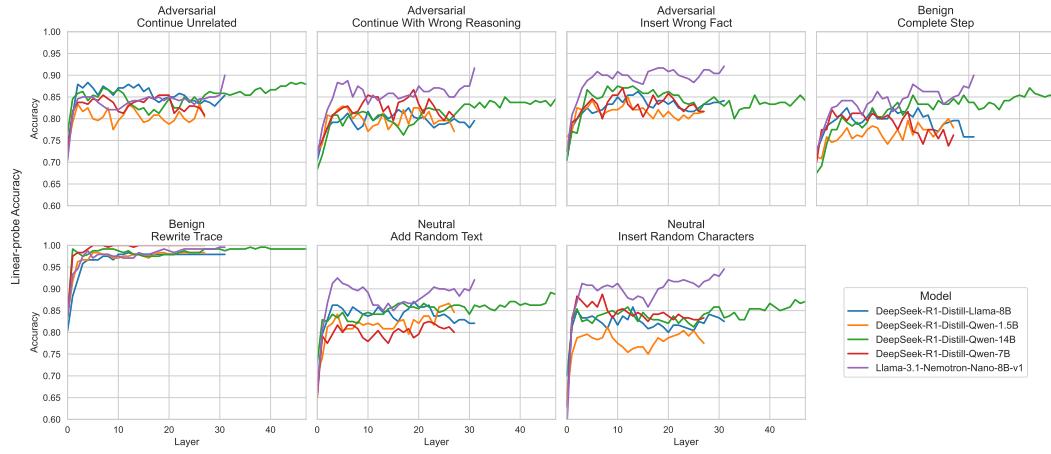


Figure 12: Linear probe accuracies for residual stream activations on different interventions by layer

phrasing reasoning is significantly higher, reaching 0.996 in later layers of the model. This suggests that models represent their native reasoning differently internally from reasoning worded in a different style, thus being non-invariant to linguistic transformations despite having the same semantic content and hints at them preferring their own reasoning style.

D GENERATION OF INTERVENTIONS

Below we list each intervention applied to the original questions, together with the exact prompt template used to generate the intervention. In all cases, $\langle Q \rangle$ is a placeholder for the original questions, $\langle R \rangle$ is a placeholder for the original reasoning chain, and $\langle R_i \rangle$ is a placeholder for a reasoning step in the reasoning chain.

D.1 PROMPT TEMPLATES FOR INTERVENTIONS

Continuation with other model:

SYSTEM: You are an expert mathematician. Given the problem and the reasoning so far, produce the NEXT SINGLE reasoning step that logically follows and moves towards the correct solution. Respond with only that next step. The step should start with a phrase like "I need to" or "We need to", "I can see that", or something similar, so should be written from the first person's perspective, unless it is just a logical step and not a new thought (e.g., a mathematical

1026 manipulation), in which case you may just write out that
 1027 step.
 1028 USER:
 1029 Problem:
 1030 <Q>
 1031 Reasoning so far:
 1032 <R>
 1033 Next step:

1034 Paraphrasing reasoning:

1035 SYSTEM: You are an expert mathematician. Rewrite the
 1036 provided reasoning trace in different words while preserving
 1037 every single piece of information and the logical ordering
 1038 of the steps, so that each step follows naturally from the
 1039 previous steps and there are no logical gaps. Separate each
 1040 step with exactly TWO newline characters. Do not leave out
 1041 any details. Respond with ONLY the rewritten trace. If the
 1042 trace already includes the FINAL ANSWER, rewrite everything
 1043 up to but not including the FINAL ANSWER, and then stop.
 1044 USER:
 1045 Problem:
 1046 <Q>
 1047 Original reasoning trace:
 1048 <R>
 1049 Rewritten trace:

1050 Incorrect reasoning continuation:

1051 SYSTEM: You are an evil mathematician. Given the problem
 1052 and the chain-of-thought so far, produce THE NEXT SINGLE
 1053 reasoning step that sounds plausible yet is factually or
 1054 logically WRONG and leads down an incorrect path. Respond
 1055 with ONLY that next step, written from the first person's
 1056 perspective, starting with a phrase like "I need to" or "We
 1057 need to", "I can see that", or something similar, unless it
 1058 is just a mathematical manipulation, in which case you may
 1059 just write out that step. Make sure the structure of the
 1060 sentence is similar to the style and structure of the
 1061 previous steps, but is completely wrong.
 1062 USER:
 1063 Problem:
 1064 <Q>
 1065 Reasoning so far:
 1066 <R>
 1067 Next (incorrect) step:

1068 Hallucinated fact:

1069 SYSTEM: You are an evil mathematician. Based on the problem
 1070 and the reasoning so far, fabricate ONE new mathematical
 1071 statement (theorem, lemma, corollary, or definition) that
 1072 appears to be helpful for solving the problem but is
 1073 COMPLETELY FALSE. The statement should look plausible and
 1074 helpful for solving the problem, but will actually mislead
 1075 it when applied, because it is false. Do not reveal that it
 1076 is false. Respond with ONLY that fabricated statement, make
 1077 sure it is written from the first person's perspective,
 1078 starting with a phrase like "I know that" or "Given that",
 1079 "I remember that", or something similar, followed by the
 statement, unless the previous step is just a mathematical
 manipulation, in which case you may just write out a wrong
 continuation of that manipulation.

1080 USER:
 1081 Problem:
 1082 <Q>
 1083 Reasoning so far:
 1084 <R>
 1085 Wrong statement:
 1086
1087 Unrelated CoT:
 1088 SYSTEM: You are an evil language model. Produce ONE
 1089 reasoning step that starts with a phrase such as "Okay, so I
 1090 need to" or "Okay, so the user wants me to" and then talks
 1091 about a topic which is provided to you in the prompt,
 1092 initiating a chain of thought about that topic, e.g.,
 1093 explanation, history, comparison, thinking about questions,
 1094 etc. Respond with ONLY that single sentence, starting with
 1095 something like "Okay, so". For example, if the topic is
 1096 "Quantum entanglement", the sentence might be "Okay, so I
 1097 need to think about how quantum entanglement works."
 1098 USER:
 1099 Topic: <TOPIC>
 1100 Unrelated reasoning step about <TOPIC>:
 1101

1100 D.2 DOUBT ANALYSIS

1102 **Doubt analysis prompt:**

1103 SYSTEM: You are an expert evaluator. Respond ONLY with
 1104 'Yes' or 'No'. Given a piece of text from a reasoning
 1105 chain, state whether that text indicates that the PRIOR
 1106 reasoning contains an error or irrelevant information.
 1107 USER:
 1108 Consider the following text: {sentence_or_segment}. Does
 1109 this text indicate that the previous reasoning contains
 1110 errors or irrelevant information? Answer with Yes or No.

1111 D.3 DOUBT CLASSIFIER VALIDATION

1113 To validate our doubt classifier, we collected annotations from 4 human annotators on a dataset of
 1114 400 sentences: 200 GPT-generated variations of doubtful phrases (since doubtful phrases in CoT
 1115 traces follow similar patterns, we generated 200 variations of these sentences using 10 seed sen-
 1116 tences randomly sampled from our dataset) and 200 random sentences from CoT traces filtered for
 1117 non-doubtfulness by the authors.

1118 Table 13 reports the classifier's performance against ground truth labels and human annotators. The
 1119 classifier achieves 93.75% accuracy with high precision (89.24%) and near-perfect recall (99.50%)
 1120 for identifying doubtful sentences. The Cohen's Kappa of 0.8742 between the classifier and human
 1121 majority vote indicates strong agreement, comparable to the average pairwise agreement among
 1122 human annotators ($\kappa = 0.8385$).

1124 D.4 PARAPHRASING QUALITY VALIDATION

1126 To validate that our paraphrasing intervention preserves the semantic content of the original reason-
 1127 ing traces, we employ GPT-5.1 as a judge. For each evaluation, we provide the judge model with
 1128 the original problem, the original reasoning trace, and the paraphrased trace, then ask it to determine
 1129 whether both traces contain equivalent reasoning steps that are logically equivalent.

1130 We randomly sample 100 traces from each domain and report the percentage of traces judged as
 1131 semantically equivalent in Table 14. The SCIENCE domain achieves the highest equivalence rate
 1132 (98%), while MATH (93%) and LOGIC (92%) show slightly lower rates. Upon manual inspection
 1133 of the discrepancies, we find that the higher equivalence rate in SCIENCE stems from the nature of
 1134 the reasoning: scientific traces tend to involve more formulaic reasoning and direct application of

Classifier vs. Ground Truth	
Accuracy	93.75%
Precision (Doubtful)	89.24%
Recall (Doubtful)	99.50%
F1-Score (Doubtful)	94.09%
Precision (Non-Doubtful)	99.44%
Recall (Non-Doubtful)	88.00%
F1-Score (Non-Doubtful)	93.37%
Inter-Annotator Agreement	
Avg. Pairwise Cohen's κ (Humans)	0.8385
Avg. Human Accuracy vs. Ground Truth	93.59%
Classifier vs. Human Annotators	
Cohen's κ (Classifier vs. Human Majority)	0.8742
Avg. κ (Classifier vs. Individual Humans)	0.8457
Accuracy (Classifier vs. Human Majority)	93.73%

Table 13: Doubt classifier validation metrics on 400 annotated sentences (200 doubtful, 200 non-doubtful).

principles, making them easier to paraphrase faithfully. In contrast, MATH and LOGIC traces often contain more intricate logical arguments and detailed step-by-step derivations, where subtle nuances are occasionally lost or altered during paraphrasing.

Domain	Equivalence Rate
LOGIC	92%
SCIENCE	98%
MATH	93%

Table 14: Paraphrasing quality validation using GPT-5.1 as judge, measuring semantic equivalence between original and paraphrased traces (100 randomly sampled traces per domain).

D.5 TOPICS USED FOR *Unrelated CoT* INTERVENTION

For our *Unrelated CoT* interventions, we require a list of 100 topics unrelated to math problems. We use these to start unrelated CoTs within reasoning chains that aim to confuse the RLLM. The full list is in Table 17 and for each intervention, we randomly sample a topic from this list.

D.6 GENERATION HYPERPARAMETERS

Table 15 summarizes the decoding settings used for each generation scenario. Here, "generate original reasoning chain" refers to generating the original reasoning chain for each model, "generate intervention" refers to generating the modification to the reasoning chains as described in Section D, and "continue after intervention" refers to continuing the modified reasoning chain after the intervention has been generated. A temperature of 0.0 corresponds to greedy sampling.

E ANALYZING DOUBTFUL PHRASES

We provide an overview of the detailed clusters in 16.

Model Name	Scenario	Temperature	Top- <i>k</i>	Top- <i>p</i>	Seed
Qwen/Qwen2.5-32B-Instruct	Complete step	0.0	N/A	N/A	N/A
Qwen/Qwen2.5-32B-Instruct	Paraphrasing reasoning	0.0	N/A	N/A	N/A
(no LLM)	Add random text	N/A	N/A	N/A	N/A
(no LLM)	Insert Random Characters	N/A	N/A	N/A	N/A
Qwen/Qwen2.5-32B-Instruct	Continue with wrong reasoning	0.7	N/A	0.9	80129
Qwen/Qwen2.5-32B-Instruct	Hallucinated Fact	0.7	N/A	0.9	80129
Qwen/Qwen2.5-32B-Instruct	Continue Unrelated	1.0	N/A	0.9	80129
Qwen/Qwen2.5-32B-Instruct	Doubt Classification	0.0	N/A	N/A	N/A
All evaluated models	Sampling 8 completions after intervention	0.6	N/A	0.95	N/A

Table 15: Decoding hyperparameters for different scenarios.

E.1 SUMMARIZING CLUSTERS

For summarization, we deduplicate all sentences from each cluster, sample 10 sentences from this set, and order the clusters by size. We then use a single LLM step to summarize all clusters.

F STATISTICAL DETAILS ON RESULTS

Below we report the mean and standard deviation for all interventions, models, timesteps, and domains.

Table 18: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Math domain.

Model	Intervention	Timestep	Mean \pm Std
EXAONE-Deep-32B	Add Random Text (Neutral)	0.1	0.932 \pm 0.251
EXAONE-Deep-32B	Add Random Text (Neutral)	0.3	0.941 \pm 0.236
EXAONE-Deep-32B	Add Random Text (Neutral)	0.5	0.938 \pm 0.242
EXAONE-Deep-32B	Add Random Text (Neutral)	0.7	0.950 \pm 0.218
EXAONE-Deep-32B	Add Random Text (Neutral)	0.9	0.957 \pm 0.202
Nemotron-Llama-3.1-Nano-8B	Add Random Text (Neutral)	0.1	0.971 \pm 0.168
Nemotron-Llama-3.1-Nano-8B	Add Random Text (Neutral)	0.3	0.968 \pm 0.176
Nemotron-Llama-3.1-Nano-8B	Add Random Text (Neutral)	0.5	0.974 \pm 0.159
Nemotron-Llama-3.1-Nano-8B	Add Random Text (Neutral)	0.7	0.973 \pm 0.161
Nemotron-Llama-3.1-Nano-8B	Add Random Text (Neutral)	0.9	0.975 \pm 0.155
Phi-4-Reasoning-Plus	Add Random Text (Neutral)	0.1	0.893 \pm 0.309
Phi-4-Reasoning-Plus	Add Random Text (Neutral)	0.3	0.900 \pm 0.301
Phi-4-Reasoning-Plus	Add Random Text (Neutral)	0.5	0.893 \pm 0.310
Phi-4-Reasoning-Plus	Add Random Text (Neutral)	0.7	0.895 \pm 0.307
Phi-4-Reasoning-Plus	Add Random Text (Neutral)	0.9	0.899 \pm 0.301
QwQ-32B	Add Random Text (Neutral)	0.1	0.847 \pm 0.360
QwQ-32B	Add Random Text (Neutral)	0.3	0.817 \pm 0.387

Continued on next page

1242 Table 18: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Math do-
 1243 main.

1244

1245	Model	Intervention	Timestep	Mean \pm Std
1246	QwQ-32B	Add Random Text (Neu- tral)	0.5	0.824 \pm 0.381
1247	QwQ-32B	Add Random Text (Neu- tral)	0.7	0.797 \pm 0.402
1248	QwQ-32B	Add Random Text (Neu- tral)	0.9	0.765 \pm 0.424
1249	R1-Distill-Llama-8B	Add Random Text (Neu- tral)	0.1	0.933 \pm 0.251
1250	R1-Distill-Llama-8B	Add Random Text (Neu- tral)	0.3	0.961 \pm 0.194
1251	R1-Distill-Llama-8B	Add Random Text (Neu- tral)	0.5	0.970 \pm 0.170
1252	R1-Distill-Llama-8B	Add Random Text (Neu- tral)	0.7	0.978 \pm 0.146
1253	R1-Distill-Llama-8B	Add Random Text (Neu- tral)	0.9	0.988 \pm 0.111
1254	R1-Distill-Qwen- 1.5B	Add Random Text (Neu- tral)	0.1	0.730 \pm 0.444
1255	R1-Distill-Qwen- 1.5B	Add Random Text (Neu- tral)	0.3	0.759 \pm 0.428
1256	R1-Distill-Qwen- 1.5B	Add Random Text (Neu- tral)	0.5	0.774 \pm 0.418
1257	R1-Distill-Qwen- 1.5B	Add Random Text (Neu- tral)	0.7	0.803 \pm 0.397
1258	R1-Distill-Qwen- 1.5B	Add Random Text (Neu- tral)	0.9	0.831 \pm 0.375
1259	R1-Distill-Qwen-14B	Add Random Text (Neu- tral)	0.1	0.980 \pm 0.141
1260	R1-Distill-Qwen-14B	Add Random Text (Neu- tral)	0.3	0.986 \pm 0.117
1261	R1-Distill-Qwen-14B	Add Random Text (Neu- tral)	0.5	0.989 \pm 0.103
1262	R1-Distill-Qwen-14B	Add Random Text (Neu- tral)	0.7	0.991 \pm 0.095
1263	R1-Distill-Qwen-14B	Add Random Text (Neu- tral)	0.9	0.991 \pm 0.096
1264	R1-Distill-Qwen-32B	Add Random Text (Neu- tral)	0.1	0.944 \pm 0.231
1265	R1-Distill-Qwen-32B	Add Random Text (Neu- tral)	0.3	0.953 \pm 0.211
1266	R1-Distill-Qwen-32B	Add Random Text (Neu- tral)	0.5	0.957 \pm 0.203
1267	R1-Distill-Qwen-32B	Add Random Text (Neu- tral)	0.7	0.955 \pm 0.207
1268	R1-Distill-Qwen-32B	Add Random Text (Neu- tral)	0.9	0.951 \pm 0.215
1269	R1-Distill-Qwen-7B	Add Random Text (Neu- tral)	0.1	0.932 \pm 0.251
1270	R1-Distill-Qwen-7B	Add Random Text (Neu- tral)	0.3	0.943 \pm 0.232
1271	R1-Distill-Qwen-7B	Add Random Text (Neu- tral)	0.5	0.949 \pm 0.221
1272	R1-Distill-Qwen-7B	Add Random Text (Neu- tral)	0.7	0.942 \pm 0.234
1273	R1-Distill-Qwen-7B	Add Random Text (Neu- tral)	0.9	0.950 \pm 0.218
1274	EXAONE-Deep-32B	Complete Step (Benign)	0.1	0.996 \pm 0.064
1275	EXAONE-Deep-32B	Complete Step (Benign)	0.3	0.996 \pm 0.061

1295

Continued on next page

1296 Table 18: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Math do-
 1297 main.

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Model	Intervention	Timestep	Mean \pm Std
EXAONE-Deep-32B	Complete Step (Benign)	0.5	0.995 \pm 0.072
EXAONE-Deep-32B	Complete Step (Benign)	0.7	0.997 \pm 0.052
EXAONE-Deep-32B	Complete Step (Benign)	0.9	0.998 \pm 0.046
Nemotron-Llama-3.1-Nano-8B	Complete Step (Benign)	0.1	0.993 \pm 0.086
Nemotron-Llama-3.1-Nano-8B	Complete Step (Benign)	0.3	0.990 \pm 0.102
Nemotron-Llama-3.1-Nano-8B	Complete Step (Benign)	0.5	0.995 \pm 0.073
Nemotron-Llama-3.1-Nano-8B	Complete Step (Benign)	0.7	0.994 \pm 0.075
Nemotron-Llama-3.1-Nano-8B	Complete Step (Benign)	0.9	0.997 \pm 0.054
Phi-4-Reasoning-Plus	Complete Step (Benign)	0.1	0.919 \pm 0.273
Phi-4-Reasoning-Plus	Complete Step (Benign)	0.3	0.917 \pm 0.276
Phi-4-Reasoning-Plus	Complete Step (Benign)	0.5	0.928 \pm 0.259
Phi-4-Reasoning-Plus	Complete Step (Benign)	0.7	0.930 \pm 0.255
Phi-4-Reasoning-Plus	Complete Step (Benign)	0.9	0.941 \pm 0.236
QwQ-32B	Complete Step (Benign)	0.1	0.994 \pm 0.079
QwQ-32B	Complete Step (Benign)	0.3	0.985 \pm 0.122
QwQ-32B	Complete Step (Benign)	0.5	0.988 \pm 0.109
QwQ-32B	Complete Step (Benign)	0.7	0.990 \pm 0.098
QwQ-32B	Complete Step (Benign)	0.9	0.989 \pm 0.105
R1-Distill-Llama-8B	Complete Step (Benign)	0.1	0.933 \pm 0.250
R1-Distill-Llama-8B	Complete Step (Benign)	0.3	0.964 \pm 0.187
R1-Distill-Llama-8B	Complete Step (Benign)	0.5	0.974 \pm 0.158
R1-Distill-Llama-8B	Complete Step (Benign)	0.7	0.981 \pm 0.138
R1-Distill-Llama-8B	Complete Step (Benign)	0.9	0.992 \pm 0.091
R1-Distill-Qwen-1.5B	Complete Step (Benign)	0.1	0.851 \pm 0.356
R1-Distill-Qwen-1.5B	Complete Step (Benign)	0.3	0.887 \pm 0.317
R1-Distill-Qwen-1.5B	Complete Step (Benign)	0.5	0.906 \pm 0.291
R1-Distill-Qwen-1.5B	Complete Step (Benign)	0.7	0.927 \pm 0.261
R1-Distill-Qwen-1.5B	Complete Step (Benign)	0.9	0.962 \pm 0.190
R1-Distill-Qwen-14B	Complete Step (Benign)	0.1	0.990 \pm 0.102
R1-Distill-Qwen-14B	Complete Step (Benign)	0.3	0.993 \pm 0.086
R1-Distill-Qwen-14B	Complete Step (Benign)	0.5	0.993 \pm 0.083
R1-Distill-Qwen-14B	Complete Step (Benign)	0.7	0.995 \pm 0.068
R1-Distill-Qwen-14B	Complete Step (Benign)	0.9	0.998 \pm 0.043
R1-Distill-Qwen-32B	Complete Step (Benign)	0.1	0.988 \pm 0.107
R1-Distill-Qwen-32B	Complete Step (Benign)	0.3	0.992 \pm 0.089
R1-Distill-Qwen-32B	Complete Step (Benign)	0.5	0.991 \pm 0.094
R1-Distill-Qwen-32B	Complete Step (Benign)	0.7	0.993 \pm 0.083
R1-Distill-Qwen-32B	Complete Step (Benign)	0.9	0.996 \pm 0.064
R1-Distill-Qwen-7B	Complete Step (Benign)	0.1	0.974 \pm 0.159
R1-Distill-Qwen-7B	Complete Step (Benign)	0.3	0.979 \pm 0.144
R1-Distill-Qwen-7B	Complete Step (Benign)	0.5	0.983 \pm 0.130
R1-Distill-Qwen-7B	Complete Step (Benign)	0.7	0.981 \pm 0.137
R1-Distill-Qwen-7B	Complete Step (Benign)	0.9	0.994 \pm 0.080
EXAONE-Deep-32B	Continue (Adv.)	Unrelated	0.1 0.487 \pm 0.500
EXAONE-Deep-32B	Continue (Adv.)	Unrelated	0.3 0.598 \pm 0.490

Continued on next page

1350 Table 18: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Math do-
1351 main.

1353	Model	Intervention	Timestep	Mean \pm Std
1354	EXAONE-Deep-32B	Continue (Adv.)	Unrelated	0.5 0.713 \pm 0.452
1355	EXAONE-Deep-32B	Continue (Adv.)	Unrelated	0.7 0.779 \pm 0.415
1356	EXAONE-Deep-32B	Continue (Adv.)	Unrelated	0.9 0.804 \pm 0.397
1357	Nemotron-Llama-3.1-Nano-8B	Continue (Adv.)	Unrelated	0.1 0.840 \pm 0.367
1358	Nemotron-Llama-3.1-Nano-8B	Continue (Adv.)	Unrelated	0.3 0.889 \pm 0.314
1359	Nemotron-Llama-3.1-Nano-8B	Continue (Adv.)	Unrelated	0.5 0.912 \pm 0.283
1360	Nemotron-Llama-3.1-Nano-8B	Continue (Adv.)	Unrelated	0.7 0.937 \pm 0.243
1361	Phi-4-Reasoning-Plus	Continue (Adv.)	Unrelated	0.9 0.968 \pm 0.175
1362	Phi-4-Reasoning-Plus	Continue (Adv.)	Unrelated	0.1 0.929 \pm 0.258
1363	Phi-4-Reasoning-Plus	Continue (Adv.)	Unrelated	0.3 0.925 \pm 0.263
1364	Phi-4-Reasoning-Plus	Continue (Adv.)	Unrelated	0.5 0.940 \pm 0.238
1365	Phi-4-Reasoning-Plus	Continue (Adv.)	Unrelated	0.7 0.936 \pm 0.245
1366	Phi-4-Reasoning-Plus	Continue (Adv.)	Unrelated	0.9 0.934 \pm 0.249
1367	QwQ-32B	Continue (Adv.)	Unrelated	0.1 0.966 \pm 0.182
1368	QwQ-32B	Continue (Adv.)	Unrelated	0.3 0.920 \pm 0.272
1369	QwQ-32B	Continue (Adv.)	Unrelated	0.5 0.890 \pm 0.313
1370	QwQ-32B	Continue (Adv.)	Unrelated	0.7 0.890 \pm 0.313
1371	QwQ-32B	Continue (Adv.)	Unrelated	0.9 0.877 \pm 0.328
1372	R1-Distill-Llama-8B	Continue (Adv.)	Unrelated	0.1 0.905 \pm 0.294
1373	R1-Distill-Llama-8B	Continue (Adv.)	Unrelated	0.3 0.956 \pm 0.204
1374	R1-Distill-Llama-8B	Continue (Adv.)	Unrelated	0.5 0.971 \pm 0.168
1375	R1-Distill-Llama-8B	Continue (Adv.)	Unrelated	0.7 0.980 \pm 0.141
1376	R1-Distill-Llama-8B	Continue (Adv.)	Unrelated	0.9 0.990 \pm 0.098
1377	R1-Distill-Qwen-1.5B	Continue (Adv.)	Unrelated	0.1 0.825 \pm 0.380
1378	R1-Distill-Qwen-1.5B	Continue (Adv.)	Unrelated	0.3 0.833 \pm 0.373
1379	R1-Distill-Qwen-1.5B	Continue (Adv.)	Unrelated	0.5 0.844 \pm 0.363
1380	R1-Distill-Qwen-1.5B	Continue (Adv.)	Unrelated	0.7 0.861 \pm 0.346
1381	R1-Distill-Qwen-1.5B	Continue (Adv.)	Unrelated	0.9 0.874 \pm 0.332
1382	R1-Distill-Qwen-14B	Continue (Adv.)	Unrelated	0.1 0.918 \pm 0.275

1403

Continued on next page

1404 Table 18: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Math do-
 1405 main.

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Model	Intervention	Timestep	Mean \pm Std
R1-Distill-Qwen-14B	Continue (Adv.)	Unrelated	0.3 0.971 \pm 0.168
R1-Distill-Qwen-14B	Continue (Adv.)	Unrelated	0.5 0.979 \pm 0.144
R1-Distill-Qwen-14B	Continue (Adv.)	Unrelated	0.7 0.989 \pm 0.105
R1-Distill-Qwen-14B	Continue (Adv.)	Unrelated	0.9 0.988 \pm 0.109
R1-Distill-Qwen-32B	Continue (Adv.)	Unrelated	0.1 0.941 \pm 0.236
R1-Distill-Qwen-32B	Continue (Adv.)	Unrelated	0.3 0.979 \pm 0.143
R1-Distill-Qwen-32B	Continue (Adv.)	Unrelated	0.5 0.985 \pm 0.122
R1-Distill-Qwen-32B	Continue (Adv.)	Unrelated	0.7 0.989 \pm 0.106
R1-Distill-Qwen-32B	Continue (Adv.)	Unrelated	0.9 0.989 \pm 0.103
R1-Distill-Qwen-7B	Continue (Adv.)	Unrelated	0.1 0.949 \pm 0.220
R1-Distill-Qwen-7B	Continue (Adv.)	Unrelated	0.3 0.978 \pm 0.148
R1-Distill-Qwen-7B	Continue (Adv.)	Unrelated	0.5 0.981 \pm 0.136
R1-Distill-Qwen-7B	Continue (Adv.)	Unrelated	0.7 0.980 \pm 0.139
R1-Distill-Qwen-7B	Continue (Adv.)	Unrelated	0.9 0.989 \pm 0.104
EXAONE-Deep-32B	Ctn. Wrong Reasoning (Adv.)	0.1	0.993 \pm 0.081
EXAONE-Deep-32B	Ctn. Wrong Reasoning (Adv.)	0.3	0.996 \pm 0.066
EXAONE-Deep-32B	Ctn. Wrong Reasoning (Adv.)	0.5	0.995 \pm 0.068
EXAONE-Deep-32B	Ctn. Wrong Reasoning (Adv.)	0.7	0.996 \pm 0.063
EXAONE-Deep-32B	Ctn. Wrong Reasoning (Adv.)	0.9	0.997 \pm 0.052
Nemotron-Llama-3.1-Nano-8B	Ctn. Wrong Reasoning (Adv.)	0.1	0.991 \pm 0.096
Nemotron-Llama-3.1-Nano-8B	Ctn. Wrong Reasoning (Adv.)	0.3	0.989 \pm 0.105
Nemotron-Llama-3.1-Nano-8B	Ctn. Wrong Reasoning (Adv.)	0.5	0.992 \pm 0.091
Nemotron-Llama-3.1-Nano-8B	Ctn. Wrong Reasoning (Adv.)	0.7	0.994 \pm 0.075
Nemotron-Llama-3.1-Nano-8B	Ctn. Wrong Reasoning (Adv.)	0.9	0.998 \pm 0.048
Phi-4-Reasoning-Plus	Ctn. Wrong Reasoning (Adv.)	0.1	0.938 \pm 0.241
Phi-4-Reasoning-Plus	Ctn. Wrong Reasoning (Adv.)	0.3	0.944 \pm 0.229
Phi-4-Reasoning-Plus	Ctn. Wrong Reasoning (Adv.)	0.5	0.943 \pm 0.232
Phi-4-Reasoning-Plus	Ctn. Wrong Reasoning (Adv.)	0.7	0.943 \pm 0.232
Phi-4-Reasoning-Plus	Ctn. Wrong Reasoning (Adv.)	0.9	0.947 \pm 0.224

Continued on next page

1458 Table 18: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Math do-
 1459 main.

1460

1461	Model	Intervention	Timestep	Mean \pm Std
1462	QwQ-32B	Ctn. Wrong Reasoning (Adv.)	0.1	0.994 \pm 0.076
1463	QwQ-32B	Ctn. Wrong Reasoning (Adv.)	0.3	0.991 \pm 0.094
1464	QwQ-32B	Ctn. Wrong Reasoning (Adv.)	0.5	0.993 \pm 0.082
1465	QwQ-32B	Ctn. Wrong Reasoning (Adv.)	0.7	0.989 \pm 0.104
1466	QwQ-32B	Ctn. Wrong Reasoning (Adv.)	0.9	0.987 \pm 0.114
1467	R1-Distill-Llama-8B	Ctn. Wrong Reasoning (Adv.)	0.1	0.917 \pm 0.276
1468	R1-Distill-Llama-8B	Ctn. Wrong Reasoning (Adv.)	0.3	0.958 \pm 0.201
1469	R1-Distill-Llama-8B	Ctn. Wrong Reasoning (Adv.)	0.5	0.967 \pm 0.179
1470	R1-Distill-Llama-8B	Ctn. Wrong Reasoning (Adv.)	0.7	0.980 \pm 0.139
1471	R1-Distill-Llama-8B	Ctn. Wrong Reasoning (Adv.)	0.9	0.990 \pm 0.102
1472	R1-Distill-Qwen-1.5B	Ctn. Wrong Reasoning (Adv.)	0.1	0.816 \pm 0.388
1473	R1-Distill-Qwen-1.5B	Ctn. Wrong Reasoning (Adv.)	0.3	0.851 \pm 0.356
1474	R1-Distill-Qwen-1.5B	Ctn. Wrong Reasoning (Adv.)	0.5	0.879 \pm 0.326
1475	R1-Distill-Qwen-1.5B	Ctn. Wrong Reasoning (Adv.)	0.7	0.899 \pm 0.302
1476	R1-Distill-Qwen-1.5B	Ctn. Wrong Reasoning (Adv.)	0.9	0.933 \pm 0.249
1477	R1-Distill-Qwen-14B	Ctn. Wrong Reasoning (Adv.)	0.1	0.988 \pm 0.108
1478	R1-Distill-Qwen-14B	Ctn. Wrong Reasoning (Adv.)	0.3	0.993 \pm 0.081
1479	R1-Distill-Qwen-14B	Ctn. Wrong Reasoning (Adv.)	0.5	0.990 \pm 0.097
1480	R1-Distill-Qwen-14B	Ctn. Wrong Reasoning (Adv.)	0.7	0.995 \pm 0.071
1481	R1-Distill-Qwen-14B	Ctn. Wrong Reasoning (Adv.)	0.9	0.997 \pm 0.056
1482	R1-Distill-Qwen-32B	Ctn. Wrong Reasoning (Adv.)	0.1	0.975 \pm 0.155
1483	R1-Distill-Qwen-32B	Ctn. Wrong Reasoning (Adv.)	0.3	0.989 \pm 0.103
1484	R1-Distill-Qwen-32B	Ctn. Wrong Reasoning (Adv.)	0.5	0.992 \pm 0.090
1485	R1-Distill-Qwen-32B	Ctn. Wrong Reasoning (Adv.)	0.7	0.993 \pm 0.081
1486	R1-Distill-Qwen-32B	Ctn. Wrong Reasoning (Adv.)	0.9	0.992 \pm 0.090
1487	R1-Distill-Qwen-7B	Ctn. Wrong Reasoning (Adv.)	0.1	0.968 \pm 0.176
1488	R1-Distill-Qwen-7B	Ctn. Wrong Reasoning (Adv.)	0.3	0.980 \pm 0.140
1489	R1-Distill-Qwen-7B	Ctn. Wrong Reasoning (Adv.)	0.5	0.981 \pm 0.136
1490	R1-Distill-Qwen-7B	Ctn. Wrong Reasoning (Adv.)	0.7	0.981 \pm 0.138

1511

Continued on next page

1512 Table 18: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Math do-
 1513 main.

1514

1515	Model	Intervention	Timestep	Mean \pm Std
1516	R1-Distill-Qwen-7B	Ctn. Wrong Reasoning (Adv.)	0.9	0.992 \pm 0.087
1517	EXAONE-Deep-32B	Insert Random Characters (Neutral)	0.1	0.996 \pm 0.064
1518	EXAONE-Deep-32B	Insert Random Characters (Neutral)	0.3	0.995 \pm 0.068
1519	EXAONE-Deep-32B	Insert Random Characters (Neutral)	0.5	0.994 \pm 0.075
1520	EXAONE-Deep-32B	Insert Random Characters (Neutral)	0.7	0.996 \pm 0.064
1521	EXAONE-Deep-32B	Insert Random Characters (Neutral)	0.9	0.998 \pm 0.050
1522	Nemotron-Llama-3.1-Nano-8B	Insert Random Characters (Neutral)	0.1	0.877 \pm 0.329
1523	Nemotron-Llama-3.1-Nano-8B	Insert Random Characters (Neutral)	0.3	0.910 \pm 0.286
1524	Nemotron-Llama-3.1-Nano-8B	Insert Random Characters (Neutral)	0.5	0.917 \pm 0.276
1525	Nemotron-Llama-3.1-Nano-8B	Insert Random Characters (Neutral)	0.7	0.941 \pm 0.236
1526	Nemotron-Llama-3.1-Nano-8B	Insert Random Characters (Neutral)	0.9	0.935 \pm 0.246
1527	Phi-4-Reasoning-Plus	Insert Random Characters (Neutral)	0.1	0.907 \pm 0.290
1528	Phi-4-Reasoning-Plus	Insert Random Characters (Neutral)	0.3	0.910 \pm 0.286
1529	Phi-4-Reasoning-Plus	Insert Random Characters (Neutral)	0.5	0.915 \pm 0.280
1530	Phi-4-Reasoning-Plus	Insert Random Characters (Neutral)	0.7	0.911 \pm 0.285
1531	Phi-4-Reasoning-Plus	Insert Random Characters (Neutral)	0.9	0.932 \pm 0.252
1532	QwQ-32B	Insert Random Characters (Neutral)	0.1	0.985 \pm 0.120
1533	QwQ-32B	Insert Random Characters (Neutral)	0.3	0.982 \pm 0.134
1534	QwQ-32B	Insert Random Characters (Neutral)	0.5	0.975 \pm 0.156
1535	QwQ-32B	Insert Random Characters (Neutral)	0.7	0.955 \pm 0.208
1536	QwQ-32B	Insert Random Characters (Neutral)	0.9	0.978 \pm 0.147
1537	R1-Distill-Llama-8B	Insert Random Characters (Neutral)	0.1	0.941 \pm 0.235
1538	R1-Distill-Llama-8B	Insert Random Characters (Neutral)	0.3	0.961 \pm 0.194
1539	R1-Distill-Llama-8B	Insert Random Characters (Neutral)	0.5	0.974 \pm 0.159
1540	R1-Distill-Llama-8B	Insert Random Characters (Neutral)	0.7	0.980 \pm 0.141
1541	R1-Distill-Llama-8B	Insert Random Characters (Neutral)	0.9	0.992 \pm 0.087
1542	R1-Distill-Qwen-1.5B	Insert Random Characters (Neutral)	0.1	0.802 \pm 0.399
1543	R1-Distill-Qwen-1.5B	Insert Random Characters (Neutral)	0.3	0.850 \pm 0.357
1544	R1-Distill-Qwen-1.5B	Insert Random Characters (Neutral)	0.5	0.867 \pm 0.339

1564

Continued on next page

1566 Table 18: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Math do-
 1567 main.

1568

1569	Model	Intervention	Timestep	Mean \pm Std
1570	R1-Distill-Qwen-1.5B	Insert Random Characters (Neutral)	0.7	0.886 \pm 0.318
1571	R1-Distill-Qwen-1.5B	Insert Random Characters (Neutral)	0.9	0.928 \pm 0.258
1572	R1-Distill-Qwen-14B	Insert Random Characters (Neutral)	0.1	0.988 \pm 0.109
1573	R1-Distill-Qwen-14B	Insert Random Characters (Neutral)	0.3	0.992 \pm 0.087
1574	R1-Distill-Qwen-14B	Insert Random Characters (Neutral)	0.5	0.991 \pm 0.095
1575	R1-Distill-Qwen-14B	Insert Random Characters (Neutral)	0.7	0.995 \pm 0.072
1576	R1-Distill-Qwen-14B	Insert Random Characters (Neutral)	0.9	0.996 \pm 0.061
1577	R1-Distill-Qwen-32B	Insert Random Characters (Neutral)	0.1	0.983 \pm 0.130
1578	R1-Distill-Qwen-32B	Insert Random Characters (Neutral)	0.3	0.988 \pm 0.110
1579	R1-Distill-Qwen-32B	Insert Random Characters (Neutral)	0.5	0.992 \pm 0.091
1580	R1-Distill-Qwen-32B	Insert Random Characters (Neutral)	0.7	0.994 \pm 0.079
1581	R1-Distill-Qwen-32B	Insert Random Characters (Neutral)	0.9	0.993 \pm 0.084
1582	R1-Distill-Qwen-7B	Insert Random Characters (Neutral)	0.1	0.890 \pm 0.312
1583	R1-Distill-Qwen-7B	Insert Random Characters (Neutral)	0.3	0.951 \pm 0.216
1584	R1-Distill-Qwen-7B	Insert Random Characters (Neutral)	0.5	0.946 \pm 0.225
1585	R1-Distill-Qwen-7B	Insert Random Characters (Neutral)	0.7	0.948 \pm 0.222
1586	R1-Distill-Qwen-7B	Insert Random Characters (Neutral)	0.9	0.955 \pm 0.208
1587	EXAONE-Deep-32B	Insert Wrong Fact (Adv.)	0.1	0.993 \pm 0.081
1588	EXAONE-Deep-32B	Insert Wrong Fact (Adv.)	0.3	0.996 \pm 0.066
1589	EXAONE-Deep-32B	Insert Wrong Fact (Adv.)	0.5	0.997 \pm 0.056
1590	EXAONE-Deep-32B	Insert Wrong Fact (Adv.)	0.7	0.997 \pm 0.058
1591	EXAONE-Deep-32B	Insert Wrong Fact (Adv.)	0.9	0.998 \pm 0.050
1592	Nemotron-Llama-3.1-Nano-8B	Insert Wrong Fact (Adv.)	0.1	0.991 \pm 0.096
1593	Nemotron-Llama-3.1-Nano-8B	Insert Wrong Fact (Adv.)	0.3	0.994 \pm 0.077
1594	Nemotron-Llama-3.1-Nano-8B	Insert Wrong Fact (Adv.)	0.5	0.995 \pm 0.069
1595	Nemotron-Llama-3.1-Nano-8B	Insert Wrong Fact (Adv.)	0.7	0.996 \pm 0.064
1596	Nemotron-Llama-3.1-Nano-8B	Insert Wrong Fact (Adv.)	0.9	0.998 \pm 0.043
1597	Phi-4-Reasoning-Plus	Insert Wrong Fact (Adv.)	0.1	0.933 \pm 0.250
1598	Phi-4-Reasoning-Plus	Insert Wrong Fact (Adv.)	0.3	0.937 \pm 0.243
1599	Phi-4-Reasoning-Plus	Insert Wrong Fact (Adv.)	0.5	0.941 \pm 0.235
1600	Phi-4-Reasoning-Plus	Insert Wrong Fact (Adv.)	0.7	0.941 \pm 0.236
1601	Phi-4-Reasoning-Plus	Insert Wrong Fact (Adv.)	0.9	0.943 \pm 0.232
1602	QwQ-32B	Insert Wrong Fact (Adv.)	0.1	0.996 \pm 0.059
1603	QwQ-32B	Insert Wrong Fact (Adv.)	0.3	0.988 \pm 0.111
1604	QwQ-32B	Insert Wrong Fact (Adv.)	0.5	0.992 \pm 0.090
1605	QwQ-32B	Insert Wrong Fact (Adv.)	0.7	0.995 \pm 0.071

1610

Continued on next page

Table 18: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Math domain.

Model	Intervention	Timestep	Mean \pm Std
QwQ-32B	Insert Wrong Fact (Adv.)	0.9	0.983 \pm 0.129
R1-Distill-Llama-8B	Insert Wrong Fact (Adv.)	0.1	0.945 \pm 0.228
R1-Distill-Llama-8B	Insert Wrong Fact (Adv.)	0.3	0.966 \pm 0.182
R1-Distill-Llama-8B	Insert Wrong Fact (Adv.)	0.5	0.970 \pm 0.171
R1-Distill-Llama-8B	Insert Wrong Fact (Adv.)	0.7	0.979 \pm 0.142
R1-Distill-Llama-8B	Insert Wrong Fact (Adv.)	0.9	0.991 \pm 0.093
R1-Distill-Qwen-1.5B	Insert Wrong Fact (Adv.)	0.1	0.829 \pm 0.377
R1-Distill-Qwen-1.5B	Insert Wrong Fact (Adv.)	0.3	0.865 \pm 0.342
R1-Distill-Qwen-1.5B	Insert Wrong Fact (Adv.)	0.5	0.885 \pm 0.320
R1-Distill-Qwen-1.5B	Insert Wrong Fact (Adv.)	0.7	0.909 \pm 0.288
R1-Distill-Qwen-1.5B	Insert Wrong Fact (Adv.)	0.9	0.937 \pm 0.243
R1-Distill-Qwen-14B	Insert Wrong Fact (Adv.)	0.1	0.990 \pm 0.102
R1-Distill-Qwen-14B	Insert Wrong Fact (Adv.)	0.3	0.992 \pm 0.091
R1-Distill-Qwen-14B	Insert Wrong Fact (Adv.)	0.5	0.994 \pm 0.075
R1-Distill-Qwen-14B	Insert Wrong Fact (Adv.)	0.7	0.992 \pm 0.090
R1-Distill-Qwen-14B	Insert Wrong Fact (Adv.)	0.9	0.997 \pm 0.056
R1-Distill-Qwen-32B	Insert Wrong Fact (Adv.)	0.1	0.986 \pm 0.119
R1-Distill-Qwen-32B	Insert Wrong Fact (Adv.)	0.3	0.986 \pm 0.116
R1-Distill-Qwen-32B	Insert Wrong Fact (Adv.)	0.5	0.993 \pm 0.081
R1-Distill-Qwen-32B	Insert Wrong Fact (Adv.)	0.7	0.991 \pm 0.093
R1-Distill-Qwen-32B	Insert Wrong Fact (Adv.)	0.9	0.995 \pm 0.071
R1-Distill-Qwen-7B	Insert Wrong Fact (Adv.)	0.1	0.984 \pm 0.125
R1-Distill-Qwen-7B	Insert Wrong Fact (Adv.)	0.3	0.980 \pm 0.141
R1-Distill-Qwen-7B	Insert Wrong Fact (Adv.)	0.5	0.980 \pm 0.139
R1-Distill-Qwen-7B	Insert Wrong Fact (Adv.)	0.7	0.985 \pm 0.120
R1-Distill-Qwen-7B	Insert Wrong Fact (Adv.)	0.9	0.989 \pm 0.106
EXAONE-Deep-32B	Rewrite Trace (Benign)	0.1	0.995 \pm 0.071
EXAONE-Deep-32B	Rewrite Trace (Benign)	0.3	0.996 \pm 0.061
EXAONE-Deep-32B	Rewrite Trace (Benign)	0.5	0.995 \pm 0.069
EXAONE-Deep-32B	Rewrite Trace (Benign)	0.7	0.995 \pm 0.069
EXAONE-Deep-32B	Rewrite Trace (Benign)	0.9	0.997 \pm 0.056
Nemotron-Llama-3.1-Nano-8B	Rewrite Trace (Benign)	0.1	0.804 \pm 0.397
Nemotron-Llama-3.1-Nano-8B	Rewrite Trace (Benign)	0.3	0.880 \pm 0.324
Nemotron-Llama-3.1-Nano-8B	Rewrite Trace (Benign)	0.5	0.906 \pm 0.292
Nemotron-Llama-3.1-Nano-8B	Rewrite Trace (Benign)	0.7	0.921 \pm 0.270
Nemotron-Llama-3.1-Nano-8B	Rewrite Trace (Benign)	0.9	0.944 \pm 0.230
Phi-4-Reasoning-Plus	Rewrite Trace (Benign)	0.1	0.913 \pm 0.282
Phi-4-Reasoning-Plus	Rewrite Trace (Benign)	0.3	0.904 \pm 0.295
Phi-4-Reasoning-Plus	Rewrite Trace (Benign)	0.5	0.903 \pm 0.295
Phi-4-Reasoning-Plus	Rewrite Trace (Benign)	0.7	0.926 \pm 0.261
Phi-4-Reasoning-Plus	Rewrite Trace (Benign)	0.9	0.918 \pm 0.274
QwQ-32B	Rewrite Trace (Benign)	0.1	0.991 \pm 0.092
QwQ-32B	Rewrite Trace (Benign)	0.3	0.990 \pm 0.099
QwQ-32B	Rewrite Trace (Benign)	0.5	0.993 \pm 0.081
QwQ-32B	Rewrite Trace (Benign)	0.7	0.989 \pm 0.105
QwQ-32B	Rewrite Trace (Benign)	0.9	0.991 \pm 0.094
R1-Distill-Llama-8B	Rewrite Trace (Benign)	0.1	0.779 \pm 0.415
R1-Distill-Llama-8B	Rewrite Trace (Benign)	0.3	0.827 \pm 0.379

Continued on next page

1674 Table 18: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Math do-
1675 main.
1676

1677 Model	1677 Intervention	1677 Timestep	1677 Mean \pm Std
1678 R1-Distill-Llama-8B	1678 Rewrite Trace (Benign)	1678 0.5	1678 0.877 ± 0.329
1679 R1-Distill-Llama-8B	1679 Rewrite Trace (Benign)	1679 0.7	1679 0.930 ± 0.255
1680 R1-Distill-Llama-8B	1680 Rewrite Trace (Benign)	1680 0.9	1680 0.962 ± 0.190
1681 R1-Distill-Qwen-1.5B	1681 Rewrite Trace (Benign)	1681 0.1	1681 0.791 ± 0.407
1682 R1-Distill-Qwen-1.5B	1682 Rewrite Trace (Benign)	1682 0.3	1682 0.818 ± 0.386
1683 R1-Distill-Qwen-1.5B	1683 Rewrite Trace (Benign)	1683 0.5	1683 0.862 ± 0.345
1684 R1-Distill-Qwen-1.5B	1684 Rewrite Trace (Benign)	1684 0.7	1684 0.904 ± 0.294
1685 R1-Distill-Qwen-1.5B	1685 Rewrite Trace (Benign)	1685 0.9	1685 0.945 ± 0.228
1686 R1-Distill-Qwen-14B	1686 Rewrite Trace (Benign)	1686 0.1	1686 0.813 ± 0.390
1687 R1-Distill-Qwen-14B	1687 Rewrite Trace (Benign)	1687 0.3	1687 0.879 ± 0.326
1688 R1-Distill-Qwen-14B	1688 Rewrite Trace (Benign)	1688 0.5	1688 0.915 ± 0.278
1689 R1-Distill-Qwen-14B	1689 Rewrite Trace (Benign)	1689 0.7	1689 0.940 ± 0.237
1690 R1-Distill-Qwen-14B	1690 Rewrite Trace (Benign)	1690 0.9	1690 0.969 ± 0.173
1691 R1-Distill-Qwen-32B	1691 Rewrite Trace (Benign)	1691 0.1	1691 0.832 ± 0.374
1692 R1-Distill-Qwen-32B	1692 Rewrite Trace (Benign)	1692 0.3	1692 0.890 ± 0.313
1693 R1-Distill-Qwen-32B	1693 Rewrite Trace (Benign)	1693 0.5	1693 0.924 ± 0.265
1694 R1-Distill-Qwen-32B	1694 Rewrite Trace (Benign)	1694 0.7	1694 0.945 ± 0.228
1695 R1-Distill-Qwen-32B	1695 Rewrite Trace (Benign)	1695 0.9	1695 0.971 ± 0.168
1696 R1-Distill-Qwen-7B	1696 Rewrite Trace (Benign)	1696 0.1	1696 0.863 ± 0.343
1697 R1-Distill-Qwen-7B	1697 Rewrite Trace (Benign)	1697 0.3	1697 0.899 ± 0.302
1698 R1-Distill-Qwen-7B	1698 Rewrite Trace (Benign)	1698 0.5	1698 0.942 ± 0.233
1699 R1-Distill-Qwen-7B	1699 Rewrite Trace (Benign)	1699 0.7	1699 0.954 ± 0.209
1700 R1-Distill-Qwen-7B	1700 Rewrite Trace (Benign)	1700 0.9	1700 0.973 ± 0.162

1703 Table 19: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Science
1704 domain.
1705

1706 Model	1706 Intervention	1706 Timestep	1706 Mean \pm Std
1707 EXAONE-Deep-32B	1707 Add Random Text (Neutral)	1707 0.1	1707 0.923 ± 0.266
1708 EXAONE-Deep-32B	1708 Add Random Text (Neutral)	1708 0.3	1708 0.927 ± 0.260
1709 EXAONE-Deep-32B	1709 Add Random Text (Neutral)	1709 0.5	1709 0.942 ± 0.235
1710 EXAONE-Deep-32B	1710 Add Random Text (Neutral)	1710 0.7	1710 0.948 ± 0.222
1711 EXAONE-Deep-32B	1711 Add Random Text (Neutral)	1711 0.9	1711 0.964 ± 0.186
1712 Nemotron-Llama-3.1-Nano-8B	1712 Add Random Text (Neutral)	1712 0.1	1712 0.890 ± 0.313
1713 Nemotron-Llama-3.1-Nano-8B	1713 Add Random Text (Neutral)	1713 0.3	1713 0.896 ± 0.306
1714 Nemotron-Llama-3.1-Nano-8B	1714 Add Random Text (Neutral)	1714 0.5	1714 0.898 ± 0.303
1715 Nemotron-Llama-3.1-Nano-8B	1715 Add Random Text (Neutral)	1715 0.7	1715 0.908 ± 0.289
1716 Nemotron-Llama-3.1-Nano-8B	1716 Add Random Text (Neutral)	1716 0.9	1716 0.916 ± 0.277
1717 Phi-4-Reasoning-Plus	1717 Add Random Text (Neutral)	1717 0.1	1717 0.850 ± 0.357

1726 1727 Continued on next page

1728 Table 19: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Science
1729 domain.

1730

1731	Model	Intervention	Timestep	Mean \pm Std
1732	Phi-4-Reasoning-Plus	Add Random Text (Neutral)	0.3	0.848 \pm 0.359
1733	Phi-4-Reasoning-Plus	Add Random Text (Neutral)	0.5	0.860 \pm 0.347
1734	Phi-4-Reasoning-Plus	Add Random Text (Neutral)	0.7	0.865 \pm 0.341
1735	Phi-4-Reasoning-Plus	Add Random Text (Neutral)	0.9	0.860 \pm 0.347
1736	QwQ-32B	Add Random Text (Neutral)	0.1	0.903 \pm 0.297
1737	QwQ-32B	Add Random Text (Neutral)	0.3	0.900 \pm 0.300
1738	QwQ-32B	Add Random Text (Neutral)	0.5	0.912 \pm 0.284
1739	QwQ-32B	Add Random Text (Neutral)	0.7	0.915 \pm 0.279
1740	QwQ-32B	Add Random Text (Neutral)	0.9	0.908 \pm 0.289
1741	R1-Distill-Llama-8B	Add Random Text (Neutral)	0.1	0.766 \pm 0.423
1742	R1-Distill-Llama-8B	Add Random Text (Neutral)	0.3	0.793 \pm 0.405
1743	R1-Distill-Llama-8B	Add Random Text (Neutral)	0.5	0.807 \pm 0.394
1744	R1-Distill-Llama-8B	Add Random Text (Neutral)	0.7	0.850 \pm 0.357
1745	R1-Distill-Llama-8B	Add Random Text (Neutral)	0.9	0.874 \pm 0.332
1746	R1-Distill-Qwen-1.5B	Add Random Text (Neutral)	0.1	0.702 \pm 0.457
1747	R1-Distill-Qwen-1.5B	Add Random Text (Neutral)	0.3	0.690 \pm 0.462
1748	R1-Distill-Qwen-1.5B	Add Random Text (Neutral)	0.5	0.737 \pm 0.440
1749	R1-Distill-Qwen-1.5B	Add Random Text (Neutral)	0.7	0.744 \pm 0.437
1750	R1-Distill-Qwen-1.5B	Add Random Text (Neutral)	0.9	0.768 \pm 0.422
1751	R1-Distill-Qwen-14B	Add Random Text (Neutral)	0.1	0.910 \pm 0.286
1752	R1-Distill-Qwen-14B	Add Random Text (Neutral)	0.3	0.913 \pm 0.281
1753	R1-Distill-Qwen-14B	Add Random Text (Neutral)	0.5	0.915 \pm 0.279
1754	R1-Distill-Qwen-14B	Add Random Text (Neutral)	0.7	0.924 \pm 0.265
1755	R1-Distill-Qwen-14B	Add Random Text (Neutral)	0.9	0.930 \pm 0.256
1756	R1-Distill-Qwen-32B	Add Random Text (Neutral)	0.1	0.919 \pm 0.273
1757	R1-Distill-Qwen-32B	Add Random Text (Neutral)	0.3	0.923 \pm 0.267
1758	R1-Distill-Qwen-32B	Add Random Text (Neutral)	0.5	0.899 \pm 0.301
1759	R1-Distill-Qwen-32B	Add Random Text (Neutral)	0.7	0.910 \pm 0.286
1760	R1-Distill-Qwen-32B	Add Random Text (Neutral)	0.9	0.916 \pm 0.277

1781

Continued on next page

Table 19: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Science domain.

Model	Intervention	Timestep	Mean \pm Std
R1-Distill-Qwen-7B	Add Random Text (Neutral)	0.1	0.871 \pm 0.335
R1-Distill-Qwen-7B	Add Random Text (Neutral)	0.3	0.882 \pm 0.323
R1-Distill-Qwen-7B	Add Random Text (Neutral)	0.5	0.872 \pm 0.334
R1-Distill-Qwen-7B	Add Random Text (Neutral)	0.7	0.871 \pm 0.335
R1-Distill-Qwen-7B	Add Random Text (Neutral)	0.9	0.878 \pm 0.328
EXAONE-Deep-32B	Complete Step (Benign)	0.1	0.983 \pm 0.130
EXAONE-Deep-32B	Complete Step (Benign)	0.3	0.976 \pm 0.152
EXAONE-Deep-32B	Complete Step (Benign)	0.5	0.971 \pm 0.168
EXAONE-Deep-32B	Complete Step (Benign)	0.7	0.976 \pm 0.154
EXAONE-Deep-32B	Complete Step (Benign)	0.9	0.985 \pm 0.122
Nemotron-Llama-3.1-Nano-8B	Complete Step (Benign)	0.1	0.892 \pm 0.310
Nemotron-Llama-3.1-Nano-8B	Complete Step (Benign)	0.3	0.902 \pm 0.298
Nemotron-Llama-3.1-Nano-8B	Complete Step (Benign)	0.5	0.916 \pm 0.278
Nemotron-Llama-3.1-Nano-8B	Complete Step (Benign)	0.7	0.920 \pm 0.271
Nemotron-Llama-3.1-Nano-8B	Complete Step (Benign)	0.9	0.937 \pm 0.244
Phi-4-Reasoning-Plus	Complete Step (Benign)	0.1	0.865 \pm 0.341
Phi-4-Reasoning-Plus	Complete Step (Benign)	0.3	0.866 \pm 0.340
Phi-4-Reasoning-Plus	Complete Step (Benign)	0.5	0.859 \pm 0.348
Phi-4-Reasoning-Plus	Complete Step (Benign)	0.7	0.872 \pm 0.334
Phi-4-Reasoning-Plus	Complete Step (Benign)	0.9	0.878 \pm 0.328
QwQ-32B	Complete Step (Benign)	0.1	0.930 \pm 0.256
QwQ-32B	Complete Step (Benign)	0.3	0.923 \pm 0.267
QwQ-32B	Complete Step (Benign)	0.5	0.924 \pm 0.265
QwQ-32B	Complete Step (Benign)	0.7	0.931 \pm 0.254
QwQ-32B	Complete Step (Benign)	0.9	0.917 \pm 0.276
R1-Distill-Llama-8B	Complete Step (Benign)	0.1	0.798 \pm 0.402
R1-Distill-Llama-8B	Complete Step (Benign)	0.3	0.801 \pm 0.399
R1-Distill-Llama-8B	Complete Step (Benign)	0.5	0.811 \pm 0.392
R1-Distill-Llama-8B	Complete Step (Benign)	0.7	0.839 \pm 0.367
R1-Distill-Llama-8B	Complete Step (Benign)	0.9	0.862 \pm 0.345
R1-Distill-Qwen-1.5B	Complete Step (Benign)	0.1	0.782 \pm 0.413
R1-Distill-Qwen-1.5B	Complete Step (Benign)	0.3	0.778 \pm 0.416
R1-Distill-Qwen-1.5B	Complete Step (Benign)	0.5	0.821 \pm 0.383
R1-Distill-Qwen-1.5B	Complete Step (Benign)	0.7	0.831 \pm 0.375
R1-Distill-Qwen-1.5B	Complete Step (Benign)	0.9	0.863 \pm 0.344
R1-Distill-Qwen-14B	Complete Step (Benign)	0.1	0.909 \pm 0.288
R1-Distill-Qwen-14B	Complete Step (Benign)	0.3	0.912 \pm 0.284
R1-Distill-Qwen-14B	Complete Step (Benign)	0.5	0.915 \pm 0.280
R1-Distill-Qwen-14B	Complete Step (Benign)	0.7	0.931 \pm 0.254
R1-Distill-Qwen-14B	Complete Step (Benign)	0.9	0.918 \pm 0.275
R1-Distill-Qwen-32B	Complete Step (Benign)	0.1	0.916 \pm 0.277
R1-Distill-Qwen-32B	Complete Step (Benign)	0.3	0.913 \pm 0.282
R1-Distill-Qwen-32B	Complete Step (Benign)	0.5	0.916 \pm 0.278

Continued on next page

1836 Table 19: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Science
 1837 domain.

1838

1839	Model	Intervention	Timestep	Mean \pm Std
1840	R1-Distill-Qwen-32B	Complete Step (Benign)	0.7	0.903 \pm 0.296
1841	R1-Distill-Qwen-32B	Complete Step (Benign)	0.9	0.921 \pm 0.270
1842	R1-Distill-Qwen-7B	Complete Step (Benign)	0.1	0.898 \pm 0.302
1843	R1-Distill-Qwen-7B	Complete Step (Benign)	0.3	0.914 \pm 0.280
1844	R1-Distill-Qwen-7B	Complete Step (Benign)	0.5	0.881 \pm 0.324
1845	R1-Distill-Qwen-7B	Complete Step (Benign)	0.7	0.894 \pm 0.308
1846	R1-Distill-Qwen-7B	Complete Step (Benign)	0.9	0.906 \pm 0.292
1847	EXAONE-Deep-32B	Continue (Adv.)	Unrelated	0.1 0.516 \pm 0.500
1848	EXAONE-Deep-32B	Continue (Adv.)	Unrelated	0.3 0.648 \pm 0.478
1849	EXAONE-Deep-32B	Continue (Adv.)	Unrelated	0.5 0.754 \pm 0.431
1850	EXAONE-Deep-32B	Continue (Adv.)	Unrelated	0.7 0.826 \pm 0.379
1851	EXAONE-Deep-32B	Continue (Adv.)	Unrelated	0.9 0.859 \pm 0.348
1852	Nemotron-Llama- 3.1-Nano-8B	Continue (Adv.)	Unrelated	0.1 0.720 \pm 0.449
1853	Nemotron-Llama- 3.1-Nano-8B	Continue (Adv.)	Unrelated	0.3 0.790 \pm 0.407
1854	Nemotron-Llama- 3.1-Nano-8B	Continue (Adv.)	Unrelated	0.5 0.856 \pm 0.352
1855	Nemotron-Llama- 3.1-Nano-8B	Continue (Adv.)	Unrelated	0.7 0.878 \pm 0.328
1856	Nemotron-Llama- 3.1-Nano-8B	Continue (Adv.)	Unrelated	0.9 0.914 \pm 0.280
1857	Phi-4-Reasoning-Plus	Continue (Adv.)	Unrelated	0.1 0.869 \pm 0.337
1858	Phi-4-Reasoning-Plus	Continue (Adv.)	Unrelated	0.3 0.864 \pm 0.343
1859	Phi-4-Reasoning-Plus	Continue (Adv.)	Unrelated	0.5 0.878 \pm 0.328
1860	Phi-4-Reasoning-Plus	Continue (Adv.)	Unrelated	0.7 0.883 \pm 0.321
1861	Phi-4-Reasoning-Plus	Continue (Adv.)	Unrelated	0.9 0.858 \pm 0.349
1862	QwQ-32B	Continue (Adv.)	Unrelated	0.1 0.915 \pm 0.279
1863	QwQ-32B	Continue (Adv.)	Unrelated	0.3 0.926 \pm 0.261
1864	QwQ-32B	Continue (Adv.)	Unrelated	0.5 0.914 \pm 0.280
1865	QwQ-32B	Continue (Adv.)	Unrelated	0.7 0.926 \pm 0.262
1866	QwQ-32B	Continue (Adv.)	Unrelated	0.9 0.923 \pm 0.267
1867	R1-Distill-Llama-8B	Continue (Adv.)	Unrelated	0.1 0.760 \pm 0.427
1868	R1-Distill-Llama-8B	Continue (Adv.)	Unrelated	0.3 0.791 \pm 0.407
1869	R1-Distill-Llama-8B	Continue (Adv.)	Unrelated	0.5 0.824 \pm 0.381
1870	R1-Distill-Llama-8B	Continue (Adv.)	Unrelated	0.7 0.834 \pm 0.372
1871	R1-Distill-Llama-8B	Continue (Adv.)	Unrelated	0.9 0.873 \pm 0.333

1888

Continued on next page

1889

Table 19: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Science domain.

Model	Intervention	Timestep	Mean \pm Std
R1-Distill-Qwen-1.5B	Continue (Adv.)	Unrelated	0.1 0.753 \pm 0.431
R1-Distill-Qwen-1.5B	Continue (Adv.)	Unrelated	0.3 0.771 \pm 0.420
R1-Distill-Qwen-1.5B	Continue (Adv.)	Unrelated	0.5 0.802 \pm 0.399
R1-Distill-Qwen-1.5B	Continue (Adv.)	Unrelated	0.7 0.798 \pm 0.402
R1-Distill-Qwen-1.5B	Continue (Adv.)	Unrelated	0.9 0.827 \pm 0.378
R1-Distill-Qwen-14B	Continue (Adv.)	Unrelated	0.1 0.859 \pm 0.348
R1-Distill-Qwen-14B	Continue (Adv.)	Unrelated	0.3 0.902 \pm 0.297
R1-Distill-Qwen-14B	Continue (Adv.)	Unrelated	0.5 0.911 \pm 0.285
R1-Distill-Qwen-14B	Continue (Adv.)	Unrelated	0.7 0.920 \pm 0.271
R1-Distill-Qwen-14B	Continue (Adv.)	Unrelated	0.9 0.918 \pm 0.274
R1-Distill-Qwen-32B	Continue (Adv.)	Unrelated	0.1 0.896 \pm 0.305
R1-Distill-Qwen-32B	Continue (Adv.)	Unrelated	0.3 0.917 \pm 0.276
R1-Distill-Qwen-32B	Continue (Adv.)	Unrelated	0.5 0.908 \pm 0.289
R1-Distill-Qwen-32B	Continue (Adv.)	Unrelated	0.7 0.913 \pm 0.281
R1-Distill-Qwen-32B	Continue (Adv.)	Unrelated	0.9 0.922 \pm 0.268
R1-Distill-Qwen-7B	Continue (Adv.)	Unrelated	0.1 0.904 \pm 0.295
R1-Distill-Qwen-7B	Continue (Adv.)	Unrelated	0.3 0.900 \pm 0.300
R1-Distill-Qwen-7B	Continue (Adv.)	Unrelated	0.5 0.890 \pm 0.313
R1-Distill-Qwen-7B	Continue (Adv.)	Unrelated	0.7 0.900 \pm 0.299
R1-Distill-Qwen-7B	Continue (Adv.)	Unrelated	0.9 0.903 \pm 0.296
EXAONE-Deep-32B	Ctn. Wrong Reasoning (Adv.)	0.1	0.976 \pm 0.154
EXAONE-Deep-32B	Ctn. Wrong Reasoning (Adv.)	0.3	0.981 \pm 0.138
EXAONE-Deep-32B	Ctn. Wrong Reasoning (Adv.)	0.5	0.977 \pm 0.149
EXAONE-Deep-32B	Ctn. Wrong Reasoning (Adv.)	0.7	0.983 \pm 0.130
EXAONE-Deep-32B	Ctn. Wrong Reasoning (Adv.)	0.9	0.990 \pm 0.101
Nemotron-Llama-3.1-Nano-8B	Ctn. Wrong Reasoning (Adv.)	0.1	0.893 \pm 0.309
Nemotron-Llama-3.1-Nano-8B	Ctn. Wrong Reasoning (Adv.)	0.3	0.907 \pm 0.290
Nemotron-Llama-3.1-Nano-8B	Ctn. Wrong Reasoning (Adv.)	0.5	0.914 \pm 0.280
Nemotron-Llama-3.1-Nano-8B	Ctn. Wrong Reasoning (Adv.)	0.7	0.922 \pm 0.269

Continued on next page

1944 Table 19: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Science
 1945 domain.

1946

1947	Model	Intervention	Timestep	Mean \pm Std
1948	Nemotron-Llama-3.1-Nano-8B	Ctn. Wrong Reasoning (Adv.)	0.9	0.924 \pm 0.265
1949	Phi-4-Reasoning-Plus	Ctn. Wrong Reasoning (Adv.)	0.1	0.882 \pm 0.323
1950	Phi-4-Reasoning-Plus	Ctn. Wrong Reasoning (Adv.)	0.3	0.883 \pm 0.321
1951	Phi-4-Reasoning-Plus	Ctn. Wrong Reasoning (Adv.)	0.5	0.881 \pm 0.324
1952	Phi-4-Reasoning-Plus	Ctn. Wrong Reasoning (Adv.)	0.7	0.891 \pm 0.311
1953	Phi-4-Reasoning-Plus	Ctn. Wrong Reasoning (Adv.)	0.9	0.877 \pm 0.329
1954	QwQ-32B	Ctn. Wrong Reasoning (Adv.)	0.1	0.923 \pm 0.266
1955	QwQ-32B	Ctn. Wrong Reasoning (Adv.)	0.3	0.926 \pm 0.261
1956	QwQ-32B	Ctn. Wrong Reasoning (Adv.)	0.5	0.917 \pm 0.276
1957	QwQ-32B	Ctn. Wrong Reasoning (Adv.)	0.7	0.926 \pm 0.261
1958	QwQ-32B	Ctn. Wrong Reasoning (Adv.)	0.9	0.919 \pm 0.273
1959	R1-Distill-Llama-8B	Ctn. Wrong Reasoning (Adv.)	0.1	0.755 \pm 0.430
1960	R1-Distill-Llama-8B	Ctn. Wrong Reasoning (Adv.)	0.3	0.792 \pm 0.406
1961	R1-Distill-Llama-8B	Ctn. Wrong Reasoning (Adv.)	0.5	0.824 \pm 0.381
1962	R1-Distill-Llama-8B	Ctn. Wrong Reasoning (Adv.)	0.7	0.825 \pm 0.380
1963	R1-Distill-Llama-8B	Ctn. Wrong Reasoning (Adv.)	0.9	0.865 \pm 0.341
1964	R1-Distill-Qwen-1.5B	Ctn. Wrong Reasoning (Adv.)	0.1	0.737 \pm 0.440
1965	R1-Distill-Qwen-1.5B	Ctn. Wrong Reasoning (Adv.)	0.3	0.769 \pm 0.421
1966	R1-Distill-Qwen-1.5B	Ctn. Wrong Reasoning (Adv.)	0.5	0.793 \pm 0.405
1967	R1-Distill-Qwen-1.5B	Ctn. Wrong Reasoning (Adv.)	0.7	0.807 \pm 0.394
1968	R1-Distill-Qwen-1.5B	Ctn. Wrong Reasoning (Adv.)	0.9	0.838 \pm 0.368
1969	R1-Distill-Qwen-14B	Ctn. Wrong Reasoning (Adv.)	0.1	0.909 \pm 0.288
1970	R1-Distill-Qwen-14B	Ctn. Wrong Reasoning (Adv.)	0.3	0.916 \pm 0.277
1971	R1-Distill-Qwen-14B	Ctn. Wrong Reasoning (Adv.)	0.5	0.931 \pm 0.253
1972	R1-Distill-Qwen-14B	Ctn. Wrong Reasoning (Adv.)	0.7	0.930 \pm 0.256
1973	R1-Distill-Qwen-14B	Ctn. Wrong Reasoning (Adv.)	0.9	0.927 \pm 0.260
1974	R1-Distill-Qwen-32B	Ctn. Wrong Reasoning (Adv.)	0.1	0.914 \pm 0.280
1975	R1-Distill-Qwen-32B	Ctn. Wrong Reasoning (Adv.)	0.3	0.918 \pm 0.274
1976	R1-Distill-Qwen-32B	Ctn. Wrong Reasoning (Adv.)	0.5	0.904 \pm 0.295

1997

Continued on next page

1998 Table 19: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Science
 1999 domain.

2000

2001	Model	Intervention	Timestep	Mean \pm Std
2002	R1-Distill-Qwen-32B	Ctn. Wrong Reasoning (Adv.)	0.7	0.915 \pm 0.280
2003	R1-Distill-Qwen-32B	Ctn. Wrong Reasoning (Adv.)	0.9	0.923 \pm 0.267
2004	R1-Distill-Qwen-7B	Ctn. Wrong Reasoning (Adv.)	0.1	0.893 \pm 0.309
2005	R1-Distill-Qwen-7B	Ctn. Wrong Reasoning (Adv.)	0.3	0.896 \pm 0.306
2006	R1-Distill-Qwen-7B	Ctn. Wrong Reasoning (Adv.)	0.5	0.894 \pm 0.307
2007	R1-Distill-Qwen-7B	Ctn. Wrong Reasoning (Adv.)	0.7	0.905 \pm 0.293
2008	R1-Distill-Qwen-7B	Ctn. Wrong Reasoning (Adv.)	0.9	0.910 \pm 0.286
2009	EXAONE-Deep-32B	Insert Random Characters (Neutral)	0.1	0.978 \pm 0.147
2010	EXAONE-Deep-32B	Insert Random Characters (Neutral)	0.3	0.979 \pm 0.142
2011	EXAONE-Deep-32B	Insert Random Characters (Neutral)	0.5	0.979 \pm 0.142
2012	EXAONE-Deep-32B	Insert Random Characters (Neutral)	0.7	0.980 \pm 0.140
2013	EXAONE-Deep-32B	Insert Random Characters (Neutral)	0.9	0.988 \pm 0.108
2014	Nemotron-Llama-3.1-Nano-8B	Insert Random Characters (Neutral)	0.1	0.839 \pm 0.368
2015	Nemotron-Llama-3.1-Nano-8B	Insert Random Characters (Neutral)	0.3	0.866 \pm 0.340
2016	Nemotron-Llama-3.1-Nano-8B	Insert Random Characters (Neutral)	0.5	0.879 \pm 0.326
2017	Nemotron-Llama-3.1-Nano-8B	Insert Random Characters (Neutral)	0.7	0.891 \pm 0.311
2018	Nemotron-Llama-3.1-Nano-8B	Insert Random Characters (Neutral)	0.9	0.891 \pm 0.311
2019	Phi-4-Reasoning-Plus	Insert Random Characters (Neutral)	0.1	0.854 \pm 0.353
2020	Phi-4-Reasoning-Plus	Insert Random Characters (Neutral)	0.3	0.852 \pm 0.355
2021	Phi-4-Reasoning-Plus	Insert Random Characters (Neutral)	0.5	0.860 \pm 0.347
2022	Phi-4-Reasoning-Plus	Insert Random Characters (Neutral)	0.7	0.859 \pm 0.348
2023	Phi-4-Reasoning-Plus	Insert Random Characters (Neutral)	0.9	0.880 \pm 0.324
2024	QwQ-32B	Insert Random Characters (Neutral)	0.1	0.931 \pm 0.253
2025	QwQ-32B	Insert Random Characters (Neutral)	0.3	0.925 \pm 0.263
2026	QwQ-32B	Insert Random Characters (Neutral)	0.5	0.920 \pm 0.271
2027	QwQ-32B	Insert Random Characters (Neutral)	0.7	0.920 \pm 0.271
2028	QwQ-32B	Insert Random Characters (Neutral)	0.9	0.915 \pm 0.279
2029	R1-Distill-Llama-8B	Insert Random Characters (Neutral)	0.1	0.753 \pm 0.431
2030	R1-Distill-Llama-8B	Insert Random Characters (Neutral)	0.3	0.779 \pm 0.415

2051

Continued on next page

Table 19: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Science domain.

Model	Intervention	Timestep	Mean \pm Std
R1-Distill-Llama-8B	Insert Random Characters (Neutral)	0.5	0.820 \pm 0.384
R1-Distill-Llama-8B	Insert Random Characters (Neutral)	0.7	0.844 \pm 0.363
R1-Distill-Llama-8B	Insert Random Characters (Neutral)	0.9	0.871 \pm 0.336
R1-Distill-Qwen-1.5B	Insert Random Characters (Neutral)	0.1	0.745 \pm 0.436
R1-Distill-Qwen-1.5B	Insert Random Characters (Neutral)	0.3	0.778 \pm 0.415
R1-Distill-Qwen-1.5B	Insert Random Characters (Neutral)	0.5	0.805 \pm 0.396
R1-Distill-Qwen-1.5B	Insert Random Characters (Neutral)	0.7	0.810 \pm 0.393
R1-Distill-Qwen-1.5B	Insert Random Characters (Neutral)	0.9	0.837 \pm 0.369
R1-Distill-Qwen-14B	Insert Random Characters (Neutral)	0.1	0.905 \pm 0.293
R1-Distill-Qwen-14B	Insert Random Characters (Neutral)	0.3	0.904 \pm 0.295
R1-Distill-Qwen-14B	Insert Random Characters (Neutral)	0.5	0.929 \pm 0.257
R1-Distill-Qwen-14B	Insert Random Characters (Neutral)	0.7	0.929 \pm 0.258
R1-Distill-Qwen-14B	Insert Random Characters (Neutral)	0.9	0.926 \pm 0.261
R1-Distill-Qwen-32B	Insert Random Characters (Neutral)	0.1	0.926 \pm 0.261
R1-Distill-Qwen-32B	Insert Random Characters (Neutral)	0.3	0.912 \pm 0.284
R1-Distill-Qwen-32B	Insert Random Characters (Neutral)	0.5	0.917 \pm 0.276
R1-Distill-Qwen-32B	Insert Random Characters (Neutral)	0.7	0.915 \pm 0.279
R1-Distill-Qwen-32B	Insert Random Characters (Neutral)	0.9	0.926 \pm 0.262
R1-Distill-Qwen-7B	Insert Random Characters (Neutral)	0.1	0.862 \pm 0.345
R1-Distill-Qwen-7B	Insert Random Characters (Neutral)	0.3	0.874 \pm 0.332
R1-Distill-Qwen-7B	Insert Random Characters (Neutral)	0.5	0.864 \pm 0.343
R1-Distill-Qwen-7B	Insert Random Characters (Neutral)	0.7	0.870 \pm 0.336
R1-Distill-Qwen-7B	Insert Random Characters (Neutral)	0.9	0.856 \pm 0.351
EXAONE-Deep-32B	Insert Wrong Fact (Adv.)	0.1	0.982 \pm 0.134
EXAONE-Deep-32B	Insert Wrong Fact (Adv.)	0.3	0.981 \pm 0.138
EXAONE-Deep-32B	Insert Wrong Fact (Adv.)	0.5	0.979 \pm 0.144
EXAONE-Deep-32B	Insert Wrong Fact (Adv.)	0.7	0.984 \pm 0.126
EXAONE-Deep-32B	Insert Wrong Fact (Adv.)	0.9	0.985 \pm 0.120
Nemotron-Llama-3.1-Nano-8B	Insert Wrong Fact (Adv.)	0.1	0.904 \pm 0.295
Nemotron-Llama-3.1-Nano-8B	Insert Wrong Fact (Adv.)	0.3	0.900 \pm 0.300
Nemotron-Llama-3.1-Nano-8B	Insert Wrong Fact (Adv.)	0.5	0.917 \pm 0.276

Continued on next page

Table 19: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Science domain.

Model	Intervention	Timestep	Mean \pm Std
Nemotron-Llama-3.1-Nano-8B	Insert Wrong Fact (Adv.)	0.7	0.915 \pm 0.280
Nemotron-Llama-3.1-Nano-8B	Insert Wrong Fact (Adv.)	0.9	0.926 \pm 0.261
Phi-4-Reasoning-Plus	Insert Wrong Fact (Adv.)	0.1	0.868 \pm 0.339
Phi-4-Reasoning-Plus	Insert Wrong Fact (Adv.)	0.3	0.879 \pm 0.326
Phi-4-Reasoning-Plus	Insert Wrong Fact (Adv.)	0.5	0.874 \pm 0.331
Phi-4-Reasoning-Plus	Insert Wrong Fact (Adv.)	0.7	0.870 \pm 0.336
Phi-4-Reasoning-Plus	Insert Wrong Fact (Adv.)	0.9	0.882 \pm 0.323
QwQ-32B	Insert Wrong Fact (Adv.)	0.1	0.927 \pm 0.260
QwQ-32B	Insert Wrong Fact (Adv.)	0.3	0.927 \pm 0.259
QwQ-32B	Insert Wrong Fact (Adv.)	0.5	0.919 \pm 0.273
QwQ-32B	Insert Wrong Fact (Adv.)	0.7	0.916 \pm 0.277
QwQ-32B	Insert Wrong Fact (Adv.)	0.9	0.918 \pm 0.274
R1-Distill-Llama-8B	Insert Wrong Fact (Adv.)	0.1	0.760 \pm 0.427
R1-Distill-Llama-8B	Insert Wrong Fact (Adv.)	0.3	0.798 \pm 0.402
R1-Distill-Llama-8B	Insert Wrong Fact (Adv.)	0.5	0.821 \pm 0.383
R1-Distill-Llama-8B	Insert Wrong Fact (Adv.)	0.7	0.840 \pm 0.366
R1-Distill-Llama-8B	Insert Wrong Fact (Adv.)	0.9	0.873 \pm 0.333
R1-Distill-Qwen-1.5B	Insert Wrong Fact (Adv.)	0.1	0.761 \pm 0.427
R1-Distill-Qwen-1.5B	Insert Wrong Fact (Adv.)	0.3	0.786 \pm 0.410
R1-Distill-Qwen-1.5B	Insert Wrong Fact (Adv.)	0.5	0.795 \pm 0.403
R1-Distill-Qwen-1.5B	Insert Wrong Fact (Adv.)	0.7	0.827 \pm 0.378
R1-Distill-Qwen-1.5B	Insert Wrong Fact (Adv.)	0.9	0.857 \pm 0.350
R1-Distill-Qwen-14B	Insert Wrong Fact (Adv.)	0.1	0.900 \pm 0.300
R1-Distill-Qwen-14B	Insert Wrong Fact (Adv.)	0.3	0.920 \pm 0.271
R1-Distill-Qwen-14B	Insert Wrong Fact (Adv.)	0.5	0.924 \pm 0.265
R1-Distill-Qwen-14B	Insert Wrong Fact (Adv.)	0.7	0.927 \pm 0.260
R1-Distill-Qwen-14B	Insert Wrong Fact (Adv.)	0.9	0.927 \pm 0.259
R1-Distill-Qwen-32B	Insert Wrong Fact (Adv.)	0.1	0.914 \pm 0.280
R1-Distill-Qwen-32B	Insert Wrong Fact (Adv.)	0.3	0.919 \pm 0.273
R1-Distill-Qwen-32B	Insert Wrong Fact (Adv.)	0.5	0.907 \pm 0.290
R1-Distill-Qwen-32B	Insert Wrong Fact (Adv.)	0.7	0.917 \pm 0.276
R1-Distill-Qwen-32B	Insert Wrong Fact (Adv.)	0.9	0.920 \pm 0.271
R1-Distill-Qwen-7B	Insert Wrong Fact (Adv.)	0.1	0.886 \pm 0.318
R1-Distill-Qwen-7B	Insert Wrong Fact (Adv.)	0.3	0.900 \pm 0.299
R1-Distill-Qwen-7B	Insert Wrong Fact (Adv.)	0.5	0.890 \pm 0.313
R1-Distill-Qwen-7B	Insert Wrong Fact (Adv.)	0.7	0.906 \pm 0.291
R1-Distill-Qwen-7B	Insert Wrong Fact (Adv.)	0.9	0.900 \pm 0.300
EXAONE-Deep-32B	Rewrite Trace (Benign)	0.1	0.973 \pm 0.162
EXAONE-Deep-32B	Rewrite Trace (Benign)	0.3	0.977 \pm 0.149
EXAONE-Deep-32B	Rewrite Trace (Benign)	0.5	0.974 \pm 0.159
EXAONE-Deep-32B	Rewrite Trace (Benign)	0.7	0.973 \pm 0.161
EXAONE-Deep-32B	Rewrite Trace (Benign)	0.9	0.971 \pm 0.167
Nemotron-Llama-3.1-Nano-8B	Rewrite Trace (Benign)	0.1	0.756 \pm 0.430
Nemotron-Llama-3.1-Nano-8B	Rewrite Trace (Benign)	0.3	0.814 \pm 0.389
Nemotron-Llama-3.1-Nano-8B	Rewrite Trace (Benign)	0.5	0.843 \pm 0.364
Nemotron-Llama-3.1-Nano-8B	Rewrite Trace (Benign)	0.7	0.878 \pm 0.327

Continued on next page

2160 Table 19: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Science
2161 domain.

Model	Intervention	Timestep	Mean \pm Std
Nemotron-Llama-3.1-Nano-8B	Rewrite Trace (Benign)	0.9	0.904 \pm 0.295
Phi-4-Reasoning-Plus	Rewrite Trace (Benign)	0.1	0.859 \pm 0.348
Phi-4-Reasoning-Plus	Rewrite Trace (Benign)	0.3	0.856 \pm 0.352
Phi-4-Reasoning-Plus	Rewrite Trace (Benign)	0.5	0.843 \pm 0.364
Phi-4-Reasoning-Plus	Rewrite Trace (Benign)	0.7	0.845 \pm 0.362
Phi-4-Reasoning-Plus	Rewrite Trace (Benign)	0.9	0.869 \pm 0.338
QwQ-32B	Rewrite Trace (Benign)	0.1	0.919 \pm 0.273
QwQ-32B	Rewrite Trace (Benign)	0.3	0.919 \pm 0.272
QwQ-32B	Rewrite Trace (Benign)	0.5	0.927 \pm 0.260
QwQ-32B	Rewrite Trace (Benign)	0.7	0.933 \pm 0.250
QwQ-32B	Rewrite Trace (Benign)	0.9	0.936 \pm 0.244
R1-Distill-Llama-8B	Rewrite Trace (Benign)	0.1	0.555 \pm 0.497
R1-Distill-Llama-8B	Rewrite Trace (Benign)	0.3	0.633 \pm 0.482
R1-Distill-Llama-8B	Rewrite Trace (Benign)	0.5	0.721 \pm 0.449
R1-Distill-Llama-8B	Rewrite Trace (Benign)	0.7	0.787 \pm 0.409
R1-Distill-Llama-8B	Rewrite Trace (Benign)	0.9	0.814 \pm 0.389
R1-Distill-Qwen-1.5B	Rewrite Trace (Benign)	0.1	0.667 \pm 0.471
R1-Distill-Qwen-1.5B	Rewrite Trace (Benign)	0.3	0.731 \pm 0.444
R1-Distill-Qwen-1.5B	Rewrite Trace (Benign)	0.5	0.838 \pm 0.368
R1-Distill-Qwen-1.5B	Rewrite Trace (Benign)	0.7	0.841 \pm 0.365
R1-Distill-Qwen-1.5B	Rewrite Trace (Benign)	0.9	0.854 \pm 0.353
R1-Distill-Qwen-14B	Rewrite Trace (Benign)	0.1	0.701 \pm 0.458
R1-Distill-Qwen-14B	Rewrite Trace (Benign)	0.3	0.795 \pm 0.404
R1-Distill-Qwen-14B	Rewrite Trace (Benign)	0.5	0.857 \pm 0.350
R1-Distill-Qwen-14B	Rewrite Trace (Benign)	0.7	0.878 \pm 0.327
R1-Distill-Qwen-14B	Rewrite Trace (Benign)	0.9	0.903 \pm 0.297
R1-Distill-Qwen-32B	Rewrite Trace (Benign)	0.1	0.772 \pm 0.419
R1-Distill-Qwen-32B	Rewrite Trace (Benign)	0.3	0.832 \pm 0.374
R1-Distill-Qwen-32B	Rewrite Trace (Benign)	0.5	0.839 \pm 0.367
R1-Distill-Qwen-32B	Rewrite Trace (Benign)	0.7	0.889 \pm 0.314
R1-Distill-Qwen-32B	Rewrite Trace (Benign)	0.9	0.890 \pm 0.313
R1-Distill-Qwen-7B	Rewrite Trace (Benign)	0.1	0.725 \pm 0.447
R1-Distill-Qwen-7B	Rewrite Trace (Benign)	0.3	0.821 \pm 0.383
R1-Distill-Qwen-7B	Rewrite Trace (Benign)	0.5	0.855 \pm 0.352
R1-Distill-Qwen-7B	Rewrite Trace (Benign)	0.7	0.869 \pm 0.337
R1-Distill-Qwen-7B	Rewrite Trace (Benign)	0.9	0.884 \pm 0.321

2200
2201 Table 20: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Logic
2202 domain.

Model	Intervention	Timestep	Mean \pm Std
EXAONE-Deep-32B	Add Random Text (Neutral)	0.1	0.901 \pm 0.298
EXAONE-Deep-32B	Add Random Text (Neutral)	0.3	0.915 \pm 0.278
EXAONE-Deep-32B	Add Random Text (Neutral)	0.5	0.931 \pm 0.253
EXAONE-Deep-32B	Add Random Text (Neutral)	0.7	0.948 \pm 0.222

2213
2214 Continued on next page

2214 Table 20: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Logic
 2215 domain.

Model	Intervention	Timestep	Mean \pm Std
EXAONE-Deep-32B	Add Random Text (Neutral)	0.9	0.962 \pm 0.192
Nemotron-Llama-3.1-Nano-8B	Add Random Text (Neutral)	0.1	0.909 \pm 0.287
Nemotron-Llama-3.1-Nano-8B	Add Random Text (Neutral)	0.3	0.936 \pm 0.245
Nemotron-Llama-3.1-Nano-8B	Add Random Text (Neutral)	0.5	0.949 \pm 0.220
Nemotron-Llama-3.1-Nano-8B	Add Random Text (Neutral)	0.7	0.963 \pm 0.188
Nemotron-Llama-3.1-Nano-8B	Add Random Text (Neutral)	0.9	0.967 \pm 0.178
Phi-4-Reasoning-Plus	Add Random Text (Neutral)	0.1	0.938 \pm 0.241
Phi-4-Reasoning-Plus	Add Random Text (Neutral)	0.3	0.944 \pm 0.229
Phi-4-Reasoning-Plus	Add Random Text (Neutral)	0.5	0.940 \pm 0.237
Phi-4-Reasoning-Plus	Add Random Text (Neutral)	0.7	0.941 \pm 0.236
Phi-4-Reasoning-Plus	Add Random Text (Neutral)	0.9	0.939 \pm 0.240
QwQ-32B	Add Random Text (Neutral)	0.1	0.963 \pm 0.189
QwQ-32B	Add Random Text (Neutral)	0.3	0.975 \pm 0.157
QwQ-32B	Add Random Text (Neutral)	0.5	0.977 \pm 0.149
QwQ-32B	Add Random Text (Neutral)	0.7	0.981 \pm 0.136
QwQ-32B	Add Random Text (Neutral)	0.9	0.977 \pm 0.149
R1-Distill-Llama-8B	Add Random Text (Neutral)	0.1	0.927 \pm 0.261
R1-Distill-Llama-8B	Add Random Text (Neutral)	0.3	0.960 \pm 0.197
R1-Distill-Llama-8B	Add Random Text (Neutral)	0.5	0.960 \pm 0.197
R1-Distill-Llama-8B	Add Random Text (Neutral)	0.7	0.964 \pm 0.186
R1-Distill-Llama-8B	Add Random Text (Neutral)	0.9	0.979 \pm 0.144
R1-Distill-Qwen-1.5B	Add Random Text (Neutral)	0.1	0.570 \pm 0.495
R1-Distill-Qwen-1.5B	Add Random Text (Neutral)	0.3	0.599 \pm 0.490
R1-Distill-Qwen-1.5B	Add Random Text (Neutral)	0.5	0.630 \pm 0.483
R1-Distill-Qwen-1.5B	Add Random Text (Neutral)	0.7	0.646 \pm 0.478
R1-Distill-Qwen-1.5B	Add Random Text (Neutral)	0.9	0.724 \pm 0.447
R1-Distill-Qwen-14B	Add Random Text (Neutral)	0.1	0.969 \pm 0.173
R1-Distill-Qwen-14B	Add Random Text (Neutral)	0.3	0.985 \pm 0.121
R1-Distill-Qwen-14B	Add Random Text (Neutral)	0.5	0.988 \pm 0.107

2267 Continued on next page

Table 20: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Logic domain.

Model	Intervention	Timestep	Mean \pm Std
R1-Distill-Qwen-14B	Add Random Text (Neutral)	0.7	0.988 \pm 0.107
R1-Distill-Qwen-14B	Add Random Text (Neutral)	0.9	0.984 \pm 0.126
R1-Distill-Qwen-32B	Add Random Text (Neutral)	0.1	0.975 \pm 0.156
R1-Distill-Qwen-32B	Add Random Text (Neutral)	0.3	0.982 \pm 0.133
R1-Distill-Qwen-32B	Add Random Text (Neutral)	0.5	0.989 \pm 0.103
R1-Distill-Qwen-32B	Add Random Text (Neutral)	0.7	0.990 \pm 0.101
R1-Distill-Qwen-32B	Add Random Text (Neutral)	0.9	0.989 \pm 0.105
R1-Distill-Qwen-7B	Add Random Text (Neutral)	0.1	0.916 \pm 0.278
R1-Distill-Qwen-7B	Add Random Text (Neutral)	0.3	0.918 \pm 0.274
R1-Distill-Qwen-7B	Add Random Text (Neutral)	0.5	0.933 \pm 0.250
R1-Distill-Qwen-7B	Add Random Text (Neutral)	0.7	0.927 \pm 0.261
R1-Distill-Qwen-7B	Add Random Text (Neutral)	0.9	0.945 \pm 0.228
EXAONE-Deep-32B	Complete Step (Benign)	0.1	0.993 \pm 0.080
EXAONE-Deep-32B	Complete Step (Benign)	0.3	0.996 \pm 0.062
EXAONE-Deep-32B	Complete Step (Benign)	0.5	0.998 \pm 0.039
EXAONE-Deep-32B	Complete Step (Benign)	0.7	0.999 \pm 0.028
EXAONE-Deep-32B	Complete Step (Benign)	0.9	0.999 \pm 0.028
Nemotron-Llama-3.1-Nano-8B	Complete Step (Benign)	0.1	0.974 \pm 0.160
Nemotron-Llama-3.1-Nano-8B	Complete Step (Benign)	0.3	0.978 \pm 0.146
Nemotron-Llama-3.1-Nano-8B	Complete Step (Benign)	0.5	0.981 \pm 0.136
Nemotron-Llama-3.1-Nano-8B	Complete Step (Benign)	0.7	0.989 \pm 0.105
Nemotron-Llama-3.1-Nano-8B	Complete Step (Benign)	0.9	0.992 \pm 0.089
Phi-4-Reasoning-Plus	Complete Step (Benign)	0.1	0.952 \pm 0.214
Phi-4-Reasoning-Plus	Complete Step (Benign)	0.3	0.959 \pm 0.197
Phi-4-Reasoning-Plus	Complete Step (Benign)	0.5	0.955 \pm 0.208
Phi-4-Reasoning-Plus	Complete Step (Benign)	0.7	0.946 \pm 0.227
Phi-4-Reasoning-Plus	Complete Step (Benign)	0.9	0.953 \pm 0.211
QwQ-32B	Complete Step (Benign)	0.1	0.997 \pm 0.052
QwQ-32B	Complete Step (Benign)	0.3	0.995 \pm 0.070
QwQ-32B	Complete Step (Benign)	0.5	0.997 \pm 0.059
QwQ-32B	Complete Step (Benign)	0.7	0.997 \pm 0.055
QwQ-32B	Complete Step (Benign)	0.9	0.999 \pm 0.034
R1-Distill-Llama-8B	Complete Step (Benign)	0.1	0.941 \pm 0.236
R1-Distill-Llama-8B	Complete Step (Benign)	0.3	0.960 \pm 0.197
R1-Distill-Llama-8B	Complete Step (Benign)	0.5	0.975 \pm 0.156
R1-Distill-Llama-8B	Complete Step (Benign)	0.7	0.977 \pm 0.151
R1-Distill-Llama-8B	Complete Step (Benign)	0.9	0.982 \pm 0.132
R1-Distill-Qwen-1.5B	Complete Step (Benign)	0.1	0.646 \pm 0.478
R1-Distill-Qwen-1.5B	Complete Step (Benign)	0.3	0.700 \pm 0.458

Continued on next page

Table 20: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Logic domain.

Model	Intervention	Timestep	Mean \pm Std
R1-Distill-Qwen-1.5B	Complete Step (Benign)	0.5	0.740 \pm 0.438
R1-Distill-Qwen-1.5B	Complete Step (Benign)	0.7	0.783 \pm 0.412
R1-Distill-Qwen-1.5B	Complete Step (Benign)	0.9	0.852 \pm 0.355
R1-Distill-Qwen-14B	Complete Step (Benign)	0.1	0.993 \pm 0.080
R1-Distill-Qwen-14B	Complete Step (Benign)	0.3	0.990 \pm 0.099
R1-Distill-Qwen-14B	Complete Step (Benign)	0.5	0.987 \pm 0.112
R1-Distill-Qwen-14B	Complete Step (Benign)	0.7	0.992 \pm 0.087
R1-Distill-Qwen-14B	Complete Step (Benign)	0.9	0.997 \pm 0.059
R1-Distill-Qwen-32B	Complete Step (Benign)	0.1	0.996 \pm 0.065
R1-Distill-Qwen-32B	Complete Step (Benign)	0.3	0.993 \pm 0.080
R1-Distill-Qwen-32B	Complete Step (Benign)	0.5	0.994 \pm 0.078
R1-Distill-Qwen-32B	Complete Step (Benign)	0.7	0.998 \pm 0.044
R1-Distill-Qwen-32B	Complete Step (Benign)	0.9	0.998 \pm 0.044
R1-Distill-Qwen-7B	Complete Step (Benign)	0.1	0.954 \pm 0.209
R1-Distill-Qwen-7B	Complete Step (Benign)	0.3	0.961 \pm 0.194
R1-Distill-Qwen-7B	Complete Step (Benign)	0.5	0.974 \pm 0.160
R1-Distill-Qwen-7B	Complete Step (Benign)	0.7	0.977 \pm 0.149
R1-Distill-Qwen-7B	Complete Step (Benign)	0.9	0.981 \pm 0.136
EXAONE-Deep-32B	Continue (Adv.)	Unrelated	0.1 0.410 \pm 0.492
EXAONE-Deep-32B	Continue (Adv.)	Unrelated	0.3 0.589 \pm 0.492
EXAONE-Deep-32B	Continue (Adv.)	Unrelated	0.5 0.677 \pm 0.468
EXAONE-Deep-32B	Continue (Adv.)	Unrelated	0.7 0.766 \pm 0.423
EXAONE-Deep-32B	Continue (Adv.)	Unrelated	0.9 0.810 \pm 0.392
Nemotron-Llama-3.1-Nano-8B	Continue (Adv.)	Unrelated	0.1 0.579 \pm 0.494
Nemotron-Llama-3.1-Nano-8B	Continue (Adv.)	Unrelated	0.3 0.686 \pm 0.464
Nemotron-Llama-3.1-Nano-8B	Continue (Adv.)	Unrelated	0.5 0.708 \pm 0.455
Nemotron-Llama-3.1-Nano-8B	Continue (Adv.)	Unrelated	0.7 0.781 \pm 0.414
Nemotron-Llama-3.1-Nano-8B	Continue (Adv.)	Unrelated	0.9 0.834 \pm 0.372
Phi-4-Reasoning-Plus	Continue (Adv.)	Unrelated	0.1 0.954 \pm 0.210
Phi-4-Reasoning-Plus	Continue (Adv.)	Unrelated	0.3 0.954 \pm 0.210
Phi-4-Reasoning-Plus	Continue (Adv.)	Unrelated	0.5 0.956 \pm 0.205
Phi-4-Reasoning-Plus	Continue (Adv.)	Unrelated	0.7 0.954 \pm 0.210
Phi-4-Reasoning-Plus	Continue (Adv.)	Unrelated	0.9 0.945 \pm 0.228
QwQ-32B	Continue (Adv.)	Unrelated	0.1 0.987 \pm 0.113
QwQ-32B	Continue (Adv.)	Unrelated	0.3 0.994 \pm 0.076
QwQ-32B	Continue (Adv.)	Unrelated	0.5 0.995 \pm 0.070

Continued on next page

2376 Table 20: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Logic
 2377 domain.

2379	Model	Intervention	Timestep	Mean \pm Std
2380	QwQ-32B	Continue (Adv.)	Unrelated	0.7 0.997 ± 0.055
2381	QwQ-32B	Continue (Adv.)	Unrelated	0.9 0.997 ± 0.055
2382	R1-Distill-Llama-8B	Continue (Adv.)	Unrelated	0.1 0.821 ± 0.383
2383	R1-Distill-Llama-8B	Continue (Adv.)	Unrelated	0.3 0.929 ± 0.256
2384	R1-Distill-Llama-8B	Continue (Adv.)	Unrelated	0.5 0.945 ± 0.228
2385	R1-Distill-Llama-8B	Continue (Adv.)	Unrelated	0.7 0.962 ± 0.192
2386	R1-Distill-Llama-8B	Continue (Adv.)	Unrelated	0.9 0.973 ± 0.162
2387	R1-Distill-Qwen-1.5B	Continue (Adv.)	Unrelated	0.1 0.558 ± 0.497
2388	R1-Distill-Qwen-1.5B	Continue (Adv.)	Unrelated	0.3 0.574 ± 0.494
2389	R1-Distill-Qwen-1.5B	Continue (Adv.)	Unrelated	0.5 0.591 ± 0.492
2390	R1-Distill-Qwen-1.5B	Continue (Adv.)	Unrelated	0.7 0.643 ± 0.479
2391	R1-Distill-Qwen-1.5B	Continue (Adv.)	Unrelated	0.9 0.674 ± 0.469
2392	R1-Distill-Qwen-14B	Continue (Adv.)	Unrelated	0.1 0.648 ± 0.477
2393	R1-Distill-Qwen-14B	Continue (Adv.)	Unrelated	0.3 0.871 ± 0.335
2394	R1-Distill-Qwen-14B	Continue (Adv.)	Unrelated	0.5 0.934 ± 0.249
2395	R1-Distill-Qwen-14B	Continue (Adv.)	Unrelated	0.7 0.927 ± 0.260
2396	R1-Distill-Qwen-14B	Continue (Adv.)	Unrelated	0.9 0.869 ± 0.337
2397	R1-Distill-Qwen-32B	Continue (Adv.)	Unrelated	0.1 0.861 ± 0.346
2398	R1-Distill-Qwen-32B	Continue (Adv.)	Unrelated	0.3 0.966 ± 0.182
2399	R1-Distill-Qwen-32B	Continue (Adv.)	Unrelated	0.5 0.985 ± 0.121
2400	R1-Distill-Qwen-32B	Continue (Adv.)	Unrelated	0.7 0.994 ± 0.076
2401	R1-Distill-Qwen-32B	Continue (Adv.)	Unrelated	0.9 0.993 ± 0.080
2402	R1-Distill-Qwen-7B	Continue (Adv.)	Unrelated	0.1 0.895 ± 0.306
2403	R1-Distill-Qwen-7B	Continue (Adv.)	Unrelated	0.3 0.944 ± 0.229
2404	R1-Distill-Qwen-7B	Continue (Adv.)	Unrelated	0.5 0.948 ± 0.222
2405	R1-Distill-Qwen-7B	Continue (Adv.)	Unrelated	0.7 0.952 ± 0.214
2406	R1-Distill-Qwen-7B	Continue (Adv.)	Unrelated	0.9 0.947 ± 0.225
2407	EXAONE-Deep-32B	Ctn. Wrong Reasoning (Adv.)		0.1 0.991 ± 0.093
2408	EXAONE-Deep-32B	Ctn. Wrong Reasoning (Adv.)		0.3 0.997 ± 0.052

2429 Continued on next page

2430 Table 20: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Logic
 2431 domain.

2432

2433	Model	Intervention	Timestep	Mean \pm Std
2434	EXAONE-Deep-32B	Ctn. Wrong Reasoning (Adv.)	0.5	0.996 \pm 0.065
2435	EXAONE-Deep-32B	Ctn. Wrong Reasoning (Adv.)	0.7	0.997 \pm 0.055
2436	EXAONE-Deep-32B	Ctn. Wrong Reasoning (Adv.)	0.9	1.000 \pm 0.020
2437	Nemotron-Llama-3.1-Nano-8B	Ctn. Wrong Reasoning (Adv.)	0.1	0.954 \pm 0.210
2438	Nemotron-Llama-3.1-Nano-8B	Ctn. Wrong Reasoning (Adv.)	0.3	0.964 \pm 0.187
2439	Nemotron-Llama-3.1-Nano-8B	Ctn. Wrong Reasoning (Adv.)	0.5	0.971 \pm 0.167
2440	Nemotron-Llama-3.1-Nano-8B	Ctn. Wrong Reasoning (Adv.)	0.7	0.976 \pm 0.154
2441	Nemotron-Llama-3.1-Nano-8B	Ctn. Wrong Reasoning (Adv.)	0.9	0.986 \pm 0.117
2442	Phi-4-Reasoning-Plus	Ctn. Wrong Reasoning (Adv.)	0.1	0.954 \pm 0.209
2443	Phi-4-Reasoning-Plus	Ctn. Wrong Reasoning (Adv.)	0.3	0.954 \pm 0.209
2444	Phi-4-Reasoning-Plus	Ctn. Wrong Reasoning (Adv.)	0.5	0.960 \pm 0.196
2445	Phi-4-Reasoning-Plus	Ctn. Wrong Reasoning (Adv.)	0.7	0.955 \pm 0.208
2446	Phi-4-Reasoning-Plus	Ctn. Wrong Reasoning (Adv.)	0.9	0.953 \pm 0.211
2447	QwQ-32B	Ctn. Wrong Reasoning (Adv.)	0.1	0.994 \pm 0.076
2448	QwQ-32B	Ctn. Wrong Reasoning (Adv.)	0.3	0.997 \pm 0.052
2449	QwQ-32B	Ctn. Wrong Reasoning (Adv.)	0.5	0.997 \pm 0.052
2450	QwQ-32B	Ctn. Wrong Reasoning (Adv.)	0.7	0.997 \pm 0.055
2451	QwQ-32B	Ctn. Wrong Reasoning (Adv.)	0.9	0.999 \pm 0.034
2452	R1-Distill-Llama-8B	Ctn. Wrong Reasoning (Adv.)	0.1	0.906 \pm 0.292
2453	R1-Distill-Llama-8B	Ctn. Wrong Reasoning (Adv.)	0.3	0.944 \pm 0.231
2454	R1-Distill-Llama-8B	Ctn. Wrong Reasoning (Adv.)	0.5	0.937 \pm 0.243
2455	R1-Distill-Llama-8B	Ctn. Wrong Reasoning (Adv.)	0.7	0.965 \pm 0.184
2456	R1-Distill-Llama-8B	Ctn. Wrong Reasoning (Adv.)	0.9	0.971 \pm 0.168
2457	R1-Distill-Qwen-1.5B	Ctn. Wrong Reasoning (Adv.)	0.1	0.569 \pm 0.495
2458	R1-Distill-Qwen-1.5B	Ctn. Wrong Reasoning (Adv.)	0.3	0.589 \pm 0.492
2459	R1-Distill-Qwen-1.5B	Ctn. Wrong Reasoning (Adv.)	0.5	0.617 \pm 0.486
2460	R1-Distill-Qwen-1.5B	Ctn. Wrong Reasoning (Adv.)	0.7	0.653 \pm 0.476
2461	R1-Distill-Qwen-1.5B	Ctn. Wrong Reasoning (Adv.)	0.9	0.751 \pm 0.433
2462	R1-Distill-Qwen-14B	Ctn. Wrong Reasoning (Adv.)	0.1	0.984 \pm 0.126

2482

Continued on next page

2484 Table 20: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Logic
 2485 domain.

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

Model	Intervention	Timestep	Mean \pm Std
R1-Distill-Qwen-14B	Ctn. Wrong Reasoning (Adv.)	0.3	0.982 \pm 0.133
R1-Distill-Qwen-14B	Ctn. Wrong Reasoning (Adv.)	0.5	0.988 \pm 0.107
R1-Distill-Qwen-14B	Ctn. Wrong Reasoning (Adv.)	0.7	0.990 \pm 0.099
R1-Distill-Qwen-14B	Ctn. Wrong Reasoning (Adv.)	0.9	0.995 \pm 0.070
R1-Distill-Qwen-32B	Ctn. Wrong Reasoning (Adv.)	0.1	0.986 \pm 0.118
R1-Distill-Qwen-32B	Ctn. Wrong Reasoning (Adv.)	0.3	0.988 \pm 0.110
R1-Distill-Qwen-32B	Ctn. Wrong Reasoning (Adv.)	0.5	0.985 \pm 0.120
R1-Distill-Qwen-32B	Ctn. Wrong Reasoning (Adv.)	0.7	0.987 \pm 0.115
R1-Distill-Qwen-32B	Ctn. Wrong Reasoning (Adv.)	0.9	0.992 \pm 0.087
R1-Distill-Qwen-7B	Ctn. Wrong Reasoning (Adv.)	0.1	0.931 \pm 0.254
R1-Distill-Qwen-7B	Ctn. Wrong Reasoning (Adv.)	0.3	0.935 \pm 0.246
R1-Distill-Qwen-7B	Ctn. Wrong Reasoning (Adv.)	0.5	0.955 \pm 0.208
R1-Distill-Qwen-7B	Ctn. Wrong Reasoning (Adv.)	0.7	0.960 \pm 0.197
R1-Distill-Qwen-7B	Ctn. Wrong Reasoning (Adv.)	0.9	0.977 \pm 0.150
EXAONE-Deep-32B	Insert Random Characters (Neutral)	0.1	0.994 \pm 0.078
EXAONE-Deep-32B	Insert Random Characters (Neutral)	0.3	0.996 \pm 0.062
EXAONE-Deep-32B	Insert Random Characters (Neutral)	0.5	0.997 \pm 0.055
EXAONE-Deep-32B	Insert Random Characters (Neutral)	0.7	0.999 \pm 0.034
EXAONE-Deep-32B	Insert Random Characters (Neutral)	0.9	0.999 \pm 0.028
Nemotron-Llama-3.1-Nano-8B	Insert Random Characters (Neutral)	0.1	0.946 \pm 0.227
Nemotron-Llama-3.1-Nano-8B	Insert Random Characters (Neutral)	0.3	0.951 \pm 0.216
Nemotron-Llama-3.1-Nano-8B	Insert Random Characters (Neutral)	0.5	0.952 \pm 0.214
Nemotron-Llama-3.1-Nano-8B	Insert Random Characters (Neutral)	0.7	0.967 \pm 0.180
Nemotron-Llama-3.1-Nano-8B	Insert Random Characters (Neutral)	0.9	0.957 \pm 0.204
Phi-4-Reasoning-Plus	Insert Random Characters (Neutral)	0.1	0.953 \pm 0.211
Phi-4-Reasoning-Plus	Insert Random Characters (Neutral)	0.3	0.947 \pm 0.224
Phi-4-Reasoning-Plus	Insert Random Characters (Neutral)	0.5	0.958 \pm 0.201
Phi-4-Reasoning-Plus	Insert Random Characters (Neutral)	0.7	0.945 \pm 0.228
Phi-4-Reasoning-Plus	Insert Random Characters (Neutral)	0.9	0.948 \pm 0.222

Continued on next page

2538 Table 20: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Logic
 2539 domain.

2540

2541	Model	Intervention	Timestep	Mean \pm Std
2542	QwQ-32B	Insert Random Characters (Neutral)	0.1	0.997 \pm 0.052
2543	QwQ-32B	Insert Random Characters (Neutral)	0.3	0.998 \pm 0.044
2544	QwQ-32B	Insert Random Characters (Neutral)	0.5	0.998 \pm 0.044
2545	QwQ-32B	Insert Random Characters (Neutral)	0.7	0.995 \pm 0.068
2546	QwQ-32B	Insert Random Characters (Neutral)	0.9	0.998 \pm 0.048
2547	R1-Distill-Llama-8B	Insert Random Characters (Neutral)	0.1	0.941 \pm 0.236
2548	R1-Distill-Llama-8B	Insert Random Characters (Neutral)	0.3	0.952 \pm 0.214
2549	R1-Distill-Llama-8B	Insert Random Characters (Neutral)	0.5	0.965 \pm 0.183
2550	R1-Distill-Llama-8B	Insert Random Characters (Neutral)	0.7	0.979 \pm 0.144
2551	R1-Distill-Llama-8B	Insert Random Characters (Neutral)	0.9	0.979 \pm 0.142
2552	R1-Distill-Qwen-1.5B	Insert Random Characters (Neutral)	0.1	0.599 \pm 0.490
2553	R1-Distill-Qwen-1.5B	Insert Random Characters (Neutral)	0.3	0.626 \pm 0.484
2554	R1-Distill-Qwen-1.5B	Insert Random Characters (Neutral)	0.5	0.646 \pm 0.478
2555	R1-Distill-Qwen-1.5B	Insert Random Characters (Neutral)	0.7	0.676 \pm 0.468
2556	R1-Distill-Qwen-1.5B	Insert Random Characters (Neutral)	0.9	0.791 \pm 0.407
2557	R1-Distill-Qwen-14B	Insert Random Characters (Neutral)	0.1	0.995 \pm 0.073
2558	R1-Distill-Qwen-14B	Insert Random Characters (Neutral)	0.3	0.990 \pm 0.101
2559	R1-Distill-Qwen-14B	Insert Random Characters (Neutral)	0.5	0.993 \pm 0.085
2560	R1-Distill-Qwen-14B	Insert Random Characters (Neutral)	0.7	0.995 \pm 0.073
2561	R1-Distill-Qwen-14B	Insert Random Characters (Neutral)	0.9	0.997 \pm 0.055
2562	R1-Distill-Qwen-32B	Insert Random Characters (Neutral)	0.1	0.991 \pm 0.093
2563	R1-Distill-Qwen-32B	Insert Random Characters (Neutral)	0.3	0.989 \pm 0.105
2564	R1-Distill-Qwen-32B	Insert Random Characters (Neutral)	0.5	0.997 \pm 0.055
2565	R1-Distill-Qwen-32B	Insert Random Characters (Neutral)	0.7	0.997 \pm 0.059
2566	R1-Distill-Qwen-32B	Insert Random Characters (Neutral)	0.9	0.997 \pm 0.055
2567	R1-Distill-Qwen-7B	Insert Random Characters (Neutral)	0.1	0.883 \pm 0.322
2568	R1-Distill-Qwen-7B	Insert Random Characters (Neutral)	0.3	0.910 \pm 0.286
2569	R1-Distill-Qwen-7B	Insert Random Characters (Neutral)	0.5	0.922 \pm 0.268
2570	R1-Distill-Qwen-7B	Insert Random Characters (Neutral)	0.7	0.937 \pm 0.243

2590

Continued on next page

Table 20: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Logic domain.

Model	Intervention	Timestep	Mean \pm Std
R1-Distill-Qwen-7B	Insert Random Characters (Neutral)	0.9	0.934 \pm 0.248
EXAONE-Deep-32B	Insert Wrong Fact (Adv.)	0.1	0.984 \pm 0.124
EXAONE-Deep-32B	Insert Wrong Fact (Adv.)	0.3	0.989 \pm 0.105
EXAONE-Deep-32B	Insert Wrong Fact (Adv.)	0.5	0.991 \pm 0.095
EXAONE-Deep-32B	Insert Wrong Fact (Adv.)	0.7	0.998 \pm 0.048
EXAONE-Deep-32B	Insert Wrong Fact (Adv.)	0.9	0.999 \pm 0.028
Nemotron-Llama-3.1-Nano-8B	Insert Wrong Fact (Adv.)	0.1	0.947 \pm 0.225
Nemotron-Llama-3.1-Nano-8B	Insert Wrong Fact (Adv.)	0.3	0.962 \pm 0.191
Nemotron-Llama-3.1-Nano-8B	Insert Wrong Fact (Adv.)	0.5	0.972 \pm 0.165
Nemotron-Llama-3.1-Nano-8B	Insert Wrong Fact (Adv.)	0.7	0.982 \pm 0.132
Nemotron-Llama-3.1-Nano-8B	Insert Wrong Fact (Adv.)	0.9	0.988 \pm 0.108
Phi-4-Reasoning-Plus	Insert Wrong Fact (Adv.)	0.1	0.946 \pm 0.227
Phi-4-Reasoning-Plus	Insert Wrong Fact (Adv.)	0.3	0.956 \pm 0.205
Phi-4-Reasoning-Plus	Insert Wrong Fact (Adv.)	0.5	0.957 \pm 0.203
Phi-4-Reasoning-Plus	Insert Wrong Fact (Adv.)	0.7	0.949 \pm 0.219
Phi-4-Reasoning-Plus	Insert Wrong Fact (Adv.)	0.9	0.956 \pm 0.204
QwQ-32B	Insert Wrong Fact (Adv.)	0.1	0.997 \pm 0.055
QwQ-32B	Insert Wrong Fact (Adv.)	0.3	0.997 \pm 0.059
QwQ-32B	Insert Wrong Fact (Adv.)	0.5	0.997 \pm 0.055
QwQ-32B	Insert Wrong Fact (Adv.)	0.7	0.999 \pm 0.028
QwQ-32B	Insert Wrong Fact (Adv.)	0.9	1.000 \pm 0.020
R1-Distill-Llama-8B	Insert Wrong Fact (Adv.)	0.1	0.908 \pm 0.289
R1-Distill-Llama-8B	Insert Wrong Fact (Adv.)	0.3	0.919 \pm 0.272
R1-Distill-Llama-8B	Insert Wrong Fact (Adv.)	0.5	0.939 \pm 0.240
R1-Distill-Llama-8B	Insert Wrong Fact (Adv.)	0.7	0.964 \pm 0.185
R1-Distill-Llama-8B	Insert Wrong Fact (Adv.)	0.9	0.980 \pm 0.138
R1-Distill-Qwen-1.5B	Insert Wrong Fact (Adv.)	0.1	0.596 \pm 0.491
R1-Distill-Qwen-1.5B	Insert Wrong Fact (Adv.)	0.3	0.631 \pm 0.482
R1-Distill-Qwen-1.5B	Insert Wrong Fact (Adv.)	0.5	0.655 \pm 0.475
R1-Distill-Qwen-1.5B	Insert Wrong Fact (Adv.)	0.7	0.697 \pm 0.460
R1-Distill-Qwen-1.5B	Insert Wrong Fact (Adv.)	0.9	0.799 \pm 0.400
R1-Distill-Qwen-14B	Insert Wrong Fact (Adv.)	0.1	0.969 \pm 0.173
R1-Distill-Qwen-14B	Insert Wrong Fact (Adv.)	0.3	0.971 \pm 0.168
R1-Distill-Qwen-14B	Insert Wrong Fact (Adv.)	0.5	0.971 \pm 0.168
R1-Distill-Qwen-14B	Insert Wrong Fact (Adv.)	0.7	0.994 \pm 0.076
R1-Distill-Qwen-14B	Insert Wrong Fact (Adv.)	0.9	0.996 \pm 0.065
R1-Distill-Qwen-32B	Insert Wrong Fact (Adv.)	0.1	0.981 \pm 0.137
R1-Distill-Qwen-32B	Insert Wrong Fact (Adv.)	0.3	0.971 \pm 0.168
R1-Distill-Qwen-32B	Insert Wrong Fact (Adv.)	0.5	0.984 \pm 0.127
R1-Distill-Qwen-32B	Insert Wrong Fact (Adv.)	0.7	0.988 \pm 0.110
R1-Distill-Qwen-32B	Insert Wrong Fact (Adv.)	0.9	0.995 \pm 0.073
R1-Distill-Qwen-7B	Insert Wrong Fact (Adv.)	0.1	0.932 \pm 0.252
R1-Distill-Qwen-7B	Insert Wrong Fact (Adv.)	0.3	0.935 \pm 0.246
R1-Distill-Qwen-7B	Insert Wrong Fact (Adv.)	0.5	0.946 \pm 0.226
R1-Distill-Qwen-7B	Insert Wrong Fact (Adv.)	0.7	0.960 \pm 0.197
R1-Distill-Qwen-7B	Insert Wrong Fact (Adv.)	0.9	0.977 \pm 0.149
EXAONE-Deep-32B	Rewrite Trace (Benign)	0.1	0.997 \pm 0.055

Continued on next page

Table 20: Robustness metrics (mean \pm std) per model, intervention, and timestep on the Logic domain.

Model	Intervention	Timestep	Mean \pm Std
EXAONE-Deep-32B	Rewrite Trace (Benign)	0.3	0.998 \pm 0.039
EXAONE-Deep-32B	Rewrite Trace (Benign)	0.5	0.998 \pm 0.039
EXAONE-Deep-32B	Rewrite Trace (Benign)	0.7	0.999 \pm 0.028
EXAONE-Deep-32B	Rewrite Trace (Benign)	0.9	0.999 \pm 0.034
Nemotron-Llama-3.1-Nano-8B	Rewrite Trace (Benign)	0.1	0.856 \pm 0.351
Nemotron-Llama-3.1-Nano-8B	Rewrite Trace (Benign)	0.3	0.893 \pm 0.310
Nemotron-Llama-3.1-Nano-8B	Rewrite Trace (Benign)	0.5	0.899 \pm 0.302
Nemotron-Llama-3.1-Nano-8B	Rewrite Trace (Benign)	0.7	0.919 \pm 0.272
Nemotron-Llama-3.1-Nano-8B	Rewrite Trace (Benign)	0.9	0.924 \pm 0.265
Phi-4-Reasoning-Plus	Rewrite Trace (Benign)	0.1	0.918 \pm 0.274
Phi-4-Reasoning-Plus	Rewrite Trace (Benign)	0.3	0.936 \pm 0.245
Phi-4-Reasoning-Plus	Rewrite Trace (Benign)	0.5	0.930 \pm 0.255
Phi-4-Reasoning-Plus	Rewrite Trace (Benign)	0.7	0.941 \pm 0.235
Phi-4-Reasoning-Plus	Rewrite Trace (Benign)	0.9	0.937 \pm 0.243
QwQ-32B	Rewrite Trace (Benign)	0.1	0.986 \pm 0.118
QwQ-32B	Rewrite Trace (Benign)	0.3	0.992 \pm 0.089
QwQ-32B	Rewrite Trace (Benign)	0.5	0.997 \pm 0.059
QwQ-32B	Rewrite Trace (Benign)	0.7	0.995 \pm 0.070
QwQ-32B	Rewrite Trace (Benign)	0.9	0.997 \pm 0.059
R1-Distill-Llama-8B	Rewrite Trace (Benign)	0.1	0.845 \pm 0.362
R1-Distill-Llama-8B	Rewrite Trace (Benign)	0.3	0.897 \pm 0.304
R1-Distill-Llama-8B	Rewrite Trace (Benign)	0.5	0.908 \pm 0.289
R1-Distill-Llama-8B	Rewrite Trace (Benign)	0.7	0.947 \pm 0.223
R1-Distill-Llama-8B	Rewrite Trace (Benign)	0.9	0.965 \pm 0.183
R1-Distill-Qwen-1.5B	Rewrite Trace (Benign)	0.1	0.728 \pm 0.445
R1-Distill-Qwen-1.5B	Rewrite Trace (Benign)	0.3	0.765 \pm 0.424
R1-Distill-Qwen-1.5B	Rewrite Trace (Benign)	0.5	0.831 \pm 0.375
R1-Distill-Qwen-1.5B	Rewrite Trace (Benign)	0.7	0.838 \pm 0.369
R1-Distill-Qwen-1.5B	Rewrite Trace (Benign)	0.9	0.883 \pm 0.322
R1-Distill-Qwen-14B	Rewrite Trace (Benign)	0.1	0.913 \pm 0.281
R1-Distill-Qwen-14B	Rewrite Trace (Benign)	0.3	0.939 \pm 0.239
R1-Distill-Qwen-14B	Rewrite Trace (Benign)	0.5	0.957 \pm 0.202
R1-Distill-Qwen-14B	Rewrite Trace (Benign)	0.7	0.970 \pm 0.169
R1-Distill-Qwen-14B	Rewrite Trace (Benign)	0.9	0.977 \pm 0.149
R1-Distill-Qwen-32B	Rewrite Trace (Benign)	0.1	0.936 \pm 0.245
R1-Distill-Qwen-32B	Rewrite Trace (Benign)	0.3	0.949 \pm 0.221
R1-Distill-Qwen-32B	Rewrite Trace (Benign)	0.5	0.964 \pm 0.185
R1-Distill-Qwen-32B	Rewrite Trace (Benign)	0.7	0.968 \pm 0.176
R1-Distill-Qwen-32B	Rewrite Trace (Benign)	0.9	0.986 \pm 0.118
R1-Distill-Qwen-7B	Rewrite Trace (Benign)	0.1	0.820 \pm 0.384
R1-Distill-Qwen-7B	Rewrite Trace (Benign)	0.3	0.880 \pm 0.325
R1-Distill-Qwen-7B	Rewrite Trace (Benign)	0.5	0.905 \pm 0.293
R1-Distill-Qwen-7B	Rewrite Trace (Benign)	0.7	0.935 \pm 0.246
R1-Distill-Qwen-7B	Rewrite Trace (Benign)	0.9	0.960 \pm 0.196

2696
2697
2698
2699

Cluster	Size	Example sentences	Summary
37	1105	“Ww, no.” “Wait, no.”	Abrupt, terse negations rejecting a prior point.
71	978	“Let me switch gears and focus on that.” “Let me try to refocus.”	Explicitly redirecting attention back to the main topic.
22	517	“Wait, actually, is that correct?” “Wait, that seems correct?”	Expressing uncertainty and checking correctness.
331	400	“Wait, no, wait, that’s a different topic.” “Wait, wait, no, that’s a different topic.”	Flagging that the discussion is off-topic.
4	347	“Wait, is that equal to something?” “Wait, is that right?”	Quick checks of equality or validity in a derivation.
1640	342	“Wait, maybe I should solve the equation step by step.” “Wait, let me think about the equation again.”	Reflecting on algebraic equation setup or manipulation.
2820	333	“So, $f(8) + f(2) = \dots = 12$.” “Wait, but if c is the period, then $f(n + c) = f(n) + 1$.”	Working through functional properties and periodicity.
816	297	“If $m = n$, then $\gcd(m, n) = m$.” “Compute $\text{GCD}(30, 240) = 30$.”	Reasoning about greatest common divisors.
159	249	“Alright, now I need to get back on track.” “Let me make sure I’m back on track.”	Attempts to resume or stay on the main thread.
272	239	“Wait, no, no, hold on.” “Wait, that’s about hearsay.”	Pausing and signalling something needs reconsideration.
97	229	“Wait, that’s not related at all.” “Wait, hold on, no, that’s not related.”	Explicitly stating a point is unrelated.
216	219	“Hmm, wait, is that true?” “Wait, wait, is that true?”	Questioning the truth value of a claim.
31	213	“Wait, but hold on, wait.” “Wait, but hang on.”	Hesitant interjections before clarifying a caveat.
373	201	“Wait, no, actually, that’s not right.” “No, that’s not right either.”	Identifying and correcting inaccuracies.
472	189	“Looking back at the problem, it’s about pens and money.” “Back to pencils.”	Reasoning through a combinatorial pens-and-pencils problem.

Table 16: Top 15 conversational clusters by size, with representative examples and high-level summaries.

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766

2767	Quantum entanglement	Neural style transfer	Photosynthesis	Plate tectonics	Classical Greek mythology
2768	Ancient Egyptian hieroglyphs	The French Revolution	Supermassive black holes	Cryptocurrency mining	Nanotechnology in medicine
2769	The Great Barrier Reef	Roman aqueducts	Renaissance art techniques	Dinosaur paleobiology	String theory
2770	Medieval blacksmithing	Particle accelerators	The Silk Road	Coral bleaching	Japanese tea ceremony
2771	Artificial neural networks	The Industrial Revolution	Mars rover missions	Evolutionary game theory	Viking longships
2772	Aztec civilization	steam engines	The Great Wall of China	Quantum computing qubits	Combinatorial game theory
2773	Ancient Roman law	Solar power satellites	Cave paintings at Lascaux	Atmospheric greenhouse effect	Riemann hypothesis
2774	Apollo moon landings	Photonics	Thermodynamics laws	Microplastic contamination	Narwhal ecology
2775	<i>Cryptococcus neoformans</i> fungus	Möbius strip	<i>Homo erectus</i> migration	Astrophotography techniques	Origins of jazz music
2776	Bioluminescent organisms	Easter Island moai	Chaos theory	Tea cultivation in Assam	Internet protocol history
2777	Shakespearean sonnets	Tropical rainforest ecology	Desertification in the Sahel	Quantum tunneling	Origami mathematics
2778	Holographic principle	Nobel Prize history	Biodiversity hotspots	Gel electrophoresis	Polar ice cores
2779	Neolithic Göbekli Tepe	Space elevator concepts	Renewable wind energy	Mayan calendar	Deep sea hydrothermal vents
2780	Solar eclipses	Cryptography history	Antarctic penguin colonies	Renaissance astronomy	Probability theory foundations
2781	Greek philosophy	Cybersecurity ethics	Photosynthetic algae biofuels	Ancient Sumerian cuneiform	Ocean plastic pollution
2782	Saturn's rings	Mathematical knot theory	Roman concrete durability	Augmented reality	Neolithic agriculture
2783	History of chess	Electric vehicles	Artificial photosynthesis	Celestial mechanics	Inca road system
2784	Machine learning fairness	Medieval alchemy	Sustainable urban design	Chinese calligraphy	Cognitive behavioral therapy
2785	Fluid dynamics of bird flight	CRISPR gene editing	Mount Everest expeditions	Hubble Space Telescope discoveries	Human genome project
2786	Roman gladiatorial games	Dark matter detection	Impressionist painting	Blockchain consensus algorithms	Ottoman architecture

Table 17: 100 topics used for generating starts of CoTs for our *Unrelated CoT* intervention.

2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807