
Solving influence diagrams: efficient mixed-integer
programming formulation and heuristic

Helmi Hankimaa1, Olli Herrala1, Fabricio Oliveira1, and Jaan Tollander de
Balsch1,2

1 Department of Mathematics and Systems Analysis, School of Science, Aalto
University, Espoo, Finland

fabricio.oliveira@aalto.fi
2 CSC – IT Center for Science, Espoo, Finland

Abstract. We propose novel mixed-integer linear programming (MIP)
formulations to model decision problems posed as influence diagrams.
We also present a novel heuristic that can be employed to warm start
the MIP solver and provide heuristic solutions to more computation-
ally challenging problems. We provide computational results showcasing
the superior performance of these improved formulations as well as the
performance of the proposed heuristic. Lastly, we describe a novel case
study showcasing decision programming as an alternative framework for
modelling multi-stage stochastic dynamic programming problems.

Keywords: decision problems under uncertainty · influence diagrams ·
decision analysis · mixed-integer programming.

1 Introduction

Influence diagrams [6] provide both a formal description of a decision problem
and serve as a communication tool that requires minimal technical proficiency.
Furthermore, they are useful in conveying structural relationships of the problem
straightforwardly and thus crucially bridge the gap between quantitative specifi-
cations and qualitative descriptions. Due to their generality, influence diagrams
pervade many modelling-based approaches that require a formal description of
relationships between uncertainty, decisions and consequences.

Figure 1 shows an influence diagram for the N -monitoring problem, where
N agents (A1 to AN) must decide whether to countervail an unknown load (L)
based on imprecise readings of this load from their respective sensors (R1 to RN).
The chance of failure (F) is influenced by the unknown load and the eventual
decision to countervail the load. The final utility (T) is calculated considering
whether the agents intervened and if a failure was observed. As such, this setting
represents independent agents who must make decisions based only on observa-
tions of the state of the world but without being able to completely know it or
share information among themselves.

Differently from decision trees, the nodes in an influence diagram do not need
to be totally ordered, nor do they have to depend directly on all predecessors.

2 Hankimaa et al.

L

R1

R2

R...

RN

A1

A2

A...

AN

F T

Fig. 1: Influence diagram for the N-monitoring problem [13]. Decisions are rep-
resented by squares, chance events by circles and consequences by diamonds

This freedom from dependence on all predecessors allows for the decisions to be
made by, e.g., decision-makers who partially observe a common state of infor-
mation (node L in Figure 1) but may differ in their ability to observe or are
incapable of sharing information.

Unfortunately, quantitative methods employed to obtain optimal decisions
from influence diagram representations typically require that some of that gen-
erality is curbed. Influence diagrams are, albeit more general, closely related to
(possibly partially observable) Markov decision processes [11]. Thus, if (i) a single
decision-maker is assumed (implying a total ordering among decision nodes) and
(ii) the no-forgetting assumption holds (implying that each decision node and its
direct predecessors influence all successor decision nodes), then the Markovian
assumptions hold. This, in turn, enables one to solve influence diagrams with
well-established techniques [2, 14]. A range of issues regarding the computational
performance of solving influence diagrams are discussed in [1].

Many problems, including that in Figure 1, violate assumptions (i) and (ii).
Indeed, there may be no memory or communication between deciding agents
(meaning that they cannot know each other’s decisions) or constraints imposed
across the diagram, such as budget limitations or constraints representing risk
(e.g., chance constraints [4] or conditional value-at-risk [12]). All of these either
violate the assumption that the previous state is “remembered” at a later stage or
that all information influencing the decision alternatives is known when making
said decision.

In [9], the authors proposed an analytical framework to characterise limited
memory influence diagrams. Note that the notion of limited memory can also be
used to encompass settings with multiple decision-makers, the limited or absent
sharing of information being its defining feature (regardless of whether it is due
to lack of memory or communication between decision-makers). In any case,
limited-memory influence diagrams are essentially influence diagrams that do

MIP formulation and heuristic for solving influence diagrams 3

not satisfy assumptions (i) and (ii). However, the fact that they do not satisfy
assumptions (i) and (ii) means that they require more sophisticated methods
such as branch-and-bound [8] that can extract optimal decisions from these
diagrams.

Aiming to address the aforementioned limitations, decision programming [13]
leverages the capabilities of stochastic programming and decision analysis to
model and solve multi-stage decision problems using mathematical optimisa-
tion techniques. In essence, decision programming exploits the expressiveness of
(limited memory) influence diagrams in structuring problems to develop deter-
ministic equivalent [3] mixed-integer programming (MIP) formulations.

In this paper, we provide multiple contributions in terms of practical and
methodological aspects associated with decision programming. Specifically, we
present a novel formulation for decision programming problems that is consider-
ably more efficient from a computational standpoint. Furthermore, we propose
a heuristic inspired by the single policy update heuristic, originally proposed in
[9], that can efficiently generate good feasible solutions for the computationally
challenging problems considered in our experiments.

Finally, we present a case study in which we use decision programming to
develop an optimal decision strategy for allocating preventive care for coronary
heart disease (CHD). This study aims to evaluate the suitability of decision
programming for performing the cost-benefit analysis originally performed by [7].
In [7], a set of alternative predefined testing and treatment strategies for CHD
are optimised using dynamic programming. We show how the same problem can
be solved precluding the need to define strategies a priori.

This paper is structured as follows. Section 2 presents the technical details as-
sociated with the decision programming framework. In Section 3, we present the
novel formulation proposed in this paper, followed by the proposed adaptation
of the single policy update heuristic presented in Section 4.

In Section 5, we provide computational results showcasing the benefits of
the methodological innovations and in Section 6 we describe the case study
considering optimal preventive care strategies for CHD. Lastly, in Section 7 we
provide conclusions.

2 Decision Programming

An influence diagram can be defined as an acyclic graph G(N,A) formed by
nodes in N = C ∪D∪V , where C is a subset of chance nodes, D a subset of de-
cision nodes, and V a subset of value nodes. Value nodes represent consequences
incurred from decisions made at nodes D and chance events observed at nodes C.
Each decision and chance node j ∈ C ∪D can assume a state sj from a discrete
and finite set of states Sj . For a decision node j ∈ D, Sj represents the decision
alternatives. For a chance node j ∈ C, Sj is the set of possible outcomes.

In the diagram, arcs represent interdependency among decisions and chance
events. Set A = {(i, j) | i, j ∈ N} contains the arcs (i, j), which represent the
influence between nodes i and j. This influence is propagated in the diagram

4 Hankimaa et al.

in the form of information. That is, an arc (i, j) that points to a decision node
j ∈ D indicates that the decision at j ∈ D is made knowing the realisation (i.e.,
uncertainty outcome or decision made) of state si ∈ Si, with i ∈ C ∪D; an arc
that points to a chance node j ∈ C indicates that the realisation sj ∈ Sj is
dependent (or conditional) on realisation si ∈ Si of node i ∈ C ∪D.

The information set I(j) = {i ∈ N | (i, j) ∈ A} comprises all immediate
predecessors (or parents) of a given node j ∈ N . Despite being a less common
terminology, we opt for the term “information set” to highlight the role of infor-
mation in the modelling of the decision process. The decisions sj ∈ Sj made in
each decision node j ∈ D depend on their information state sI(j) ∈ SI(j), where
SI(j) =

∏
i∈I(j) Si is the set of all possible information states for node j. Anal-

ogously, the possible realisations sj ∈ Sj for each chance node j ∈ C and their
associated probabilities also depend on their information state sI(j) ∈ SI(j).

Let us define Xj ∈ Sj as the realised state at a chance node j ∈ C. For a
decision node j ∈ D, let Zj : SI(j) → Sj be a mapping between each information
state sI(j) ∈ SI(j) and decision sj ∈ Sj . That is, Zj(sI(j)) defines a local decision
strategy, which represents the choice of some sj ∈ Sj in j ∈ D, given the
information sI(j). Such a mapping can be represented by an indicator function
I : SI(j) × Sj → {0, 1} defined so that

I(sI(j), sj) =

{
1, if Zj maps sI(j) to sj , i.e., Zj(sI(j)) = sj ;

0, otherwise.

A (global) decision strategy is the collection of local decision strategies in all
decision nodes: Z = (Zj)j∈D, selected from the set of all possible strategies Z.

A path is a sequence of states s = (si)i=1,...,n, with n = |C|+ |D| and

S = {(si)i=1,...,n | si ∈ Si, i = 1, . . . , n} (1)

is the set of all possible paths. We assume that the nodes C ∪D are numbered
from 1 to n such that for each arc (i, j) ∈ A, i < j. Moreover, we say that a
strategy Z is compatible with a path s ∈ S if Zj(sI(j)) = sj for all j ∈ D. We
denote as S(Z) ⊆ S the subset of all paths that are compatible with a strategy
Z.

Using the notion of information states, the conditional probability of observ-
ing a given state sj for j ∈ C is P(Xj = sj | XI(j) = sI(j)). The probability
associated with a path s ∈ S being observed given a strategy Z can then be
expressed as

P(s | Z) =

∏
j∈C

P(Xj = sj | XI(j) = sI(j))

∏
j∈D

I(sI(j), sj)

 . (2)

Notice that the term
∏

j∈D I(sI(j), sj) in equation (2) takes value one if the
strategy Z is compatible with the path s ∈ S, being zero otherwise. Furthermore,

MIP formulation and heuristic for solving influence diagrams 5

notice that one can pre-calculate the probability

p(s) =

∏
j∈C

P(Xj = sj | XI(j) = sI(j))

 (3)

of a path s ∈ S being observed, in case a compatible strategy is chosen.
At the value node v ∈ V , a real-valued utility function Uv : SI(v) → R

maps the information state sI(v) to a utility value Uv(sI(v)). We usually assume
the utility value of a path s to be the sum of individual value nodes’ utilities:
U(s) =

∑
v∈V Uv(sI(v)). The default objective is to choose a strategy Z ∈ Z

maximising the expected utility, which can be expressed as

max
Z∈Z

∑
s∈S

P(s | Z)U(s). (4)

Notice that other objective functions can also be modelled. For example, in [13],
the authors discuss the use of the conditional value-at-risk.

To formulate this into a mathematical optimisation problem, we start by
representing the local strategies Zj using binary variables z(sj | sI(j)) that take
value one if I(sI(j), sj) = 1, and 0 otherwise. We then observe that using (2) and
(3), the objective function (4) becomes

max
z

∑
s∈S

p(s)U(s)
∏
j∈D

z(sj | sI(j)).

This function is nonlinear and is used only for illustrating the nature of the for-
mulations. The usefulness of this construction becomes more obvious in Section
3. In [13] the conditional path probability P(s | Z) in (4) is instead replaced
with a continuous decision variable π(s), enforcing the correct behaviour of this
variable using affine constraints.

With these building blocks, the problem can be formulated as a mixed-integer
linear programming (MILP) model, which allows for employing off-the-shelf
mathematical programming solvers. The MILP problem presented in [13] can
be stated as (5)-(10).

max
Z∈Z

∑
s∈S

π(s)U(s) (5)

subject to
∑

sj∈Sj

z(sj | sI(j)) = 1, ∀j ∈ D, sI(j) ∈ SI(j), (6)

0 ≤ π(s) ≤ p(s), ∀s ∈ S, (7)
π(s) ≤ z(sj | sI(j)), ∀j ∈ D, s ∈ S, (8)

π(s) ≥ p(s) +
∑
j∈D

z(sj | sI(j)) − |D|, ∀s ∈ S, (9)

z(sj | sI(j)) ∈ {0, 1}, ∀j ∈ D, sj ∈ Sj , sI(j) ∈ SI(j).
(10)

6 Hankimaa et al.

Variables π(s) are nonnegative continuous variables representing the condi-
tional path probability in equation (2). They take the value of the path prob-
ability p(s) in case the selected strategy Z is compatible with the path s ∈ S
and zero otherwise. Notice that this compatibility is equivalent to observing
z(sj | sI(j)) = 1 for all sj ∈ S such that j ∈ D.

The objective function (5) defines the expected utility value, calculated con-
sidering only the paths that are compatible with the strategy. Constraint (6)
enforces the one-to-one nature of the mapping I(sI(j), sj), represented by the
z-variables. The correct behaviour of variables π(s) is guaranteed by constraints
(7)-(9), which enforce that π(s) = p(s) if z(sj | sI(j)) = 1 for all sj ∈ S such
that j ∈ D. The term |D| in (9) represents the cardinality of the set D. Notice
that (7) defines the domain of π(s).

3 Improved formulations

Next, we present reformulations developed to enhance the numerical performance
of the formulation (5)–(10). For that, let us first define the subset of paths

Ssj |sI(j) =
{
s ∈ S | (sI(j), sj) ⊆ s

}
.

Notice that we use the notation (sI(j), sj) to represent a portion of a path s,
formed by the combination of the information state sI(j) (which may itself be a
collection of states, if |I(j)| > 1) and the state sj . We also utilise the set operator
⊆ to indicate that the states (sI(j), sj) are part of the path s ∈ S. Notice that
the states (sI(j), sj) do not need to be consecutive in the path s, although the
ordering between sI(j) and sj is naturally preserved in s.

Considering j ∈ D, the subset Ssj |sI(j) allows us to define the notion of locally
compatible paths, that is, the collection of paths s compatible with local strategies
Zj for which I(sI(j), sj) = 1. The definition of the subset Ssj |sI(j) allows us to
derive the following valid inequality for (5)–(10):∑

s∈Ssj |sI(j)

π(s) ≤ z(sj | sI(j)), ∀j ∈ D, sj ∈ Sj , sI(j) ∈ SI(j). (11)

Constraint (11) states that only paths that are compatible with the selected
strategy might be allowed to have a probability different than zero. Moreover,
since it is enforced on all decision nodes, it means that this constraint guarantees
that only the paths that are compatible with the strategy Z are active. Recall
that we denote this set of compatible paths as S(Z) ⊆ S.

As pointed out in [13], for expected utility maximisation, constraint (9),
which prevents variables π(s) from wrongly taking value zero, is only required
when some of the utility values U(s), s ∈ S, are negative. Notice that this is
otherwise prevented by the maximisation of the objective function (5), naturally
steering these variables to their upper bound values. Another way to guarantee
that the variables π(s) take their correct value, i.e., π(s) = p(s), if s ∈ S(Z), is

MIP formulation and heuristic for solving influence diagrams 7

to impose the constraint ∑
s∈S

π(s) = 1. (12)

As it will be discussed in Section 5, replacing (8) and (9) with (11) and (12)
provides considerable gains in terms of linear relaxation strengthening. Further-
more, we observe that the computational performance can be even further im-
proved by employing a simple variable substitution. Recall that in the original
formulation (5)-(10), variables π(s) represent the conditional path probability
P(s | Z) = p(s)

∏
j∈D z(sj | sI(j)). If we let x(s) ∈ [0, 1], s ∈ S represent the

product
∏

j∈D z(sj | sI(j)), then we can reformulate the problem by substituting
π(s) = p(s)x(s) for all s ∈ S.

Although x(s), ∀s ∈ S, is continuous, it behaves as a binary variable that
takes value one whenever the path is compatible with the strategy and zero,
otherwise. This is analogous to the behaviour of variable π(s) ∈ [0, p(s)] in
(5)–(10). We highlight that, from a theoretical standpoint, there is no obvious
reason for performing such a substitution. On the other hand, we will show in
the computational experiments presented in Section 6 that it yields significant
practical benefits in terms of computational performance.

Using these x-variables, we can reformulate (11) as∑
s∈Ssj |sI(j)

x(s) ≤ |Ssj |sI(j) |z(sj | sI(j)), ∀j ∈ D, sj ∈ Sj , sI(j) ∈ SI(j), (13)

a consequence of x(s) ∈ [0, 1] and the fact that z(sj | sI(j)) must be equal to 1
for x(s) to be positive for s ∈ Ssj |sI(j) .

Constraint (13) can be strengthened further. We note that a path must be in
the set of compatible paths S(Z) for x(s) to be positive with strategy Z. Using
this information, we can infer a tighter upper bound for the number of paths that
can be active (x(s) > 0) from the set of locally compatible paths. We observe
that in a set of compatible paths S(Z), each information state sI(j) maps to
exactly one decision alternative sj for each decision node j ∈ D, by constraint
(6). However, the set of locally compatible paths for a given pair of information
state and decision node state (sI(j), sj) of decision node j ∈ D, includes paths
for all combinations (sI(k), sk) of information states and decisions for the other
decision nodes k ∈ D\{j}. Hence, only a fraction of the locally compatible paths
can be active. The fraction is linked to the number of states |Sk| of the other
decision nodes k ∈ D \ {j}. The number of locally compatible paths that will
also be active, i.e., |Ssj |sI(j) ∩ S(Z)| can be defined as

|Ssj |sI(j) ∩ S(Z)| =
|Ssj |sI(j)|

Πk∈D\({j}∪I(j))|Sk|
. (14)

Notice that the calculation of the number of active paths must consider that some
decision nodes may be part of the information state I(j) of node j ∈ D, and,
as such, will have their states observed (or fixed) in the set Ssj |sI(j). Therefore,

8 Hankimaa et al.

these decision nodes must be excluded from the product in the denominator in
(14). Using (14), we can reformulate (13) into the strengthened form∑
s∈Ssj |sI(j)

x(s) ≤
|Ssj |sI(j)|

Πk∈D\({j}∪I(j))|Sk|
z(sj | sI(j)), ∀j ∈ D, sj ∈ Sj , sI(j) ∈ SI(j).

(15)
One last aspect that can be taken into account is that, depending on the

problem structure, some sequence of states s = (si)i=1,...,n forming a path may
never be observed and can be preemptively filtered out from the set of paths S.
This is the case, for example, in problems where earlier decisions or uncertain
events dictate whether alternatives or uncertainties are observed. To prevent the
assembling of these unnecessary paths, we consider a set of forbidden paths,
which, once removed, lead to a set S∗ ⊆ S of effective paths. Notice that these
forbidden paths have probability zero by the structure of the problem, and there-
fore their removal does not affect the expected utility nor the constraints of the
model but allows for significant savings in terms of the scale of the model.

One issue emerges in settings where S∗ ⊂ S regarding the term (14). Notice
that the bound is based on the premise that we can infer the total number of
paths by considering the Cartesian product of the state sets Sj , j ∈ N . However,
as forbidden paths are removed, some of the x-variables corresponding to paths
s ∈ Ssj |sI(j) might be removed, making inequality (15) loose. A simple safeguard
for this is to consider

Γ (sj |sI(j)) = min

{
|S∗

sj |sI(j) |,
|Ssj |sI(j)|

Πk∈D\({j}∪I(j))|Sk|

}
(16)

and reformulate (15) as∑
s∈Ssj |sI(j)

x(s) ≤ Γ (sj |sI(j))z(sj | sI(j)), ∀j ∈ D, sj ∈ Sj , sI(j) ∈ SI(j). (17)

Combining the above, we can reformulate (5)–(10) as follows.

maximise
Z∈Z

∑
s∈S∗

U(s)p(s)x(s) (18)

subject to
∑

sj∈Sj

z(sj | sI(j)) = 1, ∀j ∈ D, sI(j) ∈ SI(j) (19)

∑
s∈Ssj |sI(j)

x(s) ≤ Γ (sj |sI(j))z(sj | sI(j)), ∀j ∈ D, sj ∈ Sj , sI(j) ∈ SI(j)

(20)∑
s∈S∗

p(s)x(s) = 1, (21)

0 ≤ x(s) ≤ 1, ∀s ∈ S∗ (22)
z(sj | sI(j)) ∈ {0, 1}, ∀j ∈ D, sj ∈ Sj , sI(j) ∈ SI(j).

(23)

MIP formulation and heuristic for solving influence diagrams 9

where Γ (sj |sI(j)) is defined as in (16). Note that this formulation preserves the
(mixed-integer) linear nature of (5)–(10).

4 Primal heuristic: single policy update (SPU)

A notable contribution of [9] is the single policy update (SPU) heuristic for ob-
taining “locally optimal” strategies in the sense that the corresponding solutions
cannot be improved by changing only one of the local strategies Zj(sI(j)).

Our proposed heuristic is loosely based on the ideas in [9], as described in
Algorithm 1. The first step of the heuristic is to obtain a random strategy Z
(note that this too is a heuristic, albeit a very simple one). Additionally, we
initialise the lastImprovement variable that will be used to stop the algorithm
after finding a local optimum. The strategy Z is then iteratively improved by
examining each information state sI(j) ∈ SI(j) for each decision node j ∈ D in
order, choosing the local strategy Z ′

j(sI(j)) maximising the expected utility.

Z ← randomstrategy();
lastImprovement← (undef, undef);
while true do

for j ∈ D, sI(j) ∈ SI(j) do
if (j, sI(j)) = lastImprovement then

return Z;
else

Z′
j(sI(j))← bestLocalStrategy(Z, j, sI(j));

Z′ ← modifyStrategy(Z,Z′
j(sI(j)));

if EU(Z′) > EU(Z) then
Z ← Z′;
lastImprovement← (j, sI(j));

end
end

end
if (undef, undef) = lastImprovement then return Z ;

end
Algorithm 1: The single policy update heuristic

This process of locally improving the strategy is performed repeatedly for all
pairs (j, sI(j)) until no improvement is made during a whole iteration through
the set of such pairs, that is, (j, sI(j)) = lastImprovement or (undef, undef) =
lastImprovement if the initial random strategy cannot be improved. The num-
ber of possible strategies Z is finite, and the algorithm thus converges in a finite
number of iterations. It is also easy to see that at termination, there is no possi-
ble local improvement and the strategy Z is thus, in that sense, locally optimal.
In [9], the authors show that for soluble LIMIDs, this heuristic results in a glob-
ally optimal solution. However, influence diagrams are not generally soluble. The
performance of the heuristic is explored in Section 5.

10 Hankimaa et al.

5 Computational experiments

We present a collection of computational experiments3 carried out to assess
the performance of the proposed reformulation (18)-(23) against the original
formulation (5)-(10) presented in [13].

We also present computational results highlighting the performance of the
proposed SPU heuristic. The problems used for testing are (i) the pig farm prob-
lem originally from [9] modified to allow for artificially augmenting the number
of time periods and generating input parameters randomly; (ii) the N-monitoring
problem, as proposed in [13], in which we also can artificially augment the num-
ber of decision agents and randomly generate instances. These two problems
have a major difference in their structure: while the N-monitoring problem has
N decisions in parallel with no communication between the decision-makers, the
pig farm problem is a partially observed Markov decision process (POMDP)
where decisions are made in series with limited memory of the past. This struc-
tural difference leads to the N-monitoring problem having a larger tree-width,
which has generally been an issue for solving influence diagrams [10].

H1

T1

D1

U1

H2

T2

D2

U2

H3

T3

D3

U3

H4 U4

Fig. 2: The influence diagram of the pig farm problem [13].

The pig farm problem is presented in Figure 2, where nodes Hi represent
the health of a pig, nodes Ti represent the result of a diagnostic test, and nodes
Di correspond to treatment decisions. Treating a pig incurs a cost represented
by the value nodes Ui for i ∈ {1, 2, 3} and in the end, the pig can be sold for
a price depending on the final health state. This problem was chosen for the
computational comparison because similar low tree-width structures frequently

3 All experiments are run using 16 GB of memory and 8 threads on an In-
tel Xeon Gold 6248 CPU and the code can be found in github.com/gamma-
opt/DecisionProgramming.jl.

https://github.com/gamma-opt/DecisionProgramming.jl/tree/new-formulation-experiments
https://github.com/gamma-opt/DecisionProgramming.jl/tree/new-formulation-experiments

MIP formulation and heuristic for solving influence diagrams 11

arise in contexts such as quality control [5] or testing and treating patients for
a disease [7], discussed in Section 6 of this paper.

(a) The pig farm problem

(b) The N-monitoring problem

Fig. 3: The solution times of the two example problems with different numbers
of decision nodes using different formulations. Notice the logarithmic y-axis.

Figure 3 shows the increase in average solution times over 50 instances as
the number of decision stages increases in the two example problems. For the
original formulation (5)-(10), [13] show that solution times are greatly improved

12 Hankimaa et al.

by adding a probability cut
∑

s∈S π(s) = 1 as a lazy constraint to the model.
This approach is thus used in the computational experiments for the original
formulation. For (18)-(23), a similar constraint is included in the formulation by
default. However, we additionally analyse an instance of the reformulated model
(18)-(23), where constraint (21) is implemented as a lazy constraint.

For both problems, the rate of increase in the solution times quickly renders
the original formulation (5)-(10) computationally intractable, as seen in Fig 3.
In contrast, the solution times for the improved formulation (18)-(23) are con-
sistently at least one order of magnitude faster. Finally, the lazy probability cut
that was found to improve solution times in [13] is detrimental to computational
performance in the new formulation (18)-(23).

In Table 1, we present statistics on the quality of the LP relaxation. As
discussed before, the hypothesis is that the formulation (18)-(23) is considerably
tighter than (5)-(10). The results in Table 1 confirms this hypothesis as more
than half of the LP relaxation solutions for the novel formulation are within 25%
of the optimal solution, whilst the formulation (5)-(10) provides optimality gaps
that are orders of magnitude larger.

(5)-(10) (18)-(23)
10th percentile 15.4 1.00
median 26.4 1.21
90th percentile 31.1 1.81
mean 25.0 1.34

Table 1: Statistics of the root relaxation quality relative to the optimal solution
for 50 randomly generated pig farm problems with 5 decision stages. The solu-
tions are scaled so that a value of 1 corresponds to the optimal solution.

Figure 4 shows the process of improving solutions in the single policy update
(SPU) heuristic. For the 50 instances in this test set, the last solution is found
within eight seconds, and the solution is the global optimum in all but one of
the instances. Note that [9] showed that this version of the pig farm problem is
not soluble, and thus the SPU heuristic is not guaranteed to find the optimal
solution. We observe that while the single policy update heuristic is successful
in finding good initial solutions quickly, the effect of providing the solver with
these initial solutions is negligible (see Figure 3).

6 Case study: optimal preventive healthcare for CHD

In this case study we use decision programming to optimise the use of traditional
and genetic testing to support the targeting of statin medication treatment for
preventing coronary heart disease (CHD). This case study is replicated from
[7], where the authors developed a testing and treatment strategy by optimising

MIP formulation and heuristic for solving influence diagrams 13

Fig. 4: The median and first and third quartiles of solutions found by the SPU
heuristic in 50 randomly generated pig farm problems with 6 decision stages.
The solutions are scaled so that a value of 1 corresponds to the optimal solution.

net monetary benefit (NMB), a cost-benefit objective consisting of the health
outcomes and testing costs within a 10-year time horizon.

The problem setting is such that the patient is assumed to have a prior risk
estimate R0. A risk estimate is a prediction of the patient’s chance of having
a CHD event in the next ten years. The risk estimates are grouped into risk
levels, which range from 0% to 100% with a suitable discretisation, e.g., SR0 =
{0%, 1%, ..., 99%, 100%}. The first testing decision T1 is made based on the prior
risk estimate. This entails deciding whether to perform traditional risk factors
(TRS), genetic risk factors (GRS) or if no testing is needed. If a test is conducted,
the risk estimate is updated (R1) and based on the new information a second
testing decision T2 follows. It entails deciding whether further testing should be
conducted or not. The second testing decision is constrained so that the same
test that was conducted in the first stage cannot be repeated. If a second test
is conducted, the risk estimate is updated again (R2). The treatment decision
TD (whether the patient receives preventive statin medication or not) is made
based on the resulting risk estimate of this testing process. Note that if no tests
are conducted, the treatment decision is made based on the prior risk estimate.
Figure 5 provides an influence diagram for the decision problem.

An interesting result is that the optimal strategy found by our model is the
same strategy that was deemed the best among strategies tested in [7]. In a way,
this provides optimality guarantees to their results, which, in principle, they
could not have determined without exhaustively assessing all possible testing
strategies. Figure 6 illustrates the strategy obtained by our model, indicating
also the thresholds found in [7] for comparison.

14 Hankimaa et al.

R0 R1 R2

H

TDT1 T2

TC

HB

Fig. 5: Influence diagram for optimising a CHD preventive care decision strategy.

Population
0% - 100%

>60% (59%)

8-60%
(10-59%)

<8% (10%)

Treat

TRS

¬ Treat

>21% (22%)

16-21%
(17-22%)

<16% (17%)

Treat

GRS

¬ Treat

≥19% (19%)

<19% (19%)

Treat

¬ Treat

Fig. 6: Optimal strategy obtained by our model (in parentheses, the original
value from [7]). Small differences are related to input rounding

Finally, we perform a computational assessment in line with Section 5. Due
to the computational complexity of the model, the problem was decomposed into
a 101 subproblems corresponding to the prior risk levels 0%, 1%, ..., 100%. To
assess computational performance of the two formulations (18)-(23) and (5)-(10),
we compare the solution times of the 101 subproblems. The results presented in
Figure 7 show that the formulation (5)-(10) from [13] could not find the optimal
solution within 2 hours for almost a third of the subproblems (31 of 101 indicated
with orange). On the other hand, nearly all subproblems (98 of 101) were solved
in under 10 minutes using the proposed formulation (18)-(23).

7 Conclusions

In this paper, we expand on the ideas originally proposed in [13] providing mul-
tiple methodological enhancements. These include a novel and more efficient

MIP formulation and heuristic for solving influence diagrams 15

Fig. 7: The solution times for each subproblem (prior risk level) in the CHD
prevention case study. Points above the dashed line correspond to the new for-
mulation being faster; orange points correspond to termination due to time limit.

formulation, valid bounds to tighten relaxations, and a heuristic that can be
used to find feasible solutions and, consequently, to warm start the MILP solver.

Furthermore, we conduct a case study based on the study originally proposed
by [7]. The case study demonstrates that the proposed models can be used in
settings that would normally require resorting to more ad-hoc computational
tools, lending themselves to be a general and accessible tool for practitioners. We
believe that this will allow for a much wider range of practitioners and researchers
to have access to mathematical optimisation-based tools for supporting decision-
making. Furthermore, this will create novel inroads for the use of mathematical
optimisation in the area of decision analysis at large, potentially unveiling new
and promising directions for future developments.

Acknowledgments. We are enormously grateful to Juho Andelmin, whose initial
implementations led to the development of DecisionProgramming.jl. We are also
grateful for the contributions of several students to the development of the package, as
well as to the welcoming and supportive JuMP community. We acknowledge the finan-
cial support from the Research Council of Finland (decision number 332180) and the
computer resources from the Aalto University School of Science “Science-IT” project.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

Bibliography

[1] Bielza, C., Gómez, M., Rıos-Insua, S., del Pozo, J.F.: Structural, elicitation
and computational issues faced when solving complex decision making prob-
lems with influence diagrams. Computers & Operations Research 27(7-8),
725–740 (2000)

[2] Bielza, C., Gómez, M., Shenoy, P.P.: A review of representation issues and
modeling challenges with influence diagrams. Omega 39(3), 227–241 (2011)

[3] Birge, J.R., Louveaux, F.: Introduction to stochastic programming. Springer
Science & Business Media (2011)

[4] Charnes, A., Cooper, W.: Chance constrained programming. Management
Science 6(1), 73–79 (1959)

[5] Cobb, B.R.: Intermittent sampling for statistical process control with the
number of defectives. Computers & Operations Research 161, 106423 (2024)

[6] Howard, R.A., Matheson, J.E.: Influence diagrams. Decision Analysis 2(3),
127–143 (2005)

[7] Hynninen, Y., Linna, M., Vilkkumaa, E.: Value of genetic testing in the
prevention of coronary heart disease events. PloS one 14(1), e0210010 (2019)

[8] Khaled, A., Hansen, E.A., Yuan, C.: Solving limited-memory influence dia-
grams using branch-and-bound search. In: Uncertainty in Artificial Intelli-
gence (UAI-13). pp. 331–341. AUAI Press, Arlington, Virginia, USA (2013)

[9] Lauritzen, S.L., Nilsson, D.: Representing and solving decision problems
with limited information. Management Science 47(9), 1235–1251 (2001)

[10] Mauá, D.D., de Campos, C.P., Zaffalon, M.: Solving limited memory influ-
ence diagrams. Journal of Artificial Intelligence Research 44, 97–140 (2012)

[11] Puterman, M.L.: Markov decision processes. Handbooks in operations re-
search and management science 2, 331–434 (1990)

[12] Rockafellar, R., Uryasev, S.: Optimization of conditional value-at-risk. Jour-
nal of Risk 2, 21–42 (2000)

[13] Salo, A., Andelmin, J., Oliveira, F.: Decision programming for mixed-integer
multi-stage optimization under uncertainty. European Journal of Opera-
tional Research 299(2), 550–565 (2022)

[14] Shachter, R.D., Bhattacharjya, D.: Solving influence diagrams: Exact algo-
rithms. Wiley encyclopedia of operations research and management science
(2010)

