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Figure 1. We showcase the effectiveness of our proposed framework in synthetic and real-world driving scenarios. Our framework excels
at generating physically realistic animations that adhere to provided trajectories while offering extensive control over the upper and full
body movements. Additionally, our framework demonstrates the remarkable ability to recreate pedestrian animations with occlusions from
real-world videos in a zero-shot manner. These inherent capabilities make our framework a robust and versatile approach foron-demand
pedestrian animation in driving scenarios.

Abstract

We address the challenge of content diversity and con-
trollability in pedestrian simulation for driving scenarios.
Recent pedestrian animation frameworks have a significant
limitation wherein they primarily focus on either following
trajectory [49] or the content of the reference video [62],
consequently overlooking the potential diversity of human
motion within such scenarios. This limitation restricts the
ability to generate pedestrian behaviors that exhibit a wider
range of variations and realistic motions and therefore re-
stricts its usage to provide rich motion content for other
components in the driving simulation system, e.g., suddenly
changed motion to which the autonomous vehicle should
respond. In our approach, we strive to surpass the limi-
tation by showcasing diverse human motions obtained from
various sources, such as generated human motions, in ad-
dition to following the given trajectory. The fundamental
contribution of our framework lies in combining the motion
tracking task with trajectory following, which enables the
tracking of specific motion parts (e.g., upper body) while
simultaneously following the given trajectory by a single
policy. This way, we significantly enhance both the diver-
sity of simulated human motion within the given scenario
and the controllability of the content, including language-
based control. Our framework facilitates the generation of

a wide range of human motions, contributing to greater re-
alism and adaptability in pedestrian simulations for driving
scenarios. More details are in our project page.

1. Introduction

Autonomous vehicle (AV) simulation systems have gained
increasing attention, given their potential to help develop
safe and adaptable self-driving algorithms. One of its cru-
cial functionalities is creating realistic and diverse pedes-
trian animations to train self-driving algorithms to react to
a diverse array of human behaviors. It can be crucial for the
safety of AV since subtle changes in pedestrians’ moving di-
rections or gestures could entail large changes in vehicle be-
haviors. However, despite the promising results [5, 48, 56]
of the background scene and vehicle motion creation in the
current simulation system, the performance of pedestrian
animation still lags behind.

While state-of-the-art pedestrian animation methods of-
ten use keyframe animations authored by artists [37], they
lack the proper reaction to the scene geometry due to the
absence of the laws of physics. Recent physics simulation-
based pedestrian animation method [49] can create pedes-
trian animations that are human-like, physically plausible,
and conform to the geometry of the scene. Yet its animation
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is only controlled by 2D trajectories and is limited to ba-
sic locomotion such as walking and running, which makes
it insufficient to reflect the natural diversity of pedestrian
behaviors. Alternatively, pedestrian animation can also be
obtained from video sequences via simulation-based motion
capture [62], which, however, adopts a per-video optimiza-
tion strategy that is computationally intensive and thus can-
not create new and diverse animation at a large scale or in
an on-demand manner.

In this work, we propose PACER+, a simulation-based
framework for generating diverse and natural pedestrian an-
imation on-demand. Our framework offers richer zero-shot
control beyond trajectory following and enables the creation
of diverse animation in both manual and real-world scenar-
ios, to meet the demand for more controllable generation.
Specifically, PACER+ supports fine-grained control over
different body parts while following the given trajectory,
which is achieved by selectively tracking specific body parts
instead of rigidly tracking the entire body [27, 30, 63]. This
creates room for more life-like animation, such as walk-
ing while making a phone call, and simultaneously ensures
smoothness of the motion, compatibility of the terrain, and
adherence to the provided trajectory. Using our framework,
a variety of pedestrian behaviors can be introduced into the
simulation system from various sources, including motion
generation models, pre-captured motions, and videos, as
depicted in Figure 1. Moreover, for the demand of recre-
ating real-world pedestrian animation into simulation envi-
ronments, PACER+ can also demonstrate motion from the
given video without re-training or fine-tuning, where the
missing part will be infilled automatically, as shown in Fig-
ure 1.

The key insight behind PACER+ lies in the synergy
between motion imitation and trajectory following tasks.
While the lower-body motion is often influenced by the tra-
jectory and terrain, the upper-body motion has the flexibil-
ity to encompass a diverse range of motions. Therefore, we
establish a synergistic relationship between motion imita-
tion and trajectory following tasks through a joint training
scheme. In this scheme, a single policy is employed to track
partial body motion and follow trajectories simultaneously
in a physically plausible way. To achieve this, we introduce
a per-joint spatial-temporal mask that indicates the presence
of a reference motion for the policy to track. During train-
ing, we randomly select time steps and joints to insert as the
reference motion into the trajectory following task. This en-
courages the policy to concurrently track the trajectory and
imitate the reference motion, enabling generalizable trajec-
tory and motion tracking.

Our contributions can be summarized as follows: (1)
We propose a unified physics-based pedestrian animation
framework, named PACER+, which can control a simulated
pedestrian to follow the 2D trajectory and specific body

parts reference motion at the same time on-demand. (2) Our
framework supports the generation of diverse pedestrian be-
haviors from various sources, including generative models,
pre-captured motions, and videos, in any given driving sce-
nario, such as manually built or real scanned environments.
(3) Notably, our framework achieves the zero-shot recre-
ation of real-world pedestrian animations into simulation
environments, where the missing part will be infilled au-
tomatically.

2. Related Works
Controllable Character Animation. Controllable char-

acter animation has been a longstanding research topic in
computer graphics and robotics [19, 36, 71]. Previous re-
search in controllable character animation has often focused
on integrating high-level tasks, such as trajectory follow-
ing or goal-reaching, with low-level control of body joints,
involving joint positions or angles. By combining these
two levels of control, researchers aimed to achieve con-
trollable animation that adheres to specific tasks or objec-
tives. Recent methods have explored primarily two main
approaches: (1) kinematics-based [10, 25, 60, 81] methods
and (2) physics-based method [8, 43, 44, 64, 69]. These
works primarily aim to achieve predefined tasks with plau-
sible human motions.

More recently, researchers have begun to extend the
range of motion content while still adhering to given
tasks. For instance, PADL [14] and CALM [58] introduce
language-based and example-based control to generate di-
verse motions for the given tasks. Some recent works [3, 66]
introduce spatial composition to expand the range of skills
for more complex tasks. Based on the success of Con-
trolNet [79], AdaptNet [67] incorporates a similar design
choice into its policy network to generate diverse human
motions on complex terrains.

The key distinction between our work and these exist-
ing approaches lies in our focus on zero-shot fine-grained
control for character animation, specifically for following
given tasks. Once trained, our method does not require ad-
ditional policy network training for new skills [66, 67]. Fur-
thermore, our control framework enables flexible yet fine-
grained control over the given character, including the lo-
cation of upper body joints of specific examples, which has
not been fully addressed in previous style-based controlling
works [3, 14, 58]. Moreover, our approach supports motion
content from various sources, such as videos, motion cap-
ture data, or even motions generated by other methods. This
capability enhances the versatility and adaptability of our
framework, allowing for on-demand pedestrian animation.
Users can generate desired character behaviors by leverag-
ing the flexibility of incorporating diverse motion sources.
Physics-based Humanoid Motion Tracking. Using a deep
neural network [27, 29, 30, 41, 63, 74] to track kinematics
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human motions in physics simulation achieves promising
results in recent years. To achieve a better success rate, pre-
vious works introduce residual force [74] and Mixture-of-
Experts network structures [29, 30, 63]. However, unlike
tracking all upper bodies, our framework allows for selec-
tive tracking of specific body parts within the upper body
and following the given trajectory.
Physics-based Human Motion Capture. In recent years,
the research community has developed various framework
to recover human 3D poses [1, 6, 18, 33–35, 40, 61] and
motions [2, 9, 11–13, 15, 17, 21, 23, 39, 54, 55, 57] from
images and videos [16, 47, 76]. To ameliorate the phys-
ical artifacts (e.g. foot slidings) associated with the cap-
tured motion, recent work has sought to take advantage of
the physical attributes of human dynamics. These meth-
ods can be broadly classified into three categories: (1) post-
optimization based methods during test time [7, 46, 52, 65],
(2) reinforcement learning (RL) based methods[27, 28, 42,
62, 72–75] with motion imitation, and (3) physics-aware
models [22, 53, 78] to adjust global trajectories.

Our framework is also capable of capturing physically
plausible human motion via tracking high-confidence key-
points [62, 76]. However, the main objective of our paper
is to achieve zero-shot reproduction of pedestrian motions
in real-world driving scenarios. In contrast to existing ap-
proaches, our framework does not involve additional opti-
mization for infilling missing frames and low-confidence
motions for the captured motion in real-world driving sce-
narios while tracking high-confidence motions. After we
reproduce these real-world scenarios, our framework is also
capable of argument these environments with additional vir-
tual pedestrians or editing infilled frames.

3. Methodology
In this paper, we mainly focus on building up on-demand

control of pedestrian animation, which encompasses two
main aspects: (1) trajectory following on terrains, which
determines the desired path of the simulated pedestrian
in complex environments, and (2) motion content control,
which specifies the desired actions and gestures exhibited
by the pedestrian (e.g., making a phone call or waving a
hand) while adhering to the provided trajectory and terrain.

To achieve our objective, our framework builds upon
PACER [49] and investigates the synergy between motion
imitation and trajectory following tasks. In the context of
pedestrian animation in driving scenarios, the lower body
motion is typically influenced by the trajectory and terrain,
while the upper body motion can leverage rich semantic
information specific to pedestrians. This grants the upper
body the freedom to track a diverse range of possible mo-
tions. To attain fine-grained control over different body
parts we introduce a per-joint spatial-temporal mask rather
than tracking all body parts throughout the sequence. This

mask indicates the presence of a reference motion that the
policy should track. Using this tracking task, our frame-
work enables diverse pedestrian behaviors at specific time
steps and locations in a zero-shot manner. This means that
we can generate a wide range of motion behaviors without
the need for additional training or optimization. Our frame-
work also seamlessly integrates generative human motion
models, motion capture sequences, and videos into the sim-
ulation system.

Our framework is designed not only for manually syn-
thetic scenarios but also for simulating pedestrians from
real-world videos, as demonstrated in [62]. To enable accu-
rate tracking of various parts of pedestrian motion in real-
world videos, we expand the spatial-temporal mask to cover
whole-body joints instead of solely the upper body. This en-
hancement allows our framework to track high-confidence
motion obtained from pose estimation methods, particularly
in real-world captured driving scenarios. By incorporating
this capability, our framework becomes more versatile and
applicable, showcasing its potential for realistic synthesis
and tracking of pedestrian motion in real-world settings.
This feature ensures smooth continuity and accuracy in the
animation when integrating real-world data into the simu-
lated environments while preserving the motion character-
istics observed in real-world scenarios.

In Section 3.1 to Section 3.3, we provide detailed in-
sights into our controller. Subsequently, in Section 3.4, we
delve into the integration of different motion content and
scenarios within our framework. We discuss how our con-
troller seamlessly adapts to various types of motion content,
including generative models, motion capture sequences,
and videos. Furthermore, we explore the applicability of
our framework to different scenarios, allowing the genera-
tion of diverse pedestrian behaviors in specific contexts.

3.1. Physics-aware Character Control

In this section, we first present the formulation of our
pedestrian animation controller. In the following Sec-
tion 3.2 and Section 3.3, we will introduce the details of
the tasks in this framework.

Formulation. We follow the general framework of goal-
conditioned RL, as shown in Figure 2. The objective of our
controller encompasses two aspects: (1) faithfully follow-
ing the given trajectory P on terrain G, and (2) imitating the
specified motion content Q̂ = q̂1:t provided by our content
module within the designated time range {ts : ts+ t} along
the trajectory.

Similar to prior works [30, 43, 49], we formulate our
character control as a Markov Decision Process (MDP) de-
fined by the tuple M = {S,A, T ,R, γ}, comprising states,
actions, transition dynamics, reward function, and the dis-
count factor. The state st ∈ S and the transition dynam-
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Figure 2. Framework of PACER+. Our framework follows the goal-conditioned reinforcement learning with Adversarial Motion Prior.
To enable fine-grained control of specific body parts, we introduce an additional spatial-temporal mask to the motion-tracking task. This
mask indicates the presence of a reference motion that the policy should track. By focusing on this tracking task, our framework enables
the demonstration of diverse pedestrian behaviors at specific time steps and locations in a zero-shot manner.

ics T are determined by the underlying physics simulator,
while the action at ∈ A is computed by our policy net-
work. The reward rt ∈ R relates to the given trajectory
and motion-tracking task. The objective of our policy is to
maximize the accumulated discounted reward

∑T
t=0 γ

trt,
where γ represents the discount factor. To accomplish this,
we employ the widely adopted proximal policy optimiza-
tion (PPO) algorithm [51].

State and Actions. In our framework, the state st ≜
(spt , s

g
t ) consists of humanoid proprioception [30] spt and

the goal state sgt . The goal state sgt consists of two com-
ponents, as the goal for trajectory following strajt , and the
goal for motion tracking smotion

t . We will present the de-
tails of these two components in the following sections. We
use a proportional derivative (PD) controller at each degree
of freedom (DoF) of the humanoid to control pedestrian an-
imation.

Adversarial Motion Prior. Similar to the previous state-
of-the-arts [30, 43, 44, 49], we learn our optimal control
policy with Adversarial Motion Prior (AMP). AMP em-
ploys a motion discriminator to encourage the policy to
generate motions that align with the movement patterns ob-
served in a dataset of human-recorded motion clips. Specif-
ically, AMP uses a discriminator to compute a style re-
ward, which is added to the task reward: rt = 0.5ramp

t +
0.5(rtrajt + rmotion

t ). We will illustrate the details of the
task reward in the following sections.

3.2. Trajectory following on terrains

Trajectory Following State. In the trajectory following
task, the humanoid a local height map G and the trajectory
P to follow. The 3D trajectory input is defined as Ptraj

t =
{p̂t, p̂t+ρ, · · · , p̂t+Nρ}, where ρ is the sampling rate of the
trajectory, and N is the number of steps in the future. p̂t+ρ

is the relative xy value between the position of path P at
time step t+ ρ and the root position of simulated character
at time step t. In practice, we set ρ as 0.5 seconds and N
as 10. For the height map of the ground terrain Gt , we
render a 20x20 square centered at the root of the humanoid
and render the local height map as input Gt. Therefore, the
goal state of the trajectory following task can be defined as
strajt ≜ (Ptraj

t ,Gt).

Trajectory Following Reward and Early Termination.
Trajectory following task reward is defined as xy distance
between the position of trajectory p̂xyt and the root position
of the simulated character rxyt at time step t, formulated as
rtrajt = e−2||p̂xy

t −rxy
t ||. To better follow the trajectory, we

introduce an early termination mechanism to this task while
training the policy network. Specifically, we terminate the
trajectory following task if the distance between the posi-
tion of trajectory p̂xyt and the root position of the simulated
character rxyt at time step t is larger than a threshold τ . We
set τ at 0.5 meters in our experiments.

3.3. On-demand Motion Tracking

Masked Motion Tracking. In contrast to previous
works [27, 30, 63], our motion tracking tasks deviate in that
we require the policy network to track specific motion parts
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within a given time range while following trajectories. To
facilitate this, we introduce a spatial-temporal mask to the
tracking tasks, denoted as M1 : T = {m1,m2, · · · ,mT },
where mt = {m1

t , · · · ,mJ
t } is a set of binary masks in-

dicating whether the motion tracking task j is required at
time step t. By employing this observation mask, we can
define the state of the motion-tracking task and the reward
function as follows.

Motion Tracking State. The motion content of our track
task q̂t+1 for the frame t+1 consists of joint position p̂t+1,
joint rotation θ̂t+1, joint velocity v̂t+1, and rotation velocity
ω̂t+1, similar to the rotation-based imitation of PHC [30].
In our simulation stage, we can only set the motion demon-
stration tasks for some specific frames, rather than track-
ing all frames as [30]. In general, for frames without mo-
tion demonstration tasks at time step t1, we directly set the
mask as 0 to indicate that motion tracking tasks are not re-
quired at these time steps. For the tracking target, we can
directly set it as the same value as the state of the simu-
lated character. For the frame t2 with target motion, we can
set the mask mt2 = {m1

t2 , · · ·m
J
t2} with 1 for the joints

that should be tracked and 0 for the ignored joints. We also
set the target motion as the same value as the state of the
simulated character for the ignored joints. Therefore, the
state of motion content demonstration at time step t can be
defined as Sd ≜ (θ̂t+1 − θt, p̂t+1 − pt, v̂t+1 − vt, ω̂t+1 −
ωt, θ̂t+1, p̂t+1,mt+1).

Demonstration Reward and Early Termination. The
reward of our motion demonstration is mainly related to the
motion tracking error between the simulated character and
the target motion. Therefore, we can define the reward as
rmotion
t = wjpe

−100||p̂t−pt||◦mt + wjre
−10||q̂t−qt||◦mt +

wjve
−0.1||v̂t−vt||◦mt +wrve

−0.1||ω̂t−ωt||◦mt . The mask mt

helps us to ignore the joints that should not be demonstrated
in the simulation process.

For effective training of our motion tracking task us-
ing the Adversarial Motion Primitives (AMP) approach,
we made two critical design choices: incorporating addi-
tional motion sequences and implementing early termina-
tion. To address mode collapse [43, 49], we trained AMP
with a smaller dataset of approximately 200 sequences, as
discussed previously [49]. While this selection ensures nat-
uralness in generated motions, it limits generalization to un-
seen motion in the motion-tracking task. Including supple-
mentary motion sequences as references in motion tracking
introduces diverse motion content and has the potential to
enhance tracking performance. However, training the mo-
tion tracking task with an additional dataset poses a chal-
lenge in jointly learning AMP alongside the smaller dataset
as contrasting motion styles are introduced. Supplementary
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Figure 3. Our framework presents an on-demand control system
tailored for real-world videos. Beginning with the pre-processing
in [62], our policy network can track high-confidence motions
and effectively fill in missing parts without additional fine-tuning.
Moreover, our framework offers the novel functionality of intro-
ducing customized animations into real-world scenarios with flex-
ible control options.

videos visually depict the challenges faced by the policy
network in accurately learning motion-tracking outcomes.

To overcome this limitation, we incorporate an early ter-
mination mechanism during training. Specifically, we ter-
minate the motion demonstration task if the largest distance
between the joint positions of the reference poses p̂xyt and
the simulated character pxyt at time step t exceeds a thresh-
old τ . In our experiments, we set τ to 0.3 meters. We
use more than 10,000 motion sequences from the AMASS
dataset [31] to train our motion demonstration task for prac-
tical implementation.

3.4. System Overview

Finally, we outline the training process for our policy us-
ing the combination of these tasks. Subsequently, we intro-
duce the methodology for controlling pedestrian animation
on-demand using our framework in both manually synthetic
and real-world scenarios.

Training Procedure. In our framework, the policy net-
work undergoes training through a combined approach of
trajectory-following and motion-tracking tasks. Initially,
each training environment involves joint training of the pol-
icy with both tasks. During this step, binary masks for
the reference motion are randomly generated at each time
step, and early termination is applied to the motion-tracking
task. The reference motions are sampled randomly from
the AMASS dataset [31]. Subsequently, we train the tra-
jectory following task using randomly generated synthetic
trajectories [49, 62]. In this stage, all joints within the
spatial-temporal mask are assigned a value of 0. This en-
sures that the policy focuses solely on learning to follow
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the generated trajectories without considering motion track-
ing. By employing this combined training approach, we en-
able the policy network to acquire proficiency in trajectory-
following and motion-tracking tasks, enhancing our frame-
work’s overall performance and adaptability.

Manually Synthetic Scenarios. In manually synthetic
scenarios, our framework offers flexibility in manually set-
ting the trajectory while generating the desired motion con-
tent. First, we identify the specific body part from the mo-
tion content obtained from other references. Then, we set
the motion tracking task’s mask to indicate the desired mo-
tion for demonstration. During this process, we align the
reference motion’s location and orientation with the tra-
jectory to facilitate accurate tracking. This alignment en-
sures that the generated motion content precisely follows
the specified trajectory, allowing for diverse and customiz-
able pedestrian animations. Our experimental results will
present further details and insights on this approach. By
employing this methodology, our framework empowers the
generation of tailored motion content for manually syn-
thetic scenarios, enabling greater control and realism in the
animation process.

Real-world Scenarios. In our real-world scenarios, we
adopt the definition of high-confidence frames, as described
in prior works [62, 76], using 2D keypoint detection. We
track the entire body motion for these high-confidence
frames to maintain optimal motion content. Conversely, in
low-confidence frames, we assign a value of 1 only to key-
points with high-confidence estimation scores in the spatial-
temporal mask. This approach enables motion capture even
when half of the body is occluded without requiring addi-
tional optimization steps. Additionally, we can apply the
same process as in manually synthetic scenarios to intro-
duce additional content from other sources into real-world
scenarios using our unified policy. Figure 3 illustrates this
capability. By following this approach, we enhance the
quality and realism of animation in real-world videos, lever-
aging the flexibility of our framework.

4. Experiments

Dataset. In our experiments, we utilized motion data from
various sources. We employed motion from the AMASS
dataset [31] for motion tracking evaluation. To enhance the
diversity of demonstrated motion, we collaborated with off-
the-shelf language-based motion generation models [4, 59].
Additionally, we utilized NIKI [23], a state-of-the-art hu-
man motion capture approach, to capture motions from
videos and recreate real-world scenarios. Regarding the
simulation environment in our framework, it encompasses
two aspects: (1) manually synthetic scenarios built using

Walking and rasing up right arm Running happily

Calling a phone with right hand Calling a phone with left hand

Figure 4. Results on manually synthetic terrains. Our frame-
work enables the synthesis of animations by combining a given
trajectory with motion content generated by language-based mo-
tion generation models [4, 59].

Unreal Engine following the MatrixCity framework [24],
and (2) real-world scenarios reconstructed from scanned
point cloud data in the Waymo Open Dataset [80]. Fol-
lowing the methodology described in [62], we resampled
human motion captured from videos to 30 fps to match the
simulation environment. To evaluate the performance of our
framework effectively, we selected motion sequences with
a trajectory length of more than 3 meters.

Metrics. To evaluate our framework, we employed a
range of kinematics-based and physics-based metrics. We
use motion Fréchet Inception Distance (FID) [20, 45] and
diversity metric [4, 59] to evaluate the quality and diversity
of synthesized animations. To evaluate tracking accuracy,
we employed the Mean Per-Joint Position Error (Empjpe)
and Global Mean Per-Joint Position Error (Egmpjpe) met-
rics, between the simulated character and the reference mo-
tion in root space and global space. Regarding the phys-
ical attributes of the animation, we evaluated food sliding
(FS) and foot penetration (FL) metrics for animation syn-
thesis, following the methodologies outlined in [22, 75].
Motion jitter is computed by the velocity (Vel) and accel-
eration (Accel) between the physics character and the ref-
erence motion. The units for these metrics are measured in
millimeters (mm), except for Accel, which is measured in
mm/frame2.

Implementation Details. We followed the capsule model
of the SMPL robot as the simulation target, as described
in [29, 30, 49]. Our policy network was trained on a sin-
gle NVIDIA A100 GPU, which took approximately three
days to converge. Once trained, the composite policy runs
at a frame rate exceeding 30 FPS. The physics simulation is
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Table 1. Comparison of Motion Quality and Diversity between
Our framework and PACER. FID and Diversity metrics were used
for trajectories with normal speed, while l-FID and l-Diversity are
employed for animations under low speed.

Method FID ↓ Diversity ↑ l-FID ↓ l-Diversity ↑
PACER [49] 7.97 1.29 8.84 1.24
Ours 6.74 1.67 7.62 1.36

Table 2. Motion tracking quality of our method between differ-
ent body parts by introducing spatial-temporal mask to the cor-
responding region. We compare with [62] for whole-body track-
ing because this method can not only track specific regions, e.g.,
upper-body.

Metric Wang [62] Whole Upper Left Arm Right Arm
Empjpe ↓ 80.29 72.10 77.87 78.75 79.52
Egmpjpe ↓ 137.48 123.88 128.15 128.84 133.92

performed in NVIDIA’s Isaac Gym [32]. The control pol-
icy operates at 30 Hz, while the simulation runs at 60 Hz.
In our evaluation, we did not consider body shape variation
and used the mean body shape of the SMPL.

4.1. Evaluation.

In this section, our framework is primarily compared with
PACER [49], the state-of-the-art controllable pedestrian an-
imation approach. The comparison focuses on motion qual-
ity and evaluation metrics for specific tasks, such as tra-
jectory following and motion tracking. By comparing our
framework with PACER, we aim to demonstrate the ad-
vances and improvements in these areas.

Motion Quality and Diversity. We conducted a compar-
ative analysis between our framework and PACER, focus-
ing on motion quality and diversity. For this evaluation,
we randomly synthesized 1000 different trajectories on the
synthetic terrain, which were used to train both PACER and
our policy. The motion content of our framework is synthe-
sized by off-the-shelf approaches [4, 59]. Table 1 presents
the results of this comparison. Our method achieves a lower
FID and demonstrates better diversity compared to PACER.
These findings indicate the superior ability of our frame-
work to generate diverse and contextually relevant pedes-
trian animations. Additionally, we consider the issue of
synthesizing animations at low speeds, which can often re-
sult in unnatural motion, as presented in PACER. Specifi-
cally, we compare our framework with PACER under tra-
jectories with low speeds (speed < 1m/s). As shown in
Table 1, our framework consistently achieves better motion
realism and diversity in these low-speed scenarios. Overall,
our framework surpasses PACER in motion quality and di-
versity, showcasing its advancements and improvements in
realistic and diverse pedestrian animation synthesis.

Table 3. We present the results of our method on real-world sce-
narios and compare with [62]

Method Empjpe ↓ Egmpjpe ↓ FS ↓ FL ↓ Vel ↓ Acc ↓
Motion [23] × × 45.32 54.21 × ×
Wang [62] 89.42 137.84 7.87 14.21 8.21 7.42
Ours 77.67 127.84 7.68 12.12 7.42 6.43

Motion Tracking. To evaluate the motion tracking per-
formance of our framework, we utilize motion content
from two sources: the AMASS dataset [31] and synthe-
sized motion generated by state-of-the-art motion genera-
tion models [4, 59]. We randomly select 1000 sequences
from AMASS to assess the tracking performance, provid-
ing diverse and real-world motion content. Additionally,
we generate 200 synthesized motion sequences using Chat-
GPT [38] with 20 distinct prompts for driving scenarios, re-
sulting in 10 sequences per prompt. The evaluation focuses
on synthetic terrains and trajectories, with a comprehensive
assessment of whole-body, upper-body, and left/right arm
tracking. The tracking results are presented in Table 2, al-
lowing us to analyze and quantify the effectiveness of our
framework in different tracking scenarios and body parts.
Furthermore, we compare our method with [62] for whole-
body tracking, demonstrating superior zero-shot tracking
results on terrains.

4.2. Results on Real-world Scenarios

In real-world scenarios, we evaluate our framework using
the NIKI [23] to obtain joint rotations of the human body.
Following the evaluation methodology outlined in [62], we
use the ground truth trajectory and 2D bounding box to as-
sess our framework’s performance. To evaluate the con-
fidence of the estimated results, we employ ViTPose [68]
to extract confidence scores for each body joint. During
the inference process, we selectively track body parts with
high-confidence joint estimations, ensuring a fair compar-
ison by refraining from additional fine-tuning or optimiza-
tion, as stated in [62]. This unbiased evaluation allows for a
comparison of our framework’s performance. Our method
demonstrates improvements in the physics attributes of the
motion content, as presented in Table 3. Moreover, it
achieves better Empjpe and Egmpjpe results, indicating im-
proved matching to high-confidence parts and the given tra-
jectory compared to [62]. Through these evaluation tech-
niques, we showcase the results of our framework in real-
world scenarios, highlighting its performance and effective-
ness in practical settings.

4.3. Ablation Study

We performed our ablation study at Table 4 to assess the
effectiveness of motion tracking and the spatial-temporal
mask in our framework. The study focused on upper body
tracking and trajectory following. When motion tracking is
not included, our framework resembles PACER and can not

7
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Overview

Overview

Figure 5. Zero-shot animation recreation of real-world pedestrians. Our framework is capable of simulating pedestrian animation following
the motion content of real-world videos.

Table 4. Ablation studies on motion tracking and spatial-temporal
mask. Our design choice achieves better results on both motion
tracking and motion quality.

Tracking Mask FID Empjpe ↓ Egmpjpe ↓
× × 7.97 215.55 254.17√

× 7.07 79.57 132.24√ √
6.74 77.87 128.15

follow the content of the given motion sequences. Conse-
quently, the motion quality was inferior to our framework.
However, upon introducing the motion tracking task, com-
bined with the spatial-temporal mask, the policy exhibited
improved motion tracking and enhanced realism quality.
The results of the ablation study highlight the significance
of motion tracking and the spatial-temporal mask, under-
scoring their contributions to the effectiveness and quality
of our framework.

4.4. Qualitative Results

Figure 4 showcases the synthesized animations on artificial
terrains. All presented results adhere to the control of the
given trajectory and upper body motion content. Our frame-
work enables the synthesis of diverse and natural human an-
imations, surpassing the limitations of conventional walk-
ing and running actions [49]. Furthermore, Figure 5 illus-
trates the zero-shot results of animation recreation. These
examples highlight the capability of our framework to recre-
ate animations in real-world scenarios. We refer viewers to
our supplementary video for a more comprehensive presen-
tation, including different tracking parts and collaborations
with various motion sources. The synthesized animations

on synthetic terrains and the animation recreation results
demonstrate the effectiveness and versatility of our frame-
work in generating diverse and natural human animations.

5. Conclusion and Limitation
Conclusion: In this paper, we introduce a novel frame-
work for on-demand synthesis of diverse and natural pedes-
trian animation in driving scenarios. Our framework sur-
passes traditional trajectory control methods by enabling
zero-shot generation of diverse motion using a range of mo-
tion content sources. To achieve this, we propose a joint
tracking framework where a single policy is trained to si-
multaneously track the trajectory and imitate selected joints,
such as upper-body joints. During training, we incorpo-
rate a spatial-temporal mask to guide the policy network in
tracking specific joints within a designated time range. Our
framework empowers comprehensive control over pedes-
trian animation in both manual and synthetic scenarios, of-
fering a versatile tool for animation generation.

Limitations and Future Works: Our current approach
uses pre-trained motion generation models for motion con-
tent and relies on user-provided trajectories, without explic-
itly considering the semantic relationship between pedestri-
ans and the environment. In future work, we aim to inves-
tigate generating motion content directly through the policy
network while incorporating semantic guidance.

Acknowledgement This work is funded in part by the
National Key R&D Program of China (2022ZD0160201),
and Shanghai Artificial Intelligence Laboratory.
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6. Supplementary
6.1. Implementation Details

Humanoid State. In our policy, the state of the humanoid,
denoted as spt , comprises joint positions jt ∈ R24×3, rota-
tions qt ∈ R24×6, linear velocities vt ∈ R24×3, and angular
velocities ωt ∈ R24×3. These components are normalized
with respect to the agent’s heading and root position in our
simulator. The rotation qt is represented using the 6-degree-
of-freedom rotation representation [82].

（a） （b）

Figure 6. Our simulated motion near a moving car allows for inter-
active actions, such as waving, when the pedestrian stops or turns
around. This enhances the realism of the simulated motion.

Network Architecture. In this study, we adopt the net-
work structure from PACER [49], which separates the pol-
icy network into a task feature processor and an action en-
coder. For the task processor, we employ a convolutional
neural network (CNN) to process the terrain map, follow-
ing the approach outlined in [49]. Additionally, we utilize
an MLP network to encode the trajectory, reference motion,
and tracking mask. Subsequently, we concatenate the hu-
manoid state with the output of the task processor to form
the input of the action network. The action network consists
of MLP layers with ReLU activations, comprising two lay-
ers with 2048 and 1024 units, respectively. The output of
this action network, indicated as at ∈ R23×3, corresponds
to the PD target of the joints on the SMPL [26] human body,
excluding the root joint.

6.2. Additional Results.

The trajectory following results are presented in Table 5.
We mainly compare our method with the approaches pro-
posed in [49] and [62]. We evaluate these different meth-
ods on the synthetic terrain and trajectories similar to train-
ing these policies. The metric is the average deviation of
the character from trajectories. As depicted in the table,
PACER achieves the most favorable results. Our method
demonstrates performance comparable to that of PACER in
terms of trajectory following. However, it is worth noting
that the kinematics policy employed in [62] exhibits lim-
itations when dealing with complex terrains without fine-
tuning.

Additionally, as shown in Figure 6, when dealing with
a simulated car, we can manually determine the trajectory
and movements of the pedestrian to enable more grounded

Table 5. Comparison of trajectory following task with PACER [49]
and [62]. Our method achieves a comparable result with PACER
and a significantly better result than [62].

Method PACER [49] Wang et.al [62] Ours
Error ↓ 0.118 0.164 0.123

reactions. For example, we can incorporate actions such as
waving in the car or altering the direction of movement. In
this work, we focus mainly on the ”on-demand” prospect on
increasing the capabilities of simulators, which can pave the
way for a more antonymous response in intelligent agents.

6.3. System Details.

Figure 7 showcases the user interface (UI) we have devel-
oped, which allows users to control the animation within the
specified driving scenario. Through this system, users have
the capability to modify the trajectory, motion content, body
parts, and the starting time of the motion content seamlessly
in a zero-shot manner. Further details regarding this system
can be found in our supplementary video.

6.4. Further Discussion.
In the realm of integrating language-based motion gen-
eration models with physics simulators, recent work
has emerged to address this area. Physdiff [77] stands
as a notable contribution, employing a whole-body im-
itator within the motion diffusion model’s denoising
process to achieve physically plausible animations. On
the other hand, InsActor [50] and MoConVQ [70] rely
on model-based character simulation. However, these
approaches overlook the influence of terrain in pedestrian
animation and lack body part control. Consequently,
these methods are limited to controlling the entire body
joints based on language instructions solely on flat-ground
scenarios. In contrast, our framework offers enhanced
flexibility in control while also facilitating cooperation
with real-world motions on various terrains. Addition-
ally, with the advances in motion content synthesis by
language-based motion models, our framework has the po-
tential to generate superior animations in driving scenarios.
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