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Abstract

This work explores automatic analysis of medical procedure recordings, in particular, en-
doscopies. Regular medical practice recordings are noisy and challenging to process, so
a quick and automatic overview of their content is essential. We show how advances in
unsupervised representation learning can be applied to real medical data, obtaining rich
descriptors to perform automatic semantic analysis of these recordings.
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1. Introduction

Endoscopies are a frequent medical practice producing large amounts of video. This data is
tedious to process manually, and expensive to label for supervised machine learning tech-
niques to automatically process it. Current trends tackle this problem with unsupervised
machine learning techniques, producing recent advances for representation learning. We
base our study on the BYOL framework Grill et al. (2020), that presents an efficient unsu-
pervised training strategy. Our goal is to use these descriptors to facilitate semantic analysis
of complete endoscopy recordings, as depicted in Fig. 1. This analysis can guide practition-
ers or algorithms for specific tasks, e.g., 3D reconstruction (Lamarca et al., 2020), to help
processing the large amounts of data recorded. It is essential to know whether to ignore or
focus on certain parts of the recordings, e.g., large intervals are useless due to poor visibility,
blur, etc. Unsupervised learning of descriptors avoids bias towards pre-defined classes, and
allows us to discover existing scene types. Then, an expert, with minimal supervision effort,
can decide which types are of interest to be identified automatically. Our contributions are

Figure 1: Top: Automatic video segmentation example (Black=Wall, Blue=Water,
Green=Good view, Gray=None). Bottom: sample frames from some intervals.
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an image description model1 trained following BYOL on real medical practice data (Azagra
et al., 2022), and the validation of these learned descriptors to perform recognition tasks
on real endoscopy videos. We run proof of concept experiments for scene classification and
semantic video segmentation.

2. Method

The BYOL unsupervised representation learning framework trains an online network
to predict the output of a parallel target network for a different augmented view of the
same source image. It uses contrastive learning but only with positive samples, which
makes the training more robust and efficient. We run BYOL on a standard ResNet50
architecture (initialized with ImageNet weights) on our train-set. BYOL adds a projection
and prediction MLPs at the end of the network that are discarded after training. The final
2048 long descriptor is the output of the ResNet50 architecture.

We build a simple video segmentation approach with the learned descriptors. First,
we explore the type of scenes in these colonoscopies by clustering the descriptors of train-set-
2. Visually inspecting the frames in each cluster, we observe useful semantic distinctions.
In our proof of concept we select three types (classes): Wall represents frames where the
endoscope is facing a wall, losing all visibility; Water are frames captured while the water
pump is being used, also losing most visibility; Good view refers to frames where the en-
doscope is well positioned to examine and navigate the colon. Cluster centroids are used
as a reference model to classify each frame of the video test-set as follows. The classifica-
tion of a single test frame is obtained by computing the minimum distance to each class:
dl = min

n=1...Nl

(
L2(x, cln)

)
, where dl is the distance from the frame to class l, Nl is the number

of centroids that correspond to class l, L2(a, b) is the euclidean distance between a and b, x
is the descriptor of the frame and cln is the n-th centroid of class l. Then we apply a filter for
robustness to assign the label: if the distance to the closest class is smaller than 0.95 times
the distance to the second closest class, the frame is classified as the first class. Otherwise,
we add a class none for these uncertain cases. The final video segmentation, is obtained
after post-processing the per-frame classification with a voting-based sliding window. The
window middle frame is assigned to the most frequent class within the window.

3. Experimental Results

We use the EndoMapper (EM) dataset (Azagra et al., 2022): train-set (379181 frames
from 7 videos) and train-set-2 (20864 frames from other 5 videos). We test on a test-set
of 3 additional videos from EM, and the public Hyper-Kvasir (HK) (Borgli et al., 2020).

HK contains a set of labeled-images with frames from 23 heterogeneous semantic classes,
such as polyps or cecum, that we consider as different scene types. We split the frames with
a 5-fold strategy for train and test and run a MLP classifier with a hidden layer of 256. We
obtain an average accuracy per class of 56.3 (random is 4.3), in comparison to 55.8 if we
use a default descriptor from ResNet50 (ImageNet weights). This experiment checks that
discriminative capabilities are not lost with the additional training on our data with BYOL.
The performance is good even though we trained on different endoscopy data than HK.

1. https://github.com/LeonBP/VideoSegmentation
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Our second experiment validates the proposed semantic video segmentation method.
The clustering step is a K-Means (k = 50) run on train-set-2. Visual inspection of result-
ing clusters shows that a dominant class emerges for a significant number of clusters, see
examples in Fig. 2. After a label is assigned to selected clusters, we apply the proposed
segmentation method to the test-set. One example of the segmentations obtained is shown
in Fig. 1. The sample interval frames point a correct classification, and we inspect that
the classification results match the content of the video: frequent wall segments in the first
part, until the endoscope reaches the deepest parts of the colon, where the doctor uses the
water pump to clear a region. The doctor then withdraws the endoscope maintaining a
good view to explore the parts that were not visible while entering.

Cluster 2: wall Cluster 23: water Cluster 19: good view

Figure 2: Sample images and label assigned to three clusters using the learned descriptors.

4. Conclusions

This work shows a proof of concept to semantically segment endoscopy videos, from minimal
human supervision, based on a representation learned unsupervisedly. The results are
consistent with the contents of the videos, which shows the promising future for this line
of research. This quick overview of endoscopic videos can facilitate automatic processing
of large datasets. The results and the structure of the method allow for diverse future
improvements, including larger training sets, where a richer set of class labels can emerge,
and more sophistication in the classification and smoothing methods.
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