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Abstract001

Reasoning large language models (LLMs) ex-002
cel in complex tasks, which has drawn signif-003
icant attention to reinforcement learning (RL)004
for LLMs. However, existing approaches al-005
locate an equal number of rollouts to all ques-006
tions during the RL process, which is ineffi-007
cient. This inefficiency stems from the fact008
that training on simple questions yields lim-009
ited gains, whereas more rollouts are needed010
for challenging questions to sample correct an-011
swers. Furthermore, while RL improves re-012
sponse precision, it limits the model’s explo-013
ration ability, potentially resulting in a perfor-014
mance cap below that of the base model prior015
to RL. To address these issues, we propose a016
mechanism for dynamically allocating rollout017
budgets based on the difficulty of the problems,018
enabling more efficient RL training. Addition-019
ally, we introduce an adaptive dynamic temper-020
ature adjustment strategy to maintain the en-021
tropy at a stable level, thereby encouraging suf-022
ficient exploration. This enables LLMs to im-023
prove response precision while preserving their024
exploratory ability to uncover potential cor-025
rect pathways. The code and data is available026
on: https://anonymous.4open.science/r/027
E3-RL4LLMs-DB28028

1 Introduction029

Large language models (LLMs) have gained con-030

siderable attention for their capabilities across a031

wide range of applications (Kumar, 2024). Re-032

cently, advanced reasoning models trained with033

reinforcement learning (RL) , such as DeepSeek-034

R1 (Guo et al., 2025) and Kimi k1.5, (Team035

et al., 2025) have demonstrated remarkable im-036

provements in complex tasks like mathematics and037

coding, further intensifying research interest in RL038

for LLMs. After that, many works related to rein-039

forcement learning for LLMs emerged (Xu et al.,040

2025; Yu et al., 2025; Liu et al., 2025). Among041

them, the most common combination is to use the042

GRPO (Shao et al., 2024) algorithm or its variants 043

combined with rule-based rewards for reinforce- 044

ment learning. 045

However, rule-based rewards result in very 046

sparse reward signals. When the training data is 047

particularly challenging, the policy struggles to 048

sample the correct answer, causing the advantage 049

in the GRPO algorithm to become zero. In such 050

cases, the policy fails to obtain an update gradi- 051

ent. DAPO (Yu et al., 2025) filters out samples 052

with a within-group reward standard deviation of 053

zero to avoid zero advantage and employs multiple 054

rounds of online sampling until enough experience 055

is gathered for a single update. This approach is 056

highly inefficient because the cost of sampling ex- 057

periences is extremely high, yet this method results 058

in a substantial waste of rollouts. 059

What’s more, Yue et al. (2025) highlights that 060

during evaluation, while the RL model surpasses 061

the base model with a small sample size (small k), 062

the base model achieves superior pass@k perfor- 063

mance as the sample size increases (large k). This 064

occurs because reinforcement learning prioritizes 065

maximizing rewards, leading the model to focus 066

probabilities on high-reward paths, potentially ne- 067

glecting diverse correct answers. While encourag- 068

ing more exploration during training could poten- 069

tially mitigate this issue, our experiments reveal 070

that combining entropy regularization (Mnih et al., 071

2016; Williams, 1992)—the widely adopted ap- 072

proach for fostering exploration in deep reinforce- 073

ment learning—with sparse rule-based rewards 074

can degrade performance, especially when training 075

with challenging questions, and may even result in 076

model collapse. 077

To address the aforementioned issues, we first in- 078

troduce a dynamic rollout budget allocation mech- 079

anism to enhance the training efficiency of RL. For 080

simple questions that the model can answer pro- 081

ficiently, we reduce their rollout budget, as per- 082

forming reinforcement learning on such problems 083
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yields minimal gains. The saved rollout budget is084

reallocated to more challenging problems, thereby085

increasing the likelihood of obtaining correct an-086

swers. Additionally, to promote exploration with-087

out introducing harmful gradients, we propose a088

temperature scheduler that dynamically adjusts the089

temperature to maintain a stable policy entropy090

level, thereby enabling more extensive exploration091

during training. An annealing mechanism is fur-092

ther integrated to effectively balance exploration093

and exploitation. In summary, our contributions094

are as follows:095

• We propose a dynamic rollout budget alloca-096

tion mechanism that enables a more rational097

distribution of computational resources, allow-098

ing RL to be conducted more efficiently.099

• We introduce a temperature scheduler that dy-100

namically adjusts the sampling distribution’s101

temperature, maintaining the entropy at a sta-102

ble level to encourage more exploration.103

• Experimental results demonstrate that our104

method improves the 7B model’s pass@1105

by 5.31% and pass@16 by 3.33% on the106

AIME 2024 benchmark compared to train107

with GRPO only, and consistently outper-108

forms GRPO in pass@16 across various109

benchmarks.110

2 Related Work111

Reinforcement Learning for LLMs. Ouyang112

et al. (2022) trains a reward model using prefer-113

ence data and employs Proximal Policy Optimiza-114

tion (PPO) (Schulman et al., 2017) to perform re-115

inforcement learning on LLMs for alignment with116

human preferences. Subsequently, many new ap-117

proaches have employed reinforcement learning to118

align LLMs with human preferences (Wang et al.,119

2024). DeepSeekMath (Shao et al., 2024) proposed120

the GRPO algorithm, which simplifies the train-121

ing process of reinforcement learning and signifi-122

cantly enhances the performance of LLMs in the123

mathematical domain through RL. Subsequently,124

DeepSeek-R1 (Guo et al., 2025) and Kimi k1.5125

(Team et al., 2025) successfully demonstrated the126

substantial impact of reinforcement learning com-127

bined with rule-based reward sets in enhancing the128

reasoning capabilities of models. Liu et al. (2025)129

and Yu et al. (2025), among others, further intro-130

duced improvements to optimization algorithms to131

enhance training effectiveness.132

Exploration and Exploitation in Reinforcement 133

Learning. Balancing exploration and exploitation 134

is a central challenge in reinforcement learning. 135

Common strategies include ε-greedy, Upper Confi- 136

dence Bounds (UCB), and Boltzmann Exploration 137

(Sutton et al., 1998). Boltzmann Exploration se- 138

lects actions based on a softmax probability distri- 139

bution proportional to the exponential of the esti- 140

mated values of actions, regulated by a tempera- 141

ture parameter τ . Similarly, LLMs generate tokens 142

using a softmax distribution. Asadi and Littman 143

(2017) introduced the Mellowmax operator to en- 144

hance the stability of Softmax, while Kim and 145

Konidaris (2019) applied meta-gradient reinforce- 146

ment learning to dynamically adjust temperature 147

parameter of Mellowmax for better exploration- 148

exploitation trade-offs. Moreover, Entropy Regu- 149

larization, a common technique in deep reinforce- 150

ment learning, adds an entropy term to the opti- 151

mization objective to encourage stochastic policies 152

and broader exploration (Williams, 1992). 153

3 Preliminary 154

3.1 Group Relative Policy Optimization 155

(GRPO) 156

We utilize the GRPO (Shao et al., 2024) algorithm 157

to optimize the policy πθ (LLMs). GRPO estimates 158

the advantage in a group-relative manner. Specifi- 159

cally, given a question-answer pair (q, a) ∼ D, the 160

old policy πθold generates G individual responses 161

{oi}Gi=1 and then optimizes the policy model by 162

maximizing the following objective: 163

JGRPO(θ) =E(q,a)∼D,{oi}Gi=1∼πθold (·|q)
164[

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
ri,t(θ)Âi,t, 165

clip(ri,t(θ), 1− ϵ, 1 + ϵ)Âi,t

)
166

− βDKL(πθ∥πref)
)]

, (1) 167

where ri,t(θ) =
πθ(oi,t|q,oi,<t)
πθold (oi,t|q,oi,<t)

and the advantage 168

Âi,t is computed as: 169

Âi,t =
ri − mean({rj}Gj=1)

std({rj}Gj=1)
. (2) 170

Here, ri is the reward of response oi. The 171

term DKL(πθ∥πref) represents the KL divergence 172
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penalty, which is used to prevent the policy from173

deviating excessively from the initial policy πref.174

Following prior work (Yu et al., 2025; Liu et al.,175

2025), we do not employ this penalty term. There-176

fore, we do not elaborate further on this detail.177

4 Methodology178

In this section, we first introduce our method for179

modeling question difficulty and propose a dy-180

namic rollout budget allocation mechanism to allo-181

cate budgets based on question difficulty, improv-182

ing training efficiency and the model’s ability to183

answer complex questions. Next, we introduce a184

temperature scheduler to maintain the policy en-185

tropy, enhancing exploration, and further combine186

it with an annealing mechanism to balance explo-187

ration and exploitation.188

4.1 Dynamic Rollout Budget Allocation189

More challenging questions require a greater num-190

ber of samples to obtain the correct answer. To191

allocate computational resources more efficiently,192

we transfer the rollout budget from simpler ques-193

tions to more difficult ones, thereby enhancing the194

model’s ability to address challenging problems.195

We first introduce the method for modeling196

question difficulty. The RL training dataset197

D = {(q1, a1), (q2, a2), . . . , (q|D|, a|D|)} consists198

of questions qi, their corresponding ground truth an-199

swers ai. For each question qi, its cumulative roll-200

out count nc
i and cumulative reward rci are recorded.201

At the end of each dataset iteration, data points are202

ranked by their average reward rci
nc
i
. The descend-203

ing order of qi’s average reward is rank(qi), and its204

normalized ranking is ki =
rank(qi)

|D| , where a larger205

ki indicates higher difficulty.206

After defining the difficulty of the questions, we207

allocate the rollout budget based on the identified208

difficulty levels. Specifically, we define the default,209

minimum, and maximum sampling budgets as G,210

Gmin, and Gmax, respectively. The sampling budget211

Gi for question qi is determined based on ki, such212

that larger ki values correspond to higher allocated213

rollout budgets. The dynamic sampling budget214

allocation process is detailed in Algorithm 1, which215

ensures that the total rollout budget within a batch216

remains constant.217

To avoid inefficiencies in allocating higher bud-218

gets to challenging questions under an undertrained219

policy, Gmin and Gmax are initially set equal to G.220

After each iteration of D, Gmax is gradually in-221

Algorithm 1 Dynamic Rollout Budget

Require: A batch of rankings {k(1), . . . , k(B)}, G,
Gmax, Gmin

1: Total rollout budget Ntotal = B ×G
2: For i in {1, 2, . . . , B}, initialize G(i) = Gmin
3: Remaining rollouts budget Nrem = Ntotal −

B ×Gmin
4: For i in {1, 2, . . . , B}, G(i) = G(i)+ ⌊Nrem ×

k(i)∑B
j=1 k(j)

⌋

5: Nrem = Ntotal −
∑B

i=1G(i)

6: Distribute Nrem greedily based on descending
order of ki, respecting Gmax for each G(i)

7: return {G(1), . . . , G(B)}

creased, and Gmin is progressively decreased until 222

reaching predefined limits. This prevents overcom- 223

mitting resources to difficult questions prematurely 224

and is analogous to curriculum learning. 225

4.2 Temperature Scheduling to Promote 226

Exploration 227

In reinforcement learning, policies may converge to 228

local optima, hindering the discovery of the global 229

optimum. By adding an entropy regularization term 230

to the optimization objective, the strategy can be 231

encouraged to explore more state and action (Mnih 232

et al., 2016; Williams, 1992). The modified opti- 233

mization objective is given by: 234

J (θ) = JGRPO(θ) 235

+ λ E(q,a)∼D,{oi}Gi=1∼πθold (·|q)
H(πθ(oi|q)),

(3)

236

where H(πθ(oi|q)) represents the Shannon entropy 237

(Equation (6) for the specific definition) of the ac- 238

tion (token) sampling distribution from the policy, 239

and λ is the coefficient controlling the strength 240

of the regularization term. Entropy measures the 241

uncertainty of a distribution, providing an indica- 242

tion of the policy’s level of exploration. However, 243

rule-based rewards are very sparse. When the re- 244

wards of all rollouts for a question are identical, 245

the advantage Âi,t is zero, resulting in the gradient 246

of the GRPO optimization objective, ∇θJGRPO(θ), 247

is zero. In such cases, the update of the policy 248

is primarily influenced by the gradient of the en- 249

tropy regularization term, ∇θH(πθ). As training 250

progresses, cases where the advantage equals zero 251

become more frequent (as the proportion of fully 252

correct rollouts increases), at which point the gradi- 253
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Figure 1: Smoothed entropy variations during training under different configurations. The curves represent the
mean values, while the shaded regions denote the standard deviation across multiple runs. Here, ER represents
entropy regularization, TS refers to the temperature scheduler, and AN indicates annealing. The red vertical line
indicates the step at which annealing begins.
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Figure 2: The left figure illustrates the relationship between the scaling factor of Ht, after temperature adjustment,
and α. When the entropy is relatively small (the entropy magnitude of distribution for next token generation is
typically on the order of 10−1), the scaling factor closely approximates a linear relationship with α. The right figure
illustrates the relationship between τt+1 and α when τt = 1.

ent of entropy regularization may potentially lead254

to the gradual collapse of the policy.255

Figure 1 shows the entropy evolution under dif-256

ferent training setups. With GRPO alone, the pol-257

icy’s entropy declines rapidly, reducing the explo-258

ration of policy. The incorporation of entropy reg-259

ularization effectively sustains higher entropy lev-260

els, thus fostering more diverse policy exploration.261

However, the experimental results in Section 5.3262

show that the performance of the model trained263

with entropy regularization is even worse than that264

of the model trained with GRPO alone.265

Temperature Scheduler. As discussed, although266

entropy regularization helps maintain the entropy267

of the policy, it may inadvertently introduce harm-268

ful gradients. To address this, we propose a tem-269

perature scheduler that adaptively adjusts the tem-270

perature τ of the softmax distribution to maintain271

policy entropy, ensuring stable exploration without272

introducing additional gradients. We aim to control 273

the scaling of entropy by adjusting the tempera- 274

ture to maintain entropy at a stable level. However, 275

the relationship between entropy and temperature 276

is not linear. Fortunately, the entropy of the dis- 277

tributions for next token generation are typically 278

small. Under this premise, we can adjust the tem- 279

perature to precisely control entropy scaling using 280

the following formula: 281

τt+1 = τt ×
(
1 +

τt lnα

ln |V|+ ln (ln |V|)

)
, (4) 282

where α = Hinit
Ht

, with Hinit representing the aver- 283

age entropy of the first batch, which is the desired 284

entropy level to maintain, and Ht denoting the av- 285

erage entropy at the current training step t. Addi- 286

tionally, |V| represents the vocabulary size of the 287

LLM. 288

Formula (4) ensures that the scaling factor of 289
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entropy, after temperature adjustment, maintains290

an approximately linear relationship with α, as il-291

lustrated in Figure 2. This indicates that entropy292

returns to the level of Hinit after the temperature293

adjustment. The detailed derivation of Formula (4)294

is provided in Appendix A. The temperature sched-295

uler maintains the policy’s entropy consistently at296

a stable level, as shown in Figure 1, thereby effec-297

tively enhancing policy exploration.298

Annealing Mechanism. In the early stages of train-299

ing, the policy requires sufficient exploration to300

avoid premature convergence to suboptimal solu-301

tions. As training progresses, we expect the policy302

to increasingly focus on exploiting high-value ac-303

tions, thereby optimizing its performance more ef-304

fectively. To balance exploration and exploitation,305

we introduce an annealing mechanism. Once the306

training step t ≥ tanneal, α =
H

(t)
anneal
Ht

, where H
(t)
anneal307

is calculated as follows:308

H
(t)
anneal = Hinit ·

[
η + (1− η) · 1

2
(1+309

cos(π · t− tanneal

tmax − tanneal
))

]
. (5)310

Here, tmax is the maximum training steps, η ∈311

[0, 1). Through this formula, We can gradually re-312

duce the expect entropy level from Hinit to η ·Hinit.313

As shown in Figure 1, by introducing annealing, the314

entropy of the policy gradually decreases during315

the annealing phase. This facilitates a smooth tran-316

sition of the policy from a high-entropy exploratory317

state to a lower-entropy exploitative state, ensur-318

ing that the policy maintains sufficient exploration319

during the early stages of training while gradually320

becoming more focused and efficient as training321

progresses.322

5 Experiments323

5.1 Setting324

Training Datasets and Benchmarks. We follow325

DeepScaleR (Luo et al., 2025) in selecting MATH326

(Hendrycks et al.), AIME 1983-2023 (of Prob-327

lem Solving), Omni-MATH (Gao et al.), and AMC328

(prior to 2023) as our training datasets. We fol-329

low Kimi K1.5 (Team et al., 2025) to enhance330

RL training efficiency by balancing the difficulty331

of the questions. In total, we collected 10k high-332

quality data points as the training set and 0.5k data333

points as the validation set. Further details are pro-334

vided in Appendix B. We evaluate on AIME 2024,335

AMC 2023, MATH 500 (Hendrycks et al.), and 336

OlympiadBench (He et al., 2024). 337

Training Details. During sampling, the batch size 338

is 64, with the default number of rollouts per ques- 339

tion (G) set to 8. The sampling temperature is 1, 340

and the maximum response length is 6k. Training 341

is performed over 3 epochs on the 10k dataset, total- 342

ing 480 steps. We use DeepSeek-R1-Distill-Qwen 343

1.5B and 7B (Guo et al., 2025) as base models. 344

For the 1.5B model, the learning rate is 5× 10−6, 345

and for the 7B model, it is 2 × 10−6. The policy 346

update batch size is 64× 8, and experiences from 347

each sampling are used to update the policy only 348

once. For the 7B model, training was conducted on 349

8 NVIDIA A100 GPUs, requiring approximately 350

8 × 36 GPU hours per experiment. For the 1.5B 351

model, training was performed on 4 NVIDIA A100 352

GPUs, taking approximately 4 × 24 GPU hours 353

per experiment. To ensure the reliability of results 354

given the randomness in RL, each experiment was 355

repeated 3 times. The training code is adapted from 356

the VeRL framework (Sheng et al., 2024). 357

Evaluation Protocol. Unless otherwise specified, 358

for each question, we default to sampling 16 times 359

under the temperature of 1, with a maximum re- 360

sponse length of 6k tokens. We use pass@1 and 361

pass@16 (Chen et al., 2021) as our evaluation met- 362

ric. We report pass@16 because it reflects the 363

model’s potential to explore more solution paths 364

to solve the questions. The average metrics across 365

the 3 runs are reported. 366

5.2 Main Results 367

In this section, we compare our approach, which 368

integrates dynamic rollout budget allocation, tem- 369

perature scheduling, and annealing, with the base- 370

lines. 371

Baselines. We select GRPO (Shao et al., 2024) and 372

DAPO (Yu et al., 2025) as the baselines. Our pro- 373

posed method is based on GRPO, which justifies 374

its selection as a baseline. DAPO is a modified vari- 375

ant of GRPO, which filters out rollouts with zero 376

advantage and obtains experience through multiple 377

rounds of online sampling. The general parameters 378

for GRPO and DAPO are kept consistent with our 379

method, while the DAPO-specific parameters are 380

set to their default values as specified in its original 381

paper. 382

Implementation Details. For dynamic rollout bud- 383

get allocation (DR), Gmax is increased by 2 and 384

Gmin is decreased by 2 after each epoch. For an- 385

nealing (AN), we test η ∈ {0.8, 0.85, 0.9}, observ- 386
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Size Method
AIME 2024 AMC 2023 MATH 500 Olympiad-Bench Average

Pass@1 Pass@16 Pass@1 Pass@16 Pass@1 Pass@16 Pass@1 Pass@16 Pass@1 Pass@16

7B
GRPO 37.5 73.33 70.06 91.56 80.32 97.8 53.72 79.85 60.40 85.63
DAPO 36.87 70.0 67.77 95.18 77.63 97.39 50.50 80.88 58.19 85.86
Ours 42.81 76.66 70.20 93.57 81.09 98.33 53.70 82.02 61.95 87.64

1.5B
GRPO 24.66 59.76 60.73 88.79 72.97 95.86 46.33 74.66 51.17 79.76
DAPO 19.16 60.0 52.86 84.33 68.81 94.6 41.17 70.81 45.50 77.43
Ours 27.70 66.66 62.95 90.36 72.88 96.39 46.35 75.40 52.47 82.20

Table 1: Baseline comparison across different benchmarks.
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Figure 3: The accuracy on the validation set dur-
ing training, with the shaded area representing the
variance across multiple runs. The red vertical line
indicates the step at which annealing begins.
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Figure 4: The temperature variation during training
is presented for cases utilizing only the temperature
scheduler and for those combining the scheduler
with annealing.

ing instability for η = 0.8 and η = 0.85. Conse-387

quently, η is set to 0.9, with the annealing start step388

at ⌊0.6× tmax⌋.389

Analysis. As shown in Table 1, for the 7B model,390

our method achieves advantages of 5.31% and391

3.33% in pass@1 and pass@16, respectively, on392

the AIME benchmark. On other benchmarks,393

our method also demonstrates significantly higher394

pass@16 performance compared to GRPO, indi-395

cating that the models trained with our method396

possess greater exploratory potential. The models397

trained with our method also achieve the best av-398

erage pass@1 and pass@16 across the four bench-399

marks. For the 1.5B model, our method exhibits400

similar advantages, demonstrating a significant im-401

provement on the AIME benchmark and achieving402

the best average pass@1 and pass@16. The 1.5B403

model trained with DAPO performs significantly404

worse than those trained with other methods. This405

may be due to the 1.5B model’s poor performance406

at the early stages of training, requiring numerous407

sampling rounds to gather enaugh experience for a408

single update. This results in substantial data being409

discarded, leading to its inferior performance. In410

contrast, GAPO and our method allow for more fre-411

quent policy updates, enabling faster improvement 412

in model performance and more effective utiliza- 413

tion of training data. 414

5.3 The Impact of the Temperature Scheduler 415

and Annealing 416

In this section, we analyze the impact of the tem- 417

perature scheduler (TS) on the training of rein- 418

forcement learning, and compare it to entropy reg- 419

ularization (ER). For entropy regularization, λ is 420

set to 1 × 10−4. For smaller benchmarks (AIME 421

2024 and AMC 2023), 128 answers per problem 422

are sampled. For larger benchmarks (MATH 500 423

and Olympiad-Bench), the default sampling size of 424

16 is used. 425

Temperature Scheduler Maintains Entropy at a 426

Stable Level. Figure 1 illustrates the entropy varia- 427

tion under different configurations during training. 428

As discussed earlier, solely using GRPO results in 429

a rapid entropy decline, leading to insufficient ex- 430

ploration. In contrast, training with a temperature 431

scheduler maintains entropy at a stable level, facili- 432

tating greater exploration. The introduction of an- 433

nealing gradually reduces the entropy of the policy 434

during the annealing phase, enabling a transition 435
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Figure 6: Pass@k on AMC 2023

Method AIME 2024 AMC 2023 MATH 500 Olympiad-Bench Average

pass@1 pass@16 pass@1 pass@16 pass@1 pass@16 pass@1 pass@16 pass@1 pass@16

GRPO 24.66 59.76 60.73 88.79 72.97 95.86 46.33 74.66 51.17 79.76
GRPO+ER 23.15 56.66 57.31 87.85 72.50 95.80 45.73 73.18 49.67 78.37
GRPO+TS 27.15 65.55 59.11 89.00 73.30 96.73 46.16 76.04 51.43 81.83
GRPO+TS+AN 26.11 61.95 59.91 90.16 74.66 96.20 46.78 74.41 51.86 80.68

Table 2: Comparison of different training methods on various benchmarks.

from an exploratory state to a more efficient ex-436

ploitation state. Figure 4 illustrates the temperature437

variation, where annealing slows the temperature438

increase during the annealing phase.439

Temperature Scheduler Stabilizes LLM Perfor-440

mance Improvements. Figure 3 shows the varia-441

tion in validation accuracy during training. Both442

GRPO alone and GRPO with entropy regulariza-443

tion exhibit significant variance. In contrast, train-444

ing with the temperature scheduler achieves445

lower variance and higher accuracy, indicating446

that temperature scheduling enhances training447

stability and effectiveness. This is because in-448

creased exploration prevents the policy from be-449

coming trapped in local optima, resulting in more450

stable performance improvements.451

The Impact of the Temperature Scheduler on452

Performance. As shown in Figure 5 and Figure 6,453

models trained with the temperature scheduler gen-454

erally outperform GRPO-only baselines in pass@k455

metrics, with the performance advantage consis-456

tently increasing as k grows. The experiments pre-457

sented in Table 2 further demonstrate that incorpo-458

rating the temperature scheduler significantly im-459

proves pass@16 compared to training solely with460

GRPO. In contrast, models trained with entropy461

regularization typically underperform relative to462

other methods, showing a slight advantage over463

GRPO-only training only when k is very large on 464

the AMC benchmark. 465

What is the Role of Annealing? Figure 6 shows 466

that annealing achieves greater improvements than 467

temperature scheduling alone at lower k-values. 468

However, as k increases, models with annealing 469

are gradually surpassed by those using only tem- 470

perature scheduling. A similar trend is observed 471

in Table 2 on MATH 500 and Olympiad-Bench, 472

where annealing outperforms at pass@1 but is over- 473

taken by temperature scheduling alone at pass@16. 474

On the more challenging AIME dataset, the tem- 475

perature scheduler-only model consistently outper- 476

forms across all k-values, with the performance 477

gap narrowing only at sufficiently high k. We at- 478

tribute this phenomenon to this trade-offs: Anneal- 479

ing improves precision on simpler questions by 480

limiting the search space to high-value actions. 481

In contrast, models trained exclusively with the 482

temperature scheduler preserve a higher degree 483

of exploratory capacity, facilitating the discov- 484

ery of solution pathways for more complex ques- 485

tions. 486

5.4 Ablation Study on Dynamic Rollout 487

Budget Allocation 488

In the experiments conducted in this section, we 489

investigate the impact of dynamic rollout budget 490

7



Size Method
AIME 2024 AMC 2023 MATH 500 Olympiad-Bench Average

Pass@1 Pass@16 Pass@1 Pass@16 Pass@1 Pass@16 Pass@1 Pass@16 Pass@1 Pass@16

7B
All 42.81 76.66 70.20 93.57 81.09 98.33 53.70 82.02 61.95 87.64
w/o DS 39.79 73.33 70.48 91.96 81.15 98.33 52.81 80.59 61.05 86.05

1.5B
All 27.70 66.66 62.95 90.36 72.88 96.39 46.35 75.40 52.47 82.20
w/o DS 26.11 61.95 59.91 90.16 74.66 96.20 46.78 74.41 51.86 80.68

Table 3: Ablation Study Results on Dynamic Rollout Budget Allocation.
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Figure 7: The variation in the proportion of ques-
tions for which all rollouts are incorrect (smoothed)
during the training process. The red vertical lines
indicate the intervals between different data iteration
rounds, which also correspond to the points where
Gmin and Gmax are adjusted.
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Figure 8: The difference in the proportion of ques-
tions for which all rollouts are incorrect (smoothed)
between using dynamic rollout budgeting (DR) and
not using DR during the training process.

allocation.491

The Impact of Dynamic Rollout Budget Alloca-492

tion on Performance. As shown in Table 3, the493

performance of the model deteriorates significantly494

on the most challenging AIME benchmark when495

dynamic rollout budgeting is not employed. The496

pass@1 scores on the AIME benchmark decreased497

by 3.02% and 1.59% for the 7B and 1.5B models,498

respectively. On other benchmarks, performance499

generally declines when dynamic rollout budget al-500

location is not used, with only a few cases showing501

slight improvements.502

The Impact of Dynamic Rollout Budget Allo-503

cation on the Proportion of Questions with All504

Incorrect Rollouts. Figure 7 illustrates the propor-505

tion of questions for which all rollouts are incorrect506

during the training process. During the first data507

iteration, dynamic rollout budget allocation is not508

yet activated, resulting in a similar proportion of509

entirely incorrect rollouts with or without dynamic510

budget allocation. During the second and third511

iterations, employing dynamic rollout budget al-512

location leads to a reduction in the proportion of513

questions for which all rollouts are incorrect. As514

shown in Figure 8, increase in Gmax corresponds 515

to a further reduction in the proportion of entirely 516

incorrect rollouts. In the third iteration, when Gmax 517

is increased by 4 compared to G, a reduction of 518

approximately 1.5% to 2% in the proportion of 519

entirely incorrect rollouts is achieved. 520

6 Conclusion 521

In this paper, we propose a dynamic rollout budget 522

allocation mechanism to enhance the efficiency of 523

reinforcement learning and a temperature scheduler 524

to encourage greater exploration by the model. We 525

conduct experiments on models with 1.5B and 7B 526

parameters. Experimental results demonstrate that 527

our method significantly outperforms GRPO train- 528

ing on the most challenging AIME 2024 bench- 529

mark. Additionally, on other benchmarks, mod- 530

els trained with our method achieve substantially 531

higher pass@16 scores compared to those trained 532

with GRPO. This indicates that models trained us- 533

ing our approach retain exploratory capabilities, 534

enabling them to uncover more potential correct 535

paths. 536
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Limitations537

For the temperature scheduler, we have observed538

that annealing (low entropy) is more beneficial for539

simpler problems, while not using annealing (main-540

taining high entropy) is more advantageous for541

more challenging problems. Furthermore, we have542

modeled problem difficulty using the cumulative543

average reward. A natural idea, therefore, is to con-544

sider setting different temperatures for problems of545

varying difficulty. However, we have not conducted546

further experiments to explore this idea, leaving it547

as a direction for future work.548

Due to computational resource constraints, we549

set the number of rollouts G per question to 8. How-550

ever, increasing G and Gmax could potentially am-551

plify the effectiveness of dynamic rollout budget552

allocation.553

Finally, although our approach can be easily ex-554

tended to a broader range of reinforcement learning555

algorithms and domains, due to computational re-556

source constraints, we limited our experiments to557

GRPO and the mathematics domain. Nevertheless,558

we believe that our method is sufficiently general559

and has the potential to be applied to other algo-560

rithms and domains.561
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A Entropy Scaling through Temperature 694

Adjustment in Softmax Distributions 695

In this section, we address the adjustment of the
temperature τ such that the entropy is scaled by a
factor of α. For simplicity, we focus on analyzing
the distribution for the generation of a single next
token. Let z = (z1, z2, . . . , zN ) represent the log-
its generated by a LLM, and define the temperature
as τ > 0. The commonly used Softmax probability
distribution is defined as:

p = [p1, p2, . . . , pN ] ,

pi =
e zi/τ∑N
j=1 e

zj/τ
.

Let zmax be the maximum value in the logits, and 696

define ∆i = zmax − zi. Then, pi can be expressed 697

as: 698

pi =
e−(zmax−zi)/τ∑N
j=1 e

−(zmax−zj)/T
699

=
e−∆i/T∑N
j=1 e

−∆j/τ
700

=
e−β∆i

Z(β)
, 701

where β = 1/τ and Z(β) =
∑N

j=1 e
−β∆j .The 702

Shannon entropy (Shannon, 1948) of this distribu- 703

tion is defined as: 704

H(p) = −
N∑
i=1

pi ln pi. (6) 705

Substituting ln pi = −β∆i− lnZ(β) into Equa- 706

tion (6) results in the following decomposition: 707

H(p) =−
N∑
i=1

pi
(
−β∆i − lnZ(β)

)
708

=β
N∑
i=1

pi∆i + lnZ(β)
N∑
i=1

pi. 709

=β
N∑
i=1

pi∆i + lnZ(β). 710

When the entropy H(p) is small, the probabil- 711

ity distribution p is primarily concentrated on a 712

specific state, with the contributions from other 713

states being negligible. Tang et al. (2024) analyzed 714

10



the distribution pattern of logits from LLMs and715

observed that they typically consist of a Gaussian-716

distributed noisy region and a distinct informative717

region containing a few outlier tokens. For sim-718

plicity, the analysis focuses on the logits associated719

with the most informative token, specifically con-720

sidering only zmax. zmax needs to be significantly721

larger than the logits in the noisy region to achieve a722

low entropy. We further assume that the difference723

between zmax and the logits in the noisy region is724

approximately equal, i.e., ∆j ≈ ∆ for zj < zmax.725

Under this assumption, the normalization factor of726

the distribution can be expressed as:727

Z(β) ≈ 1 + (N − 1)e−β∆.728

When the entropy is small, the probability cor-729

responding to zmax is given by pmax = 1
Z(β) ≈ 1,730

which implies that Z(β) ≈ 1. Consequently, for731

the remaining N − 1 states, the probabilities can732

be approximated as:733

pj =
e−β∆

Z(β)
≈ e−β∆.734

The entropy of the distribution can then be ap-735

proximated as:736

H(p) =−
N∑
i

pi ln pi737

≈− (N − 1)e−β∆ ln(e−β∆)738

=(N − 1)β∆e−β∆.739

Suppose the initial entropy is approximately rep-740

resented as H̃0 = (N − 1)β0∆ e−β0 ∆. We aim to741

scale the entropy by adjusting the temperature τ ,742

which is equivalent to modifying β. Suppose we743

scale this entropy by α times by adjusting β0 to β1,744

i.e.,745

α (N − 1)β0∆ e−β0 ∆ = (N − 1)β1∆ e−β1 ∆.
(7)746

Assuming β1∆ = β0∆+ d, the ratio becomes:747

α =
(N − 1)β1∆e−β1∆

(N − 1)β0∆e−β0∆
748

=e−(β1∆−β0∆) β1∆

β0∆
749

=ed
β0∆+ d

β0∆
(8)750

The change in entropy introduced by a single751

training step is typically minimal, meaning that752

the scaling factor α we aim to achieve is close to 753

1. we can further assume d ≈ 0, allowing the 754

approximation β0∆+ d ≈ β0∆, Equation (8) can 755

be approximately expressed as: α ≈ e−d. Then, by 756

taking the natural logarithm, we obtain: 757

d ≈ − lnα. (9) 758

Thus, the ratio of the new temperature to the 759

original temperature is: 760

τ1
τ0

=
β0
β1

=
β0∆

β1∆
761

≈ β0∆

β0∆− lnα
. (10) 762

When the entropy is low, β0∆ tends to be rel- 763

atively large, while lnα is close to zero. Thus, 764

it follows that β0∆ ≫ lnα. So, we can further 765

approximate: 766

τ1
τ0

≈ β0∆

β0∆− lnα
(11) 767

=
β0∆− lnα+ lnα

β0∆− lnα
= 1 +

lnα

β0∆ − lnα
768

≈ 1 +
lnα

β0∆
. (12) 769

Therefore, the new temperature can be expressed 770

as: 771

τ1 ≈ τ0 ×
(
1 +

lnα

β0∆

)
= τ0 ×

(
1 +

τ0 lnα

∆

)
.

(13) 772

Equation (13) describes the approximate rela- 773

tionship between temperatures before and after ad- 774

justment. 775

During training, logits can be utilized to estimate 776

the value of ∆. However, computing ∆ using log- 777

its incurs additional computational overhead and 778

significant memory consumption, as the logits ma- 779

trix is exceedingly large. To further simplify the 780

computation, we introduce an approximation of the 781

relationship between ∆ and N , thereby eliminat- 782

ing the necessity of explicitly computing ∆ during 783

training. In this context, we disregard the effect 784

of temperature, and the entropy is assumed to be 785

a small value, ε. Based on the Equation (13), the 786

entropy can be approximately expressed as: 787

ε ≈ (N − 1)∆e−∆. 788
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Taking the logarithm, we have:789

ln(ε) ≈ ln(N − 1) + ln(∆)−∆.790

Rearranging terms, we obtain:791

∆ ≈ ln(N − 1) + ln(∆)− ln(ε).792

For sufficiently large N , ln(N − 1) can be ap-793

proximated as ln(N), leading to:794

∆ ≈ ln(N) + ln(∆)− ln(ε). (14)795

In Equation (14), the dominant term on the right-796

hand side is ln(N), while the other terms are com-797

paratively smaller. Assuming ∆ = ln(N) + c,798

we substitute this expression into Equation (14),799

yielding:800

ln(N)+c ≈ ln(N)+ln(ln(N)+c)−ln(ε). (15)801

Simplifying Equation (15), we find:802

c ≈ ln(ln(N) + c)− ln(ε).803

For large N , the value of c is expected to be804

much smaller than ln(N). Thus, the addition of c to805

ln(N) does not significantly change the logarithm.806

For the distribution of the next token generated807

from LLMs, the magnitude of ε is typically on the808

order of 10−1. Thus, we can further neglect the809

ln(ε) term, simplifying the expression. So c can be810

approximated as:811

c ≈ ln(ln(N)).812

Therefore, ∆ ≈ ln(N) + ln(ln(N)). Substitut-813

ing this approximation for ∆ to Equation (13), the814

temperature scaling formula becomes:815

τ1 ≈ τ0 ×
(
1 +

τ0 lnα

lnN + ln (lnN)

)
.

This provides an approximate formula for how816

the temperature needs to be adjusted to scale the817

entropy by a factor of α.818

B Dataset details819

We further processed the DeepScaleR 40k dataset820

(Luo et al., 2025) to obtain our training data. Specif-821

ically, following the approach of Kimi k1.5 (Team822

et al., 2025), we improved the quality of reinforce-823

ment learning training data by reducing the propor-824

tion of simple questions.825
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Figure 9: Difficulty distribution of the vali-
dation set. The orange color is the difficulty
distribution of the filtered 10k data, and the
blue color is the difficulty distribution of the
original data.
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Figure 10: Difficulty distribution of validation
set. The difficulty distribution of the validation
set is consistent with the original data.
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Figure 11: Pie chart of data sources.

We first utilized Qwen 2.5 Math 7B (Yang et al., 826

2024) to sample answers for each questions 10 827

times. The difficulty of the questions was assessed 828

based on their accuracy rates. Subsequently, we 829

balanced the data based on difficulty and filtered 830
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out a portion of simpler problems, capping the num-831

ber of questions with 100% accuracy at 2k. This832

balancing process not only ensures that the model833

is exposed to a diverse range of problem difficulties834

but also improves training efficiency by reducing835

the redundancy of overly simple problems, as train-836

ing on simple problems is likely to yield minimal837

gains. The final 10k dataset exhibits a difficulty838

distribution as shown in Figure 9. The distribution839

of data sources is presented in Figure 11.840

For the validation set, data was evenly sourced841

from the MATH, Omni-Math, AMC, and AIME842

datasets, with 128 samples from each dataset, re-843

sulting in a total of 512 samples. We did not bal-844

ance the difficulty of the validation set, ensuring845

that its difficulty distribution closely resembles that846

of the original dataset, as shown in Figure 10. Fur-847

thermore, the validation set does not overlap with848

the training set.849
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