
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MITIGATING SPURIOUS CORRELATIONS VIA
GROUP-ROBUST SAMPLE REWEIGHTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning models often have uneven performance among subpopulations
(a.k.a., groups) in the data distributions. This poses a significant challenge for the
models to generalize when the proportions of the groups shift during deployment.
To improve robustness to such subpopulation shifts, existing approaches have
developed strategies that train models or perform hyperparameter tuning using
the group-labeled data to minimize the worst-case loss over groups. However, a
non-trivial amount of high-quality labels is often required to obtain noticeable
improvements. Given the costliness of the labels, we propose to adopt a different
paradigm to enhance group label efficiency: utilizing the group-labeled data as a
target set to optimize the weights of other group-unlabeled data. We introduce a two-
stage approach called Group-robust Sample Reweighting (GSR) that first learns the
representations from group-unlabeled data, and then tinkers the model by iteratively
retraining its last layer on the reweighted data. Our GSR is theoretically sound,
practically lightweight, and effective in improving the robustness to subpopulation
shifts. In particular, GSR outperforms the previous state-of-the-art results on
standard benchmarks when using the same amount of group labels. Notably, GSR
even outperforms approaches that require significantly more group labels.

1 INTRODUCTION

Subpopulation shift refers to the change in the proportion of groups (as defined by the class, attributes,
or both) in data distribution between the training and deployment phases (Koh et al., 2021; Yang
et al., 2023). Due to the nature of subpopulations or the selection bias (Dwork et al., 2012; Zadrozny,
2004), the training data is often composed of majority and minority groups that are overrepresented
and underrepresented, respectively. Common examples include photos of waterbirds frequently
being taken with a water background instead of the land background and pairs of sentences with
contradictions often being accompanied by negation words (Sagawa et al., 2019). Such group
imbalance can cause some features from the majority group to be spuriously correlated with the
labels, leading to possible undesirable shortcuts in training deep neural networks (Geirhos et al.,
2020; Hermann et al., 2024; Shah et al., 2020). As a result, standard training with empirical risk
minimization (ERM) often overly relies on such shortcuts and fails to attend to the minority groups,
leading to worsened model generalization under subpopulation shifts, especially when the proportion
of the minority groups increases (Arjovsky et al., 2019; Nagarajan et al., 2020; Sagawa et al., 2020).
Thus, it is important to develop algorithms that are group-robust to subpopulation shifts, experiencing
minimal performance degradation as measured by the worst-group accuracy.

The group labels can be used to construct balanced groups or minimize the worst-group loss during
training (Idrissi et al., 2022; Sagawa et al., 2019). These techniques often lead to improved group
robustness compared to ERM. However, group labels can be expensive to obtain, necessitating
approaches that maximize the gain in group robustness from limited data. Given a group-labeled
dataset DL, the two mainstream categories are either using DL for model selection (Liu et al., 2021;
Zhang et al., 2022), or using DL to directly train the model parameters (Kirichenko et al., 2022).
However, these strategies may not always be the best way to exploit the group information, since they
either underutilize the group labels, or restrict the most crucial part of the training to only DL while
neglecting the potential of the more accessible data without group labels. Therefore, we advocate an
in-between training paradigm: instead of using DL to train the model parameters directly, we use
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them to iteratively optimize the weights of a group-unlabeled dataset DU, which are more realistic to
obtain. Then, the model parameters are trained using a weighted objective on these data with ERM.

Optimizing the sample weights is an established idea that necessitates solving a bilevel optimization
problem (Ren et al., 2018). The inner loop of the bilevel optimization performs standard model
training on a weighted objective, while the outer loop optimizes the sample weights. The two main
challenges hindering its wider adoption include: (1) the unavoidable trade-off between computational
cost and accuracy, and (2) the effectiveness when the model is overparameterized. For (1), calculating
the outer loop gradient requires backpropagating through the entire training process, which is compu-
tationally prohibitive for deep neural networks. Conventional approaches use a one-step truncated
backpropagation that relies only on the last-step gradient of the model training for computational
feasibility (Shaban et al., 2019; Zhou et al., 2022). However, this approximation can be imprecise as
it fails to account for the curvature of the loss landscape and the training dynamics of the model. For
(2), training a weighted objective with overparameterized neural networks is likely to converge to the
same solution as with ERM (Sagawa et al., 2019; Zhai et al., 2022). Regularization techniques need
to be applied such that training with weighted objectives leads to meaningfully different solutions
than using ERM (Byrd & Lipton, 2019; Sagawa et al., 2019; Zhai et al., 2022).

To address the two challenges, we propose a simple two-stage method named Group-robust Sample
Reweighting (GSR), which iteratively reweights individual training samples to improve group robust-
ness. We utilize last-layer retraining (LLR), a lightweight method that retrains the last linear layer
of neural network (Kang et al., 2020; Kirichenko et al., 2022). LLR simplifies the inner loop of the
bilevel optimization into a convex optimization problem. Importantly, it facilitates our application of
the influence function, a technique derived from implicit differentiation (Koh & Liang, 2017; Krantz
& Parks, 2002), to utilize the Hessian to accurately estimate the gradient of sample weight updates
without backpropagating through the entire training trajectory. In contrast to methods that rely on
one-step truncated backpropagation approximations (Zhou et al., 2022), our approach leverages the
fact that LLR is both inexpensive even with Hessian computation and effective for enhancing group
robustness. To perform GSR, we split the group-unlabeled dataset DU into a held-out set DU-h and a
remaining set DU-r. The first stage performs unweighted representation learning on DU-r. The second
stage utilizes the influence function to iteratively optimize the weights of DU-h for the worst-group
loss in DL achieved through LLR. Our method achieves an average improvement of 1.0% in terms of
absolute worst-group accuracy as compared to the state-of-the-art method that uses the same amount
of group labels as ours and outperforms methods that require more group labels.

The specific contributions of this work include the following:

• We propose to better leverage the high-quality group-labeled data for group robustness with an
alternative paradigm by using them to reweight other samples instead of directly training on them.

• We devise an efficient strategy based on implicit differentiation for group-robust sample reweighting,
which becomes accurate and computationally feasible via the synergy with last-layer retraining.

• We empirically demonstrate the performance advantages of our lightweight approach on improving
the group robustness for both vision and natural language tasks.

2 PROBLEM FORMULATION AND PRELIMINARIES

Let (X ,Y,G) denote the space of input, class label, and groups of subpopulation respectively. Denote
a dataset by D = {z1, . . . , zn}, where each data point zi := (xi, yi, gi) ∈ X × Y × G is sampled
i.i.d. from a data distribution P . For g ∈ G, define Dg := {zi ∈ D|gi = g} as the subset of data from
group g, sampled from the group data distribution Qg. We assume that P can be decomposed into
P =

∑
g∈G πgQg where the mixing ratio πg ∈ [0, 1],

∑
g∈G πg = 1. As a result, any subpopulation

shifts can be represented by adjusting πg. Depending on the group-label availability, datasets can
be categorized as DL, DU for group-labeled, group-unlabeled datasets. Meanwhile, depending on
the functionality, datasets can be categorized as Dtr,Dv,Dtar, denoting the training, validation, target
sets, respectively. The target set Dtar guides the sample weight updates and we reserve the notion of
validation set Dv only for hyperparameter and model selection. Let N = {1, . . . , n} be the indices
of the training set. We use d for the total derivative and use ∂ or ∇ for the partial derivative.

The classic algorithms such as empirical risk minimization (ERM) focus on optimizing the model
parameters θ without adjusting the data, following R̂(Dtr; θ) =

∑
i∈N

1
nℓ(xi, yi; θ) where ℓ is the
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loss function. Let w ∈ Rn be the weight vector for all training samples. A weighted training objective
assigns different importance to the training data points, R̂(Dtr;w, θ) =

∑
i∈N wiℓ(xi, yi; θ). Since

the change of π is not assumed to be known at test time, we evaluate the robustness to distribution
shifts of a model with parameters θ using the worst-group risk (Sagawa et al., 2019):

R̂WG(D; θ) = max
g∈G
R̂(Dg; θ) .

To minimize the worst-group risk, existing approaches (Kirichenko et al., 2022; Sagawa et al., 2019)
have focused on directly training on group-annotated dataset DL using the objective R̂WG(DL; θ).
However, these strategies require having a sufficient amount of data for each group. Alternatively,
we can assume the availability of some group-unlabeled data DU (e.g., standard training set). By
viewing the sample weight vector of DU as another set of parameters and optimizing it jointly with
the model parameters w.r.t. the target setDtar = DL, we arrive at a bilevel formulation of the minimax
problem (Zhou et al., 2022):

min
w∈S

max
g∈G
R̂(Dtar

g ; θ̂∗)

s.t. θ̂∗ = argmin
θ
R̂(Dtr;w, θ) ,

(1)

where S = {w = [w1, w2, · · · , wn] ∈ Rn|wi ≥ 0 ∀i ∈ N, and
∑
i∈N wi = 1}. The inner loop

performs standard model training on the weighted objective, which is typically optimized by variants
of gradient descent. To optimize the sample weights of the training set in the outer loop, we can
similarly perform gradient descent using its total derivative:

dR̂(Dtar; θ̂∗)

dw
= ∇θR̂(Dtar; θ̂∗)

dθ̂∗

dw
.

Since θ̂∗ is typically obtained via gradient descent, calculating dθ̂∗

dw (i.e., the gradient of the final
model parameter θ̂∗ w.r.t. the sample weights w) involves unrolling the entire training trajectory and
backpropagating through it, which is overly expensive to compute especially when the model is an
overparameterized deep neural networks. To efficiently approximate dθ̂∗

dw , MAPLE (Zhou et al., 2022)
adopts one-step truncated backpropagation (Shaban et al., 2019) when calculating the gradient for the
outer loop:

dθ̂∗

dw

one-step
≈ ∇wθT = −η ∂

2R̂(Dtr;w, θT−1)

∂θ∂w
, (2)

where η is the learning rate. Subsequently, w is updated with projected gradient descent. This
approximation essentially relies on the last-step gradient w.r.t. each training instance zi, i.e.,∇wiθT =

−η∇θR̂(zi; θT−1) ≈ −η∇θR̂(zi; θT ), derived in Appendix A.2. After dropping η, we can rewrite:

dR̂(Dtar; θ̂∗)

dwi

MAPLE
≈ −∇θR̂(Dtar; θT )

⊤∇θR̂(zi; θT ) . (3)

To interpret, MAPLE essentially updates sample weights according to the inner product between the
gradient of the target loss and the gradient of the unweighted loss for each sample upon convergence.
Performing bilevel optimization with this approximation is reasonable because it tends to upweight
training points that share similar gradient directions with the target sets. However, this approximation
is imprecise as it neither accounts for the curvature of the loss landscape w.r.t. the current model
nor fully captures the training dynamics, where wi could significantly affect the batch gradient
and optimization trajectory. Prior works have discussed that deep neural networks exhibit different
learning behaviors for the same data point at different steps along the training trajectory (Pleiss
et al., 2020; Swayamdipta et al., 2020). Therefore, reweighting data points based solely on last-step
gradients is shortsighted and can lead to suboptimal convergence.

3 GROUP-ROBUST SAMPLE REWEIGHTING VIA IMPLICIT DIFFERENTIATION

Our goal is to develop a technique that updates the sample weights for optimizing the bilevel
minimax objective in Equation 1 more accurately and efficiently. In this section, we first establish the
connection between reweighting samples via implicit differentiation and the influence function (Koh
& Liang, 2017) from the perspective of bilevel optimization. Then, we present an effective integration
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of the influence function and adaptive aggregation (Sagawa et al., 2019) to optimize the minimax
objective in the outer loop.

Implicit differentiation can be used to calculate the gradient w.r.t. the sample weights without
backpropagating through the inner loop of the objective according to the implicit function theorem
(IFT) (Krantz & Parks, 2002). Assuming an unconstrained and strongly convex inner objective, then
it implies that (1) the gradient w.r.t. the model parameters θ diminishes to zero upon convergence
to the inner loop optimum, i.e., ∇θR̂(Dtr;w, θ̂∗) = 0, and (2) the Hessian of the weighted training
objective evaluated at θ = θ̂∗, Hθ̂∗,w

:= ∇2
θR̂(Dtr;w, θ̂∗), is invertible (Boyd & Vandenberghe,

2004). This satisfies two of the conditions required to apply the IFT. In addition, IFT further requires
the inner objective to be twice continuously differentiable. We formally state the assumptions below.

Assumption 3.1. The inner objective R̂(Dtr;w, θ) is unconstrained, strongly convex, and twice
continuously differentiable with respect to θ, ∀w ∈ S (Equation 1).

Although appearing as restrictive, these assumptions can be easily satisfied through last-layer retrain-
ing, as detailed in Section 4. Under Assumption 3.1, as ∇θR̂(Dtr;w, θ̂∗) = 0, the outer gradient
dθ̂∗

dw =
[
dθ̂∗

dw1

dθ̂∗

dw2
· · · dθ̂∗

dwn

]⊤
∈ Rn×1 can be calculated exactly via implicit differentiation as:

dθ̂∗

dw
= −H−1

θ̂∗,w
∇w∇θR̂(Dtr;w, θ̂∗) , (4)

dθ̂∗

dwi
= −H−1

θ̂∗,w
∇θR̂(zi; θ̂∗) = −H−1

θ̂∗,w
∇θℓ(zi; θ̂∗) . (5)

The derivation is in Appendix A.3. To highlight, Equation 5 relies on the gradient of the unweighted
ERM loss which is independent of wi. Hence, the magnitude of wi does not directly affect the scale
of its gradient, even if |wi| → 0. Instead, wi indirectly affects the gradients through the trained model
parameters θ̂∗ and the Hessian Hθ̂∗,w. The total derivative of R̂ w.r.t. wi is thus:

dR̂(Dtar; θ̂∗)

dwi
= −∇θR̂(Dtar; θ̂∗)⊤H−1

θ̂∗,w
∇θR̂(zi; θ̂∗) . (6)

In comparison to Equation 3, the key difference lies in the presence of the inverse Hessian term
between the two gradients. The Hessian Hθ̂∗,w describes the loss landscape of θ̂∗ w.r.t. the training
dataset Dtr and their sample weights w. A more detailed discussion on the role of Hessian is available
in Appendix C. We will show later in Section 5 that without the Hessian, the last-step approximated
gradient (Equation 3) of the outer objective function is inaccurate, often leading to suboptimal results.

The derived form in Equation 6 via implicit differentiation exactly matches the influence function,
which estimates the change in model parameters if a training data point zi is upweighted infinitesimally
(Cook & Weisberg, 1982; Koh & Liang, 2017). Since the influence function is well-defined for
weighted objectives, we slightly generalize the notation by incorporating w into the expressions.
Given a model θ̂∗ trained on weighted samples, the influence of upweighting zi ∈ Dtr on the model
predicting a target instance z′ ∈ Dtar (or the target set Dtar) is

I(zi, z′; θ̂∗, w) := −∇θR̂(z′; θ̂∗)⊤H−1

θ̂∗,w
∇θR̂(zi; θ̂∗) . (7)

Thus, we can use the influence function to represent the gradient derived from implicit differentia-
tion. For completeness, we define the per-sample influence of a dataset to be Ĩ(Dtr, z′; θ̂∗, w) :=[
I(z1, z′; θ̂∗, w) I(z2, z′; θ̂∗, w) · · · I(zn, z′; θ̂∗, w)

]⊤
∈ Rn×1. Then, we can calculate the sam-

ple weight update based on the per-sample influence in Dtr on each group g ∈ G in Dtar:

Ĩ(Dtr,Dtar
g ; θ̂∗, w) =

1

|Dtar
g |

∑
z′∈Dtar

g

Ĩ(Dtr, z′; θ̂∗, w) . (8)

To optimize the minimax objective in the outer loop, the gradient of the worst-group risk w.r.t the
sample weights can be calculated via its corresponding influence scores:

dR̂WG(Dtar; θ̂∗)

dw
= Ĩ(Dtr,Dtar

g∗ ; θ̂
∗, w), g∗ = argmax

g∈G
R̂(Dtar

g ; θ̂∗) . (9)
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However, only optimizing for the worst group in one step according to Equation 9 can be inefficient,
especially when there are multiple groups with high error rates. To obtain a more efficient and
smoother optimization trajectory, we utilize an adaptive aggregation (Sagawa et al., 2019) of the
influence scores. The aggregation weights are updated multiplicatively based on the error rates among
the groups to better optimize the sample weights, illustrated in lines 7-14 of Algorithm 1.

4 EXACT GROUP-ROBUST SAMPLE REWEIGHTING WITH LAST-LAYER
RETRAINING

In this section, we introduce the Group-robust Sample Reweighting with last-layer retraining (GSR)
algorithm. The algorithm is built on the observation that last-layer retraining (LLR) (Kang et al., 2020;
Kirichenko et al., 2022) can lead to a strongly convex inner objective that satisfies the assumptions
required for implicit differentiation. Next, we delineate the benefits of LLR and its integration into
our GSR algorithm.

4.1 SYNERGY WITH LAST-LAYER RETRAINING

LLR is a lightweight method designed to mitigate spurious correlations and improve group robust-
ness (Kirichenko et al., 2022; LaBonte et al., 2024; Qiu et al., 2023). In essence, it performs deep
representation learning with ERM, followed by retraining only the last layer on a separate group-
balanced dataset while freezing the remaining model parameters. Empirical evidence has shown that
the initial ERM model has learned sufficient representations for all groups, including minority groups,
and over-reliance on spurious correlations can be significantly reduced by simply fine-tuning the last
linear classification layer of the model (Izmailov et al., 2022; Rosenfeld et al., 2022). As a result,
despite being lightweight, last-layer retraining while freezing the ERM-learned representation has
become the state-of-the-art approach for improving group robustness across various settings.

Notably, LLR synergies well with our proposed sample reweighting via implicit differentiation
(Section 3), offering three significant benefits. Firstly, employing LLR with cross-entropy loss and a
positive coefficient λ for ℓ2 regularization creates a strongly convex problem that practically satisfies
the Assumption 3.1 (proofs are in Appendix A.4). This allows the exact calculation of the gradients
w.r.t. the sample weights via Equation 9. Secondly, calculating the Hessian inverse in Equation 6
is no longer overly expensive, because the only free model parameters are in the last layer instead
of the entire deep neural network. Thirdly, LLR acts as a regularizer by limiting the capacity of the
model parameters, which counterintuitively facilitates the training with weighted objectives. This is
because weighted objectives do not necessarily yield different predictors compared to ERM when
training overparameterized models as shown in Zhai et al. (2022). Sufficient regularization is usually
needed for the reweighting scheme to be practically meaningful (Byrd & Lipton, 2019; Sagawa et al.,
2019). Therefore, regularized LLR ensures that the theoretical soundness of our method translates
into practical benefits without violating assumptions or conducting extensive approximations.

4.2 OUR GSR ALGORITHM

A comprehensive overview of GSR is presented in Algorithm 1. For simplicity, we omit certain
details such as regularization and gradient clipping. Specifically, it contains two stages:

(Stage 1) Representation learning. We take out a random subset (e.g., 10%) from the training set as
a held-out set Dtr-h. Then, train the entire model θ on the remaining training set Dtr-r with ERM until
convergence without early stopping. This ensures that the model fits the “remaining” training set Dtr-r

well. Reserving a held-out set Dtr-h that the model has not encountered during training is a crucial
step, as it prevents overfitting to the data that will be later used for sample reweighting. Otherwise,
changing the sample weights will not make a meaningful difference to the last-layer classifier (Zhai
et al., 2022). Note that neither group labels nor sample weights are required at this stage.

(Stage 2) Group-robust sample reweighting with last-layer retraining. Denote the model pa-
rameters as θ = (ϕ, ψ) where ϕ is the feature extractor and ψ is the last-layer linear classifier. In
this stage, we keep the feature extractor ϕ fixed, and jointly train the last layer ψ and the sample
weights w using the held-out set Dtr-h (as a training set) and the target set Dtar. Subsequently, we
perform model selection with the validation set Dv. We create Dtar and Dv with equal size, by
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Algorithm 1 Group-robust Sample Reweighting with last-layer retraining (GSR)

Require: Training set Dtr of size n, validation set Dv, target set Dtar with m groups, held-out set
fraction α, outer loop steps T , outer learning rate β, scaling temperature τ .

1: Obtain the held-out set Dtr-h with size αn and the remaining set Dtr-r with size (1− α)n
Stage 1:

2: (ϕ∗, ψ∗)← argminθ=(ϕ,ψ) R̂(Dtr-r; θ)
Stage 2:

3: Initialize held-out sample weights w(1) ← 1
αn · 1

αn

4: Initialize adaptive influence score weights γ(0) ← 1
m · 1

m

5: for t = 1, . . . , T do
6: ψ(t) ← argminψ R̂(Dtr-h;w(t), (ϕ∗, ψ)) ▷ Last-layer retraining
7: for g = 1, . . . ,m do
8: γ

(t)
g ← γ

(t−1)
g exp

(
R̂(Dtar

g ; (ϕ∗, ψ(t)))/τ
)

▷ Update aggregation weights
9: end for

10: γ(t) ← γ(t)/∥γ(t)∥1
11: ξ(t) ← 0αn

12: for g = 1, . . . ,m do
13: ξ(t) = ξ(t) + γ

(t)
g Ĩ(Dtr-h,Dtar

g ; (ϕ∗, ψ(t)), w) ▷ Adaptive aggregation of the influence
14: end for
15: w(t+1) ← max{w(t) − βξ(t),0αn} ▷ Projected gradient descent (element-wise max)
16: w(t+1) ← w(t+1)/∥w(t+1)∥1 ▷ Weight normalization
17: if R̂(Dv; (ϕ∗, ψ(t))) ≤ R̂(Dv; (ϕ∗, ψ∗)) then
18: ψ∗ ← ψ(t) ▷ Model selection
19: end if
20: end for
21: return θ∗ ← (ϕ∗, ψ∗)

splitting the initial “standard” validation set in half (see remark below for the reason). The inner
loop, which fits a linear classifier ψ on the weighted cross-entropy objective with ℓ2 regularization,
is optimized via L-BFGS (Liu & Nocedal, 1989) for efficiency. The outer loop performs projected
gradient descent with learning rate β. The gradient is calculated using adaptive aggregation of the
influence scores (Equation 9), projected to {w|wi ≥ 0 ∀i}. The Hessian of the inner objective is
updated as Hψ(t),w(t) = ∇2

ψR̂(Dtr−h;w(t), ψ(t)) in each iteration. In addition, the gradient of the
sample weights can become spiky when high loss values are encountered on the validation set. We
employ gradient clipping by norm and weights normalization for better training stability.

Remark. The target set and the validation set cannot be the same. Although the target data is only used
to update the weights of the held-out training data and does not directly affect the training of the model
parameters, overfitting to the target can still occur as a result of the representer theorem (Schölkopf
et al., 2001). Thus, it is essential to create different splits for the target and validation set to prevent
overfitting during sample reweighting, which we illustrate later in Figure 4d.

5 EXPERIMENTS

Datasets. We evaluate the effectiveness of algorithms on 4 commonly used datasets. Waterbirds (Wah
et al., 2011) is a binary object recognition dataset for bird types (i.e., waterbird, landbird), which are
spuriously correlated with the background (i.e., water, land). CelebA (Liu et al., 2015) is a binary
object recognition dataset for hair color blondness prediction. There exists a spurious correlation
between the man gender attribute and non-blondness. MultiNLI (Williams et al., 2017) is a multi-class
natural language inference dataset. The three classes (i.e., entailment, neutral, contradiction) describe
the relationship between a pair of sentences. The spurious correlation exists between contradiction
and the presence of negation words. CivilComments (WILDS) (Borkan et al., 2019; Koh et al., 2021)
is a binary text toxicity detection dataset. There are 8 types of identities mentioned in the text, such
as male and female. Grouping the samples by the identity and the class results in 16 overlapping
groups. Although there are no obvious spurious correlations, the data is extremely imbalanced among
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these groups, especially on text that mentions other religions and is classified as non-toxic. Overall,
we follow the standard train, validation, and test splits for all datasets. We randomly create target and
validation sets by equally splitting the original validation.

Baselines. We compare our approach against baselines in three categories according to the amount
of group labels required. (1) Group labels for both training and validation: Group DRO (Sagawa
et al., 2019) optimizes the worst-group training loss by dynamically adjusting the group weights;
RWG (Idrissi et al., 2022) balances the sampling probability of each group according to their sizes.
(2) Group labels for validation: JTT (Liu et al., 2021) upweights the high-loss training points that
are more likely to be from minority groups. CnC (Zhang et al., 2022) in addition uses contrastive
learning to align the representations of the same-class samples. SSA (Nam et al., 2022) infers the
pseudo group labels of the training set by training a predictor on the validation set. DFR (Kirichenko
et al., 2022) performs group-balanced last-layer retraining on the validation set. MAPLE (Zhou et al.,
2022) is the most similar to ours that uses the validation set to jointly reweight the training samples
and retrain the entire model. (3) No group labels required: SELF (LaBonte et al., 2024) constructs
an approximately group-balanced dataset based on the disagreement from an auxiliary model, then
performs class-balanced last-layer retraining. We compare against early-stop disagreement SELF,
which has the best performance among its variants.

Setup. During the representation learning stage, we use the suggested hyperparameter configuration
and data augmentation strategies from DFR on all datasets (with minor modifications for MultiNLI
and CivilComments). At the retraining stage, we drop data augmentation and perform a randomized
search of hyperparameters using the valuation set Dv. The details are documented in Appendix B.2.

5.1 IMPROVEMENT IN GROUP ROBUSTNESS

The main results are in Table 1. Our approach GSR achieves consistent and competitive results
compared to the baseline methods in terms of group robustness, which is measured by the worst-
group accuracy. Specifically, GSR has the state-of-the-art (SoTA) performance for both the MultiNLI
and CivilComments datasets, and close-to-SoTA worst-group accuracy on the Waterbirds and CelebA
datasets. Moreover, GSR demonstrated the highest consistency across all four datasets. It achieves
an average improvement of 1.0% in absolute worst-group accuracy compared to DFR (the SoTA
method which uses the same amount of group labels as ours), because GSR allows more fine-grained
reweighting over the training data. GSR even outperforms Group DRO which requires more group
labels, indicating that training the full network with weighted data may not always be necessary. The
detailed results including the average accuracy of the methods are in Appendix B.5.

Besides, as an ablation study, we include the Hessian-free version of our method, GSR-HF, which
uses a simplified sample weight update from MAPLE (Equation 3) during the last-layer retraining.
As analyzed in Section 2 and empirically validated in Table 1, GSR-HF performs consistently worse
than GSR. This highlights the importance of incorporating the Hessian matrix in Equation 6 to ensure
the correctness of the gradient for adjusting the sample weights.

5.2 A CLOSER LOOK AT SAMPLE WEIGHTS

Varying weights across groups. Figure 1 illustrates the variation in the sum of sample weights across
different groups through the training process of the best-performing model reported in Table 1. In
general, all the minority-group weights increase, and the majority groups with spurious correlations
generally have decreased weights. For example, the weights for minority groups (e.g., landbirds in
water in Figure 1a) increase as optimization progresses. In contrast, the weights for certain majority
groups with clear spurious correlations (e.g., landbirds on land in Figure 1a) decrease over the
optimization steps. Note that not all majority groups necessarily experience a decrease in their sum
of sample weights. Another key message here is that the better-performing models are not necessarily
trained with equally weighted groups. In all cases, the worst-group performance is better optimized
even though the groups are weighted differently, which effectively mitigates the spurious correlations
with still “imbalanced” data. These results obtained from directly optimizing the sample weights
align well with the similar findings in Qiu et al. (2023); Sagawa et al. (2019).

Varying weights within groups. We visualize the distribution of individual sample weights that
are used to train the best models in Figure 2 (where distributions are smoothed using kernel density
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Table 1: Performance comparison. We report the worst-group accuracy on four benchmark datasets.
For the group label column, ✗ indicates no group label g is used; ✓ indicates g is required; ✓✓
indicates a proportion of g from the validation set is re-purposed beyond hyperparameter tuning, such
as training sample weights or model parameters. The row sections are ranked in descending order of
the total amount of group label information required. We report the mean ± standard deviation over
5 random seeds. We use “−” to indicate missing evaluation results from the original paper.

Method Group label Worst-group accuracy (%) Average
Train / Val Waterbirds CelebA MultiNLI CivilComments

Group DRO ✓/ ✓ 91.4±1.1 88.9±2.3 77.7±1.4 70.0±2.0 82.0
RWG ✓/ ✓ 87.6±1.6 84.3±1.8 69.6±1.0 72.0±1.9 78.4

JTT ✗/ ✓ 86.7 81.1 72.6 69.3 77.4
CnC ✗/ ✓ 88.5±0.3 88.8±0.9 − 68.9±2.1 −
SSA ✗/ ✓✓ 89.0±0.6 89.8±1.3 76.6±0.7 69.9±2.0 81.3

MAPLE ✗/ ✓✓ 91.7 88.0 72.7 64.1 79.1
DFR ✗/ ✓✓ 92.9±0.2 88.3±1.1 74.7±0.7 70.1±0.8 81.5

GSR-HF ✗/ ✓✓ 87.5±0.1 86.3±0.4 74.7±0.0 68.9±0.2 79.4
GSR ✗/ ✓✓ 92.9±0.0 87.0±0.4 78.5±0.3 71.7±0.6 82.5

ERM ✗/ ✗ 74.9±2.4 46.9±2.8 65.9±0.3 55.6±0.6 60.8
SELF ✗/ ✗ 93.0±0.3 83.9±0.9 70.7±2.5 − −
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Figure 1: The change in the sum of sample weights across different groups throughout the training.
The minority groups are upweighted and the majority groups are generally downweighted. However,
different groups do not have equal sums of weights.

estimation). The samples from the majority groups are consistently assigned with lower weights after
reweighting, especially for Waterbirds and CelebA in Figures 2a, 2b. On the other hand, the minority
groups are consistently upweighted with their sample weights stretched out to larger values across
all datasets. We can also clearly see that our best-performing models are trained on samples with
diverse weights, even if they are from the same group. This implies that not all samples need to be
upweighted or downweighted for group-balanced training. Having more fine-grained adjustments
over the sample weights offers more flexibility in improving the robustness to subpopulation shifts.
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Figure 2: The distribution of sample weights for each group that are used to train the best models. The
minority groups have the weight distribution stretched out towards high values, while the majority-
group weights are generally skewed towards 0.
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Visualizing high-weight samples. In addition, we visualize the held-out samples with the highest
weight from Waterbirds in Figure 3. These high-weight samples also tend to be consistent across
different runs. All of these images are from the minority groups (waterbirds on land, landbirds in
water). As highlighted by the red box, the image has a background that arguably resembles more
land than water. Hence, it should be considered as a minority. Since the group labels for the held-out
sets are not used for retraining, GSR is not affected by the annotation errors for group labels and
correctly assigns high weights to these samples, since they are supposedly helpful in improving the
worst-group performance in the high-quality target set. However, other group-balanced baselines that
directly train on these group labels do not offer such a benefit. We will subsequently show that GSR
is robust to class-label errors in the training data in Section 5.3.

Class:  landbird
BG: water

Class: waterbird
BG:  land

Class: waterbird
BG: water

Class:  landbird
BG: water

Class:  landbird
BG: water

(a) The most weighted instances.

Class:  landbird
BG:  land

Class:  landbird
BG:  land

Class:  landbird
BG:  land

Class: waterbird
BG: water

Class:  landbird
BG:  land

(b) The least weighted instances.

Figure 3: We illustrate the selected images with their class label and background label from the
held-out split in Waterbirds according to the sample weights. In 3a, the top-5 highest weighted
instances are all from the minority groups with differing bird types and backgrounds. As highlighted
in the red box in (a), the background of the waterbird is arguably closer to land than water and hence
should be categorized as a minority. GSR is able to correctly identify them even though they have
wrong annotations. In 3b, the top-5 lowest weighted instances are all from the majority groups where
the background is spuriously correlated with the bird type.

5.3 ROBUSTNESS TO LABEL NOISE

The real-world data often have annotation errors (Beyer et al., 2020; Gururangan et al., 2018).
Assuming efforts are invested into the quality of the group-labeled dataset DL, the other training data
without group labels in DU may have unaddressed errors such as mislabeled classes. To evaluate the
resilience of GSR on training data with different quality, we simulate the variation of data quality by
adding class label noise. In particular, we randomly flip up to 40% of the class labels in the held-out
set to incorrect classes, and leave the target and validation sets unchanged. As shown in Figure 4a,
the worst-group performance of GSR has minimal performance degradation. This is because using
high-quality targets for training sample reweighting allows more fine-grained control over the training
data. To further understand why, we plot the learned weight distribution of the held-out data in
Waterbirds. Compared to that of the clean data in Figure 4b, the weight distribution of the noisy data
is more skewed towards 0 as shown in Figure 4c. In particular, almost all minority instances with
noisy labels have close-to-0 weights, equivalent to being removed from the training set. Therefore,
the efficacy of GSR can be attributed to the property of automatically “cleaning” the training data
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Figure 4: In-depth study of our algorithm. In 4a, the worst-group test accuracy degrades slightly even
when up to 40% of the held-out set labels are corrupted. In 4b, most of the uncorrupted minority
samples received higher weight assignments than non-minority examples. In contrast, in 4c, the
corrupted minority instances are correctly assigned with close-to-0 weights. 4d shows the relationship
between validation and test worst-group accuracy on the CelebA dataset. It is important to have
separate target and validation sets. Otherwise, overfitting can easily occur.
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via sample reweighting. GSR being robust to class label corruption has an important implication: to
improve the robustness to distribution shifts under a limited annotation budget, more efforts should
be dedicated to ensuring the quality of the target set.

6 RELATED WORK

Subpopulation shifts. Group labels are essential for training and evaluating machine learning
models under subpopulation shifts. Various approaches have been proposed to handle scenarios with
different levels of availability of group labels: fully known for all data splits (Deng et al., 2024;
Idrissi et al., 2022; Sagawa et al., 2019), partially known (Kirichenko et al., 2022; Liu et al., 2021;
2022; Nam et al., 2022; Qiu et al., 2023; Zhang et al., 2022; Zhou et al., 2022), or completely
unknown (Han & Zou, 2024; LaBonte et al., 2024). In addition, Yang et al. (2023) comprehensively
studied the effectiveness of these approaches on a variety of benchmarks with unknown group labels
and demonstrated that optimizing for the worst class can be surprisingly effective for improving the
worst-group performance. Our approach falls into the category of learning with partial group labels
(from the validation set) and differs from most of the approaches by using group-labeled data for
sample reweighting instead of direct training.

Sample reweighting and implicit differentiation. Optimizing sample weights jointly with the
model parameters is useful for robust deep learning (Ren et al., 2018) and group robustness (Zhou
et al., 2022). These works focus on using truncated backpropagation to circumvent the challenge
of differentiating through the unrolled training trajectory. Implicit differentiation is an alternative
solution to the problem and has been applied to areas such as hyperparameter optimization (Foo et al.,
2007; Lorraine et al., 2020; Pedregosa, 2016), meta-learning (Lee et al., 2019; Rajeswaran et al.,
2019), generative modeling (Domke, 2012; Samuel & Tappen, 2009), and fairness (Shui et al., 2022).
In addition, Li & Liu (2022); Wang et al. (2024) have explored one-step (i.e., not iterative) sample
reweighting via the influence function for algorithmic fairness. Bae et al. (2022) shows an alternative
derivation of the influence function via implicit differentiation on the training set. In contrast to
these works, we show the connection between the influence function and bilevel optimization via
implicit differentiation and devise an efficient scheme to rigorously apply it iteratively for addressing
subpopulation shifts.

7 CONCLUSION AND FUTURE WORK

Motivated from the bilevel minimax objective, GSR utilizes the group-labeled data for fine-grained
reweighting of the training samples via a soft aggregation of the influence functions. It seamlessly
integrates with last-layer retraining, resulting in a lightweight and effective strategy for improving
group robustness. GSR also has the ability to automatically clean and guide the training of potentially
noisy datasets via sample reweighting. Our deeper dive into the empirical analysis further supports
the alternative training paradigm that emphasizes the use of high-quality, group-labeled instances as
the target set.

We also identify several directions for future work to further improve our method. Despite GSR
achieving competitive worst-group performance, it usually results in a decrease in mean performance.
This practical trade-off is commonly seen in efforts to improve group robustness (Chen et al., 2022).
We note that sample reweighting offers an alternative way to test the limit of last-layer retraining,
however, it does not improve the representation learning. To mitigate the trade-off between the
worst-group and the mean performance, enhancing the quality of representations is still a critical
step (Izmailov et al., 2022).

Additionally, our work is based on the hypothesis that standard ERM learns sufficiently high-
quality representations. However, this assumption may not always hold, particularly under certain
subpopulation shifts (Yang et al., 2023). The question of whether sample reweighting can improve the
representation learning for the group robustness remains unanswered, which necessitates retraining
more components of the model after obtaining the sample weights. Developing more efficient
strategies that jointly optimize the sample weights and deep model parameters may offer more
insights and advancements in tackling subpopulation shifts and beyond.
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A DERIVATIONS AND PROOFS

A.1 DERIVATION OF THE JACOBIAN OF THE GRADIENT W.R.T. THE SAMPLE WEIGHTS

The derivative of∇θR̂(Dtr;w, θ) w.r.t. individual sample weights wi is:

∇wi
∇θR̂(Dtr;w, θ) = ∇wi

∇θ
∑

j∈1,...,|Dtr|

wjℓ(x
tr
j , y

tr
j ; θ)

= ∇wi

∑
j∈1,...,|Dtr|

wj∇θℓ(xtr
j , y

tr
j ; θ)

= ∇θℓ(xtr
i , y

tr
i ; θ)

= ∇θR̂(zi; θT ) (10)

A.2 DERIVATION OF LAST-STEP GRADIENT (MAPLE (ZHOU ET AL., 2022))

According to MAPLE’s one-step truncated backpropagation, the gradient descent updates before
θT−1 are truncated, so that θT−1 is a “constant” and is independent of w. Thus, it is true that
∇wi

θT−1 = 0, but not for ∇wi
θT . Recall that for simplicity, we use the notation∇θR̂(Dtr;w, θT )

for ∇θR̂(Dtr;w, θ)
∣∣∣
θ=θT

. We show that Equation 2 can be derived as follows:

∇wi
θ̂∗ ≈ ∇wi

θT

≈ ∇wi

(
θT−1 − η∇θR̂(Dtr;w, θT−1)

)
(One-step truncation)

≈ ∇wi

(
θT−1 − η∇θR̂(Dtr;w, θT )

)
(θT ≈ θT−1 on convergence, so ∇θR̂(Dtr;w, θT ) ≈ ∇θR̂(Dtr;w, θT−1))

= 0− η∇wi
∇θR̂(Dtr;w, θT ) (∇wi

θT−1 = 0 because of one-step truncation)

= −η∇θR̂(zi; θT ) (Apply Equation 10)

A.3 DERIVATION OF META-GRADIENT UPDATE

We utilize the technique of implicit differentiation. Upon convergence to an optimal solution, the
inner problem has the property of∇θR̂(Dtr;w, θ̂∗) = 0. By first differentiating w.r.t. w on both sides
of the equation, then followed by the chain rule, we have the following derivations:

d0

dw
=

d∇θR̂(Dtr;w, θ̂∗)

dw

0 =
d∇θR̂(Dtr;w, θ̂∗)

dw

0 =
∂∇θR̂(Dtr;w, θ̂∗)

∂w
+
∂∇θR̂(Dtr;w, θ̂∗)

∂θ̂∗
dθ̂∗

dw
(Chain-rule)

0 = ∇w∇θR̂(Dtr;w, θ̂∗) +∇2
θR̂(Dtr;w, θ̂∗)

dθ̂∗

dw

dθ̂∗

dw
= −

(
∇2
θR̂(Dtr;w, θ̂∗)

)−1

∇w∇θR̂(Dtr;w, θ̂∗)

dθ̂∗

dw
= −H−1

θ̂∗,w
∇w∇θR̂(Dtr;w, θ̂∗)

For each sample weight wi:

dθ̂∗

dwi
= −H−1

θ̂∗,w
∇wi∇θR̂(Dtr;w, θ̂∗)

= −H−1

θ̂∗,w
R̂(zi; θT ) (Apply Equation 10)
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A.4 PROOF OF THE STRONG CONVEXITY OF LINEAR CLASSIFICATION WITH
CROSS-ENTROPY LOSS AND ℓ2-REGULARIZATION

In this section, we add the complete proof for the established result of the strong convexity of linear
classification with cross-entropy loss and ℓ2-regularization. Before introducing the complete proof, a
shortcut intuitive proof for this consists of the following steps:

1. Linear classification with cross-entropy loss is convex, and its Hessian H is positive semi-definite,
implying H ⪰ 0.

2. Adding ℓ2-regularization with a positive regularization strength λ > 0 produces a new Hessian
H ′ = H + λI ⪰ λI , which meets the definition of strong convexity (Definition A.1).

We now present a complete proof of the result of the strong convexity by directly showing the H ′ in
Theorem A.6.

Definition A.1 (µ-Strong convexity (Boyd & Vandenberghe, 2004)). For µ > 0, a differentiable
function f is µ-strongly convex if for some µ > 0,∇2f(x) ⪰ µI .

Definition A.2 (One-hot Vector). For a dimension d, u(i) ∈ {0, 1}d,
∑
u(i) = 1 is the one-hot

vector with i-th dimension u(i)i = 1. We omit d in the following context for simplicity.

Definition A.3 (Softmax). Given the input x ∈ Rd, define the softmax function σ : Rd → Rd as:

σ(x)i =
exi∑
i e
xi
.

Its derivative∇xσ(x) ∈ Rd×d has the form:

∇xσ(x) = diag(σ(x))− σ(x)σ(x)⊤ . (11)

In addition,
∇xσ(x)i = σ(x)i(u(i)− σ(x)) , (12)

where u(i) ∈ {0, 1}d,
∑
u(i) = 1 is the one-hot vector with i-th dimension u(i)i = 1.

Proposition A.4. The first-order derivative matrix ∇xσ(x) of the softmax function is positive
semidefinite.

Proof. First σ(x) defines a probability distribution. Hence, it has the property that σ(x)i ≥
0 ∀i,

∑
i σ(x)i = 1. Then according to the definition of positive semidefiniteness: ∀z ∈ Rd, z ̸= 0:

z⊤∇xσ(x)z = z⊤(diag(σ(x))− σ(x)σ(x)⊤)z
= z⊤diag(σ(x))z − z⊤σ(x)σ(x)⊤z

=
∑
i

σ(x)iz
2
i − (

∑
i

σ(x)izi)
2

≥ 0 . (Cauchy-Schwartz)

Definition A.5 (Cross-entropy). Given the input z ∈ Rd, y ∈ {1, . . . ,K} for a K-way classification
problem, define the cross entropy loss L:

CE(z, y) = −
K∑
k

I[y = k] log zi ,

where I is the indicator function.

Theorem A.6 (Strong convexity of cross-entropy loss with ℓ2-regularization). For multi-class linear
classification with cross-entropy loss, if ℓ2-regularization with positive coefficient λ is applied, then
the objective is λ-strongly convex.
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Proof. Let x ∈ R, y ∈ {1, . . . ,K} denote the input, label of a K-way classification task. Let
ψ ∈ Rd×K denote the linear model parameters. Let u(y) denote the one-hot representation of y. The
objective function using cross-entropy loss and ℓ2-regularization is:

L(x, y;ψ) = CE(σ(ψ⊤x), y) +
λ

2
∥ψ∥22

= −
K∑
k

I[y = k] log
(
σ(ψ⊤x)k

)
+
λ

2
∥ψ∥22

= − log
(
σ(ψ⊤x)y

)
+
λ

2
∥ψ∥22 .

The first-order derivative:

∇ψL(x, y;ψ) = −x
1

σ(ψ⊤x)y
σ(ψ⊤x)y

(
u(y)− σ(ψ⊤x)

)⊤
+ λψ (Equation 12)

= x(σ(ψ⊤x)− u(y))⊤ + λψ .

The second-order derivative (Hessian):

H = ∇2
ψL(x, y;ψ)

=
∂x(σ(ψ⊤x)− u(y))⊤

∂ψ
+ λId×k

= x
∂σ(ψ⊤x)⊤

∂ψ
+ λId×k

= x(x(diag(σ(x))− σ(x)σ(x)⊤))⊤ + λId×k (Equation 11)

= x
(
diag(σ(x))− σ(x)σ(x)⊤

)
x⊤ + λId×k .

Then we show that the Hessian of L meets the requirement of λ-strong convexity, i.e., H − λI ⪰ 0,
∀z ∈ Rd×k, z ̸= 0:

z⊤(H − λId×k)z = z⊤x
(
diag(σ(x))− σ(x)σ(x)⊤

)
x⊤z + z⊤(λId×k − λId×k)z

= z⊤x
(
diag(σ(x))− σ(x)σ(x)⊤

)
x⊤z

≥ 0 . (Proposition A.4)

Hence, L is strongly convex according to Definition A.1.

B EXPERIMENTAL DETAILS

B.1 SETUP

For model architectures and initialization, we use ImageNet-pretrained ResNet-50 (V1) (He et al.,
2016) for Waterbirds and CelebA datasets, and use BERT (HuggingFace) for MultiNLI and Civil-
Comments. The MNLI dataset is preprocessed according to the setup in https://github.com/
kohpangwei/group_DROBertTokenizer. The CivilComment dataset is tokenized with Bert-
Tokenizer with max_seq_length=300. For all experiments, we perform 5 independent runs on seed [1,
2, 3, 4, 5] to obtain the mean and the standard deviations.

B.2 HYPERPARAMETERS

For all experiments, we fix the held-out fraction α as 10% and the resulting partition splits (i.e.,
the held-out set and the remaining set) of the training set Dtr, which are generated by fixed numpy
random seed 1. Although it is true that additionally tuning the held-out fraction α and changing the
split can most likely improve the worst-group performance by balancing the data for representation
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learning and sample reweighting, we do not alter these splits for better consistency and focus only on
the second sample reweighting stage of the training.

For stage 1, we use almost the same hyperparameters as used by DFR (some are slightly altered for
better consistency and simplicity by heuristics without tuning) and record them in Table 2.

For stage 2, there are two sets of hyperparameters for the inner and the outer loop. We perform a
non-exhaustive search by randomly sampling the combination of hyperparameters from the grid.
We select the best-performing model and hyperparameter configurations based on the worst-group
validation accuracy. The selected hyperparameter configurations are documented in Tables 4 and 3
for the inner and the outer loop respectively. Besides, we consistently apply weight normalization (to
ensure the sum of weights equals to one) and a step learning rate scheduler (StepLR), which decays
the outer learning rate by a factor of 10 every 30 steps without tuning.

Table 2: Hyperparameters for base model training. For Waterbirds and CelebA, we use almost
the same hyperparameters as used by DFR. We slightly change the hyperparameters on MNLI and
CivilComments (without any tuning) so that no learning rate scheduler is used. Momentum is set as
0.9 for SGD.

Dataset optimizer lr scheduler batch size weight decay epochs
Waterbirds SGD 1e-3 Constant 32 1e-3 100

CelebA SGD 1e-3 Constant 128 1e-4 50
MultiNLI AdamW 2e-5 Constant 32 1e-4 4

CivilComments AdamW 2e-5 Constant 32 1e-4 4

Table 3: Hyperparameters for sample weight updates (outer loop). For the step learning rate scheduler
(StepLR), we simply decay the learning rate by a factor of 10 every 30 steps.

Dataset optimizer lr scheduler grad clip τ steps
Waterbirds GD 1 StepLR 1 0.1 100

CelebA GD 1 StepLR 1e-2 0.01 100
MultiNLI GD 0.1 StepLR 1e-2 1 50

CivilComments GD 1 StepLR 1e-1 0.1 50

Table 4: Hyperparameters for last-layer retraining (inner loop)

Dataset optimizer lr scheduler batch size weight decay line search
Waterbirds L-BFGS 1e-4 Constant full 1e-1 Strong Wolfe

CelebA L-BFGS 1e-4 Constant full 1e-2 Strong Wolfe
MultiNLI L-BFGS 1e-4 Constant full 1e-2 Strong Wolfe

CivilComments L-BFGS 1e-1 Constant full 1e-3 Strong Wolfe

B.3 IMPLEMENTATION DETAILS

Let d denote the dimension of θ. Let the size of the held-out training set be n here. To efficiently
compute the influence scores for last-layer retraining, we adopt the following strategy:

1. Calculate the Hessian inverse H−1

θ̂∗,w
of the weighted objective w.r.t θ = θ̂∗. The Hessian

has a dimension of d× d.

2. Calculate the per-sample gradient of the unweighted objective w.r.t. θ = θ̂∗ for the training
set. This results in a n× d matrix.

3. Calculate the per-group gradient of the unweighted objective w.r.t. θ = θ̂∗ for the target set.
This results in a m× d matrix, where m is the number of groups.

By combining these three matrices, we obtain the group-wise influence scores as a n×m matrix,
which can then be aggregated as in Algorithm 1 and become an n× 1 gradient vector.
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B.4 RUNNING TIME COMPARISON

Hardware. For all experiments, we run on machines with NVIDIA RTX 3080 (10GB) / RTX A5000
(24GB) GPU and AMD EPYC 7543 CPU.

Running time. We record the detailed running time for both the inner and the outer loop for different
datasets in Table 5. The results are obtained from running a single job on one NVIDIA RTX 3080
GPU with two AMD EPYC 7543 CPUs.

Table 5: Running time for GSR

Dataset Dataset stats Running time (s)
Held-out size Target size # of steps Outer loop Inner loop Total

Waterbirds 479 600 100 2.71 0.16 285
CelebA 16277 9934 100 4.03 0.52 451

MultiNLI 20617 46231 50 7.24 0.53 381
CivilComments 26903 22590 50 8.21 0.7 882

Scalability. As we used Pytorch for our implementation and the last-layer retraining has very
few parameters, the per-sample gradient and the Hessian inverse calculation involves high CPU
usage, even though the tensors are on GPU. When the same processes are running in parallel, the
performance sometimes can be CPU-bound instead of GPU-bound. Thus, the running time is likely
to increase when the CPU-usage is high.

B.5 DETAILED RESULTS

In addition to the worst-group accuracy shown in the main paper, we also report the mean accuracy
for these datasets in Table 6 for reference. We would like to highlight that the worst-group accuracy
gain is usually at the expense of the average accuracy, which usually corresponds to no distribution
shifts. This implies that trade-offs generally need to be made for better robustness to subpopulation
shifts.

C UNDERSTANDING THE ROLE OF THE INVERSE HESSIAN

Koh & Liang (2017) analyzed that the inverse Hessian measures the robustness of the resultant
model to upweighting the training data. As Hessian is a symmetric matrix, according to the Spectral
Theorem, it guarantees the existence of an orthonormal basis of the eigenvectors. Hence, the gradient
can be written as a linear combination of eigenvectors. As the influence function utilizes the inverse
Hessian, which has the reciprocal of the eigenvalues of the Hessian, the influence score has a larger
magnitude when the gradient of the training and test points are similar and along the direction of the
eigenvectors with smaller magnitudes.

Having smaller eigenvalues can be interpreted as the first-order gradient changing relatively slowly.
From the optimization perspective (Newton’s method), this usually means we are allowed to take
larger gradient steps when the trajectory has less variation with a smoother curvature. On the other
hand, the step size is smaller when the curvature changes more quickly, indicating a more complex
loss landscape.

If the Hessian is dropped in between the inner product of the gradient as in Equation 2, then we fail
to account for the variations of step sizes in different directions specified by the eigenvectors. Thus,
the outer loop gradient becomes incorrect and the optimization will be less reliable.

D VISUALIZATION OF THE SPURIOUS CORRELATIONS

We show an illustration of the spurious correlations for the Waterbirds dataset in Figure 5.
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Table 6: Performance comparison in detail. We report the worst-group accuracy on four benchmark
datasets. For the group label column, ✗ indicates no group label g is used; ✓ indicates g is required
for training or validation; ✓–indicates g is partially used; ✓✓ indicates a proportion of g from the
validation set is re-purposed beyond hyperparameter tuning, such as training sample weights or model
parameters. The row sections are ranked in descending order of the total amount of group label
information required.

Method Group Label Waterbirds CelebA MultiNLI CivilComments
Train / Val Worst(%) Mean(%) Worst(%) Mean(%) Worst(%) Mean(%) Worst(%) Mean(%)

RWG ✓/ ✓ 87.6±1.6 − 84.3±1.8 − 69.6±1.0 − 72.0±1.9 −
Group DRO ✓/ ✓ 91.4±1.1 93.5±0.3 88.9±2.3 92.9±0.2 77.7±1.4 81.4±0.1 70.0±2.0 89.9±0.5

JTT ✗/ ✓ 86.7 93.3 81.1 88.0 72.6 78.6 69.3 91.1
CnC ✗/ ✓ 88.5±0.3 90.9±0.1 88.8±0.9 89.9±0.5 − − 68.9±2.1 81.7±0.5

SSA ✗/ ✓✓ 89.0±0.6 92.2±0.9 89.8±1.3 92.8±0.1 76.6±0.7 79.9±0.9 69.9±2.0 88.2±2.0

MAPLE ✗/ ✓✓ 91.7 92.9 88.0 89.0 72.7 77.2 64.1 89.7
DFR ✗/ ✓✓ 92.9±0.2 94.2±0.4 88.3±1.1 91.3±0.3 74.7±0.7 82.1±0.2 70.1±0.8 87.2±0.3

GSR-HF ✗/ ✓✓ 87.5±0.1 97.7±0.0 86.3±0.4 91.5±0.0 74.7±0.0 80.6±0.0 68.9±0.2 89.1±0.0

GSR ✗/ ✓✓ 92.9±0.0 94.9±0.1 87.0±0.4 90.9±0.0 78.5±0.3 79.8±0.0 71.7±0.6 85.9±0.4

ERM ✗/ ✗ 74.9±2.4 98.1±0.1 46.9±2.8 95.3±0.0 65.9±0.3 82.8±0.1 55.6±0.6 92.1±0.1

ES SELF ✗/ ✗ 93.0±0.3 94.0±1.7 83.9±0.9 91.7±0.4 70.7±2.5 81.2±0.7 − −
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Figure 5: An illustration of the Waterbirds dataset. A spurious correlation exists between the bird
class and the background. The majority groups are highlighted in orange. The minority groups are in
gray.

E WHAT IF WE CAN RETRAIN THE FULL NETWORK WITH GSR?

In this section, we use a simple setup to explore the potential of retraining the full network with GSR,
when the compute budget allows.

Setup. We conduct an ablation study on a small binary classification task customized from the
ColoredMNIST, where the digits are spuriously correlated with color. We use a tiny Convolutional
Neural Network (CNN) with 3 layers and about 5000 parameters.

Dataset. ColoredMNIST-S. We modify the original ColoredMNIST dataset (Arjovsky et al., 2019) by
first taking only the first 6 digits out of all 10 digits, then assigning y < 3 as 0 and y ≥ 3 as 1. The
training, validation, and test splits have 10000, 2000, and 27375 instances, respectively. The spurious
correlation γ is created by associating most of the instances in class 0 with red color and class 1 with
green color. We set γ = 0.1 for the training split and set γ = 0.5 for the validation and test splits.
we do not introduce any label corruption. This setting is considered much simpler than the original
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Table 7: Performance comparison on ColoredMNIST-S Dataset with TinyCNN.

Method ColoredMNIST-S
Worst(%) Mean(%)

GSR-F-EH 94.1 96.0
GSR-F-AH 80.2 97.6
GSR-F-HF 91.9 96.9

GSR 91.2 95.4
GSR-HF 91.1 96.2

ERM 81.2 97.7

ColoredMNIST, primarily because we are studying with limited network capacity with a tiny CNN,
which could not fit the original 10-digit classification with more than 90% accuracy.

Baselines. We compare GSR, which is by default trained with last-layer retraining, with the full-
parameter retraining variants. GSR-F-EH retrains the entire network with the influence function and
no approximation on the Hessian. We use Conjugate Gradients to calculate the inverse Hessian-vector
product (iHVP) instead of explicitly calculating the Hessian to save compute the memory. GSR-F-AH
approximates the Hessian using LiSSA (Agarwal et al., 2017) with depth=1000 and repeat=1. This
approximation calculates the iHVP with 1000 samples from the training set. GSR-F-HF which
discards the Hessian, and this uses the sample gradients as MAPLE.

The results are shown in Table 7. we can observe that. Full-parameter retraining with Hessian
(i.e., GSR-F-EH) is advantageous over all other approaches. However, approximating the Hessian
with low quality might hurt the performance, since GSR-F-AH underperforms other baselines.
When using a small neural network model, last-layer retraining (LLR) can cause slight performance
degradation when we have the capability to retrain the whole model on the entire dataset, but it is still
significantly better than ERM.

F COMPARISON WITH MAPLE

Although the difference seems to be only about the Hessian, GSR and MAPLE are based on two
distinct ways to solve the bilevel optimization problem.

1. MAPLE directly approximates backpropagating through the training trajectory by one-step
truncation, but GSR uses implicit differentiation that results in the Hessian. This calculation
is exact when the objective is strongly convex.

2. GSR also synergies with last-layer retraining, which was not considered by MAPLE.
3. We use an adaptive aggregation of the influence scores from the groups as the gradient, but

MAPLE does not explicitly design group-level aggregation for subpopulation shifts.
4. MAPLE additionally uses coreset selection by training on a subset of all the training data

in each step to speed up the training, while GSR utilizes the full training data without
approximation.

G ADDITIONAL DATASET FOR SUBPOPULATION SHIFT

To further demonstrate the advantage of GSR, we include an additional experiment with the
MetaShift (Liang & Zou, 2022) image classification dataset. We use the two-class version im-
plemented by Yang et al. (2023), where the spurious correlation exists between the class and the
background. In particular, cats are mostly indoors and dogs are mostly outdoors. We primarily
compare with DFR, which uses the same amount of group labels and the same ERM feature extractor
as ours. The ERM model is trained for 100 epochs without early stopping or hyperparameter tuning.
GSR outperforms DFR convincingly in this case as shown in Table 8.
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Table 8: Performance comparison on MetaShift.

Method MetaShift
Worst(%) Mean(%)

GSR 78.2±4.0 87.9±4.1

DFR 71.4±1.6 89.7±0.2

ERM 69.2 90.3
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