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Abstract
Transformers have become foundational architec-
tures for both natural language and computer vi-
sion tasks. However, the high computational cost
makes it quite challenging to deploy on resource-
constraint devices. This paper investigates the
computational bottleneck modules of efficient
transformer, i.e., normalization layers and atten-
tion modules. LayerNorm is commonly used in
transformer architectures but is not computational
friendly due to statistic calculation during infer-
ence. However, replacing LayerNorm with more
efficient BatchNorm in transformer often leads to
inferior performance and collapse in training. To
address this problem, we propose a novel method
named PRepBN to progressively replace Layer-
Norm with re-parameterized BatchNorm in train-
ing. Moreover, we propose a simplified linear
attention (SLA) module that is simple yet effec-
tive to achieve strong performance. Extensive
experiments on image classification as well as ob-
ject detection demonstrate the effectiveness of our
proposed method. For example, our SLAB-Swin
obtains 83.6% top-1 accuracy on ImageNet-1K
with 16.2ms latency, which is 2.4ms less than
that of Flatten-Swin with 0.1% higher accuracy.
We also evaluated our method for language mod-
eling task and obtain comparable performance
and lower latency. Codes are publicly avail-
able at https://github.com/xinghaochen/SLAB
and https://github.com/mindspore-lab/models/.

1. Introduction
Introduced initially for tasks in natural language process-
ing (Vaswani et al., 2017), transformer architecture has
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rapidly emerged as a preeminent model in the landscape of
language models. Its influence has significantly expanded
with the introduction of Vision Transformer (ViT) (Doso-
vitskiy et al., 2020), illustrating the efficacy and versatil-
ity of transformer-based architectures. These architectures
have demonstrated their capability to achieve competitive
performance benchmarks in comparison to convolutional
neural networks (CNNs) across diverse vision tasks (Han
et al., 2022; Wang et al., 2022; Zheng et al., 2023; Tang
et al., 2023a; Carion et al., 2020; Xu et al., 2023). Due
to its powerful performance, transformer has become the
mainstream architecture in deep learning. However, the
computational demands of transformer architecture pose a
significant challenge, which is predominantly due to the
quadratic computational complexity of its attention mech-
anism and the necessity for online statistic computation of
LayerNorm component.

Numerous efforts have been directed towards enhancing
the efficiency of transformer architecture (Tang et al., 2024;
Wu et al., 2023; Tang et al., 2023b). Several approaches
have sought to mitigate computational complexity by lim-
iting the scope of token interactions within self-attention
mechanisms, such as downsampling the key and value ma-
trices (Wang et al., 2021), implementing sparse global at-
tention patterns (Child et al., 2019), and computing self-
attention within smaller windows (Tu et al., 2022; Liu
et al., 2021; Dong et al., 2022). Meanwhile, linear atten-
tion emerges as an alternative strategy to enhance computa-
tional efficiency by breaking down the attention mechanism
into linear computational cost (Cai et al., 2022; Han et al.,
2023), yet it is still a challenging task to obtain a good bal-
ance between efficiency and accuracy. Moreover, there are
some explorations into substituting LayerNorm (LN) with
BatchNorm (BN) within transformers, motivated by the ad-
ditional computational overhead LayerNorm incurs during
inference. Yang et al. (2022) propose to add a BatchNorm
layer in-between the two linear layers in the feed forward
network to stabilize the training. However, there still ex-
ists a performance gap between the LayerNorm-based and
BatchNorm-based transformers.

In this paper, we focus on obtaining efficient transformer
architectures by digging deep into the computational in-
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Figure 1. Comparisons of different methods on ImageNet.

efficient modules, i.e., normalization layers and attention
modules. We first explore to replace LayerNorm with Batch-
Norm to accelerate inference for transformer. BatchNorm
leads to lower inference latency but may cause training col-
lapse and inferior performance, while LayerNorm could
stabilize the training yet has extra computational cost dur-
ing inference. To this end, we first propose a progressive
strategy to gradually replace LayerNorm with BatchNorm
by using a hyper-parameter to control the proportion of both
normalization layers. Initially the transformer architecture is
dominated by the LayerNorm and gradually transits to pure
BatchNorm at the end of training. This strategy effectively
mitigates the risk of training collapse and also eliminating
the need for calculating statistics during inference. In ad-
dition to the progressive strategy, we also propose a novel
re-parameterization formula for BatchNorm (RepBN), to
enhance training stability and overall performance.

Furthermore, the computational cost of attention is critical
for efficient transformer and prior methods struggle to obtain
good balance of efficiency and accuracy. To this end, we
propose a simplified linear attention (SLA) module which
utilizes ReLU as the kernel function and incorporate a depth-
wise convolution to perform local feature enhancement. The
proposed attention mechanism is more efficient than prior
linear attention but still attains comparable performance.

We extensively evaluate our proposed method for various
architectures on various benchmarks. Our progressive re-
parameterized BatchNorm shows strong performance for
image classification and object detection tasks, obtaining
similar accuracy with lower inference latency. Moreover,
coupled with the progressive RepBN and simplified linear
attention module, our SLAB transformer achieves compet-
itive accuracy compared to Flatten transformer with im-
proved computational efficiency. For example, SLAB-Swin-
S achieves 83.6% Top-1 accuracy on ImageNet-1K with
16.2ms latency, which is 2.4ms less than that of Flatten-
Swin-S with 0.1% higher accuracy. We also evaluated our
method for language modeling task and obtain comparable
performance and lower inference latency.

2. Related Work
2.1. Efficient Architecture for Transformers

With the advent of the pioneering Vision Transformer
(ViT) (Dosovitskiy et al., 2020), the potential of the trans-
former architecture for computer vision tasks has been
greatly explored. Various researchers are devoted to this
field to make transformer-based architecture more efficient
and powerful. Touvron et al. (2021) propose DeiT which
utilizes distillation to achieve strong performance with train-
ing only on ImageNet1K. Liu et al. (Liu et al., 2021) propose
Swin Transformer, which introduces shifted windowing
scheme and brings greater efficiency. As the self-attention
computation is limited to a small window, this transformer
has linear computational complexity. Several works improve
the design of sparse pattern to enhance the interaction of
each token, such as CSwin (Dong et al., 2022). Besides, the
dynamic attention mechanism tries to control the key/value
interact with query adaptive to data, such as DAT++ (Xia
et al., 2023) and BiFormer (Zhu et al., 2023).

Apart from the above methods, linear attention is a popular
research direction to reduce the computational complex-
ity for transformer. Many effective mechanisms have been
proposed to replace the softmax function. For example, Per-
formers (Choromanski et al., 2020) uses positive orthogonal
random features approach to approximate softmax. Hydra
attention (Bolya et al., 2022) selects the cosine similarity
as kernel function. Flatten Transformer (Han et al., 2023)
designs a focused function to improve the focus ability of
linear attention.

2.2. Normalization for Transformers

Normalization is known as an useful method to make train-
ing stable and boost performance. Nowadays, a variety of
normalization methods have been proposed, such as Batch-
Norm (Ioffe & Szegedy, 2015), LayerNorm (Ba et al., 2016),
InstanceNorm (Ulyanov et al., 2016), GroupNorm (Wu &
He, 2018), MABN (Yan et al., 2020) and UN (Yang et al.,
2022). BatchNorm is widely used in convolutional networks
and LayerNorm is commonly utilized for networks such as
transformer and LSTM.

Normalization could be categorized into offline methods and
online methods according to whether the mean and variance
need to be computed at inference time (Yang et al., 2022).
Online methods are usually batch-irrelevant like LayerNorm,
InstanceNorm and GroupNorm. These methods compute
the statistics in both training and inference. LayerNorm is a
commonly used in transformer architecture.

Offline methods are batch-related like BatchNorm and UN,
in which the batch dimension is concluded in the calcula-
tions of both mean and variance (Yao et al., 2021). As the
mean and variance are pre-computed in inference, offline
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Figure 2. The overall framework of our proposed Progressive Re-parameterized BatchNorm. (a) During training, we progressively replace
LayerNorm with RepBN, which is a new re-parameterization formula of BatchNorm to further improve the performance. (b) We could
get γ = 0 during inference, thus the transformer block transits to a RepBN-based architecture, which could further be re-parameterized to
BatchNorm and merged with linear layers.

normalization can be fused into adjacent linear operations.
During inference, there will be no offline normalization op-
erations and the inference time will be reduced. However,
offline methods usually face the problem of performance
degradation and training collapse while using in transformer.
To address this problem, Yao et al. (2021) proposes to add
a BatchNorm layer in-between the two linear layers in the
MLP block that makes training statistics stable. Yang et
al. (2022) finds that the issue is caused by abnormal behav-
iors of activation statistics, and proposes a tailored fluctu-
ation smoothing strategy and an adaptive outlier filtration
strategy to boost performance and stable training.

3. Preliminaries
Given the input N tokens X ∈ RN×C , where C is the
feature dimension, the general architecture of transformer
block can be written as:

X = X +Attn(Norm(X)),

X = X +MLP(Norm(X)),
(1)

where Attn(·) calculates the attention scores, MLP(·) de-
notes multilayer perceptron and Norm(·) is the normaliza-
tion function. In the default configuration of transformer
block, Norm(·) is usually a LayerNorm operation and
Attn(·) is the softmax-based attention mechanism (Vaswani
et al., 2017).

Attention plays an important role in Transformer. Denote
query, key and value matrix as Q,K, V ∈ RN×C , softmax
attention computes the pairwise similarity between queries
and keys firstly, and leads to the quadratic computation com-
plexity O(N2C) in relation to the number of queries and
keys N. This makes transformer computationally expensive
especially in dealing with tasks that have a long sequence in-

put. Linear attention aims to decouple the softmax function
with proper approximation or instead it with other kernel
function to compute KTV first. With this change in compu-
tation order, the computation complexity becomesO(NC2),
which is linearly related to the number of queries and keys
N.

However, LayerNorm occupies unnegligible portion of la-
tency since it requires statistic calculation during inference.
Therefore, in this paper we explore to leverage BatchNorm
for building efficient transformers, which only exists in
training and could be merged with preceding or sequential
linear layers. Moreover, the attention module plays the most
important part for transformers and the softmax-based at-
tention mechanism is computational inefficient due to its
quadratic computation complexity. In this paper, we pro-
pose a simple yet efficient form of attention, which greatly
reduce the latency but also remains strong performance on
various vision tasks.

4. Methods
In this paper, we focus on building efficient transform-
ers and propose a series of strategies, including a progres-
sive strategy to replace the LayerNorm (LN) with the re-
parameterized BatchNorm (BN) and the simplified linear
attention (SLA) module. The proposed SLAB transformers
obtains strong performance compared with prior methods
while enjoying more computational efficacy.

4.1. Progressive Re-parameterized BatchNorm

LayerNorm requires statistic calculations in both training
and inference, thus significantly hinders the running speed
of transformers. On contrast, BatchNorm could be sim-
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(a) DeiT (b) Flatten Transformer (c) SLAB (Ours)

Figure 3. Attention map (196 × 196) from the 4rd block of the model based on DeiT-T. (a) Attention map of DeiT-T is full-rank. (b)
With the help of depth-wise convolution, linear attention in Flatten Transformer has a high rank. (c) As simplified linear attention and
progressive re-parameterized BatchNorm are applied in transformer, the model still keeps a high rank.

ply merged with linear layers during inference and is more
suitable for efficient architectures. However, directly lever-
aging BatchNorm for transformers brings unsatisfactory
performance (Yao et al., 2021). To this end, we propose to
progressively replace LayerNorm with BatchNorm during
training, and also propose a new re-parameterization for-
mula of BatchNorm to further improve the performance, as
shown in Figure 2.

Re-parameterized BatchNorm. The proposed RepBN is
formulated as:

RepBN(X) = BN(X) + ηX, (2)

where η is a learnable parameter that is jointly trained in an
end-to-end manner. Once the training is done, the RepBN
could be re-parameterized as a norm form of BN, as shown
in Lemma 4.1.

Lemma 4.1. Denote a BN layer with mean µ, standard
deviation σ, rescale and shift parameters α and β as
BN(X;µ, σ, α, β). We can re-parameterize the RepBN in
Eq. 2 as:

RepBN(X;µ, σ, α, β) = BN(X;µ, σ, α+ ησ, β + ηµ). (3)

Proof.

RepBN(X;µ, σ, α, β) = BN(X;µ, σ, α, β) + ηX

=
X − µ
σ

α+ β + ηX =
X − µ
σ

α+ β +
X

σ
ση

=
X − µ
σ

α+ β +
X − µ
σ

ση + µη

=
X − µ
σ

(α+ ησ) + (β + ηµ)

= BN(X;µ, σ, α+ ησ, β + ηµ).

(4)

Based on Lemma 4.1, the distribution of RepBN’s output
is control by α+ ησ and β + ηµ, which is corresponds to
the variance and mean. RepBN can recover the distribution
with the help of σ and µ.

Meanwhile, when α = 0, β = 0, it is equivalent to Batch-
Norm being skipped. When η = 0, RepBN is converted
into pure BatchNorm.

Progressive LN→ RepBN. To facilitate the training of a
pure BN-based transformers, we propose to progressively
transit the LN to RepBN during training, i.e.,

PRepBN(X) = γLN(X) + (1− γ)RepBN(X), (5)

where γ is a hyper-parameter to control the output of dif-
ferent normalization layers. Generally γ = 1 at the begin
of training when the LN dominates the architecture, and
γ = 0 at the end of training to make sure it transits to a pure
BN-based transformer. We utilize a simple yet effective
decay strategy for γ:

γ =
T − Tcur

T
, γ ∈ [0, 1], (6)

where T is the total steps of training with LayerNorm and
Tcur is the current step. This progressive strategy eases the
difficulty of training a pure BN-based transformer and thus
leads to strong performance on various tasks.

There are some other decay strategies for attenuating the
value of γ gradually, such as cosine decay and step decay.
Empirically, we find that the linear strategy is one of the
more effective and simpler.
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4.2. Simplified Linear Attention

Attention module is the most import part in a transformer
network, which is generally formulated as:

Q = XWQ,K = XWK , V = XWV ,

Oi =

N∑
j=1

Sim(Qi,Kj)∑
j Sim(Qi,Kj)

Vj ,
(7)

where WQ,WK ,WV ∈ RC×C project the input tokens to
query, key and value tensors, respectively. Sim(·, ·) denotes
the similarity function. For the original form of attention,
the similarity function is:

Simsoftmax(Qi,Kj) = exp(
QiK

T
j√
C

), (8)

this softmax-based attention leads to high computational
complexity. Several recent methods investigate the usage
of linear attention to remove the softmax calculation thus
improve the efficacy of transformers (Han et al., 2023).
However, these methods still suffer quite complex design
and are not computation efficient enough. In this paper,
we propose a simplified linear attention (SLA) which is
formulated as follow:

SimSLA (Qi,Kj) = ReLU (Qi)ReLU (Kj)
T ,

Õi =

N∑
j=1

SimSLA(Qi,Kj)∑
j SimSLA(Qi,Kj)

Vj ,

OSLA= Õ +DWC(V ),

(9)

where DWC(·) denotes a depth-wise convolution. It is a
simple yet efficient linear attention since it also enjoys the
decoupling computation order by computingKTV first, and
leads to great complexity reduction. Moreover, only ReLU
function and depth-wise convolution are explored and both
operations are computation friendly in most hardware.

To demonstrate that our method still maintains feature diver-
sity, we visualize the effect of attention map on DeiT-T that
applied the strategy of progressive re-parameterized Batch-
Norm and simplified linear attention (SLAB), as shown in
Figure 3. It can be find that a high rank is still kept for
our proposed method, demonstrating its good capacity for
capturing attention information.

5. Experiments
In this section, we evaluate our method on various computer
vision tasks including image classification, object detection
and instance segmentation and also on language model-
ing task. We conduct extensive experiments for various
backbones with our proposed progressive re-parameterized
BatchNorm and simplified linear attention module. We train
our model on ImageNet-1K (Deng et al., 2009) for image

classification, and evaluate the effect of object detection and
instance segmentation tasks on COCO dataset (Lin et al.,
2014). At last, we ablate the important design elements of
our proposed method on classification task.

5.1. Image Classification

Settings. For image classification, we adhere to the con-
figuration outlined in (Touvron et al., 2021). We train all
models for 300 epochs with AdamW optimizer, incorporat-
ing a cosine decay learning rate scheduler with 20 epochs
of linear warm-up. The batch size is set to 1024, the initial
learning rate is 0.001, and the weight decay value is 0.05.
In the case of models utilizing the proposed progressive
re-parameterized BatchNorm, a reduced droppath (Lars-
son et al., 2016) rate is applied. The linear decay steps
T for PRepBN slightly varies across different backbones.
Due to the variance shift induced by droppath, we freeze
the model parameters and exclusively update the statistics
of re-parameterized BatchNorm for 10 epochs at the end
of training. We also demonstrate the effectiveness of our
method with both progressive re-parameterized BatchNorm
and simplified linear attention. We follow the setting of
(Han et al., 2023) on macro architecture design and train-
ing. All reported results of throughput/latency are obtained
on a single V100 GPU. For classification task, we mea-
sure FLOPs as well as the throughput/latency for the image
resolution of 224×224.

Results on image classification task. Table 1 presents the
results of different backbones with our PRepBN normal-
ization. Our proposed PRepBN demonstrates comparable
or even superior performance when compared with Layer-
Norm. More specifically, the models using our PRepBN
as normalization layer exhibit performance improvements
ranging from 0.1% to 1.4%. Notably, PRepBN is amenable
to fusion with other linear operations, allowing it to obtain
more efficient inference. We further compare our method
with BN+FFNBN (Yao et al., 2021) which also aims to train
transformer model with BatchNorm. It can be seen that
our PRepBN achieves consistent improvements on different
backbones. For example, our proposed PRepBN achieves
80.2% top-1 accuracy on DeiT-S model, which is 1.4% bet-
ter than the BN+FFNBN method. For swin transformer, our
PRepBN brings +0.5%, +0.4% and +0.5% accuracy gain
than BN+FFNBN on Swin-T, Swin-S and Swin-B models.
As shown in Figure 4, we present a comparative analysis
of our method across DeiT-based, PVT-based, and Swin-
based models. It is evident that transformers equipped with
our PRepBN achieve higher throughput while maintaining
similar accuracy levels.

Table 2 presents the performance of our SLAB trans-
former, which is powered by our proposed progressive re-
parameterized BatchNorm and simplified linear attention
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Table 1. Comparison of different normalizations for various transformer architectures on ImageNet1K.

Method Normalization FLOPs (G) Throughput Top-1 Acc. (%)

DeiT-T (Touvron et al., 2021) LN (Default) 1.3 3432 72.2
PRepBN (Ours) 1.3 4194 73.6

DeiT-S (Touvron et al., 2021)
LN (Default) 4.6 952 79.8
BN+FFNBN (Yao et al., 2021) 4.6 990 78.8
PRepBN (Ours) 4.6 990 80.2

PVT-T (Wang et al., 2021) LN (Default) 1.9 1500 75.1
PRepBN (Ours) 1.9 1756 76.0

PVT-S (Wang et al., 2021) LN (Default) 3.8 814 79.8
PRepBN (Ours) 3.8 911 80.1

PVT-M (Wang et al., 2021) LN (Default) 6.7 520 81.2
PRepBN (Ours) 6.7 556 81.7

Swin-T (Liu et al., 2021)
LN (Default) 4.5 740 81.3
BN+FFNBN (Yao et al., 2021) 4.5 805 80.9
PRepBN (Ours) 4.5 805 81.4

Swin-S (Liu et al., 2021)
LN (Default) 8.7 421 83.0
BN+FFNBN (Yao et al., 2021) 8.7 452 82.8
PRepBN (Ours) 8.7 452 83.2

Swin-B (Liu et al., 2021)
LN (Default) 15.4 274 83.5
BN+FFNBN (Yao et al., 2021) 15.4 284 83.1
PRepBN (Ours) 15.4 284 83.6
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Figure 4. Comparisons of accuracy and throughput for different methods on ImageNet1k.

module. We compare our model with Flatten transformer,
which utilizes focused linear attention for higher efficiency.
Experiments on various architectures including DeiT (Tou-
vron et al., 2021), PVT (Wang et al., 2021), CSwin (Dong
et al., 2022) and Swin (Liu et al., 2021) demonstrate than
our SLAB transformer obtains better performance than
Flatten transformer. More specifically, our SLAB-Swin-
T model obtains 83.6% top-1 accuracy on ImageNet-1K
with 16.2ms latency, which is 2.4ms less than that of Flatten-
Swin with 0.1% higher accuracy. Our models are more com-
putational efficient mainly due to more hardware friendly
normalization layers as well as the simplified linear atten-
tion module. Figure 1 also shows the trade-off between
accuracy and latency of our SLAB transformer, Flatten tran-
former (Han et al., 2023) and the original Swin transformer,
which demonstrate better performance of our model.

5.2. Object Detection

Settings. We use Mask R-CNN (He et al., 2017) to evaluate
the effectiveness of our method on COCO dataset for object
detection and instance segmentation tasks. The backbones
used in Mask R-CNN are pretrained on ImageNet-1K. All
models are trained for 1× schedule, i.e., 12 epochs. The
latency is measured with a batch size of 1 on V100 GPU for
a average value of 100 rounds.

Results on object detection task. We compare our pro-
posed PRepBN with standard LayerNorm for various back-
bones including Swin and PVT for object detection task.
The results are shown in Table 3. It reveals that our method
achieves quite comparable performance with original mod-
els equipped with LayerNorm. Taking advantages of offline
normalization, the models with our proposed PRepBN ob-
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Table 2. Comparison of different linear transformers on ImageNet1K.

Method FLOPs (G) Latency (ms) Top-1 Acc. (%)

Flatten-DeiT-T (Han et al., 2023) 1.1 15.2 74.1%
SLAB-DeiT-T (Ours) 1.1 9.6 74.3%
Flatten-DeiT-S (Han et al., 2023) 4.4 15.5 80.4%
SLAB-DeiT-S (Ours) 4.4 10.4 80.0%

Flatten-PVT-T (Han et al., 2023) 2.0 10.8 77.8%
SLAB-PVT-T (Ours) 2.0 8.0 76.5%

Flatten-CSwin-T (Han et al., 2023) 4.3 32.4 83.1%
SLAB-CSwin-T (Ours) 4.3 29.3 82.8%

Flatten-Swin-T (Han et al., 2023) 4.5 10.9 82.1%
SLAB-Swin-T (Ours) 4.5 8.7 81.8%
Flatten-Swin-S (Han et al., 2023) 8.8 18.6 83.5%
SLAB-Swin-S (Ours) 8.7 16.2 83.6%

Table 3. Mask R-CNN Object Detection & Instance Segmentation on COCO.

Method Schd. Lat. (ms) APb AP b
50 AP

b
75 AP

b
s AP

b
m AP b

l APm APm
50 AP

m
75 AP

m
s APm

m APm
l

Swin-T (Liu et al., 2021) 1× 51.0 43.1 66.0 47.0 27.3 46.4 56.0 39.4 62.8 42.0 23.0 42.9 53.7
Swin-T-PRepBN (Ours) 1× 43.0 42.9 65.8 46.8 27.7 46.2 55.4 39.3 62.6 41.9 23.1 42.8 53.6

Swin-S (Liu et al., 2021) 1× 63.1 46.2 68.7 50.9 30.2 49.7 60.8 41.7 65.6 44.5 25.1 45.5 57.3
Swin-S-PRepBN (Ours) 1× 57.3 45.9 68.4 50.2 29.8 49.3 60.2 41.4 65.0 44.7 24.9 44.9 57.0

PVT-T (Wang et al., 2021) 1× 46.0 36.6 58.9 39.2 21.3 38.9 48.9 34.9 56.2 37.0 19.6 37.2 48.2
PVT-T-PRepBN (Ours) 1× 43.2 36.5 59.0 39.2 20.9 38.4 50.1 34.4 55.7 36.5 18.7 36.3 48.9

PVT-S (Wang et al., 2021) 1× 64.0 40.5 63.2 44.1 23.4 43.4 54.9 37.9 60.2 40.6 20.8 40.6 52.6
PVT-S-PRepBN (Ours) 1× 59.6 40.6 63.3 43.9 24.4 43.1 55.4 38.0 60.6 40.5 21.4 40.5 53.5

Flatten-Swin-T (Han et al., 2023) 1× 60.0 44.2 67.3 48.5 29.4 47.5 57.0 40.2 63.8 43.0 24.5 43.8 54.7
SLAB-Swin-T (Ours) 1× 54.1 43.9 66.5 48.1 28.6 47.4 56.7 40.1 63.3 43.1 24.3 43.8 54.2
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Figure 5. Comparison of different normalization on COCO.

tain lower inference latency. For example, the latency of
Mask R-CNN exhibits a reduction from 64ms to 59.6ms
when PVT-S backbone is equipped with our PRepBN and
the accuracy for object detection and instance segmentation
is similar. A more clear visualization for the trade-off be-
tween mAP and latency is also presented in Figure 5, which
demonstrates that our proposed method achieves better over-
all performance on object detection.

5.3. language modeling

Settings. We also evaluate our proposed method on lan-
guage modeling task based on Adaptive Inputs (Baevski &
Auli, 2018). We train our models on the Wikitext-103 (Mer-
ity et al., 2016) dataset, which contains over 100 million
tokens. We set the number of tokens per GPU to 4096 and
train on 8 GPUs. The number of tokens per sample is limit
to 512. We also apply our method on LLaMA-350M model,
following the similar architecture and training settings as
prior work (Yang et al., 2023; He et al., 2024).

Results on language modeling task. As shown in Ta-
ble 4, our PRepBN achieves similar perplexity with the
model equipped with LayerNorm, while the latency reduces
from 13.9 ms to 12.9 ms per token. Besides, We apply
our PRepBN on more modern large language models such
as LLaMA, which adopts the variant of LayerNorm that
removes the computation of mean values, i.e., RMSNorm.
As shown in Table 5, our method successfully boost the
throughput from 44.0 to 50.4 tokens per second on V100
GPU, and obtains even slightly better average accuracy.
These results demonstrate the effectiveness of our proposed
PRepBN on language modeling task.
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Table 4. Results of perplexity on Wikitext-103 dataset. 256/480 indicate evaluation context window sizes.

Model # Param. 256 480 Inference Time(ms/t)Val. Test Val. Test

Adaptive Inputs w/ LN 247M 19.5 20.2 19.3 20.0 13.9
Adaptive Inputs w/ PRepBN (Ours) 247M 19.2 20.0 19.1 19.8 12.9

Table 5. Experimental results of the proposed method for LLaMA-350M on various benchmarks.

Model Throughput ARC-C ARC-E BoolQ COPA HellaSwag PIQA WinoGrande OpenBookQA SciQ Avg.

LLaMA-350M 44.0 22.95 46.13 59.27 64 33.19 64.36 49.09 29.6 75.3 49.32
w/ PRepBN (Ours) 50.4 23.55 44.44 60.67 66 32.76 64.04 49.72 30.0 76.8 49.78

Table 6. Ablation studies for the impact of simplified linear atten-
tion and progressive re-parameterized BatchNorm.

Method FLOPs Lat. (ms) Acc. (%)

Flatten-DeiT-T 1.1 G 15.2 74.1
+ SLA 1.1 G 10.2 73.0
+ SLA + PRepBN 1.1 G 9.6 74.3

Flatten-PVT-T 2.0 G 10.8 77.8
+ SLA 2.0 G 8.5 75.2
+ SLA + PRepBN 2.0 G 8.0 76.5

Flatten-Swin-T 4.5 G 10.9 82.1
+ SLA 4.5 G 9.5 81.9
+ SLA + PRepBN 4.5 G 8.7 81.8

Flatten-Swin-S 8.8 G 18.6 83.5
+ SLA 8.8 G 18.0 83.4
+ SLA + PRepBN 8.7 G 16.2 83.6

5.4. Ablation Studies

In this section, we conduct extensive ablation studies to
demonstrate the impact of our key designs.

The impact of SLA and PRepBN. We first explore the im-
pact of the simplified linear attention (SLA) module and
progressive re-parameterized BatchNorm (PRepBN) on dif-
ferent backbones. As shown in Table 6, utilizing our simpli-
fied linear attention (SLA) brings consistent improvement
for efficiency. For DeiT and PVT, our SLA obtains signifi-
cant latency reduction and a few accuracy drop. Moreover,
Swin transformers equipped with our SLA achieve quite
comparable accuracy with that of original ones but with
lower latency. In addition, the latency could be further
reduced by replacing LayerNorm by our proposed progres-
sive re-parameterized BatchNorm (PRepBN). This strategy
hardly affects the accuracy and even recover the accuracy of
model like DeiT and PVT. Combining these two strategies,
the latency is reduced by 5.6 ms when the accuracy is im-
proved by 0.2% for DeiT-T. Moreover, our method obtains
similar accuracy and harvests 2.2 ms and 2.4 ms latency
reduction for Swin-T and Swin-S models.

Ablation study for PRepBN. We investigate key compo-
nents of our proposed PRepBN, i.e., the progressive strategy
and re-parameterized BatchNorm (RepBN). Directly train-

Table 7. Ablation studies for the impact of progressive strategy and
re-parameterized BatchNorm.

Method Acc. (%)

DeiT-T-BN 71.9
+ Progressive Strategy 73.1
+ Progressive Strategy + RepBN 73.6

ing a BatchNorm-based transformer leads to quite unstable
training, either obtaining inferior performance or collapse in
training (e.g., DeiT-S and Flatten-Swin-T). To avoid the vari-
ance shift (Li et al., 2019) caused by droppath, which will
influence the performance of BatchNorm, we simply set the
droppath rate to 0 on DeiT-T model. As shown in Table 7,
applying progressive strategy on a BatchNorm-based DeiT-
T model brings 1.2% accuracy gain. We further utilize our
RepBN in the model and the accuracy increases to 73.6%.
These results demonstrate that both our proposed progres-
sive strategy and re-parameterized BatchNorm (RepBN) are
beneficial for training a pure BatchNorm-based transformer.

6. Conclusion
In this paper, we investigates the computational bottleneck
modules of transformer and propose novel strategies includ-
ing progressive Re-parameterized BatchNorm and simpli-
fied linear attention to obtain efficient transformer architec-
tures. Our method progressively replace LayerNorm with
re-parameterized BatchNorm during training to obtain loss-
less accuracy, while leveraging the efficiency advantages of
BatchNorm during inference. Additionally, we devise a sim-
plified linear attention mechanism that attains comparable
performance with other linear attention methods but with
less computational cost. Through extensive experiments
for both computer vision and language modeling tasks, we
showcase that our method achieves stronger performance
with respect to accuracy and efficiency than prior methods
and sheds light into the design of efficient transformer.
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A. Detailed hyper-parameter settings.
The detailed hyper-parameter settings are provided in Table A1. For image classification, we follow the setting of
DeiT (Touvron et al., 2021). We use AdamW as our default optimizer and train all of model for 300 epochs with a cosine
decay learning rate scheduler and 20 epochs of linear warm-up. The batch size is set to 1024, an initial learning rate is
0.001, and the value of weight decay is 0.05. For model used proposed progressive re-parameterized BatchNorm, we employ
an smaller rate of droppath (Larsson et al., 2016). Owing to the variance shift caused by droppath, We freeze the model
parameters and only update the statistics of re-parameterized BatchNorm for 10 epochs at the end of training.

Table A1. The settings of hyperparameters on different models for image classification task.
Name DeiT-T DeiT-S PVT-T PVT-S PVT-M Swin-T Swin-S Swin-B

Epoch 300 300 300 300 300 300 300 300
Batch Size 1024 1024 1024 1024 1024 1024 1024 1024
Learning rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
Warmup Steps 20 20 20 20 20 20 20 20
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW AdamW
Droppath Rate 0.0 0.0 0.0 0.1 0.3 0.1 0.3 0.3
Linear Decay Steps 0 3e5 0 3e5 3e5 0 3e5 3e5

B. Combination with post-quantization method.
Our method focuses on replacing LayerNorm with BatchNorm to obtain inference speed-up without performance degradation.
It is a complementary strategy with common model compression methods like weight quantization, pruning or distillation
and these methods can be combined to achieve a better performance. As a proof of concept, we conduct post-quantization
using RepQ-ViT (Li et al., 2023) on DeiT-Tiny model that is trained with our PRepBN strategy. As shown in the below
table, applying W8A8 quantization on top of our method still achieves the accuracy of 73.6%, while further reducing the
computational cost to only 0.33 GFLOPs. This demonstrates that our method can be effectively combined with other
compression methods such as quantification.

Table A2. The settings of hyperparameters on different models for image classification task.
Method FLOPs (G) Throughput (images/s) Top-1 Acc (%)

DeiT-T 1.3 3432 72.2
w/ PRepBN (Ours) 1.3 4194 73.6
w/ PRepBN (Ours) + RepQ-ViT (W8A8) 0.33 - 73.6
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