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Abstract: Collision-free motion generation in unknown environments is a core
building block for robot manipulation. Generating such motions is challenging
due to multiple objectives; not only should the solutions be optimal, the motion
generator itself must be fast enough for real-time performance and reliable enough
for practical deployment. A wide variety of methods have been proposed ranging
from local controllers to global planners, often being combined to offset their
shortcomings. We present an end-to-end neural model called Motion Policy Net-
works (MπNets) to generate collision-free, smooth motion from just a single depth
camera observation. MπNets are trained on over 3 million motion planning prob-
lems in more than 500,000 environments. Our experiments show that MπNets are
significantly faster than global planners while exhibiting the reactivity needed to
deal with dynamic scenes. They are 46% better than prior neural planners and
more robust than local control policies. Despite being only trained in simulation,
MπNets transfer well to the real robot with noisy partial point clouds. Videos and
code are available at https://mpinets.github.io.
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Figure 1: MπNets are trained on a large dataset of synthetic demonstrations (left) and can solve
complex motion planning problems using raw point cloud observations (right).

1 Introduction

Generating fast and legible motions for a robotic manipulator in unknown environments is still an
open problem. Decades of research have established many well-studied algorithms, but there are
two practical issues that prevent motion planning methods from being widely adopted in industrial
applications and home environments that require real-time control. First, it is challenging for any
single approach to satisfy multiple planning considerations: speed, completeness, optimality, ease-
of-use, legibility (from the perspective of a human operator), determinism, and smoothness. Second,
existing approaches enforce strong assumptions about the visual obstacle representations—such as
accurate collision checking in configuration space [1] or the availability of a gradient [2, 3, 4]—and
hence require expensive intermediate processing of sensor readings to operate in novel scenes.
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Some planners, such as RRT [5], are useful to quickly find a feasible path. Other methods are
useful to find an optimal path, either deterministically on discrete graphs [6, 7] or asymptotically
in continuous spaces [8, 9]. Some planning techniques use Neural Networks [10, 11] to improve
sampling efficiency, thus speeding up the planning process. Optimization-based methods [2, 3] are
useful to encode other objectives, such as smoothness, at the expense of guarantees. Going further,
recent motion generation frameworks [4, 12] eschew long-term reasoning in exchange for quick
local decisions under the assumption that they will lead to globally acceptable paths.

Each of these methods requires a known environment model and perfect state estimation. In practice,
one would have to create a scene representation, which could be a static or dynamic mesh, an
occupancy grid [11, 13], a signed distance field, etc. Reconstruction systems such as SLAM and
KinectFusion [14] have a large system start-up time, require a moving camera to aggregate many
viewpoints, and ultimately require costly updates in the presence of dynamic objects. Recent implicit
deep learning methods like DeepSDF [15] and NeRF [16] are slow or do not yet generalize to novel
scenes. Methods such as SceneCollisionNet [17] provide fast collision checks but have not yet been
shown to generalize to challenging environments beyond a tabletop. Other RL-based methods learn
a latent representation from observations but have only been applied to simple 2D [18, 19] or 3D [20]
environments in simulation.

We present Motion Policy Networks (MπNets), a novel method for learning an end-to-end policy for
motion planning. Our approach circumvents the challenges of traditional motion planning and is
flexible enough to be applied in unknown environments. Our contributions are as follows:

• We present a large-scale effort in neural motion planning for manipulation. Specifically, we
learn from over 3 million motion planning problems across over 500,000 instances of three
types of environments, nearly 300x larger than prior work [10].

• We train a reactive, end-to-end neural policy that operates on point clouds of the environment
and moves to task space targets while avoiding obstacles. Our policy is significantly faster than
other baseline configuration space planners and succeeds more than local task space controllers.

• On our challenging dataset benchmarks, we show that MπNets is nearly 46% more successful
at finding collision-free paths than prior work [10] without even needing the full scene collision
model.

• Finally, we demonstrate sim2real transfer to real robot partial point cloud observations.

2 Related Work

Global Planning: Robotic motion planning typically splits into three camps: search, sampling, and
optimization-based planning. Each algorithmic family has benefits and drawbacks. Search-based
planning algorithms, such as A* [6, 7, 21] are complete, fast, and optimal in discrete domains.
Sampling-based methods, e.g. [5, 8], operate in continuous domains, but are only probabilistically
complete, i.e. find a solution with probability 1. Some such methods are also asymptotically optimal
[8, 22, 9], but within practical time limitations produce sub-optimal—and sometimes erratic—paths.
Motion Optimization [2, 3, 23] can produce smooth paths to a goal but is prone to local minima.
Without careful system design, often on a per-task basis, Motion Optimization can fail to find the
optimal solution or sometimes any solution at all. See Appendix A for a deeper discussion on the
varying advantages and disadvantages of each algorithmic family.

Local Control: In contrast to global planners, local controllers have long been applied to create
collision-free motions [24, 25, 4, 12]. While they prioritize speed and smoothness, they are highly
local and may fail to find a valid path in complex environments. We demonstrate in our experiments
that MπNets are more effective at producing convergent motions in these types of environments,
including in dynamic and in partially observed settings.

Imitation Learning: Imitation Learning [26] can train a policy from expert demonstrations with
limited knowledge of the expert’s internal model. For motion planning problems, we can apply
imitation learning and leverage a traditional planner as the expert demonstrator—with a perfect
model of the scene during training—and learn a policy that forgoes the need for an explicit scene
model at test time. Popular imitation learning methods include Inverse Reinforcement Learning
[27, 28, 29] and Behavior Cloning [30, 31]. See Appendix A for a more detailed discussion of these
methods and their trade-offs. Our method seeks to overcome the common challenges of Behavior
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Cloning by specifically designing a learnable expert, increasing the scale and variation of the data,
and using a sufficiently expressive policy model.

Neural Motion Planning: Many deep planning methods [11, 32, 33, 34] seek to learn efficient sam-
plers to speed up traditional planners. Motion Planning Networks (MPNets) [10] learn to directly
plan through imitation of a standard sampling-based RRT* planner [8] and is used in conjunction
with a traditional planner for stronger guarantees. While these works greatly improve the speed of
the planning search, they have the same requirements as a standard planning system: targets in con-
figuration space and an explicit collision checker to connect the path. Our work operates based on
task-space targets and perceptual observations from a depth sensor without explicit state estimation.

Novel architectures have been proposed, such as differentiable planning modules in Value Iteration
Networks [19], transformers by Chaplot et al. [35] and goal-conditioned RL policies [36]. These
methods are challenging to generalize to unknown environments or have only been shown in simple
2D [18] or 3D settings [20]. In contrast, we illustrate our approach in the challenging domain of
controlling a 7 degrees of freedom (DOF) manipulator in unknown, dynamic environments.

3 Learning from Motion Planning

3.1 Problem Formulation

MπNets expect two inputs, a robot configuration qt and a segmented, calibrated point cloud zt.
Before passing qt through the network, we normalize each element to be within [−1, 1] according
to the limits for the corresponding joint. We call this q‖·‖t . The point cloud is always assumed to be
calibrated in the robot’s base frame, and it encodes three segmentation classes: the robot’s current
geometry, the scene geometry, and the target pose. Targets are inserted into the point cloud via
points sampled from the mesh of a floating end effector placed at the target pose.

The network produces a displacement within normalized configuration space q̇‖·‖t . To get the next
predicted state q̂t+1, we take q‖·‖t + q̇

‖·‖
t , clamp between [−1, 1], and unnormalize. During training,

we use q̂t+1 to compute the loss, and when executing, we use q̂t+1 as the next position target for the
robot’s low-level controller.

3.2 Model Architecture

Figure 2: MπNets encodes state as a normalized robot configuration and segmented point cloud
with three classes for the robot, the obstacles, and the target. The policy outputs a displacement in
normalized joint space, which can then be applied to the input before unnormalizing to get qt+1.

The network consists of two separate encoders, one for the point cloud and one for the robot’s
current configuration, as well as a decoder, totaling 19M parameters. Our neural policy architecture
is visualized in Fig. 2. We use PointNet++ [37] for our point cloud encoder. PointNet++ learns
a hierarchical point cloud representation and can encode a point cloud’s 3D geometry, even with
high variation in sampling density. PointNet++ architectures have been shown to be effective for
a variety of point cloud processing tasks, such as segmentation [37], collision checking [17], and
robotic grasping [38, 39]. Additionally, PointNet++ includes PointNet as a subcomponent. PointNet
is effective at processing partially observed point clouds, even when trained exclusively with fully-
observed scenes [40]. The robot configuration encoder and the displacement decoder are both fully
connected multilayer perceptrons. We discuss the architecture in detail in Appendix D.
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3.3 Loss Function

The network is trained with a compound loss function with two constituent parts: a behavior cloning
loss to enforce accurate predictions and a collision loss to safeguard against catastrophic behavior.

Geometric Loss for Behavior Cloning To encourage alignment between the prediction and the
expert, we compute a geometric loss across a set of 1,024 fixed points along the surface of the robot.

LBC(∆̂qt) =
∑
i

‖x̂it+1 − xit+1‖2 + ‖x̂it+1 − xit+1‖1, where
x̂it+1 = φi(qt + ∆̂qt)

xit+1 = φi(qt+1)
(1)

φi(·) represents a forward kinematics mapping from the joint angles of the robot to point i defined
on the robot’s surface. The loss is computed as the sum of the L1 and L2 distances between cor-
responding points on the expert and the prediction after applying the predicted displacement. By
using both L1 and L2, we are able to penalize both large and small deviations.

We use a geometric, task-space loss because our goal is to ensure task-space consistency of our
policy. Configuration space loss appears in prior work [10], but does not capture the accumulated
error of the kinematic chain as effectively (see Appendix K).

Collision Loss In order to avoid collisions–a catastrophic failure–we apply an additional hinge-
loss inspired by motion optimization [41].

Lcollision =
∑
i

∑
j

‖hj(x̂it+1)‖2, where hj(x̂it+1) =

{
−Dj(x̂

i
t+1), if Dj(x̂

i
t+1) ≤ 0

0, if Dj(x̂
i
t+1) > 0

(2)

The synthetic environments are fully-observable during training, giving us access to the signed-
distance functions (SDF), {Dj(·)}j , of the obstacles in each scene. For a given closed surface, its
SDF maps a point in Euclidean space to the minimum distance from the point to the surface. If the
point is inside the surface, the function returns a negative value.

4 Procedural Data Generation

4.1 Large-scale Motion Planning Problems

Each planning problem is defined by three components: the scene geometry, the start configuration,
and the goal pose. Our dataset consists of randomly generated problems across all three components,
totaling 3.27 million problems in over 575, 000 environments. We have three classes of problems of
increasing difficulty: a cluttered tabletop with randomly placed objects, cubbies, and dressers. Rep-
resentative examples of these environments are shown in Fig. 1. Once we build these environments,
we generate a set of potential end-effector targets and corresponding inverse kinematics solutions.
We then randomly choose pairs of these configurations and verify if a plan exists between them
using our expert pipeline, as detailed further in Sec. 4.2 and in Appendix E.

4.2 Expert Pipeline

Our expert pipeline is designed to produce high-quality demonstrations we want to mimic, i.e. tra-
jectories with smooth, consistent motion and short path lengths. Here, consistency is meant to
describe quality and repeatability of an expert planner—see Appendix C for further discussion. We
considered two candidates for the expert - the Global Planner which is a typical state-of-the-art
configuration space planning pipeline [42] and a Hybrid Planner that we engineered specifically to
generate consistent motion in task space. For both planners, we reject any trajectories that produce
collisions, exceed the joint limits, exhibit erratic behavior (i.e. high jerk), or that have divergent
motion (i.e. final task space pose is more than 5cm from the target).

Global Planner consists of off-the-shelf components of a standard motion planning pipeline–inverse
kinematics (IK) [43], configuration-space AIT* [42], and spline-based, collision-aware trajectory
smoothing [44]. For a solvable problem, as the planning time approaches infinity, IK will find a valid
solution and AIT* will produce an optimal collision-free path, both with probability 1. Likewise,
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with continuous collision checking, the smoother will produce a smooth, collision-free path. In
practice, our dataset size goal—we generated 6.54M trajectories across over 773K environments—
dictated our computation budget and we tuned the algorithms according to this limit. We attempted
IK at most 1,000 times, utilized an AIT* time out of 20s, and employed discrete collision checking
when smoothing. Most commonly, the pipeline failed when AIT* timed out or when, close to
obstacles, the smoother’s discrete checker missed a collision, thereby creating invalid trajectories.

Hybrid Planner is designed to produce consistent motion in task space. The planner consists of
task-space AIT* [42] and Geometric Fabrics [4]. AIT* produces an efficient end effector path
and Geometric Fabrics produce geometrically consistent motion. The end effector path acts as a
dense sequence of waypoints for a sequence of Geometric Fabrics, but as the robot moves through
the waypoints, the speed can vary. To promote smooth configuration space velocity over the final
trajectory, we fit a spline to the path and retime it to have steady velocity. As we discuss in Sec. 5.1,
Geometric Fabrics often fail to converge to a target, so we redefine the planning problem to have the
same target as the final position of the trajectory produced by the expert. Inspired by [45], we call
this technique Hindsight Goal Revision (HGR) and demonstrate its importance in Sec. 5.4. Using
the Hybrid Planner, we generated 3.27 million trajectories across 576,532 environments.

5 Experimental Evaluation

We evaluate our method with problems generated from the same distribution as the training set. See
Appendix E for more detail on the procedural generation and random distribution. Within the test
set, each problem has a unique, randomly generated environment, as well as a unique target and
starting configuration. None of the test environments, starting configurations, nor goals were seen
by the network during training. Our evaluations were performed on three test sets: a set of problems
solvable by the Global Planner, problems solvable by the Hybrid Planner, and problems solvable
by both. Each test set has 1,800 problems, with 600 in each of the three types of environments.

Quantitative Metrics: To understand the performance of a policy, we roll it out until it matches
one of two termination conditions: 1) the Euclidean distance to the target is within 1cm or 2) the
trajectory has been executed for 20 s (based on consultations with the authors of [4] and [12]). We
consider the following metrics (see Appendix H for details):

• Success Rate - A trajectory is considered a success if its final position and orientation target
errors are below 1 cm and 15° respectively and there are no physical violations.

• Time - We measure the wall time for each successful trajectory. We also measure Cold Start
(CS) Time, the average time to react to a new planning problem.

• Rollout Target Error - The L2 position and orientation error (taken from [46]) between the
target and final end-effector pose in the trajectory.

• Collision Rate - The rate of fatal collisions, both self and scene collisions

• Smoothness - We use Spectral Arc Length (SPARC) [47] and consider a path to be smooth if
its SPARC values in joint and end-effector space are below −1.6.

5.1 Comparison to Methods With Complete State

Most methods to generate motion in the literature assume access to complete state information in
order to perform collision checks. In each of the following experiments, we provide each baseline
method with an oracle collision checker. When running MπNets, we use a point cloud sampled
uniformly from the surface of the entire scene. Results are shown in Table 1.

Global Configuration Space Planner The Global Planner is unmatched in its ability to reach a
target, but this comes at the cost of average computation time (16.46s) compared to MπNets (0.33s).
With a global planner, there is no option to partially solve a problem, meaning the Cold Start Time
is equal to the planning time. In a real system, optimizers [2, 3, 48] could be used to quickly
replan once an initial plan has been discovered. As discussed in Sec. 4.2, the Global Planner is
theoretically complete but fails in practice on some of the Hybrid Planner-solvable problems due to
system timeouts and discrete collision checking during smoothing.
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Success Rate (%)

Soln. Time (s) CS Time (s) Global Hybrid Both Smooth (%)

Global Planner [42] 16.46± 0.90 16.46± 0.90 100 78.44 100 51.00
Hybrid Planner 7.37± 2.23 7.37± 2.23 50.22 100 100 99.26

G. Fabrics [4] 0.15± 0.09 2.4e94± 3e95 38.44 59.33 60.06 85.39
STORM [12] 4.03± 1.89 13.4e93± 2.2e93 50.22 74.50 76.00 62.26

MPNets [10]
Hybrid Expert 4.95± 23.51 4.95± 23.51 41.33 65.28 67.67 99.97
Random 0.31± 3.55 0.31± 3.55 32.89 55.33 58.17 99.96

MπNets (Ours)
Global Expert 0.33± 0.08 6.8e93± 7e95 75.06 80.39 82.78 89.67
Hybrid Expert 0.33± 0.08 6.8e93± 7e95 75.78 95.33 95.06 93.81

Table 1: Algorithm performance on problems sets solvable by planner types. All prior methods use
state-information and a oracle collision checker while MπNets only needs a point cloud

Evaluation Set

Training Set MPNets-Style Hybrid Expert Solvable (Ours)

MPNets [10] MPNets-Style 78.70 49.89
MπNets (Ours) MPNets-Style 33.70 5.50

MPNets [10] Hybrid Expert 88.90 65.28
MπNets (Ours) Hybrid Expert 89.50 95.33

Table 2: Success rates (%) of our method compared to Motion Planning Networks (MPNets) [10]
trained and evaluated on different datasets

Hybrid End-Effector Space Planner Our Hybrid Planner struggles with a large proportion of
problems solvable by the Global Planner. Yet, its solutions are both faster and smoother than the
Global Planner. Surprisingly, MπNets trained with data from the expert outperformed the expert
on the Global Planner-solvable test set. We attribute this to two features: 1) we use strict rejection
sampling to reduce erratic and divergent behavior in our expert dataset and train only on the filtered
data and 2) our use of Hindsight Goal Revision to turn an imperfect expert into a perfect one.

Neural Motion Planning Motion Planning Networks (MPNets) [10] proposed a similar method
for neural motion planning, but there are a few key differences in both problem setup and system
architecture. MPNets requires a ground-truth collision checker to connect sparse waypoints, plans
in configuration space, and is not reactive to changing conditions. In the architecture, MPNets uses
a trained neural sampler within a hierarchical bidirectional planner. The neural sampler is a fully-
connected network that accepts the start, goal, and a flattened representation of the obstacle points
as inputs and outputs a sample. MPNets guarantees completeness by using a traditional planner as a
fallback if the neural sampler fails to produce a valid plan.

In addition to our data, we generated a set of tabletop problems, which we call MPNets-Style, akin
to the Baxter experiments in [10], in order to fairly compare the two methods. The results of this
experiment can be seen in Table 2. MπNets requires a large dataset that covers the space of test
problems to achieve compelling performance, while MPNets’ utilization of a traditional planning
system is much more effective with a small dataset or out-of-distribution problems. However, the
MPNets architecture does not scale to more complex scenes, even with more data, as we show
in Fig. 3. When trained and evaluated on the Hybrid Planner-solvable dataset, MPNets succeeds
in 65.28% of the test set, whereas MπNets succeeds in 95.33%, thus decreasing the failure rate
by 7X. Furthermore, as we show in Table 1, using the MPNets neural sampler trained with the
Hybrid Planner performs similarly to a uniform random sampler when both are embedded within
the bidirectional MPNets planner.
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% Within

% Env. Coll. % Self Coll. % Jnt Viol. 1cm 5cm 15° 30°

G. Fabrics [4] 8.61 0.11 0.44 69.89 75.17 83.44 85.11
STORM [12] 0.93 0.11 0.25 79.81 83.54 81.57 85.41

MπNets (Ours)
Hybrid Expert 0.94 0.00 0.00 98.94 99.72 98.22 99.00
Global Expert 13.78 0.06 0.00 98.67 99.89 97.56 99.11

Table 3: Failure Modes on problems solvable by both the global and hybrid planners

Local Task Space Controllers Unlike planners, which succeed or fail in a binary fashion, local
policies will produce individual actions that, when rolled out, may fail for various reasons. We break
down the various failure modes across the set of problems solvable by both experts in Table 3.

STORM [12] and Geometric Fabrics [4] make local decisions that can lead them to diverge from the
target in complex scenarios, such as cluttered environments or those with pockets. While STORM,
Geometric Fabrics, and MπNets are all local policies, STORM and Geometric Fabrics rely on human
tuning to achieve strong performance. Prior environment knowledge alongside expert tuning can
lead to phenomenal results, but these parameter values do not generalize. We used a single set of
parameters across all test environments just as we used a single set of weights for MπNets. MπNets
encodes long-term planning information across a wide variety of environments, which makes it less
prone to local minima, especially in unseen environments.

On problems solvable by the Hybrid Planner, MπNets ties or outperforms these other methods
across nearly all metrics (see Appendix Table 1). On the set of problems solvable by the Global
Planner, MπNets target convergence rate is consistently higher, while its collision rate (11%) is
worse than either STORM (1.94%) or Geometric Fabrics (7.83%) (see Appendix Table 2). Deteri-
orating performance on out-of-distribution problems is a typical downside of a supervised learning
approach such as MπNets. However, this could be improved with a more robust expert, e.g. one with
the consistency of our Hybrid Planner but the success rate of the Global Planner, with finetuning,
or with DAgger [49].

5.2 Importance of the Expert Pipeline

We observed that the choice of the expert pipeline affects the performance of MπNets. We trained
three policies: MπNets-G with 6.54M demonstrations from the Global Planner, MπNets-H with
3.27M demonstrations from the Hybrid Planner, and MπNets-C with 3.27M demonstrations from
each. MπNets-C did not exhibit improved performance over either MπNets-H or MπNets-G (see
Appendix K for discussion). When evaluated on a test set of problems solvable by the Global Plan-
ner, MπNets-G shows far better target convergence (97.94% vs. 87.72%) compared to MπNets-H
but worse obstacle avoidance (21.94% collision rate vs. 11%). Nonetheless, MπNets-H is sig-
nificantly better across all metrics when evaluated on problems solved by both experts as shown
in Table 3. We hypothesize that an expert combining the properties of these two–the consistency
of the Hybrid Planner and the generality of the Global Planner, would further improve MπNets’s
performance. We refer to MπNets-H as MπNets throughout the rest of the paper.

5.3 Comparison to Methods With Partial Observations

In addition to demonstrating MπNets’ performance on a real robot system, we also compared
MπNets to the Global Planner (AIT* [42]) in a single-view depth camera setting in simulation.
We evaluated on the test set of problems solvable by both the Global and Hybrid Planners. MπNets
only has a minor drop in success rate when using a partial point cloud vs. a full point cloud– from
95.06% to 93.22% though the collision rate increases from 0.94% to 3.06% due to occlusions. For
this experiment, we compared to the AIT* component of our Global Planner alone to minimize
false-positive solutions caused by the smoother’s discrete collision checker (see discussion in Sec-
tion 4.2). We used a voxel-based reconstruction akin to the standard perception pipeline packaged
with MoveIt [50]. In our implementation, a voxel is filled only if a 3D point is registered within it.
On the same test set using the voxel representation, AIT* produces plans with collisions on 16.41%
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of problems. In this setting, MπNets’s collision rate is over 5X smaller than that of the Global
Planner.

5.4 Ablations

Figure 3: MπNets performance continues to
increase with more training data, while MP-
Nets performance stays relatively constant

We perform several ablations to justify our design
decisions. All ablations were trained using the Hy-
brid Planner dataset and evaluated on the Hybrid
Planner-solvable test set. More ablations and details
can be found in Appendix K.

MπNets Performance Scales with More Data As
shown in Fig. 3, the performance of MπNets contin-
ues to improve with more data, although it saturates
at 1.1M. Meanwhile, MPNets [10] has constant per-
formance, demonstrating that our architecture is bet-
ter able to scale with the data.

Robot Point Representation Improves Perfor-
mance Instead of representing the robot by its con-
figuration vector, we insert the robot point cloud at
the specific configuration. Without this representation, the success rate decreases from 95.33% to
65.06%.

Hindsight Goal Revision Improves Convergence When trained without HGR, i.e. with the plan-
ner’s original target given to the network, we see 58.11% success rate vs. 95.33% when trained with
HGR. In particular, only 60.28% of trajectories get within 1cm of the target during evaluation.

Noise Injection Improves Robustness When we train MπNets without injecting noise into the
input qt, the policy performance decreases by 10.72%.

5.5 Real Robot Evaluation

We deployed MπNets on a 7-DOF Franka Emika Panda robot with an extrinsically calibrated Intel
Realsense L515 RGB-D camera mounted next to it. Depth measurements belonging to the robot
are removed and re-inserted using a 3D model of the robot before inference with MπNets. We
created qualitative open-loop demonstrations in static environments and closed-loop demonstrations
in dynamic ones. Rollouts are between 2 and 80 time steps long depending on the control loop
frequency. See Appendix M for system details. Results can be viewed at https://mpinets.github.io
and the attached video. As can be seen, MπNets can achieve sim2real transfer on noisy real-world
point clouds in unknown and changing scenes.

6 Limitations

While MπNets can handle a large class of problems, they are ultimately limited by the quality of
the expert supervisor and its need for a large, diverse dataset of training examples. Both generating
the data and training MπNets is computationally intensive, requiring access to equipment that is
both economically and environmentally expensive. It will also struggle to generalize to out-of-
distribution settings typical of any supervised learning approach. See Appendix N for a deeper
discussion on limitations and our plans for future work.

7 Conclusion

MπNets is a class of end-to-end neural policy policies that learn to navigate to pose targets in task
space while avoiding obstacles. MπNets show robust, reactive performance on a real robot system
using data from a single, static depth camera. We train MπNets with what is, as far as we are aware,
the largest existing dataset of end-to-end motion for a robotic manipulator. Our experiments show
that when applied to appropriate problems, MπNets are significantly faster than a global motion
planner and more capable than prior neural planners and manually designed local control policies.
Code and data are publicly available at https://mpinets.github.io.
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