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Abstract

The fields of code and natural language processing are evolving rapidly, with
models becoming better at processing long context windows — supported context
sizes have increased by orders of magnitude over the last few years. However,
there is a shortage of comprehensive benchmarks for code processing that go
beyond a single file of context, while the most popular ones are limited to a single
method. With this work, we aim to close this gap by introducing Long Code
Arena, a suite of six benchmarks for code processing tasks that require project-
wide context. These tasks cover different aspects of code processing: library-
based code generation, CI builds repair, project-level code completion, commit
message generation, bug localization, and module summarization. For each task,
we provide a manually verified dataset for testing, an evaluation suite, and open-
source baseline solutions based on popular LLMs to showcase the usage of the
dataset and to simplify adoption by other researchers. We publish the benchmark
page on HuggingFace Spaces with the leaderboard, links to HuggingFace Hub
for all the datasets, and link to the GitHub repository with baselines: https:
//huggingface.co/spaces/JetBrains-Research/long-code-arena.

1 Introduction

The Machine Learning for Software Engineering (ML4SE) domain has gained popularity over the
recent years, with increasingly more powerful models for text and code processing becoming available.
According to a recent survey [26], the most common MLA4SE tasks studied in the literature are code
generation, code completion, code summarization, and program repair. Unfortunately, the majority of
the existing benchmarks for assessing MLASE models have two major limitations: a short length of
the available context and a limited resemblance of the practical use cases [24}34].

Two common approaches in modern natural language processing (NLP) are retrieval-augmented
generation [[19] and utilization of long contexts [54]. Retrieval-augmented approaches [0, 31] can
base their predictions on information from large corpora of data using various search techniques,
while the development of new architectures [47, [18} [21]] and techniques [12} 5] allows models to
process tens of thousands or even millions of tokens. Both long-context and retrieval-augmented
models can in theory utilize information from an entire software project. However, most existing
MLA4SE benchmarks operate with short code snippets — methods or at most files. For example, two
most popular code generation datasets—HumanEval [8] and MBPP [4]—require models to process
fewer than 1,000 tokens and generate a short function, usually no more than 100 tokens long.

A new direction of agentic ML4SE benchmarks requires models to work with long contexts: SWE-
bench [32] and its variations [63} 161], Commit-O [66], MLE-Bench [7], and others. Yet, as such
benchmarks focus on agentic solutions, they require models to do function calling and planning as
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well, not only processing of long contexts. This makes them less suited for evaluation of processing
long context and evaluation of smaller models. Another type of existing ML4SE benchmarks that
operates with long code sequences is code completion at the repository level [38,164]]. Unfortunately,
the existing works do not account for the iterative nature of software development: while solving
the code completion task in a single file, the benchmarks allow models to use the rest of the project
without restrictions. At the same time, other parts of the project can be written after the studied file
and utilize its contents, giving the model hints that will not be present in the practical use-case.

In this work, we present Long Code Arena, a suite of novel benchmarks for ML4SE models that cover
six tasks: library-based code generation, CI builds repair, project-level code completion, commit
message generation, bug localization, and module summarization. We design all the tasks and datasets
in such a way that they require models to use information from a project module or the entire project
to successfully complete the task, yet don’t require complex multi-step interactions. For all the tasks,
samples used for evaluation are rigorously filtered and then manually verified to ensure the best
possible data quality. The data for all the tasks comes from open-source repositories with permissive
licenses. We also provide baseline solutions for all the tasks based on popular models, although this
work does not aim at solving the tasks — baselines are provided solely to aid future research. Further
work is required to identify the best approaches to individual tasks and better collection strategies.

We open-source the implementations of baselines, code for evaluation, and all the datasets via GitHub
and HuggingFace, with the links available from our HuggingFace Space: https://huggingface.
co/spaces/JetBrains-Research/long-code-arena.

2 Long Code Arena Benchmarks

Long Code Arena is a suite of six benchmarks that cover different aspects of code processing: gener-
ation, repair, completion, summarization, processing diffs. For each task, we gather an evaluation
dataset of around a hundred to a thousand examples that requires models to operate with source
code at the scale of a module or an entire repository. For most tasks, we focus on Python code due
to its popularity and to manually verify the correctness of the samples. However, the collection
methodology for all the tasks allows extending the benchmarks with more languages in the future.

All the datasets we collect in Long Code Arena are based on data from open-source GitHub repos-
itories — source code, commit history, issues, as well as build data from GitHub Actions. First,
we extract a common corpus of repositories for further processing. To do so, we get the list of
repositories via GitHub Search [[11] that pass the following filters used in other works to ensure the
quality of the data [33]]: at least 1,000 commits, at least ten contributors, issues, and stars, at least
10,000 lines of code, not a fork, last commit after 01.06.2023, and a permissive license (we use
the most popular permissive licenses [57] — MIT, Apache-2.0, BSD-3-Clause, and BSD-2-Clause).
After the filtering, we are left with 4,343 repositories that we then download via GitHub API along
with issues and pull requests data. For the CI builds repair task, we also retrieve GitHub Actions
logs for some repositories, which we describe in Appendix [C| The only task that we base on the
existing dataset is commit message generation, for which we find samples with large commits and
long commit messages in the recent CommitChronicle dataset [16].

After the initial data collection stage, we prepare evaluation datasets for each of the six tasks
separately. For this, we apply further task-specific filters to the collected data, and then manually
examine the samples to ensure their correctness. In the following two subsections, we present the
task description, data collection methodology, and the conducted experiments for library-based code
generation and project-level code completion. We choose these two tasks out of six as they require
different kinds of models: while code generation expects (possibly large) instruction-tuned models,
code completion requires smaller base models. The rest of the tasks put requirements on the models
similar to those of code generation. For them, we provide the task descriptions in Section and
further discuss data collection and experiments for each task in-depth in the Supplementary Materials
(Appendices|C] Dl [E] and[F) due to the tight space restrictions.

2.1 Library-based Code Generation

Task description. The first task we want to describe is a novel library-based code generation task.
Given a task description and access to the contents of a software library, the model should generate a
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single file that solves the task utilizing methods from the given library. The problem is motivated by
the need of programmers to write code that utilizes the present dependencies and in-project APIs
rather than adding new dependencies and increasing project complexity.

In contrast to library-based code generation, existing code generation benchmarks require models to
produce self-sufficient code snippets, such as solutions to algorithmic problems [8 4, 25], domain-
specific code [36]], one-liners [62], etc. Among the existing works, the setup of the library-based
code generation task is similar to repository-level code completion benchmarks that evaluate API
completion [38}[64]. Contrary to them, our benchmark requires models to generate an entire program
based on an instruction in natural language instead of a single API call or a single line.

Collection methodology. To prepare the benchmark, we first extract usage examples from the Python
projects that we collected by finding directories in the project roots that contain “examples” in their
name. Such usage examples are provided by the library authors in order to show the capabilities and
use cases of their libraries. After collecting the examples, we filter them as described in Appendix[A.T]
and get 150 files (usage examples) from 62 libraries, with each file heavily relying on the APIs of the
respective project.

To create instructions, we first run the selected 150 files through GPT-4 [[1], prompting it to generate
an instruction for generating the respective file. This leaves us with step-by-step instructions that the
LLM should follow to generate a script utilizing the library at hand. Then, we manually fix each
instruction in order to reduce hinting to specific library methods and ensure its correctness.

To build contexts for generation, benchmark users have access to contents of the libraries that include
on average 254 Python files with 2.5M characters and 2,242 unique class and method names. The
respective medians are 164 files, 1.4M characters, and 1,412 names. Also, the libraries contain from
136 to 7,846 API names with mean and median being 2,242 and 1,412, respectively.

Metrics. To assess the usage of the respective library, we propose a metric called API Recall. We
calculate it as the ratio of library-specific API calls (called functions, instantiated classes, used
constants) made in the ground truth solution, that also appear in the generated program. For example,
if the ground truth solution made 5 such calls and the model correctly guessed 3 of them, it will
receive API Recall = 60%. We treat APIs as library-specific if their name appears only in a single
library among all Python repositories that we collected.

Baselines. We develop and evaluate baselines based on a range of popular LLMs. As baselines, we
use models from OpenAl: GPT-3.5-turbo, GPT-4 [1], GPT-40, GPT-40-mini [43], reasoning models
ol, ol-mini [44]], and o3 [46]; from Anthropic: Claude-3.5-Sonnet, Claude-3.5-Haiku, Claude-
3-Opus [2], Claude-3.7-Sonnet [3]]; from Mistral: Mistral-7B [29] and Mixtral-8x7B [30]; from
DeepSeek: V3 [13] and R1 [14]; Qwen2.5-Coder-32B [27]], and three versions of Llama-3.1 [[15]]
with 8B, 70B, and 405B parameters.

For the context, we provide models with the list of available APIs from the target library, without
specifying which of them are library-specific, i.e., unique to this library and being used to compute
the metric. We do not provide implementations or usages for them, just names, as the full list of APIs
from a library can overflow a context window of 32,000 tokens. We sort each API list according to
BM-25 [48]], treating the respective instruction for generation as a query. To compute the BM-25
score we split the names by snake_case and camelCase, remove punctuation from them, and turn
them into lower case. Then, we evaluate each model with different lengths of context, providing 0,
20, 200, 2000, or all API names from the library at hand, and suggesting in the prompt that they may
be helpful. When selecting the API names, we pick the ones with the highest BM-25 scores. Note
that when provided with no context, the model will solely rely on its current knowledge of the library.

Table [T]shows the results of evaluation for the baselines. Firstly, when provided with no information
about the given library aside from its name, Claude-3.7-Sonnet and DeepSeek-V3 show the best
results by far with 47% and 45% API Recall, respectively. These two models demonstrate their
coding capabilities and knowledge of the less popular libraries, with which other models struggle.
Moreover, they further increase their quality to 51% when given access to all the API names from the
library, showing the best quality of all evaluated models.

Interestingly, Llama-3.1-450B and GPT-4 perform with a similar quality, overcoming the newer
GPT-40. The models show memorization capabilities, as these libraries should have appeared in
the training data. However, both Llama-3.1-405B and GPT-4 struggle to correctly identify useful
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Table 1: API Recall of baselines for the library-based code generation task. Missing values are due
to the context being longer than the supported context window size of the model. The right-most
column shows the difference in quality between model working with no library-specific context and
maximum context that fits into the model.

#APIs in the context
None 20 200 2000 All \ A
Claude-3.7-Sonnet [2] 047 046 050 050 0.51 | +0.04
DeepSeek-V3 [13] 045 044 050 050 0.51 | +0.06
Claude-3-Opus [2] 043 045 046 050 049 | +0.06
03 [46] 039 039 046 049 049 | +0.10
Claude-3.5-Sonnet [2]] 044 043 047 048 048 | +0.04
ol [44] 029 028 036 044 044 | +0.15
GPT-40 [43] 0.33 033 040 041 041 | +0.08
Claude-3.5-Haiku [2] 0.27 030 037 040 040 | +0.13
GPT-4 []] 0.37 036 040 040 0.38 | +0.01
DeepSeek-R1 [14]] 0.23 026 031 035 038 | +0.14
Qwen2.5-Coder-32B [27] 0.29 031 0.38 0.38 - +0.09
Llama-3.1-405B [[15]] 036 036 038 039 037 | +0.01
ol-mini [44] 021 026 032 033 032 +0.11
gpt-40-mini [43]] 0.15 020 0.31 0.31 0.31 | +0.16
GPT-3.5-turbo 0.17 0.19 023 025 - +0.08
Llama-3.1-70B [15]] 023 025 026 024 0.24 ] +0.01
Mistral-7B [29] 0.07 0.13 020 0.18 - +0.11
Mixtral-8x7B [30] 0.11 0.13 0.19 0.14 - +0.03
Llama-3.1-8B [[15]] 0.10 0.14 0.17 0.12 0.13 | +0.03

APIs when provided with long lists of them: the models improve the quality by 3% when given
up to 2,000 library APIs. Furthermore, at the full context both models get confused and only show
minimal quality boosts. The results suggest that despite being technically able to use contexts beyond
dozens of thousands of tokens, Llama-3.1-405B and GPT-4 cannot efficiently utilize them for code
generation.

On the other hand, the recently introduced reasoning models show their superior ability to navigate
long contexts. The models 03, o1, o1-mini, and DeepSeek-R1 do not show outstanding results when
used without any information about the library: o3 is the only model among them to compete with
other top-tier models. Yet, all the reasoning models exhibit 10-16% API Recall improvements when
given the full list of library APIs. This suggests that reasoning models can identify the required API
names more often than other models, while not being proficient in using the given libraries after the
training stage.

Among the smaller models, Qwen-2.5-Coder-32B shows 38% API Recall when given 2,000 API
names in the context. The model does so while heavily relying on the context, as suggested by the
9% difference in the results compared to the empty context. At 32 billion parameters, Qwen-Coder
performs significantly better than the Llama-3.1-70B, despite being more than two times smaller. The
Llama-3.1 family of models does not show good utilization of long context across all three evaluated
model sizes. One possible reason for that is the lack of training on specialized code-related data,
which was performed for Qwen-Coder.

Based on the conducted experiments with the baselines, we conclude that our benchmark is not being
saturated with the modern models, and it can be used to assess their abilities in utilization of long
contexts, while simultaneously tracking models’ coding capabilities.

2.2 Project-Level Code Completion

Task description. The second task that we describe is project-level code completion, targeting the
completion of single lines. We formulate the task as follows: given relevant information from the
project, which we call context, and a prefix of the completion file, one needs to generate the next
line in this file. While there exist other repository-level completion datasets [64,|38]], we use project
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history from Git to mimic the real-world use case and avoid possible data leakages between files that
arise when files in the context are written after the completed file and rely on the completed code. On
top of that, we introduce a fine-grained classification of the completed lines by the used APIs.

Collection methodology. To create the dataset, we process the collected Python projects, traversing
their Git histories to collect commits that were done after 01.01.2022. We extract newly added files
from them, filtering out files with fewer than 200 lines or more than 2,000 lines. To collect the context
for each file, we checkout the respective parent commit and save the contents of all the code and text
files (e.g., build files, documentation), constituting the repository as it was when the commit was
made. Each datapoint contains the file for completion, a list of lines to complete with their categories
(see the categorization below), and a repository snapshot that can be used to build the context.

We split our dataset into four parts based on the total size of . py files in the repository snapshot. As
the reference for such a division, we chose the CodeLlama model [49]], which has a context window
of size 16K and about three characters per token. Based on this, we have four sets of samples with
the following limits on the total number of characters in the context . py files: small-context set from
0to 16K x 3 = 48K characters; medium-context set from 48K to 192K characters; large-context set
from 192K to 768K characters; huge-context set from 768K characters. We downsample datapoints
to five datapoints per repository, and the repositories to 75 per set to ensure data diversity. The sizes
of the four sets are 144, 224, 270, and 296 datapoints, respectively.

For each datapoint, we also provide a list of lines for completion—35 lines on average—since
evaluating a code model on every line of a file is extremely resource-consuming. Moreover, not
all lines are equally hard to complete; e.g., function declaration lines can be challenging due to
uncertainty, whereas loop definition can be straightforward. Taking this into account, we introduce a
classification of the code lines into six categories depending on the used functions and classes.

1. infile — lines that call functions/classes defined in the same file;

2. committed — lines that call functions/classes defined in other files in the commit introducing
the completion file;

3. inproject — lines that call functions/classes defined in the snapshot of the project before the
commit;

4. common — lines that contain common functions such as main or get;

5. non-informative — lines that are too short, too long, contain prints, etc. (see Appendix [B.2]
for the full definition);

6. random — the rest of the lines.

Our main focus is on the first three categories, as they definitely require the utilization of context to
form a correct completion. While each line can fall into multiple categories based on the content, we
only assign the “most difficult” category to each line in the following order (from difficult to easy):
committed, inproject, infile, common. We then sample on average ten completion lines per datapoint
for the first four classes and five lines per datapoint for non-informative and random classes. Thus,
for each file in the dataset, we have multiple lines that the model should complete. The total numbers
of completion lines are 4,686, 8,676, 9,631, and 9,810 for each of four sets, respectively.

Metrics. The main metric for the project-level code completion task is the exact match of generated
lines per category. This is a proportion of correct predictions calculated separately for each of the
categories. The prediction is correct if it matches the ground truth after removing leading and trailing
whitespaces from both. Additionally, we compute models’ perplexity on the completion file as a
proxy metric to estimate how well the provided context from the repository allows to model the
completion file.

Baselines. We use the dataset to evaluate how well pre-trained code LLMs can utilize context from
the given repository. Here we provide the full evaluation results for CodeLLlama-7B in Table 3] (see
the online leaderboard'| for other models).

We provide several context composers as baselines:

'Online leaderboard: https://huggingface.co/spaces/JetBrains-Research/long-code-arena
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Table 2: The perplexity values for CodeLlama-7B with different context composers. The lower
perplexity value suggests better modeling quality.

Additional context All files Only Python files  pyier once with FL
256 1,753 12,000 256 1,753 12,000
File-level (FL) 1849 1849 1849 1849 1849 1.849 0.000
Naive 1798 1788 1761 1788 1760 1.677 0.172
Path distance (PD) 1783 1727 1607 1782 1726 1601 0.248
Half hemory (HM) 1799 1780 1743 1789 1765 1.670 0.179
HM + PD 1782 1730 1636 1783 1729 1.636 0213
File length 1797 1784 1742 1792 1774 1708 0.141
Imports First 1791 1769 1732 1785 1751  1.666 0.183
Only declaration + PDE]  1.785 1741 1710 1785 1739  1.708 0.141

* Naive composer — all the files from the repository snapshot are concatenated into one string
with no specific order.

* Path distance composer — the order of the files is defined by the distance between files
in a project file tree: if the file from the repository is closer to the completion file, then its
content is closer in the context.

* File length composer — the order of the files is defined by the length of a file: shorter files
are closer to the completion file.

* Half memory composer — each line from the repository files is removed with a probability
of 0.5, and the order of the files is the same as in the naive composer.

o Imports first composer — the order of the files is defined by an import relation of first
degree: if any project files are imported in the completion file, then these files are closer to
the completion file.

* Only declarations composer — some project files are left only with declaration lines, so we
keep only names from the repository files.

To compare different context composers, we compute model’s perplexity on the completion file
as a proxy for completion quality (lower perplexity should lead to better completions). We report
results for CodeLlama-7B and the medium-context dataset in Table 2] We vary the number of context
tokens coming from other repository files from 256 to 12,000 in order to check that the introduction
of the context is indeed helpful. For all the evaluated context composers, we see that additional
context helps, and Python files are more important for completion than the others (e.g., files in other
programming languages or docs). Out of the ones we evaluated, the composer based on Path Distance
performs the best with 0.25 drop in perplexity compared to the usage of a single file, so we use Path
Distance for further experiments. We leave further exploration of different context composers for
future work.

Table [3]shows the Exact Match for CodeLLlama-7B with Path Distance and File-level composers. As
in the previous experiment, introduction of new context boosts the results across all datasets. We
observe the biggest quality improvements for the inproject completions, as they require information
from other project files to find relevant APIs. Completion for other line categories improves as well,
as the model is able to find similar snippets of code already written in the project.

In Appendix [B.3] we report more experiments that further investigate the impact of the context size on
the completion quality and compare a wide range of models: CodeLlama-7B [49]], DeepSeek-Coder
(1.3B, 6.7B, 33B) [23], Llama (3.1-8B, 3.2-1B, 3B) [13]], and Qwen2.5-Coder (0.5B, 3B, 14B,
32B) [27].

2.3 Other Tasks

Due to the lack of space, the thorough descriptions of the collected datasets and evaluated models for
the rest of the tasks can be found in the Appendix, while we provide the task formulations below.

2We leave only declarations in all files except for one.
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Table 3: Results of the project-level code completion for CodeLlama-7B. The metric is Exact Match
for the generated line.

Set Context infile  inproject committed common non-informative random all
File-level 0.35 0.16 0.33 0.32 0.28 0.42 0.35

Small Path Distance 16K 0.37 0.27 0.34 0.33 0.29 0.43 0.37
Difference +6%  +68% +3% +3% +2% +2%  +5%

File-level 0.37 0.32 0.38 0.31 0.31 0.50 0.39

Medium  Path Distance 16K 0.43 0.49 0.42 0.44 0.44 0.58 0.49
Difference +16%  +53% +10% +42% +42% +16%  +26%

File-level 0.36 0.29 0.39 0.34 0.30 0.44 0.35

Large Path Distance 16K 0.46 0.44 0.55 0.46 0.42 0.54 0.47
Difference +27%  +52% +41% +35% +40% +23%  +35%

File-level 0.40 0.34 0.44 0.34 0.30 0.50 0.39

Huge Path Distance 16K 0.44 0.43 0.54 0.41 0.40 0.54 0.45
Difference +10%  +26% +22% +20% +36% +8%  +17%

CI Build Repair (see Appendix [C) asks models to generate a patch that fixes a real-life issue in a
CI setup. The minimal set of data for the task consists of a repository snapshot at the commit that
caused the failure of the workflow and the logs of the failed step. The task can also be performed in a
simplified oracle setup. In this case, we put a list of relevant files and code blocks—extracted from
the ground truth commit—into the prompt. An important feature of this task is run-based evaluation:
we utilize GitHub Actions [20] to run the generated fixes and assess their correctness.

Commit Message Generation (see Appendix [D) for large commits requires a model to generate
a natural language description of changes performed in a single commit. The changes can be
represented in different ways — in various diff formats, as separate versions of each file before and
after the changes took place, and others. Moreover, models can utilize information from unchanged
project files to better understand how changes impacted the project. CMG is a well-established task in
academic research [52] and a prominent feature in developer tools [10} 9], however, researchers often
limit the scope to short diffs [[16], leaving the performance on larger commits unexplored. Moreover,
the quality of commit messages from open-source repositories—the most common data source—is
notoriously mixed [56]. We bridge these two gaps with our novel CMG benchmark, manually curated
and tailored for larger commits.

Bug Localization (see Appendix [E) can be formulated as follows: given an issue with a bug
description and a repository snapshot in a state where the bug is reproducible, identify the files within
the repository that need to be modified to address the reported bug. Although this is a subset of the
larger bug-fixing problem, partially covered by SWE-Bench [32]], bug localization requires its own
separate evaluation. This independent assessment can provide a better understanding of the various
approaches and their efficiency in identifying the precise location of bugs within the large code bases.

Module Summarization (see Appendix [F) tasks a model to write textual documentation based
on the module’s or project’s source code and intent (a one-sentence description of the expected
documentation content). This task greatly increases the context size available to the models compared
to the existing benchmarks that cover method- or class-level summarization [28, (39} 41]]. The source
of inspiration for the module summarization task is the fact that large projects often include high-level
materials, such as quick start guides, tutorials, module documentation, and usage instructions. The
task aims to alleviate the time-consuming and routine process of creating these materials.

3 Results Across Multiple Tasks

In addition to using Long Code Arena as a set of independent benchmarks, it can be used to assess
capabilities of models across multiple tasks. This can be done by assessing models’ results on all tasks
but code completion. We exclude code completion here as it mainly targets base versions of models,
while other tasks expect instruction-tuned models. We conduct such assessment for a set of nine
models evaluated on the five tasks: the family of Llama-3.1 models [15], reasoning models OpenAl-
ol [44] and DeepSeek-R1 [14], and proprietary LLMs Claude 3.5-Sonnet, Claude-3.5-Haiku [2],
GPT-40 [43], and Gemini-1.5-Pro [53]].



294

304

305
306
307
308
309

2
(<) &
& C &
.1,'?0 Q'b\( ‘.)eb &6\
« b@ & &
¥ . 3 @
4 \}\\ (<) od 0\
¢ A4 s b
N N » Y o Spearman
Q o o v é correlation
1 1 1 1 1
Bug localization 0,89 0,86 0,86 0,93 .
0,9
Cl build repair{ 0,89 0,85 0,85 0,78

0,8
CMG-4{ 0,86 0,85 - 0,84 0,68
0,8
Library-based CG+ 0,86 0,85 0,84 - 0,67
0,7
Module summarization{ 0,93 0,78 0,68 0,67 -
0,6

Figure 1: Correlation between models’ results on the benchmarks.

Table [] shows the results of models and their mean rank (from one to nine) across five tasks. To
compute the mean ranks, we normalize the results across models for each task and treat the scores
different by less than 10% as the same to reduce the effects due to randomness. ol outperforms other
models on all tasks but library-based code generation, where Claude-3.5 Sonnet shows slightly better
results. The Llama-3.1 models lag significantly behind, despite the original report claiming the 405B
version having coding and long context processing capabilities similar or better than Claude-3.5
Sonnet. We observe that the bug localization and module summarization are the tasks where reasoning
models perform better, as these tasks require the most search capabilities. For module summarization,
GPT-40 performs very well, which we attribute to its proficiency in writing long coherent texts. To
further analyze task relations, we compute Spearman correlations between model scores on different
tasks based on the common subset of models (see Figure[T). We observe high correlations between
most tasks, which is expected given the wide gap in capabilities between some of the evaluated
models. Yet, the correlations suggest that benchmarks are complementing each other.

4 Related Work

While there exist plenty of ML4SE datasets and even benchmark collections [40], most of them
require models to operate with rather short contexts, around the size of a single method, which hinders
the evaluation of novel long context models. Code generation datasets [8, 4] [37] 251 22 [62]] require
models to process up to several paragraphs of the problem statement and then generate a short program
(one line to one file). Existing datasets for code summarization [28, [40] target documentation in a

Table 4: Performance comparison across tasks for different models. BL: bug localization; CIR: CI
build repair; CMG: commit message generation; LB-CG: library-based code generation; MS: module
summarization.

Model MeanRank BL CIR CMG LB-CG MS
ol 1.0 058 024 364 0.45 70.9
Claude-3.5 Sonnet 1.6 052 024 348 0.48 66.1
DeepSeek-R1 22 0.54 023 349 0.38 66.6
GPT-40 2.8 0.53 0.10 348 0.41 67.0
Gemini-1.5 Pro 3.6 0.50 0.10 349 0.44 59.4
Llama-3.1 (405B) 52 047 004 348 0.37 59.6
Claude-3.5 Haiku 6.8 044 002 30.1 0.32 64.9
Llama-3.1 (70B) 7.0 035 005 335 0.24 58.5
Llama-3.1 (8B) 8.6 0.31 0.00 31.0 0.13 58.2
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single method, meaning that both input and output size are below several hundred tokens. Previously
developed commit message generation benchmarks [521|16}150] contain significantly shorter messages
and diffs compared to Long Code Arena.

For code completion, recently, researchers introduced two benchmarks that operate at the repository
scale: RepoEval [64] and RepoBench [38]], also focusing on the completion of a single line. Compared
to these benchmarks, we introduce a fine-grained classification of the completed lines and prevent
possible data leakages by traversing Git history.

SWE-bench [32] and its extensions [63}161] are recent benchmarks that require models to fix issues in
real-world programming projects. Most solutions for these benchmarks use agentic approaches [60,
58l 165]] which require models being compared to be capable of complex multi-turn interactions,
planning, function calling. Long Code Arena covers a more diverse set of tasks, the most similar
being CI builds repair, which focuses on builds in general rather than tests, and bug localization, which
is a sub-task of the SWE-bench objective that we evaluate on a broader set of languages: Python,
Java, and Kotlin. Yet, tasks in Long Code Arena are less restrictive for the models under evaluation
and can distinguish between smaller models still being able to process long context windows.

The most notable benchmarks for long context models include Long Range Arena [53] and
Scrolls [51]]. Our work builds the first such benchmark focusing on MLASE tasks, while Long
Range Arena includes synthetic problems and Scrolls focuses on natural language processing.

5 Limitations and Future Work

In order to gather benchmarks for Long Code Arena, we had to make several design decisions that
can impact the generalizability. First, we base the benchmarks on open-source data. This allows
researchers to experiment with various context-collection techniques because they have access to
source code data. On the other hand, modern LLMs use most available open-source data for training,
and such reliance can lead to data contamination, which in turn can skew the evaluation results.

We argue that the tasks that we choose are less prone to models memorizing training data: there
is no direct link between answers to benchmark tasks and raw repository data that modern models
use for training. For example, while models could have seen documentation of specific libraries
during training, currently it is unlikely that it was present side by side with the source code of the
respective modules. The most memorization-prone task in our suite is code completion, but for it, we
use historic data from Git repositories, which may become changed or overridden by the moment
LLMs’ training data is scraped.

In order to allow for manual examination of the collected data and to keep the benchmarks consistent,
for most tasks we focus on datasets of Python code. Fortunately, the data preparation pipeline for all
the tasks can be reused to produce datasets for other languages. The most complex step in this case
will be manual verification and filtering of the data to ensure quality and correctness. In order to meet
the quality requirement, we leave extension of datasets to other languages for future work.

In addition to extending datasets to other programming languages, future work includes collecting
data for fine-tuning models for particular tasks and evaluating more models on the benchmarks. In
order to assist other researchers with the latter, we open-source the code for the baseline solutions.

6 Conclusion

In this paper, we present the Long Code Arena. The goal of this work is to stimulate research in
ML-based solutions for realistic software engineering tasks. In particular, we design a series of tasks
that require taking a complex context into account, such as full projects, libraries and their usage, and
coarse-grained components. Our work presents six benchmarks related to code generation, repair,
completion, and summarization. For each task, we carefully design and manually curate evaluation
data, metrics for assessing the results, and baseline solutions based on the pre-trained models. Our
experiments show that the tasks are within reach, but far from solved. We hope and expect that our
Long Code Arena will encourage researchers in MLASE and NLP communities to advance the field
of ML-enabled software engineering.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim to develop and publish a suite of six benchmarks and do so in the
paper, supplementary materials, and online via GitHub and HuggingFace.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We do so in Section[3

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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615 Justification: The paper introduces datasets and benchmarks and does not make assumptions.

616 Guidelines:

617 * The answer NA means that the paper does not include theoretical results.

618  All the theorems, formulas, and proofs in the paper should be numbered and cross-
619 referenced.

620 * All assumptions should be clearly stated or referenced in the statement of any theorems.
621 * The proofs can either appear in the main paper or the supplemental material, but if
622 they appear in the supplemental material, the authors are encouraged to provide a short
623 proof sketch to provide intuition.

624 * Inversely, any informal proof provided in the core of the paper should be complemented
625 by formal proofs provided in appendix or supplemental material.

626 * Theorems and Lemmas that the proof relies upon should be properly referenced.

627 4. Experimental result reproducibility

628 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
629 perimental results of the paper to the extent that it affects the main claims and/or conclusions
630 of the paper (regardless of whether the code and data are provided or not)?

631 Answer: [Yes]

632 Justification: We thoroughly describe the data collection strategy and the development of
633 baselines. The main text, supplementary materials, and online materials contain all the
634 needed information for reproduction.

635 Guidelines:

636 * The answer NA means that the paper does not include experiments.

637 * If the paper includes experiments, a No answer to this question will not be perceived
638 well by the reviewers: Making the paper reproducible is important, regardless of
639 whether the code and data are provided or not.

640 * If the contribution is a dataset and/or model, the authors should describe the steps taken
641 to make their results reproducible or verifiable.

642 * Depending on the contribution, reproducibility can be accomplished in various ways.
643 For example, if the contribution is a novel architecture, describing the architecture fully
644 might suffice, or if the contribution is a specific model and empirical evaluation, it may
645 be necessary to either make it possible for others to replicate the model with the same
646 dataset, or provide access to the model. In general. releasing code and data is often
647 one good way to accomplish this, but reproducibility can also be provided via detailed
648 instructions for how to replicate the results, access to a hosted model (e.g., in the case
649 of a large language model), releasing of a model checkpoint, or other means that are
650 appropriate to the research performed.

651 * While NeurIPS does not require releasing code, the conference does require all submis-
652 sions to provide some reasonable avenue for reproducibility, which may depend on the
653 nature of the contribution. For example

654 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
655 to reproduce that algorithm.

656 (b) If the contribution is primarily a new model architecture, the paper should describe
657 the architecture clearly and fully.

658 (c) If the contribution is a new model (e.g., a large language model), then there should
659 either be a way to access this model for reproducing the results or a way to reproduce
660 the model (e.g., with an open-source dataset or instructions for how to construct
661 the dataset).

662 (d) We recognize that reproducibility may be tricky in some cases, in which case
663 authors are welcome to describe the particular way they provide for reproducibility.
664 In the case of closed-source models, it may be that access to the model is limited in
665 some way (e.g., to registered users), but it should be possible for other researchers
666 to have some path to reproducing or verifying the results.

667 5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The materials can be accessed via https://huggingface.co/spaces/
JetBrains-Research/long-code-arena,

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We introduce datasets and thoroughly describe them. For the baselines we run,
we use exactly the data we introduce in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper’s main scope is the introduction of novel benchmarks and not
experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The reproduction of most evaluations is done via access to APIs from To-
gether.Al, OpenAl, Mistral, Anthropic, Google. We further describe the resources required
for reproduction in Supplementary Materials when applicable.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper conforms with the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss this in Section[@
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We describe the data collection strategy. We only use data with permissive
licenses for the datasets.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets are published under the Apache-2.0 license. This information is
included for all the assets.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, they are described both in the paper and online. We only use publicly
available data with permissive licenses.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not include human studies.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No research on human subjects was conducted.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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872 * Depending on the country in which research is conducted, IRB approval (or equivalent)

873 may be required for any human subjects research. If you obtained IRB approval, you
874 should clearly state this in the paper.

875 * We recognize that the procedures for this may vary significantly between institutions
876 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
877 guidelines for their institution.

878 * For initial submissions, do not include any information that would break anonymity (if
879 applicable), such as the institution conducting the review.

880 16. Declaration of LLLM usage

881 Question: Does the paper describe the usage of LLMs if it is an important, original, or
882 non-standard component of the core methods in this research? Note that if the LLM is used
883 only for writing, editing, or formatting purposes and does not impact the core methodology,
884 scientific rigorousness, or originality of the research, declaration is not required.

885 Answer: [Yes]

886 Justification: We use LLMs as a part of evaluation suite for module summarization and
887 describe it in the paper and supplementary materials.

888 Guidelines:

889 * The answer NA means that the core method development in this research does not
890 involve LLMs as any important, original, or non-standard components.

891 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
892 for what should or should not be described.
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Supplementary Materials

A Library-Based Code Generation

A.1 Dataset Collection and Processing

The resulting dataset consists of 150 samples, each representing an instruction that a machine
learning model should follow when generating a Python program, reference data for evaluation of the
generation quality, and relevant data that can be used to improve generation. This relevant data is
the source code of an entire Python library, based on a usage example from which we created the
instruction for generation.

The structure of the individual datapoints is presented in Table[5] The labels are available in two
forms: the reference program that was written by library authors as an example of library usage, and
the list of library-specific API calls that the reference program makes. Both the program itself and
the list of API calls can be used to assess the quality of a program generated by a machine learning
model under evaluation. The dataset is self-contained, as it provides the snapshots of all associated
repositories.

In order to collect the data, we use the following protocol:

1. We collect repositories from GitHub with at least 1,000 commits, at least ten contributors,
issues, and stars, at least 10,000 lines of code, not a fork, last commit after 01.06.2023,
and a permissive license (we use the most popular permissive licenses — MIT, Apache-2.0,
BSD-3-Clause, and BSD-2-Clause). For the library-specific code generation task, we leave
only repositories having Python as the main language.

2. For each repository, we detect the folder with usage examples: a folder with “.py” files that
contains “examples” in its name. If a repository does not have such a folder, we filter it out.
After this step, we are left with 883 repositories that have usage examples.

3. We then identify library-specific APIs for each of the 883 repositories. We extract all
names of all methods, classes, and constants defined in these repositories, and treat as
“library-specific” the ones that appear only in a single repository.

4. We then collect all Python files from the folders with examples and filter them: (i) remove
examples shorter than 100 or longer than 40,000 characters (excluding comments), (ii)

Table 5: The structure of datapoints in the library-based code generation dataset.

Field Description
repo_full_name Concatenated repository name and owner
repo_name Library repository name
repo_owner Library repository owner
instruction Task for code generation
reference Reference program written by the library authors
clean_reference Reference program with comments removed

path_to_reference_file Path to the reference in the repository (removed in
repository snapshots to prevent data leakages)

path_to_examples_folder Path to the directory with examples in the reposi-

tory (removed in repository snapshots to prevent

data leakages)
n_unique_apis Number of calls to library-specific APIs in the ref-
erence program
unique_apis List of calls to library-specific APIs in the refer-

ence program
project_defined_elements All class and method names in the repository
api_calls All API calls in the reference program
internal_apis All API calls to the respective library in the refer-
ence program
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921 remove examples that have fewer than 400 characters of comments in order to then write

922 high-quality instruction for generation, (iii) remove examples that use fewer than ten API
923 calls specific to the given library. These filters result in 150 files (usage examples) from 62
924 libraries, with each file heavily relying on the APIs of the respective project.

925 5. After we have the usage examples for libraries, we create instructions for generating them.
926 We first run the selected 150 files through GPT-4 [1], prompting it to generate an instruction
927 for generating the respective file. You can see the prompt for generation in Figure[2] This
928 leaves us with step-by-step instructions that the LLM should then follow to generate a script
929 that utilizes the library at hand. Then, we manually fix each instruction in order to reduce
930 hinting to specific library methods and ensure their correctness.

SYSTEM: We are developing a benchmark to assess quality of
code generation models. As a part of the benchmark, we include
the task of generating code based that uses the particular
library from a description in natural language. As a source of
data for this task we will use coding examples in Python
provided by library developers. Your task will be to generate
a text description of the provided Python code that will then
be used as an input for the generation task.

USER: Here is the code. You should write an instruction that
summarizes its contents and would allow another model to
generate this snippet of code, excluding the comments. Make
the instruction abstract, do not mention specific code
constructions that the generator should use. Be concise.
Generator will be able to access the contents of the following
library: [LIBRARY_NAME]. Use wording such as "Generate code
that ..." in your instruction.

[CODE]

Figure 2: Prompt for generating instructions from library usage examples.

st B Project-Level Code Completion

932 B.1 Datapoint Structure

933 Each instance that comprises the dataset consists of three key elements: a repository snapshot, a
934 completion file, and target lines for the completion task. A repository snapshot is a list of all the
935 filenames and contents of all text files from the repository (code, documentation, etc.). The state
936 of the repository is before the commit where the completion file was added. A completion file is
937 a Python file added in a particular commit. Target lines are a list of lines from the completion file
938 that the model under evaluation should generate. Each line is also assigned one of classes that we
939 describe in the following subsection.

940 The structure of datapoints:

941 * repo — repository name in the format {GitHub_user_name}__{repository_name}

942 e commit_hash — hash of the commit where the completion file was added

943 * completion_file — dictionary with the completion file content in the following format:
944 — filename — path to the completion file

945 — content — content of the completion file

946 * completion_lines — dictionary where keys are categories of lines and values are a list
947 of integers (numbers of lines to complete). The categories are described in the following
948 subsection.

949 * repo_snapshot — dictionary with a snapshot of the repository before the commit. Has the
950 same structure as completion_file, but filenames and contents are organized as lists.
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* completion_lines_raw — the same as completion_lines, but before sampling.

Targets for the completion task are provided in the completion_lines field. To get a target line for
completion, split the completion file by newline characters and select lines using the provided indices.
Line categories are also provided.

B.2 Dataset Collection and Processing

Starting with the common corpus of repositories, we then follow the following process to acquire the

data:

. Traverse Git history: We collect commits that add at least one new . py file. These files are

candidates for the completion files.

. Filtering collected commits: We filter the commits to retain only those with the potential

completion files containing between 200 and 2,000 lines, and with creation dates after
January 1st, 2022.

. Extract repository snapshots: We create snapshots of the repositories based on the filtered

commits, ensuring that we capture the state of the repository before the collected commit.
The repository snapshots are intentionally not filtered to ensure that all possible information
could be utilized. As a result, the dataset includes sources of noise, such as auto-generated
files, CSV data, etc.

. Split by the size of relevant context: We split all the data into four groups based on the

number of characters in . py files from the repository snapshots. The groups are: (i) small-
context: less than 48K characters; (ii) medium-context: from 48K to 192K characters;
(>iii) large-context: from 192K to 768 K characters; (iv) huge-context: more than 768 K
characters;

. Sample datapoints: we randomly sample 5 datapoints for each repository, and we randomly

sample 75 repositories for each group. If fewer than 5 datapoints or 75 repositories are
available, we use all available datapoints or repositories. We keep all 80 repositories for the
medium-context dataset.

. Classify lines: We perform line classification that is introduced in the paper and assign a

main category to each line of the completion file.

. Sample completion lines: We sample lines from each category such that the average number

of lines is no more than 5 for non-informative and random categories, and no more than 10
for other categories.

Classification of the lines is done for each of the completion files. There are six categories of
completion lines according to various completion scenarios.

1. infile — a line contains at least one function or class that was declared in the completion file.

6.

. inproject — a line contains at least one function or class that was declared in the repository

snapshot files.

. common — a line contains at least one function or class that was classified to be common,

e.g.,main, get, etc.

. committed — a line contains at least one function or class that was declared in the files that

were created in the same commit as the completion file (excluding the completion file).

. non-informative — a line that satisfies at least on of the following criteria: (i) shorter than 5

characters or longer than 150 characters, (ii) a line with print, (iii) a line with import, (iv)
a declaration of a function or a class, (v) a comment or contains an inline comment.

random — all the lines that do not have any category.

Some lines may have more than one category after the classification. We additionally identify the
main category for each line based on the following approach.

* If a line has a committed category, then the main category is committed.
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Figure 3: Large Context set, File-level.

* If a line does not satisfy the previous condition, but has an inproject category, then the main
category is inproject.

 If a line does not satisfy previous conditions, but has an infile category, then the main
category is infile.

* If a line does not satisfy previous conditions, but has a common category, then the main
category is common.

* If a line has a non-informative category, then the main category is non-informative.
* If a line has a random category, then this is the only category for the line, and the main
category is random.
The dataset has been collected in December of 2023. Considering the filtering process, the data
within the dataset spans from January 2022 to December 2023.

We provide a distribution of lines for each set and each category in Table [6]

Table 6: Line counts for different sets in the project-level code completion dataset.

Set infile inproject common committed non-informative random  all  Avg. for one file
Small 1,430 95 500 1,426 532 703 4,686 325
Medium 2,224 2,236 779 1,495 858 1,084 8,676 38.7
Large 2,691 2,595 693 1,322 1,019 1,311 9,631 35.7
Huge 2,608 2,901 692 1,019 1,164 1,426 9,810 33.1

B.3 Extensive Evaluation
B.3.1 Models Comparison

We compare a variety of models: CodeLlama-7B [49]], DeepSeek-coder (1.3B, 6.7B, 33B) [23]],
Llama (3.1-8B, 3.2-1B, 3B) [[L5], and Qwen2.5-coder (0.5B, 3B, 14B, 32B) [27]. Comparison is made
within the same setting: file-level completion, path distance composer with 16K context window, and
the relative difference in Exact Match scores.

Figure [3|demonstrates that as the model size increases, performance metrics improve accordingly.
Models effectively handle completion tasks across random, committed, and infile lines for the Large
Context set. It is expected for random and infile, but it is unusual for committed. It could be
an evidence that repositories from the large context set were in model’s training data or that the
committed API is too obvious.

Figure |4| shows that the Path Distance Composer enhances completion quality across all models,
regardless of their family or size. The distribution of Exact Match scores per line category changes
which supports our classification and the hypothesis behind it.
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Figure 5: Large Context set, Difference between Path Distance 16K and File-level.

Figure 5] highlights the tendency that the bigger the model from a family the lower its completion
quality gain from the context. That can be related to a fact that bigger models know more factual
information, but smaller models successfully use in-context learning instead.

B.3.2 Context Size Impact

We compare results of Qwen2.5-coder 7B on all the sets with different context window sizes: from
256 to 32000. Figure[6]illustrates that completion quality is better for a longer context across every
line category. There are a few rapid shifts, e.g., inproject category for medium context set or common
category for large context set. This behavior can be a result of a perfect file in the context.

An unexpected observation here is that inproject and infile categories improve with the same pace. So,
the file-level information is not enough for the highest quality completion even for the infile lines.

Small Context Medium Context Large Context Huge Context

Context Langth llog scale] Context Length flog scale) Context Length (log scae) Context Langth llog scale]

Figure 6: Qwen2.5-coder 7B, Path Distance context composer.
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Figure 7: Qwen2.5-coder family of models with different context window sizes.

B.3.3 Model Size vs Context Size

One of the possible applications of the presented dataset is to identify if the model size or context
window matters the most. For example, Figure[7]shows that Qwen2.5-coder 32B with 32K context
window performs almost the same as Qwen2.5-coder 14B with 32K context window, and Qwen?2.5-
coder 1.5B with 16K context window is equal to or better than any other Qwen2.5-coder model with
4K context window for most line types.

Overall, Figure [7] supports the general intuition that both context window size and model size
positively impact performance. For the Qwen2.5-coder family, increasing both context length and
model size leads to improved results across all task categories.

C CI Builds Repair

CI Build Repair asks models to generate a patch that fixes a real-life issue in a CI setup. The minimal
set of data for the task consists of a repository snapshot at the commit that caused the failure of the
workflow (failed commit hereafter) and the logs of the failed step. The task can also be performed in
a simplified oracle setup by prompting a model with a list of files and their content or code blocks in
them to change. In this case, the code blocks come from the ground-truth fixing diff provided in the
dataset. An important feature of this task is run-based evaluation: we utilize GitHub Actions to run
the generated fixes and assess their correctness.

C.1 Dataset Collection and Processing

The final dataset consists of the datapoints with structure presented in Table[7] In order to collect and
process the data, we use the following protocol:

1. We limited ourselves to the 100 largest Python repositories (main language: Python, the
ratio of the main language > 0.95) with permissive licences. From each repository, we take
no more than three branches, for each branch — no more than three different workflows, and
for each workflow — no more than three datapoints. Thus, each repository could contribute
up to 27 datapoints.

2. For all the collected Python repositories, we get the full list of the actions run in the repository,
limited to last 90 days. Downloaded data contains action status (failed or successful) and
links to the action runs.
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Table 7: The structure of datapoints in the CI builds repair dataset.

Field Description
contributor The username of the contributor that committed changes
difficulty The difficulty of the problem according to an assessor on
a 1-3 scale
diff Contents of the diff between the failed and the successful
commits
head_branch Name of the original branch that the commit was pushed
to
id Unique ID of the datapoint
language The main language of the repository
logs List of dictionaries with logs of the failed job and name
of the failed step in this job
repo_name Name of the original repository
repo_owner Owner of the original repository
sha_fail SHA of the failed commit
sha_success SHA of the successful commit
workflow Contents of the workflow file

workflow_filename The name of the workflow file (without full path)
workflow_name The name of the workflow
workflow_path The full path to the workflow file
changed_files List of files changed in the diff
commit_link URL to a commit corresponding to the failed job

We gather a list of pairs of consecutive commits in which the first commit causes a failure of
a workflow but the next one makes it build successfully.

For each pair of commits, we download:

* logs of the failed step of the failed commit;
« diff between the failed and successful commit (correction diff);
* metadata of the failed commit.

During the download, we clean the data according to the following filters (on the fly, to
avoid excessive requests to GitHub API):

* To reduce the benchmarking time, we eliminate runs that take more than 10 minutes
(measured on successful action run).

* To minimize the number of actions that contain pure formatting issues, we filter out
datapoints, in which the names of the workflow, target, or failed step contain any of
the following substrings: {mypy, lint, flake8, black}. We allow these substrings in the
target name if there is more than one target in the action run.

* We remove runs for which the workflow file contains substrings {token, secret} to

ensure that we can run them without any prerequisites.

We keep only datapoints for which the correction diff (i) contains at least one . py file,

and (ii) only contains files that match either of the following items: {code file, *.md,

*.rst, LICENSE*, readme*, doc/*}. We do so to ensure that there are no changes in

artifacts such as resources or data files, which the model cannot fix given the present

context.

. To isolate the problem to a single issue per datapoint, when running the benchmark, we delete

all .yaml files in the .github/workflows/ directory, ensuring that only this workflow
would be run. We also remove workflows that contain links to other workflow files to make
sure that the target workflow is independent.

. The human assessor assessed the datapoints to verify that logs contain all the necessary

information to fix the issue and graded the datapoints on a 1-3 scale according to their
difficulty. Table[8]describes the difficulty levels and the sizes of the available buckets.

. In the last step, we run all datapoints through our benchmark at both the failed and the

successful commit. We then keep only the datapoints that remained failing / passing at the
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Table 8: Data split by the difficulty.

Difficulty # of datapoints Description
1 36 Issues with formatting
2 7 Local issues or issues with typing
3 25 Issues that require information about

other files in the repository

Total 68

Table 9: Number of datapoints on each mining step.

Data mining step # of datapoints
Initial set of sampled workflows 336
Datapoints that passed assessor verification 210
Datapoints that passed GitHub Actions 144
Datapoints that passed GitHub Actions after 14 months 68

respective commits. Moreover, we repeat the procedure after 14 months from the initial
procedure to ensure the durability of the dataset. This last step is crucial as it filtered out
50% of the datapoints: quite many passing workflows started failing due to changes in
library versions that were not specified by repository owners, connection issues, missing
remote files or certificates. Table D]reports the number of filtered datapoints at each step.

Context-related statistics are presented in Table[T0]

Table 10: Context-related statistics.

Context metric Mean Median

Symbols in logs 145K 6.5K
Files in repository 610 240
Lines in repository 170K 56K

Symbols in repository  7.5M 2.4M

C.2 Evaluation

We implement the benchmark for using the CI builds repair dataset in our repository. The benchmark
requires a user-implemented function (fix_repo_function) that repairs locally stored repository, given
the logs of a failing build. The procedure is the following:

1. The benchmark clones each repository snapshot with depth equal to 1 to a local machine.

2. Then, the benchmark runs the model under evaluation, which takes a datapoint as input
(mainly — log and workflow files) and needs to repair the repository on the local machine
by editing or replacing files.

3. The benchmark edits the workflow files to run only one workflow.

4. Then, it pushes the current state of the repository to a new branch in the separate GitHub
organization.

5. When results of builds in GitHub Actions become available, the benchmark collects, ana-
lyzes, and returns them.

To use the benchmark, one needs to send a request to join the GitHub organizatiorﬂ since the procedure
requires pushing changes to repositories in that organization. Moreover, keeping repositories as forks
in a separate organization ensures that they will remain available. The function fix_repo_function
takes the following (all optional) arguments:

3GitHub Organization for the benchmark: https://github.com/LCA-CI-builds-repair
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1. datapoint: datapoint from the dataset

2. repo_path: path to the repository on the user’s machine
3. repo: git.Repo object from the GitPython library

4. out_folder: directory for outputting the benchmark results

Intermediate results contain datapoint ID and meta information, as well as the SHA of the commit
pushed to the target repository. After collecting the results, the benchmark adds the status of the
GitHub Actions build to this information.

We use the collected dataset to assess multiple LLMs in the CI builds repair task.

To make the task easier to tackle, we provide models with an oracle — when asking to fix the build,
we also provide the list of files and specific code blocks in them that should be fixed. The information
on which files need fixing comes from the ground truth commit that fixed the build. In the future, if
the task becomes too easy for the models, oracle can be simply removed to make the task even more
realistic and challenging.

To avoid compatibility issues with external packages, we implemented time machine, which ensures
that installed package versions match those available at the time of the commit.

To prompt the models to solve the task, we use the following strategy. To prepare an instruction,
we locate the first occurrence of case-insensitive substring “error”, "failure", "failed" or "traceback"
in the logs and take a 200-line context around this occurrence (100 lines before and after). If the
substring is not found, we use 200 last log lines. The instruction then reads as follows:

Title: Tests Failed After New Commit

## Overview
A recent commit caused one or more tests to fail in the repository.
We need to investigate the relevant logs, determine the problem, and propose

## Relevant Logs
Below is a focused snippet of the CI logs surrounding the failure:

{relevant_logs}

We then prompt the LLM to modify the code blocks provided by an oracle to align with the given
instructions, and pass all the files in a single request in the following way:

[start of file.py]
[end of file.py]

LLM replies with a unified difiﬂ During evaluation of the benchmark results, these diffs are applied
and the patched version is sent to GitHub Actions to be tested. The statistics of the context length
(OpenAl models’ tokens [43]) is following: min = 859, max = 61,982, mean = 13,994, std = 14,379,
median = 9,726.

Table shows the evaluation results for three independent runs of several models: proprietary
OpenAl GPT-4o [43]], Anthropic Claude 3.5 Sonnet, 3 Opus, 3 Haiku [2], and Google Gemini 1.5
Pro [55] (max context length = 32,768 due to technical reasons), as well as open-source DeepSeek-
R1 [14] (max context length = 16384) and Llama instruct models [[15]: INT8 Llama 3.1 (8B, 70B,
405B). If not stated otherwise, all models have context length > 64,000 tokens.

4Aider: https://aider.chat/docs/unified-diffs.html
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Table 12: The structure of datapoints in the commit message generation dataset.

Field Description

repo The full name of the GitHub repository the
commit comes from
hash The SHA hash of the commit, serves as an
identifier inside individual repository
date The timestamp of the commit (from the
commit author)
license  The type of the license in the repository of
the commit
message The ground truth commit message
mods The changes performed in a commit, rep-
resented as a list of per-file modifications,
where the structure of a per-file modifica-
tion is described in Table[T3]

Table 11: Pass@1 scores of the CI builds repair benchmark for various LLMs. Average of three runs.

Model Pass@1, %
DeepSeek-R1 23+1
Claude-3.5-Sonnet 24 + 1
GPT-ol 19+1
Claude-3-Opus 1443
Claude-3-Haiku 2+2
Gemini-pro-1.5 10£3
GPT-40 10+ 1
Llama-3.1-405B 441
Llama-3.1-70B 5+£3

Llama-3.1-8B 0

D Commit Message Generation

In Commit Message Generation (CMG) for large commits, a model should generate a natural language
description of changes performed in a single commit. The changes can be represented in different
ways — in various diff formats, as separate versions of each file before and after the changes took
place, and others. Moreover, models can utilize information from unchanged project files to better
understand how changes impacted the project. In this work, we present a manually curated dataset
for CMG tailored for larger commits.

D.1 Dataset Structure

Each instance in the dataset represents a commit from a GitHub repository, with metadata like commit
SHA and full repository name, ground truth commit message, and the list of performed changes
in the Git diff format. Additionally, the dataset includes snapshots of all associated repositories to
facilitate context construction. The detailed structure of each datapoint is presented in Table[12]

D.2 Dataset Collection and Processing

‘We use the CommitChronicle dataset [16]] as the initial source of commits for our dataset. We refer
the reader to the work of Eliseeva et al. [16]] for the details about data collection. In this work, we
focus on Python language only and thus consider only the subset of the CommitChronicle test set
that includes changes to at least one .py file.

We perform extensive filtering, including manual validation, to select high-quality examples with
long diffs and commit messages. The exact data filtering steps are listed in Table[T4] For the commit
message quality filter, we refine the dataset released in a recent study from Li and Ahmed to make it
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Table 13: The structure of a per-file modification in the commit message generation dataset.

Field Description

change_type The type of change to the current file, one
of: ADD, COPY, RENAME, DELETE,
MODIFY, or UNKNOWN
old_path The path to file before the change (might be
empty if the file was created)
new_path  The path to file after change (might be
empty if the file was deleted)
diff The changes to the current file, represented
in a Git diff format

Table 14: Filters applied to the CommitChronicle subset to build the commit message generation
dataset from Long Code Arena. *Since the Quality filter is based on a deep learning classifier, it was
applied only to the subset of 3,366 commits obtained by running all the other filters.

Filter Description Filter Details Number of commits
rejected by the filter
(% of initial sample)
Hash Diffs Diff has whitespace-separated character-to-words 437 (0.25%)
Diff Filters ratio < 20 [32].
Modification Diff consists only of modifications of existing files 25,750 (14.95%)
(no additions, deletions, renaming, or copying).
Capitalization Message starts with an uppercase letter [42]. 68,384 (39.70%)
Verbs Message starts with any of the curated set of verbs 90,696 (52.66%)
from the recent work of Muennighoff et al. [42].
References Message does not contain external references 31,487 (18.28%)
(URLS or references to issues/pull requests).
Noise Message does not follow certain patterns consid- 6,304 (3.66%)
ered automatically generated or trivial [16!/42].
Message Filters Min Words Message contains > 4 words (whitespace- 24,474 (14.21%)
separated).
Min Lines Message contains > 2 lines. 138,160 (80.22%)
Hash Messages Message has whitespace-separated character-to- 12,540 (7.28%)

words ratio < 20 [35] and does not contain any
SHA hashes [16].

Quality Message is considered good by the commit mes- 106 (3.14%)*
sage quality classifier.

more suitable for data filtering purposes, and fine-tune the CodeBERT [17] model. After filtering,
we retain 3,260 commits. Since we aim to target commits with larger changes, after the initial
filtering, we only keep samples where the number of characters in diffs related to . py files is > 3,000
characters. That leaves us with 858 commits that we further filter manually. The manual labeling
is conducted by one of the authors. We employ a 5-point Likert scale and additionally provide
comments that elaborate on the reasoning for most of the samples. To facilitate further research, we
made all the labels and comments available in the dataset.

D.3 Evaluation

We run multiple instruction-tuned LLMs on the presented commit message generation benchmark in
a zero-shot setting (i.e., no examples in the prompt, only a natural language instruction). We employ
the same prompt for all models. The prompt is presented in Figure[8] It was crafted through several
iterations, addressing the most frequent issues in the generated messages from pilot experiments. In
our main experiments, we only incorporate commit changes represented as diffs returned by the git
diff command to prompt the LLMs. Additionally, we run the CodeT5 [59] model fine-tuned for
commit message generation task on the training part of the CommitChronicle dataset. This model
only takes the commit diff as an input.

We access proprietary LLMs through the official APIs. For Mixtral, Mistral, DeepSeekCoder,
CodeLLaMA, and CodeT5, we use a single NVIDIA A100 GPU with default precision (except
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Write a commit message for a given diff. Start with a heading that
serves as a summary of the whole diff: a single sentence in an
imperative form, no more than 50 characters long. If you have details
to add, do it after a blank line. Do your best to be specific, do not
use ‘refactor’ unless you are absolutely sure that this change is ONLY
a refactoring. Your goal is to communicate what the change does
without having to look at the source code. Do not go into low-level
details like all the changed files, do not be overly verbose. Avoid
adding any external references like issue tags, URLs or emails. Diff:

[DIFF]

Commit message:

Figure 8: The primary prompt for the commit message generation task.

for Mixtral, where we use 8-bit precision) and FlashAttention-2 [[12] enabled. For the rest of the
considered models, we use Together APIE] For all the models, we set the temperature to 0.8 and allow
them to generate up to 512 tokens. This upper bound is mostly set due to practical considerations, as
the maximum length of a commit message in our dataset is only 58 whitespace-separated words. The
results are presented in Table [I3]

Additionally, we experiment with two alternative strategies for composing the context for the LLMs.
Among the models, we select ol-mini from OpenAl as the best compromise between speed and
quality among proprietary models and DeepSeek-V3, the highest-scoring OSS model in terms of
ROUGE-1. We use DeepSeek-V3 tokenizer to calculate the number of tokens through the rest of the
section. The first context gathering strategy is to pass the full contents of the modified files rather
than diffs. Similar setting was previously employed for commit message generation by [42]]. In our
dataset, modified files for one commit take around 54k tokens on average, however, the maximum
value is 300k, which exceeds maximum context length of 128k tokens for both ol-mini and for
DeepSeek-V3. Hence, we limit the maximum allowed context length, truncating the modified files
up to %ﬁg‘“s each. We consider several upper bounds in terms of maximum context length: 4k,
8k, 16k, 32k, 64k. Due to technical limitations, we were able to obtain results for DeepSeek-V3 with
contexts only up to 16k tokens. The second context gathering strategy is to further extend the prompt
from our main experiments (Figure[8)) with relevant context via retrieval. We use a simple BM25 [48]]
retriever among non-changed .py files in the corresponding repository, similar to the setting adopted
by Jimenez et al. [32]]. We retrieve up to 50 most relevant files and add them until the maximum
context length in tokens is exceeded, possibly truncating the last file to ensure it fits the restriction on
the maximum length. We consider several upper bounds in terms of maximum context length: 4k, 8k,
16k.

The results are presented in Table[I6] We observe that neither of the alternative context gathering
strategies leads to substantial improvements compared to our primary approach using only the commit
diff. For Full File setting, the quality grows with the increase in the context size, but even at its
largest (64k tokens), it remains consistently inferior to the results achieved with diffs. One reason
for the inefficiency of the Full File is the large size of modifications in our dataset, which span 3.4
files on average. When including complete file contents, the input can reach up to 300k tokens.
Our naive truncation strategy likely discards critical information. While additional context that
facilitates better repository understanding could help generate more appropriate commit messages,
BM25 retrieval might fail to uncover relevant files, leading to insignificant improvements or even
degradation. Interestingly, unlike [32]], we do not observe stable decrease in quality with the growth
of BM25 context. We leave the exploration of more efficient and sophisticated context gathering
strategies to future research.

Together: https://www.together.ai/
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Table 15: Results for the CMG benchmark from Long Code Arena. R stands for ROUGE metric, BS
stands for BERTScore metric, where BS (norm.) is the normalized version. All model categories are
sorted by the ROUGE-1 metric. The best result in the category is highlighted in bold, and the second
best result is underlined. *CodeT5 is the only model fine-tuned for the CMG task as opposed to the
zero-shot setting for the rest of the models.

Model BLEU ChrF R-1 R-2 R-L BS BS
(norm.)
ol-preview (2024-09-12) 4212 3638 2928 7.66 20.52 0.8635 0.191
Gemini 1.5 Pro 3,656 3487 2894 6.363 20.15 0.8593 0.1666
Claude 3.5 Sonnet 4.195 34.85 28.79 6.134 19.67 0.8626 0.1857
Claude 3 Opus 4219 36.59 28.67 7.656 20.14 0.8583 0.1606
ol-mini (2024-09-12) 4.09 3433 2796 6.712  20.05 0.8605 0.1737
Gemini 1.5 Flash 2.918 34.64  27.38 5.865 18.68 0.8581 0.1595
Proprietary GPT-4 Turbo (1106) 2.803 3439  26.62 5.296 17.72  0.8559 0.1462
GPT-40 (2024-11-20) 3.066 3481 26.07 5.548 17.65 0.854 0.1351
GPT-40 mini (2024-07-18)  2.841 3412 25.66 5.158 17.33  0.8579 0.1583
GPT-4 (0613) 2.127 32.62 23.5 5217 16.03 0.8522 0.1243
Claude 3 Haiku 1.957 30.12  21.01 5.045 14.38 0.843 0.0695
GPT-3.5 Turbo (0613) 2.101 26.664 19976 4.227 14.447 0.846 0.087
GPT-3.5 Turbo (1106) 1.885 20.698 18.424 3.815 14.087 0.854 0.136
DeepSeek-V3 (671B) 3788 3576  28.63 6.599 19.81 0.8625 0.1851
Llama-3.3 (70B) 3.751 33.54  28.38 6.415  20.12 0.8645 0.1969
OSS (big) Llama-3.1 (405B) 3.563 34.83 28.25 6.516 19.94 0.8626 0.1861
Llama-3.1 (70B) 3.634 3466 27.62 6.626 19.27 0.8611 0.177
DeepSeek-R1 (671B) 419 3494 27.07 594 18.94 0.8644 0.1962
Qwen2.5-Coder (32B) 3415 33.74 2793 6.038 20.1 0.8616 0.1797
Mixtral 8 bit (8x7B) 2,189 3198 23.61 5.376 16.33 0.8476  0.09688
OSS (medium) DeepSeek Coder (33B) 1.742  29.08 21.01 4.471 14.46 0.8425 0.06697
CodeLLaMA (34B) 1.586 24.632 17.817 3.684 13.114 0.844 0.073
QwQ (32B) 0.529 14.07 14.66 3.381 10.26  0.8275 -0.02194
Llama-3.1 (8B) 2409 31.02 23.66 4.768 16.67 0.8538 0.1335
Mistral (7B) 1.895 30.719 23.648 4.458 16262  0.847 0.096
OSS (small) DeepSeek Coder (6.7B) 1.634 28.567 20.188 3.604 14.116  0.843 0.068
CodeLLaMA (13B) 1.727 23.099 18207 3.642 13479 0.844 0.075
CodeLLaMA (7B) 1.108 26.638 16.961 2.807 12.028 0.835 0.021
Llama-3.2 (3B) 2108 2634 21.05 4.102 15.15 0.8461 0.088
OSS (tiny) DeepSeek Coder (1.3B) 0.75 22.449 13.815 2.029 9.753 0.822 -0.057
CodeT5%* (220M) 0.355 11.862 13.615 2.633 11.439 0.845 0.083

E Bug Localization

Bug Localization task can be formulated as follows: given an issue with a bug description and a
repository snapshot in a state where the bug is reproducible, identify the files within the repository
that need to be modified to address the reported bug. Although this is a subset of the larger bug-fixing
problem, partially covered by SWE-Bench, bug localization requires its own separate evaluation.
This independent assessment can provide a better understanding of the various approaches and their
efficiency in identifying the precise location of bugs within the large code bases.

E.1 Dataset Structure

The bug localization dataset includes real issues that describe bugs, together with the respective pull
requests (PRs) that fix them. Each datapoint contains three key elements: the bug description, the
state of the repository where the bug is reproducible, and the list of files that need to be modified to
resolve the bug. The bug description represents the body of the issue that was assigned a bug-related
label. The repository state is represented by the commit SHA. The list of files that should be modified
comes from the pull request that resolves the respective bug report. The full datapoint structure is
presented in the Table

The final dataset contains 7,479 datapoints in total divided, between three sets by language:

* py — change contains only Python files (4,339 datapoints);
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Table 16: Results with alternative contexts for the CMG benchmark from Long Code Arena. R stands
for ROUGE metric, BS stands for BERTScore metric, where BS (norm.) is the normalized version.
The best result for the model is highlighted in bold, and the second best result is underlined. The
context size is reported in tokens from DeepSeek-V3 tokenizer. The context size for Diff context is
the average number of tokens in diffs in our dataset.

Model Context Type Context Size BLEU ChrF R-1 R-2 R-L BS BS
(norm.)
Diff 2.3k 4.09 3433 2796 6712 20.05 0.8605 0.1737
4k 2342 27.18 2044 3464 1495 08457  0.0856
8k 2646 29.92 2271 4241 16.67 0.8493  0.1071
Lmini Full File 16k 2753 31.69 2443 5066 17.49 08512 0.1181
ol-mini 32k 2572 31.89 2436 4.85 1741 08504 0.1137
64k 3324 3286 24.82 5335 17.67 0.8525  0.1259
4K 3454 3442 2784 6229 19.75 0.8584  0.1613
Diff + BM25 8k 3.573 3459 2731 6201 19.11 0.8564  0.1491
16k 3364 3385 2728 6355 19.08 0.8563  0.1488
Diff 2.3k 3788 3576 28.63 6.599 19.81 0.8625  0.1851
4k 2229 2888 21.76 3.507 1545 0.8521  0.1237
Full File 8k 2801 3134 2415 481 17.11 08552 0.1421
DeepSeek-V3 16k 3345 3359 2647 5.647 1877 0859  0.1648
4K 3457 3485 2897 6955 20.11 0.8631 0.1888
Diff + BM25 8k 3.554 3505 28.05 6285 19.68 0.8627 0.1863
16k 3.697 3498 2835 6.419 20.03 0.8627 0.1862

* java — change contains only Java files (2,522 datapoints);

* kt — change contains only Kotlin files (618 datapoints).

For each language 50 datapoints are manually verified in order to form a test subset for model
evaluation (150 datapoints in total).

Based on the core fields, we calculated the number of statistics and attached them to each datapoint.
The additional fields are presented in Table[T8] We excluded test files from the experiment because
their modifications typically only support program repairs and do not contain the actual bugs. Thus,
all metrics are calculated on all project files except for the test files.

E.2 Dataset Collection and Preprocessing
To collect the data, we use the following protocol:

1. Collect issues, pull requests, comments. We start with the common corpus of collected
GitHub repositories. Then, for each repository, we download information about all issues,
pull requests, and comments using the GitHub API. As a result, we download more than 8M
issues, 7M pull requests, and 34.4M comments.

2. Match issues with pull requests. GitHub API does not provide information about relations
between issues and pull requests. We obtain these relations by parsing references from
descriptions or comments. To do so, we write regular expressions for extracting all possible
referencing formats as provided in GitHub documentation. To also collect the context around
the reference, we capture one “fix”-related keyword (e.g., close, closes, closed, fix,
fixes, fixed, resolve, resolves, resolved, solve, solves, solved) before and after
the link with the regular expressions. We also check if references are mutual (if the issue
refers to the pull request and vice versa) or not (if only a single link from either the issue or
the pull request exists).

3. Sort by stars. We sort all issue-PR pairs by the number of stars in the respective repository
and assign each pair an ID based on its index in the sorted order. We populate the diff
field by running a git command in a locally cloned repository to get the diff in a text format.
Unfortunately, this method does not work for pull requests created from forks, so we save a
null value for such cases.
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Table 17: Description of datapoints in the bug localization dataset.

Field Description
id Datapoint ID
repo_owner Bug issue repository owner
repo_name Bug issue repository name
text_id Datapoint text ID
issue_url GitHub link to issue
issue_title Issue title
issue_body Issue body with bug description
issue_labels List of labels assigned to issue
pull_url GitHub link to PR
pull_create_at Date of PR creation in format of yyyy-mm-ddThh:mm: ssZ
base_sha PR base SHA
head_sha PR head SHA
diff_url PR diff URL between base and head SHA
diff PR diff content
changed_files List of changed files parsed from diff
link_url GitHub link to issue or PR comment from which the link was

links_count

link_keyword
stars
language

parsed

Number of links between the issue and the PR, equals 2 if the
link is mutual, 1 if it is one-sided

"Fix"-related keyword which surrounds the issue link

Number of repository stars

Main programming language for repository

To enhance the quality of our data, first, we apply several empirical filters and preprocessing steps
based on the fields from the dataset:

1. Select bug issues. We retain only issues with “bug” mentioned in the labels and non-empty

descriptions. Additionally, we remove issues containing links to media, as they may include
crucial data visualizations that are inaccessible through other means. To ensure that most
models can use the dataset for evaluation, we only keep issues written in English.

. Select processable changes. For pull requests, we filter out those introducing new files and

retain only pull requests modifying existing files, provided their diffs could be extracted
from the cloned repository. Furthermore, to facilitate the future manual labeling process, we
leave only pull requests written in Python, Java, or Kotlin, as these are languages known
well to authors. To work with diffs and patches, as well as to extract the changed files and
their modification modes, we use the unidiff packageE] Additionally, we avoid pull requests
that include changes to media files with non-UTF-8 encoding, as such changes are often
difficult to reproduce. The most crucial filter ensures that each pull request is associated with
exactly one issue, and vice versa, to maintain the relevance of changes to issue descriptions
and to prevent situations where a pull request addresses multiple issues or an issue is fixed
by several pull requests.

The dataset size reduction after applying these empirical filters is summarized in Table [I9]
As a result of these filtering steps, 10,195 datapoints remain in the dataset.

. Filter outliers. On top of the previous filtering step, we remove outliers for sev-

eral numerical fields, including changed_files_count, changed_lines_count, and
issue_tokens_count. Table[20|shows the result of removing outliers.

. Data analysis. After data filtration, we are left with 7,479 datapoints that comprise the

entire dataset. Table [21] presents statistics of the dataset, with the difference in statistics
between languages being negligible.

. Manual data labelling. After the analysis of the dataset, we carry out manual data labeling

and verification process to select the subset of high-quality datapoints for evaluation. First,
we sort the datapoints by the number of stars in the respective repositories, assuming that

SUndiff: https://pypi.org/project/unidiff/
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Table 18: Description of additional metrics calculated on the bug localization dataset.

Metric Description
issue_symbols_count Number of symbols in issue description
issue_tokens_count Number of tokens in issue description
issue_words_count Number of words in issue description
issue_lines_count Number of lines in issue description
issue_code_blocks_count Number of triple quotes blocks parsed in
issue description
issue_links_count Number of links parsed in issue description
diff_symbols_count Number of symbols in diff
diff_tokens_count Number of tokens in diff
diff_words_count Number of words in diff
issue_lines_count Number of lines in diff
changed_files_count Number of all changed files mentioned in
diff

changed_files_without_test_count Number of changed files not including test
files mentioned in diff

code_changed_files_count Number of files written in Python, Java, or
Kotlin mentioned in diff
py_changed._files_count Number of Python files mentioned as
changed in diff
java_changed_files_count Number of Java files mentioned as changed
in diff
kt_changed_files_count Number of Kotlin files mentioned as
changed in diff
repo_symbols_count Total number of symbols in repository’s
files
repo_tokens_count Total number of tokens in repository’s files.
repo_words_count Total number of words in repository’s files
repo_lines_count Total number of lines in repository’s files
repo_files_count Total number of files in repository
repo_files_without_test_count Total number of files without tests in the
repository

popular repositories have better processes and quality for issue tracking and bug reporting.
Then, we go through datapoints of each repository, selecting ones that meet the following
criteria:

* The issue describes a single bug completely and exhaustively.
* The pull request is linked to the issue and resolves this issue alone.

* All changes are relevant to the described issue, with no extra functionality or side
refactorings included.

» The changes were reviewed and accepted.

If a datapoint does not meet these criteria, we go to another one from the same repository, or
if none are left, we move on to the next repository by the number of stars, until we select 50
good datapoints per language. To keep the distribution of the number of changed files, for
each repository, we try to pick one datapoint with a single changed file and one datapoint
with two or more changed files. This strategy allows us to collect a diverse set of datapoints
from different repositories and keep the distribution of the number of changed files similar
to the complete set of issues.

E.3 Evaluation

We evaluate several LLMs on the bug localization task using the presented dataset.
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Table 19: Empirical filters applied to the bug localization dataset.

Field

Description

Number of data-
points rejected by
the filter (% of the
initial set)

issue_labels

issue_body

At least one label should include "bug" as a sub-
string
Description should not be empty

3,472,057 (79.8%)

16,265 (0.37%)

issue_body Description should contain only text without at- 145,225 (3.34%)
tached media
issue_body Description should be written mostly in English 35,942 (0.83%)
diff Diff can be extracted and should not be empty or 475,447 (10.93%)
corrupted
diff Diff should consist only of modifications of exist- 30,572 (0.7%)
ing files and no introduction of new files
diff Diff should include at least one file in either Python, 138,653 (3.19%)
Java, or Kotlin
diff Diff should include only UTF-8 files to filter out 18 (< 0.01%)

base_commit

unreadable or graphical objects
Repository content on base commit can be ex-
tracted and should not be empty or corrupted

6,198 (0.14%)

pull_url
issue_url
link_keyword

PR should refer to no more than one issue

Issue should refer to no more than one pull request
"fix"-related keyword should stay before or after
link in the issue description.

7,376 (0.17%)
1,934 (0.04%)
10,406 (0.24%)

Table 20: Outlier filters applied to the bug localization dataset.

Field

Description

Number of data-
points rejected by
the filter (% of
initial set)

changed_files_count

changed_lines_count
issue_tokens_count

issue_tokens_count

issue_tokens_count

22 (0.99 quantile)
594 (0.99 quantile)
tokenizer

(0.01 quantile)

4,500 tokens (0.99 quantile)

Number of changed files should not be more than
Number of changed lines should not be more than
Issue description can be tokenized using GPT-4
Issue description should contain at least 13 tokens

Issue description should contain no more than

100 (< 0.01%)
102 (< 0.01%)
43 (< 0.01%)
85 (< 0.01%)

103 (< 0.01%)

For all models, we adopted a unified prompt structure (Figure[9), which includes the repository name,
issue title, and description, along with optional additional context.

First, we evaluate two context-filling strategies to understand how context influences the quality of
bug localization and how it can be optimized for more efficient use by LLMs in solving this particular

task:

* Only issue description context. This configuration only considers the issue description as
context to determine whether it contains sufficient information for bug localization. It also
serves to analyze the potential impact of data contamination.

* Repo file paths list. This strategy adds a list of all files in the repository as context, enabling
the model to utilize structural information from the codebase. This approach assesses
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Table 21: Final statistics of the dataset.

Field Min Median Mean Max
repo_files_count 16 331 1,077 33,644
repo_lines_count 9 52,743 145,377 8,687,912

repo_tokens_count 78 488,286 1,684,619 225,649,725
changed_files_count 1 1 2 21
changed_lines_count 1 15 37 594
changed_tokens_count 1 158 608 837,626
issue_words_count 1 106 149 1,806
issue_lines_count 1 22 33 586
issue_tokens_count 13 227 432 4,491
issue_links_count 0 0 0.80 56
issue_code_blocks_count 0 1 0.99 31

SYSTEM:

You are an AI assistant specialized in software bug localization.
Your task is to identify the MOST likely files to be modified to

fix the given bug. You will be provided with the repository name and
a GitHub bug issue description*. Analyze the issue description and
determine the files in the repository that are MOST likely to require
modification to resolve the issue. Provide the output in JSON format
with the list of file paths under the key "files".

Provide JSON ONLY without any additional comments.

USER:
GitHub repo name:
[REPO_OWNER/REPO_NAME]

Issue description:
[ISSUE_TITLE]
[ISSUE_BODY]

[CONTEXT]

Figure 9: Prompt for bug localization. *Can slightly vary to describe the content and structure of the
context provided.

whether the mere presence of file names aids effective bug localization. To prioritize the
most relevant file paths in the context, we employed the following algorithm:

1. Ranking. We use a simple NLTK tokenizer and BM25 to rank the files in the repository
based on their lexical similarity to the issue description.

2. Filling. Based on the ranking, we concatenate the context for each file (file path along
with imports).

3. Cutting. Since the context appears last in the prompt, we trim the final message to fit
the total context size of each model.

The expected output of the LLMs is a list of files which contain bugs. To measure the quality of this
output and compare it with the expected list of buggy files, we calculate the following metrics:

e P (Precision). This metric shows how many predicted files were correct.

R (Recall). This metric shows how many actual bugged files were correct.

* FPR (False Positive Rate). This metric shows how many non-buggy files were incorrectly
predicted.

¢ F1-score. The balance between Precision and Recall.
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Table 22: The baseline results for the bug localization task without additional context.

Model Context Size P R Fl-score FPR All correct Allincorrect # Qutput

ol 128k 0.299 0.286 0.255 0.015 0.07 0.55 1.97
GPT-40 128k 0.303 0.305 0.270 0.018 0.12 0.54 2.29
GPT-40 mini 128k 0.112 0.164 0.117 0.042 0.03 0.77 3.79
GPT-3.5 Turbo (1106) 16k 0.219 0.178 0.177 0.017 0.09 0.73 1.93
Gemini 1.5 Pro IM 0.309 0.294 0.270 0.020 0.14 0.55 2.52
Claude 3 Opus 200k - - - - - - -

Claude 3 Haiku 200k - - - - - - -

Claude 3.5 Sonnet 200k 0.199 0.254 0.196 0.021 0.05 0.61 3.16
Claude 3.5 Haiku 200k 0.212 0.256 0.211 0.026 0.08 0.61 2.76
Llama-3.2 (3B) 128k 0.114 0.215 0.130 0.158 0.0 0.74 3.11
Llama-3.1 (8B) 128k 0.072  0.143 0.084 0.056 0.01 0.81 5.60
Llama-3.1 (70B) 128k 0.156 0.196 0.157 0.035 0.05 0.72 3.90
Llama-3.1 (405B) 128k - - - - - - -

Qwen2.5 (7B) 128k 0.172  0.141 0.140 0.016 0.08 0.79 2.00
Qwen?2 (72B) 128k 0.191 0.157 0.159 0.023 0.09 0.76 2.45

DeepSeek R1 (671B) - - - - - -
DeepSeek V3 (671B) - - - - - -

* All correct. The percentage of cases where all files were correctly identified.
* All incorrect. The percentage of cases where all files were incorrectly identified.

¢ # Output. The average number of buggy files detected.

All results are presented in two separate tables: Table 22]reports results for the small-context setting,
while Table 23] presents results for the large-context setting. The evaluation demonstrated that even a
simple additional context can double the effectiveness of bug localization. In small-context settings,
the average token usage is less than 1k (minimum: 149, maximum: 149), whereas, in large-context
settings, it reaches approximately 10k (minimum: 251, maximum: > 200,000). This indicates that,
for certain data points, even larger contexts can be provided, potentially leading to higher scores.

However, we observed an interesting pattern in LLaMA-based models: increasing the context size
adversely affected their performance. Specifically, with larger contexts, these models often produced
excessively long lists of files or failed to generate JSON outputs in the correct format. This mean that
the context and the output format should be kind of model specific and not universal. This suggests
that both context handling and output formatting are model-specific rather than universally applicable.

F Module Summarization

For the Module Summarization task, the model should write textual documentation based on the mod-
ule’s or project’s source code and intent (a one-sentence description of the expected documentation
content). This task greatly increases the context size available to the models compared to the existing
benchmarks that cover method- or class-level summarization.

F.1 Dataset Collection and Processing

The dataset consists of the datapoints with their structure as in Table

To collect the data, we use the following protocol:

1. We start with the Python subset of the common corpus of GitHub repositories. For each
repository, we extract documentation files — files with extensions .md, .txt, and .rst,
located in the docs directory of the repository.
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Table 23: The baseline results for the bug localization task with file paths list context.

Model Context Size P R Fl-score FPR All correct Allincorrect # Qutput
ol 128k 0.622  0.630 0.576 0.010 0.28 0.15 2.22
GPT-40 128k 0.535 0.635 0.527 0.012 0.23 0.12 2.85
GPT-40 mini 128k 0.350 0.666 0416 0.035 0.07 0.13 5.44
GPT-3.5 Turbo (1106) 16k 0.436 0.497 0.421 0.021 0.17 0.31 3.35
Gemini 1.5 Pro IM 0471 0.671 0.501 0.015 0.17 0.09 3.55
Claude 3 Opus 200k 0471 0.637 0.481 0.018 0.2 0.1 3.77
Claude 3 Haiku 200k 0.429 0.59 0.441 0.029 0.13 0.2 4.04
Claude 3.5 Sonnet 200k 0.461 0.748 0.523 0.017 0.13 0.11 3.48
Claude 3.5 Haiku 200k 0.553 0.741 0.583 0.038 0.22 0.1 2.88
Llama-3.2 (3B) 128k 0.268 0.748 0.321 0.204 0.14 0.1 18.10
Llama-3.1 (8B) 128k 0.234 0.737 0.305 0.145 0.05 0.1 16.03
Llama-3.1 (70B) 128k 0.287 0.664 0.351 0.041 0.05 0.13 8.37
Llama-3.1 (405B) 128k 0.432 0.639 0.465 0.025 0.16 0.14 4.36
Qwen2.5 (7B) 128k 0.559 0.572 0.517 0.013 0.25 0.22 2.79
Qwen?2 (72B) 128k 0.431 0.686 0.483 0.026 0.14 0.1 5.16
DeepSeek R1 (671B) 128k 0.529 0.68 0.538 0.021 0.2 0.1 3.04
DeepSeek V3 (671B) 128k 0.489 0.697 0.523 0.025 0.19 0.08 3.61

Table 24: The structure of datapoints in the module summarization dataset.

Field

Description

repo
docfile_name

intent

license
path_to_docfile
relevant_code_files
relevant_code_dir
target_text

relevant_code_context

The full name of the GitHub repository the
commit comes from

The name of the documentation file. May
be useful in the prompt

Small manually gathered intent that de-
scribes what we expect from the generated
documentation

The type of the license in the repository of
the commit

The path to file with documentation in the
repository

List of paths in the repository to the poten-
tially relevant code files

Directory with relevant code, field can be
empty

The text of the target documentation —
ground truth in our task

Code context joined from relevant code files
and directories

2. For each documentation file, we extract the associated source code. To do this, we parse the
target documentation and extract names of all code files and directories mentioned in it. If a
file does not contain any such mentions, we skip it.

3. To further filter the documentation files, we convert documentation into a plain text format
by removing specific Markdown syntax (as well as text between Markdown tags like code,
autosummary, etc.). We then ensure that each document contains valuable information and
has at least 10 lines of text remaining after cleaning. Since the filtering is quite strict, we
believe that only important documents remain after this stage.

4. We perform manual review of the datapoints to ensure that the content contains not only
information about the code but also summarizes the entire module or project. After manual
review, we leave 216 out of 461 files. Most of the files that we reject contain non-informative
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text that is not related to code. Also, for each documentation file, we manually specify an
intent that the model under evaluation can use during generation.

* Manual verification is essential, as our experience with data frequently reveals instances
where a docfile lacks useful content or does not provide substantial information in the plain
text format, without special extensions that enrich documentation.

F.2 Evaluation

* We run several LLMs on the collected module summarization dataset with different length of
the relevant code context. To assess the quality of the generated documentation, we introduce
a new metric called CompScore that uses LLM (Mistral-7B in our case) as an assessor.
CompScore feeds the assessor LLM relevant code and two versions of documentation: the
ground truth and the model-generated text. The LLM then evaluates which documentation
better explains and fits the code. To mitigate variance and potential ordering effects in
model responses, we calculate the probability that the generated documentation is superior
by averaging the results of two queries:

P(pred | LLM(code, pred, gold)) + P(pred | LLM(code, gold, pred))
2

CompScore =

To count P(pred | LLM(code, pred, gold)), we follow several steps:
1. Construct the prompt and feed it into the assessor LLM (see Figure[T0).

I have 2 different documentations about {intent}. Decide which
documentation is better: documentation A or documentation B.
My code: [TRIMMED_CODE_CONTEXT]

Documentation A: [PREDICTED_DOC]

Documentation B: [GROUND_TRUTH_DOCI]

Better documentation is documentation

Figure 10: Prompt for the CompScore metric.

2. Get logits for the next token being “A” and “B” (logit 4 and logitp) and convert them
into probabilities:

proba, probp = exp (log_softmaz([logit 4,logitg]))

3. P(pred | LLM(code, pred, gold)) = prob, shows the probabilty that the predicted
documentation is better than the original from the perspective of the LLM assessor.

» For our experiments, we use Mistral-7B-Instruct-v0.2 as LLM assessor. We truncate
relevant code up to 6,000 tokens in the prompt for metric computation. We evaluate all the
models presented in Table 23] via OpenAI API or TogetherAl API with the same generation
parameters. We use zero temperature and predict up to 2,000 new tokens without any
penalties to get deterministic results during generation. Table [26|shows the results for all the
evaluated LLMs with varying length of available relevant code context.

* We observe that both increasing the context size and the size of the model leads to higher
quality. The ol model outperforms the others, achieving a notable CompScore of 72.22.
Interestingly, the CodeLlama and Llama3 models show worse performance than the Llama2
model on small contexts. Although doubling the context size does not significantly impact
the CompScore, a substantial difference emerges when comparing the metrics for the
smallest and largest context windows. Investigating which context is most relevant for this
task, as well as exploring different context composition strategies, is left for future research.
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Table 25: CompScore metric in the module summarization benchmark for various LLMs.

Model 128 tokens 512 tokens 1k tokens 2k tokens
Mistral-7B-v0.3 35.84 39.18 41.03 46.23
Mixtral-8x7B 34.63 38.48 39.96 40.89
Mixtral-8x22B 35.33 38.48 39.49 42.24
Llama2-7B 36.33 4421 44.13 46.19
Llama2-13B 40.96 47.37 46.57 48.12
Llama2-70B 39.78 45.97 46.37 48.24
CodeLlama-7B 33.02 36.88 36.49 38.06
CodeLlama-70B 38.36 38.74 39.76 37.23
Llama3-8B 25.37 32.14 33.84 37.35
Llama3-70B 24.79 30.08 33.18 36.45
Gemma-2B 16.43 21.04 21.85 25.38
Gemma-7B 24.16 28.24 30.44 33.96
GPT-3.5 36.83 41.59 45.59 49.48
GPT-4 45.62 52.59 56.22 57.33
ol 63.53 63.99 65.10 66.33
gpt-4o 58.27 61.67 63.74 65.95
Llama3.3-70B-Instruct 51.03 54.30 56.49 59.67
Qwen2.5-72B-Instruct 59.27 63.15 65.14 66.37
deepseek-ai-DeepSeek-V3 59.27 63.15 65.14 66.37
deepseek-ai-DeepSeek-R1 61.53 62.49 64.20 64.87

Table 26: CompScore metric in the module summarization benchmark for various LLMs on large
contexts.

Model 4k tokens 8k tokens 16k tokens 64k tokens 100k tokens
ol 68.36 69.93 70.93 71.53 72.22
gpt-4o 66.61 66.96 67.02 68.09 68.12
Llama3.3-Instruct 60.54 61.3 62.86 63.14 64.20
Qwen2.5-72B-Instruct 67.72 68.44 68.73 69.25 69.73
deepseek-ai-DeepSeek-R1 66.51 67.45 66.62 - -
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