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Abstract

The fields of code and natural language processing are evolving rapidly, with1

models becoming better at processing long context windows — supported context2

sizes have increased by orders of magnitude over the last few years. However,3

there is a shortage of comprehensive benchmarks for code processing that go4

beyond a single file of context, while the most popular ones are limited to a single5

method. With this work, we aim to close this gap by introducing Long Code6

Arena, a suite of six benchmarks for code processing tasks that require project-7

wide context. These tasks cover different aspects of code processing: library-8

based code generation, CI builds repair, project-level code completion, commit9

message generation, bug localization, and module summarization. For each task,10

we provide a manually verified dataset for testing, an evaluation suite, and open-11

source baseline solutions based on popular LLMs to showcase the usage of the12

dataset and to simplify adoption by other researchers. We publish the benchmark13

page on HuggingFace Spaces with the leaderboard, links to HuggingFace Hub14

for all the datasets, and link to the GitHub repository with baselines: https:15

//huggingface.co/spaces/JetBrains-Research/long-code-arena.16

1 Introduction17

The Machine Learning for Software Engineering (ML4SE) domain has gained popularity over the18

recent years, with increasingly more powerful models for text and code processing becoming available.19

According to a recent survey [26], the most common ML4SE tasks studied in the literature are code20

generation, code completion, code summarization, and program repair. Unfortunately, the majority of21

the existing benchmarks for assessing ML4SE models have two major limitations: a short length of22

the available context and a limited resemblance of the practical use cases [24, 34].23

Two common approaches in modern natural language processing (NLP) are retrieval-augmented24

generation [19] and utilization of long contexts [54]. Retrieval-augmented approaches [6, 31] can25

base their predictions on information from large corpora of data using various search techniques,26

while the development of new architectures [47, 18, 21] and techniques [12, 5] allows models to27

process tens of thousands or even millions of tokens. Both long-context and retrieval-augmented28

models can in theory utilize information from an entire software project. However, most existing29

ML4SE benchmarks operate with short code snippets — methods or at most files. For example, two30

most popular code generation datasets—HumanEval [8] and MBPP [4]—require models to process31

fewer than 1,000 tokens and generate a short function, usually no more than 100 tokens long.32

A new direction of agentic ML4SE benchmarks requires models to work with long contexts: SWE-33

bench [32] and its variations [63, 61], Commit-0 [66], MLE-Bench [7], and others. Yet, as such34

benchmarks focus on agentic solutions, they require models to do function calling and planning as35
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well, not only processing of long contexts. This makes them less suited for evaluation of processing36

long context and evaluation of smaller models. Another type of existing ML4SE benchmarks that37

operates with long code sequences is code completion at the repository level [38, 64]. Unfortunately,38

the existing works do not account for the iterative nature of software development: while solving39

the code completion task in a single file, the benchmarks allow models to use the rest of the project40

without restrictions. At the same time, other parts of the project can be written after the studied file41

and utilize its contents, giving the model hints that will not be present in the practical use-case.42

In this work, we present Long Code Arena, a suite of novel benchmarks for ML4SE models that cover43

six tasks: library-based code generation, CI builds repair, project-level code completion, commit44

message generation, bug localization, and module summarization. We design all the tasks and datasets45

in such a way that they require models to use information from a project module or the entire project46

to successfully complete the task, yet don’t require complex multi-step interactions. For all the tasks,47

samples used for evaluation are rigorously filtered and then manually verified to ensure the best48

possible data quality. The data for all the tasks comes from open-source repositories with permissive49

licenses. We also provide baseline solutions for all the tasks based on popular models, although this50

work does not aim at solving the tasks — baselines are provided solely to aid future research. Further51

work is required to identify the best approaches to individual tasks and better collection strategies.52

We open-source the implementations of baselines, code for evaluation, and all the datasets via GitHub53

and HuggingFace, with the links available from our HuggingFace Space: https://huggingface.54

co/spaces/JetBrains-Research/long-code-arena.55

2 Long Code Arena Benchmarks56

Long Code Arena is a suite of six benchmarks that cover different aspects of code processing: gener-57

ation, repair, completion, summarization, processing diffs. For each task, we gather an evaluation58

dataset of around a hundred to a thousand examples that requires models to operate with source59

code at the scale of a module or an entire repository. For most tasks, we focus on Python code due60

to its popularity and to manually verify the correctness of the samples. However, the collection61

methodology for all the tasks allows extending the benchmarks with more languages in the future.62

All the datasets we collect in Long Code Arena are based on data from open-source GitHub repos-63

itories — source code, commit history, issues, as well as build data from GitHub Actions. First,64

we extract a common corpus of repositories for further processing. To do so, we get the list of65

repositories via GitHub Search [11] that pass the following filters used in other works to ensure the66

quality of the data [33]: at least 1,000 commits, at least ten contributors, issues, and stars, at least67

10,000 lines of code, not a fork, last commit after 01.06.2023, and a permissive license (we use68

the most popular permissive licenses [57] — MIT, Apache-2.0, BSD-3-Clause, and BSD-2-Clause).69

After the filtering, we are left with 4,343 repositories that we then download via GitHub API along70

with issues and pull requests data. For the CI builds repair task, we also retrieve GitHub Actions71

logs for some repositories, which we describe in Appendix C. The only task that we base on the72

existing dataset is commit message generation, for which we find samples with large commits and73

long commit messages in the recent CommitChronicle dataset [16].74

After the initial data collection stage, we prepare evaluation datasets for each of the six tasks75

separately. For this, we apply further task-specific filters to the collected data, and then manually76

examine the samples to ensure their correctness. In the following two subsections, we present the77

task description, data collection methodology, and the conducted experiments for library-based code78

generation and project-level code completion. We choose these two tasks out of six as they require79

different kinds of models: while code generation expects (possibly large) instruction-tuned models,80

code completion requires smaller base models. The rest of the tasks put requirements on the models81

similar to those of code generation. For them, we provide the task descriptions in Section 2.3 and82

further discuss data collection and experiments for each task in-depth in the Supplementary Materials83

(Appendices C, D, E, and F) due to the tight space restrictions.84

2.1 Library-based Code Generation85

Task description. The first task we want to describe is a novel library-based code generation task.86

Given a task description and access to the contents of a software library, the model should generate a87
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single file that solves the task utilizing methods from the given library. The problem is motivated by88

the need of programmers to write code that utilizes the present dependencies and in-project APIs89

rather than adding new dependencies and increasing project complexity.90

In contrast to library-based code generation, existing code generation benchmarks require models to91

produce self-sufficient code snippets, such as solutions to algorithmic problems [8, 4, 25], domain-92

specific code [36], one-liners [62], etc. Among the existing works, the setup of the library-based93

code generation task is similar to repository-level code completion benchmarks that evaluate API94

completion [38, 64]. Contrary to them, our benchmark requires models to generate an entire program95

based on an instruction in natural language instead of a single API call or a single line.96

Collection methodology. To prepare the benchmark, we first extract usage examples from the Python97

projects that we collected by finding directories in the project roots that contain “examples” in their98

name. Such usage examples are provided by the library authors in order to show the capabilities and99

use cases of their libraries. After collecting the examples, we filter them as described in Appendix A.1,100

and get 150 files (usage examples) from 62 libraries, with each file heavily relying on the APIs of the101

respective project.102

To create instructions, we first run the selected 150 files through GPT-4 [1], prompting it to generate103

an instruction for generating the respective file. This leaves us with step-by-step instructions that the104

LLM should follow to generate a script utilizing the library at hand. Then, we manually fix each105

instruction in order to reduce hinting to specific library methods and ensure its correctness.106

To build contexts for generation, benchmark users have access to contents of the libraries that include107

on average 254 Python files with 2.5M characters and 2,242 unique class and method names. The108

respective medians are 164 files, 1.4M characters, and 1,412 names. Also, the libraries contain from109

136 to 7,846 API names with mean and median being 2,242 and 1,412, respectively.110

Metrics. To assess the usage of the respective library, we propose a metric called API Recall. We111

calculate it as the ratio of library-specific API calls (called functions, instantiated classes, used112

constants) made in the ground truth solution, that also appear in the generated program. For example,113

if the ground truth solution made 5 such calls and the model correctly guessed 3 of them, it will114

receive API Recall = 60%. We treat APIs as library-specific if their name appears only in a single115

library among all Python repositories that we collected.116

Baselines. We develop and evaluate baselines based on a range of popular LLMs. As baselines, we117

use models from OpenAI: GPT-3.5-turbo, GPT-4 [1], GPT-4o, GPT-4o-mini [43], reasoning models118

o1, o1-mini [44], and o3 [46]; from Anthropic: Claude-3.5-Sonnet, Claude-3.5-Haiku, Claude-119

3-Opus [2], Claude-3.7-Sonnet [3]; from Mistral: Mistral-7B [29] and Mixtral-8x7B [30]; from120

DeepSeek: V3 [13] and R1 [14]; Qwen2.5-Coder-32B [27], and three versions of Llama-3.1 [15]121

with 8B, 70B, and 405B parameters.122

For the context, we provide models with the list of available APIs from the target library, without123

specifying which of them are library-specific, i.e., unique to this library and being used to compute124

the metric. We do not provide implementations or usages for them, just names, as the full list of APIs125

from a library can overflow a context window of 32,000 tokens. We sort each API list according to126

BM-25 [48], treating the respective instruction for generation as a query. To compute the BM-25127

score we split the names by snake_case and camelCase, remove punctuation from them, and turn128

them into lower case. Then, we evaluate each model with different lengths of context, providing 0,129

20, 200, 2000, or all API names from the library at hand, and suggesting in the prompt that they may130

be helpful. When selecting the API names, we pick the ones with the highest BM-25 scores. Note131

that when provided with no context, the model will solely rely on its current knowledge of the library.132

Table 1 shows the results of evaluation for the baselines. Firstly, when provided with no information133

about the given library aside from its name, Claude-3.7-Sonnet and DeepSeek-V3 show the best134

results by far with 47% and 45% API Recall, respectively. These two models demonstrate their135

coding capabilities and knowledge of the less popular libraries, with which other models struggle.136

Moreover, they further increase their quality to 51% when given access to all the API names from the137

library, showing the best quality of all evaluated models.138

Interestingly, Llama-3.1-450B and GPT-4 perform with a similar quality, overcoming the newer139

GPT-4o. The models show memorization capabilities, as these libraries should have appeared in140

the training data. However, both Llama-3.1-405B and GPT-4 struggle to correctly identify useful141
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Table 1: API Recall of baselines for the library-based code generation task. Missing values are due
to the context being longer than the supported context window size of the model. The right-most
column shows the difference in quality between model working with no library-specific context and
maximum context that fits into the model.

#APIs in the context
None 20 200 2000 All ∆

Claude-3.7-Sonnet [2] 0.47 0.46 0.50 0.50 0.51 +0.04
DeepSeek-V3 [13] 0.45 0.44 0.50 0.50 0.51 +0.06
Claude-3-Opus [2] 0.43 0.45 0.46 0.50 0.49 +0.06
o3 [46] 0.39 0.39 0.46 0.49 0.49 +0.10
Claude-3.5-Sonnet [2] 0.44 0.43 0.47 0.48 0.48 +0.04
o1 [44] 0.29 0.28 0.36 0.44 0.44 +0.15
GPT-4o [43] 0.33 0.33 0.40 0.41 0.41 +0.08
Claude-3.5-Haiku [2] 0.27 0.30 0.37 0.40 0.40 +0.13
GPT-4 [1] 0.37 0.36 0.40 0.40 0.38 +0.01
DeepSeek-R1 [14] 0.23 0.26 0.31 0.35 0.38 +0.14
Qwen2.5-Coder-32B [27] 0.29 0.31 0.38 0.38 - +0.09
Llama-3.1-405B [15] 0.36 0.36 0.38 0.39 0.37 +0.01
o1-mini [44] 0.21 0.26 0.32 0.33 0.32 +0.11
gpt-4o-mini [43] 0.15 0.20 0.31 0.31 0.31 +0.16
GPT-3.5-turbo 0.17 0.19 0.23 0.25 - +0.08
Llama-3.1-70B [15] 0.23 0.25 0.26 0.24 0.24 +0.01
Mistral-7B [29] 0.07 0.13 0.20 0.18 - +0.11
Mixtral-8x7B [30] 0.11 0.13 0.19 0.14 - +0.03
Llama-3.1-8B [15] 0.10 0.14 0.17 0.12 0.13 +0.03

APIs when provided with long lists of them: the models improve the quality by 3% when given142

up to 2,000 library APIs. Furthermore, at the full context both models get confused and only show143

minimal quality boosts. The results suggest that despite being technically able to use contexts beyond144

dozens of thousands of tokens, Llama-3.1-405B and GPT-4 cannot efficiently utilize them for code145

generation.146

On the other hand, the recently introduced reasoning models show their superior ability to navigate147

long contexts. The models o3, o1, o1-mini, and DeepSeek-R1 do not show outstanding results when148

used without any information about the library: o3 is the only model among them to compete with149

other top-tier models. Yet, all the reasoning models exhibit 10-16% API Recall improvements when150

given the full list of library APIs. This suggests that reasoning models can identify the required API151

names more often than other models, while not being proficient in using the given libraries after the152

training stage.153

Among the smaller models, Qwen-2.5-Coder-32B shows 38% API Recall when given 2,000 API154

names in the context. The model does so while heavily relying on the context, as suggested by the155

9% difference in the results compared to the empty context. At 32 billion parameters, Qwen-Coder156

performs significantly better than the Llama-3.1-70B, despite being more than two times smaller. The157

Llama-3.1 family of models does not show good utilization of long context across all three evaluated158

model sizes. One possible reason for that is the lack of training on specialized code-related data,159

which was performed for Qwen-Coder.160

Based on the conducted experiments with the baselines, we conclude that our benchmark is not being161

saturated with the modern models, and it can be used to assess their abilities in utilization of long162

contexts, while simultaneously tracking models’ coding capabilities.163

2.2 Project-Level Code Completion164

Task description. The second task that we describe is project-level code completion, targeting the165

completion of single lines. We formulate the task as follows: given relevant information from the166

project, which we call context, and a prefix of the completion file, one needs to generate the next167

line in this file. While there exist other repository-level completion datasets [64, 38], we use project168
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history from Git to mimic the real-world use case and avoid possible data leakages between files that169

arise when files in the context are written after the completed file and rely on the completed code. On170

top of that, we introduce a fine-grained classification of the completed lines by the used APIs.171

Collection methodology. To create the dataset, we process the collected Python projects, traversing172

their Git histories to collect commits that were done after 01.01.2022. We extract newly added files173

from them, filtering out files with fewer than 200 lines or more than 2,000 lines. To collect the context174

for each file, we checkout the respective parent commit and save the contents of all the code and text175

files (e.g., build files, documentation), constituting the repository as it was when the commit was176

made. Each datapoint contains the file for completion, a list of lines to complete with their categories177

(see the categorization below), and a repository snapshot that can be used to build the context.178

We split our dataset into four parts based on the total size of .py files in the repository snapshot. As179

the reference for such a division, we chose the CodeLlama model [49], which has a context window180

of size 16K and about three characters per token. Based on this, we have four sets of samples with181

the following limits on the total number of characters in the context .py files: small-context set from182

0 to 16K × 3 = 48K characters; medium-context set from 48K to 192K characters; large-context set183

from 192K to 768K characters; huge-context set from 768K characters. We downsample datapoints184

to five datapoints per repository, and the repositories to 75 per set to ensure data diversity. The sizes185

of the four sets are 144, 224, 270, and 296 datapoints, respectively.186

For each datapoint, we also provide a list of lines for completion—35 lines on average—since187

evaluating a code model on every line of a file is extremely resource-consuming. Moreover, not188

all lines are equally hard to complete; e.g., function declaration lines can be challenging due to189

uncertainty, whereas loop definition can be straightforward. Taking this into account, we introduce a190

classification of the code lines into six categories depending on the used functions and classes.191

1. infile — lines that call functions/classes defined in the same file;192

2. committed — lines that call functions/classes defined in other files in the commit introducing193

the completion file;194

3. inproject — lines that call functions/classes defined in the snapshot of the project before the195

commit;196

4. common — lines that contain common functions such as main or get;197

5. non-informative — lines that are too short, too long, contain prints, etc. (see Appendix B.2198

for the full definition);199

6. random — the rest of the lines.200

Our main focus is on the first three categories, as they definitely require the utilization of context to201

form a correct completion. While each line can fall into multiple categories based on the content, we202

only assign the “most difficult” category to each line in the following order (from difficult to easy):203

committed, inproject, infile, common. We then sample on average ten completion lines per datapoint204

for the first four classes and five lines per datapoint for non-informative and random classes. Thus,205

for each file in the dataset, we have multiple lines that the model should complete. The total numbers206

of completion lines are 4,686, 8,676, 9,631, and 9,810 for each of four sets, respectively.207

Metrics. The main metric for the project-level code completion task is the exact match of generated208

lines per category. This is a proportion of correct predictions calculated separately for each of the209

categories. The prediction is correct if it matches the ground truth after removing leading and trailing210

whitespaces from both. Additionally, we compute models’ perplexity on the completion file as a211

proxy metric to estimate how well the provided context from the repository allows to model the212

completion file.213

Baselines. We use the dataset to evaluate how well pre-trained code LLMs can utilize context from214

the given repository. Here we provide the full evaluation results for CodeLlama-7B in Table 3 (see215

the online leaderboard1 for other models).216

We provide several context composers as baselines:217

1Online leaderboard: https://huggingface.co/spaces/JetBrains-Research/long-code-arena
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Table 2: The perplexity values for CodeLlama-7B with different context composers. The lower
perplexity value suggests better modeling quality.

Additional context All files Only Python files Difference with FL
256 1,753 12,000 256 1,753 12,000

File-level (FL) 1.849 1.849 1.849 1.849 1.849 1.849 0.000
Naive 1.798 1.788 1.761 1.788 1.760 1.677 0.172
Path distance (PD) 1.783 1.727 1.607 1.782 1.726 1.601 0.248
Half hemory (HM) 1.799 1.789 1.743 1.789 1.765 1.670 0.179
HM + PD 1.782 1.730 1.636 1.783 1.729 1.636 0.213
File length 1.797 1.784 1.742 1.792 1.774 1.708 0.141
Imports First 1.791 1.769 1.732 1.785 1.751 1.666 0.183
Only declaration + PD2 1.785 1.741 1.710 1.785 1.739 1.708 0.141

• Naive composer — all the files from the repository snapshot are concatenated into one string218

with no specific order.219

• Path distance composer — the order of the files is defined by the distance between files220

in a project file tree: if the file from the repository is closer to the completion file, then its221

content is closer in the context.222

• File length composer — the order of the files is defined by the length of a file: shorter files223

are closer to the completion file.224

• Half memory composer — each line from the repository files is removed with a probability225

of 0.5, and the order of the files is the same as in the naive composer.226

• Imports first composer — the order of the files is defined by an import relation of first227

degree: if any project files are imported in the completion file, then these files are closer to228

the completion file.229

• Only declarations composer — some project files are left only with declaration lines, so we230

keep only names from the repository files.231

To compare different context composers, we compute model’s perplexity on the completion file232

as a proxy for completion quality (lower perplexity should lead to better completions). We report233

results for CodeLlama-7B and the medium-context dataset in Table 2. We vary the number of context234

tokens coming from other repository files from 256 to 12,000 in order to check that the introduction235

of the context is indeed helpful. For all the evaluated context composers, we see that additional236

context helps, and Python files are more important for completion than the others (e.g., files in other237

programming languages or docs). Out of the ones we evaluated, the composer based on Path Distance238

performs the best with 0.25 drop in perplexity compared to the usage of a single file, so we use Path239

Distance for further experiments. We leave further exploration of different context composers for240

future work.241

Table 3 shows the Exact Match for CodeLlama-7B with Path Distance and File-level composers. As242

in the previous experiment, introduction of new context boosts the results across all datasets. We243

observe the biggest quality improvements for the inproject completions, as they require information244

from other project files to find relevant APIs. Completion for other line categories improves as well,245

as the model is able to find similar snippets of code already written in the project.246

In Appendix B.3, we report more experiments that further investigate the impact of the context size on247

the completion quality and compare a wide range of models: CodeLlama-7B [49], DeepSeek-Coder248

(1.3B, 6.7B, 33B) [23], Llama (3.1-8B, 3.2-1B, 3B) [15], and Qwen2.5-Coder (0.5B, 3B, 14B,249

32B) [27].250

2.3 Other Tasks251

Due to the lack of space, the thorough descriptions of the collected datasets and evaluated models for252

the rest of the tasks can be found in the Appendix, while we provide the task formulations below.253

2We leave only declarations in all files except for one.
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Table 3: Results of the project-level code completion for CodeLlama-7B. The metric is Exact Match
for the generated line.

Set Context infile inproject committed common non-informative random all

Small
File-level 0.35 0.16 0.33 0.32 0.28 0.42 0.35
Path Distance 16K 0.37 0.27 0.34 0.33 0.29 0.43 0.37
Difference +6% +68% +3% +3% +2% +2% +5%

Medium
File-level 0.37 0.32 0.38 0.31 0.31 0.50 0.39
Path Distance 16K 0.43 0.49 0.42 0.44 0.44 0.58 0.49
Difference +16% +53% +10% +42% +42% +16% +26%

Large
File-level 0.36 0.29 0.39 0.34 0.30 0.44 0.35
Path Distance 16K 0.46 0.44 0.55 0.46 0.42 0.54 0.47
Difference +27% +52% +41% +35% +40% +23% +35%

Huge
File-level 0.40 0.34 0.44 0.34 0.30 0.50 0.39
Path Distance 16K 0.44 0.43 0.54 0.41 0.40 0.54 0.45
Difference +10% +26% +22% +20% +36% +8% +17%

CI Build Repair (see Appendix C) asks models to generate a patch that fixes a real-life issue in a254

CI setup. The minimal set of data for the task consists of a repository snapshot at the commit that255

caused the failure of the workflow and the logs of the failed step. The task can also be performed in a256

simplified oracle setup. In this case, we put a list of relevant files and code blocks—extracted from257

the ground truth commit—into the prompt. An important feature of this task is run-based evaluation:258

we utilize GitHub Actions [20] to run the generated fixes and assess their correctness.259

Commit Message Generation (see Appendix D) for large commits requires a model to generate260

a natural language description of changes performed in a single commit. The changes can be261

represented in different ways — in various diff formats, as separate versions of each file before and262

after the changes took place, and others. Moreover, models can utilize information from unchanged263

project files to better understand how changes impacted the project. CMG is a well-established task in264

academic research [52] and a prominent feature in developer tools [10, 9], however, researchers often265

limit the scope to short diffs [16], leaving the performance on larger commits unexplored. Moreover,266

the quality of commit messages from open-source repositories—the most common data source—is267

notoriously mixed [56]. We bridge these two gaps with our novel CMG benchmark, manually curated268

and tailored for larger commits.269

Bug Localization (see Appendix E) can be formulated as follows: given an issue with a bug270

description and a repository snapshot in a state where the bug is reproducible, identify the files within271

the repository that need to be modified to address the reported bug. Although this is a subset of the272

larger bug-fixing problem, partially covered by SWE-Bench [32], bug localization requires its own273

separate evaluation. This independent assessment can provide a better understanding of the various274

approaches and their efficiency in identifying the precise location of bugs within the large code bases.275

Module Summarization (see Appendix F) tasks a model to write textual documentation based276

on the module’s or project’s source code and intent (a one-sentence description of the expected277

documentation content). This task greatly increases the context size available to the models compared278

to the existing benchmarks that cover method- or class-level summarization [28, 39, 41]. The source279

of inspiration for the module summarization task is the fact that large projects often include high-level280

materials, such as quick start guides, tutorials, module documentation, and usage instructions. The281

task aims to alleviate the time-consuming and routine process of creating these materials.282

3 Results Across Multiple Tasks283

In addition to using Long Code Arena as a set of independent benchmarks, it can be used to assess284

capabilities of models across multiple tasks. This can be done by assessing models’ results on all tasks285

but code completion. We exclude code completion here as it mainly targets base versions of models,286

while other tasks expect instruction-tuned models. We conduct such assessment for a set of nine287

models evaluated on the five tasks: the family of Llama-3.1 models [15], reasoning models OpenAI-288

o1 [44] and DeepSeek-R1 [14], and proprietary LLMs Claude 3.5-Sonnet, Claude-3.5-Haiku [2],289

GPT-4o [43], and Gemini-1.5-Pro [55].290
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Figure 1: Correlation between models’ results on the benchmarks.

Table 4 shows the results of models and their mean rank (from one to nine) across five tasks. To291

compute the mean ranks, we normalize the results across models for each task and treat the scores292

different by less than 10% as the same to reduce the effects due to randomness. o1 outperforms other293

models on all tasks but library-based code generation, where Claude-3.5 Sonnet shows slightly better294

results. The Llama-3.1 models lag significantly behind, despite the original report claiming the 405B295

version having coding and long context processing capabilities similar or better than Claude-3.5296

Sonnet. We observe that the bug localization and module summarization are the tasks where reasoning297

models perform better, as these tasks require the most search capabilities. For module summarization,298

GPT-4o performs very well, which we attribute to its proficiency in writing long coherent texts. To299

further analyze task relations, we compute Spearman correlations between model scores on different300

tasks based on the common subset of models (see Figure 1). We observe high correlations between301

most tasks, which is expected given the wide gap in capabilities between some of the evaluated302

models. Yet, the correlations suggest that benchmarks are complementing each other.303

4 Related Work304

While there exist plenty of ML4SE datasets and even benchmark collections [40], most of them305

require models to operate with rather short contexts, around the size of a single method, which hinders306

the evaluation of novel long context models. Code generation datasets [8, 4, 37, 25, 22, 62] require307

models to process up to several paragraphs of the problem statement and then generate a short program308

(one line to one file). Existing datasets for code summarization [28, 40] target documentation in a309

Table 4: Performance comparison across tasks for different models. BL: bug localization; CIR: CI
build repair; CMG: commit message generation; LB-CG: library-based code generation; MS: module
summarization.

Model Mean Rank BL CIR CMG LB-CG MS
o1 1.0 0.58 0.24 36.4 0.45 70.9
Claude-3.5 Sonnet 1.6 0.52 0.24 34.8 0.48 66.1
DeepSeek-R1 2.2 0.54 0.23 34.9 0.38 66.6
GPT-4o 2.8 0.53 0.10 34.8 0.41 67.0
Gemini-1.5 Pro 3.6 0.50 0.10 34.9 0.44 59.4
Llama-3.1 (405B) 5.2 0.47 0.04 34.8 0.37 59.6
Claude-3.5 Haiku 6.8 0.44 0.02 30.1 0.32 64.9
Llama-3.1 (70B) 7.0 0.35 0.05 33.5 0.24 58.5
Llama-3.1 (8B) 8.6 0.31 0.00 31.0 0.13 58.2
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single method, meaning that both input and output size are below several hundred tokens. Previously310

developed commit message generation benchmarks [52, 16, 50] contain significantly shorter messages311

and diffs compared to Long Code Arena.312

For code completion, recently, researchers introduced two benchmarks that operate at the repository313

scale: RepoEval [64] and RepoBench [38], also focusing on the completion of a single line. Compared314

to these benchmarks, we introduce a fine-grained classification of the completed lines and prevent315

possible data leakages by traversing Git history.316

SWE-bench [32] and its extensions [63, 61] are recent benchmarks that require models to fix issues in317

real-world programming projects. Most solutions for these benchmarks use agentic approaches [60,318

58, 65] which require models being compared to be capable of complex multi-turn interactions,319

planning, function calling. Long Code Arena covers a more diverse set of tasks, the most similar320

being CI builds repair, which focuses on builds in general rather than tests, and bug localization, which321

is a sub-task of the SWE-bench objective that we evaluate on a broader set of languages: Python,322

Java, and Kotlin. Yet, tasks in Long Code Arena are less restrictive for the models under evaluation323

and can distinguish between smaller models still being able to process long context windows.324

The most notable benchmarks for long context models include Long Range Arena [53] and325

Scrolls [51]. Our work builds the first such benchmark focusing on ML4SE tasks, while Long326

Range Arena includes synthetic problems and Scrolls focuses on natural language processing.327

5 Limitations and Future Work328

In order to gather benchmarks for Long Code Arena, we had to make several design decisions that329

can impact the generalizability. First, we base the benchmarks on open-source data. This allows330

researchers to experiment with various context-collection techniques because they have access to331

source code data. On the other hand, modern LLMs use most available open-source data for training,332

and such reliance can lead to data contamination, which in turn can skew the evaluation results.333

We argue that the tasks that we choose are less prone to models memorizing training data: there334

is no direct link between answers to benchmark tasks and raw repository data that modern models335

use for training. For example, while models could have seen documentation of specific libraries336

during training, currently it is unlikely that it was present side by side with the source code of the337

respective modules. The most memorization-prone task in our suite is code completion, but for it, we338

use historic data from Git repositories, which may become changed or overridden by the moment339

LLMs’ training data is scraped.340

In order to allow for manual examination of the collected data and to keep the benchmarks consistent,341

for most tasks we focus on datasets of Python code. Fortunately, the data preparation pipeline for all342

the tasks can be reused to produce datasets for other languages. The most complex step in this case343

will be manual verification and filtering of the data to ensure quality and correctness. In order to meet344

the quality requirement, we leave extension of datasets to other languages for future work.345

In addition to extending datasets to other programming languages, future work includes collecting346

data for fine-tuning models for particular tasks and evaluating more models on the benchmarks. In347

order to assist other researchers with the latter, we open-source the code for the baseline solutions.348

6 Conclusion349

In this paper, we present the Long Code Arena. The goal of this work is to stimulate research in350

ML-based solutions for realistic software engineering tasks. In particular, we design a series of tasks351

that require taking a complex context into account, such as full projects, libraries and their usage, and352

coarse-grained components. Our work presents six benchmarks related to code generation, repair,353

completion, and summarization. For each task, we carefully design and manually curate evaluation354

data, metrics for assessing the results, and baseline solutions based on the pre-trained models. Our355

experiments show that the tasks are within reach, but far from solved. We hope and expect that our356

Long Code Arena will encourage researchers in ML4SE and NLP communities to advance the field357

of ML-enabled software engineering.358
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NeurIPS Paper Checklist563

1. Claims564

Question: Do the main claims made in the abstract and introduction accurately reflect the565

paper’s contributions and scope?566

Answer: [Yes]567

Justification: We claim to develop and publish a suite of six benchmarks and do so in the568

paper, supplementary materials, and online via GitHub and HuggingFace.569

Guidelines:570

• The answer NA means that the abstract and introduction do not include the claims571

made in the paper.572

• The abstract and/or introduction should clearly state the claims made, including the573

contributions made in the paper and important assumptions and limitations. A No or574

NA answer to this question will not be perceived well by the reviewers.575

• The claims made should match theoretical and experimental results, and reflect how576

much the results can be expected to generalize to other settings.577

• It is fine to include aspirational goals as motivation as long as it is clear that these goals578

are not attained by the paper.579

2. Limitations580

Question: Does the paper discuss the limitations of the work performed by the authors?581

Answer: [Yes]582

Justification: We do so in Section 5.583

Guidelines:584

• The answer NA means that the paper has no limitation while the answer No means that585

the paper has limitations, but those are not discussed in the paper.586

• The authors are encouraged to create a separate "Limitations" section in their paper.587

• The paper should point out any strong assumptions and how robust the results are to588

violations of these assumptions (e.g., independence assumptions, noiseless settings,589

model well-specification, asymptotic approximations only holding locally). The authors590

should reflect on how these assumptions might be violated in practice and what the591

implications would be.592

• The authors should reflect on the scope of the claims made, e.g., if the approach was593

only tested on a few datasets or with a few runs. In general, empirical results often594

depend on implicit assumptions, which should be articulated.595

• The authors should reflect on the factors that influence the performance of the approach.596

For example, a facial recognition algorithm may perform poorly when image resolution597

is low or images are taken in low lighting. Or a speech-to-text system might not be598

used reliably to provide closed captions for online lectures because it fails to handle599

technical jargon.600

• The authors should discuss the computational efficiency of the proposed algorithms601

and how they scale with dataset size.602

• If applicable, the authors should discuss possible limitations of their approach to603

address problems of privacy and fairness.604

• While the authors might fear that complete honesty about limitations might be used by605

reviewers as grounds for rejection, a worse outcome might be that reviewers discover606

limitations that aren’t acknowledged in the paper. The authors should use their best607

judgment and recognize that individual actions in favor of transparency play an impor-608

tant role in developing norms that preserve the integrity of the community. Reviewers609

will be specifically instructed to not penalize honesty concerning limitations.610

3. Theory assumptions and proofs611

Question: For each theoretical result, does the paper provide the full set of assumptions and612

a complete (and correct) proof?613

Answer: [NA]614
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Justification: The paper introduces datasets and benchmarks and does not make assumptions.615

Guidelines:616

• The answer NA means that the paper does not include theoretical results.617

• All the theorems, formulas, and proofs in the paper should be numbered and cross-618

referenced.619

• All assumptions should be clearly stated or referenced in the statement of any theorems.620

• The proofs can either appear in the main paper or the supplemental material, but if621

they appear in the supplemental material, the authors are encouraged to provide a short622

proof sketch to provide intuition.623

• Inversely, any informal proof provided in the core of the paper should be complemented624

by formal proofs provided in appendix or supplemental material.625

• Theorems and Lemmas that the proof relies upon should be properly referenced.626

4. Experimental result reproducibility627

Question: Does the paper fully disclose all the information needed to reproduce the main ex-628

perimental results of the paper to the extent that it affects the main claims and/or conclusions629

of the paper (regardless of whether the code and data are provided or not)?630

Answer: [Yes]631

Justification: We thoroughly describe the data collection strategy and the development of632

baselines. The main text, supplementary materials, and online materials contain all the633

needed information for reproduction.634

Guidelines:635

• The answer NA means that the paper does not include experiments.636

• If the paper includes experiments, a No answer to this question will not be perceived637

well by the reviewers: Making the paper reproducible is important, regardless of638

whether the code and data are provided or not.639

• If the contribution is a dataset and/or model, the authors should describe the steps taken640

to make their results reproducible or verifiable.641

• Depending on the contribution, reproducibility can be accomplished in various ways.642

For example, if the contribution is a novel architecture, describing the architecture fully643

might suffice, or if the contribution is a specific model and empirical evaluation, it may644

be necessary to either make it possible for others to replicate the model with the same645

dataset, or provide access to the model. In general. releasing code and data is often646

one good way to accomplish this, but reproducibility can also be provided via detailed647

instructions for how to replicate the results, access to a hosted model (e.g., in the case648

of a large language model), releasing of a model checkpoint, or other means that are649

appropriate to the research performed.650

• While NeurIPS does not require releasing code, the conference does require all submis-651

sions to provide some reasonable avenue for reproducibility, which may depend on the652

nature of the contribution. For example653

(a) If the contribution is primarily a new algorithm, the paper should make it clear how654

to reproduce that algorithm.655

(b) If the contribution is primarily a new model architecture, the paper should describe656

the architecture clearly and fully.657

(c) If the contribution is a new model (e.g., a large language model), then there should658

either be a way to access this model for reproducing the results or a way to reproduce659

the model (e.g., with an open-source dataset or instructions for how to construct660

the dataset).661

(d) We recognize that reproducibility may be tricky in some cases, in which case662

authors are welcome to describe the particular way they provide for reproducibility.663

In the case of closed-source models, it may be that access to the model is limited in664

some way (e.g., to registered users), but it should be possible for other researchers665

to have some path to reproducing or verifying the results.666

5. Open access to data and code667
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Question: Does the paper provide open access to the data and code, with sufficient instruc-668

tions to faithfully reproduce the main experimental results, as described in supplemental669

material?670

Answer: [Yes]671

Justification: The materials can be accessed via https://huggingface.co/spaces/672

JetBrains-Research/long-code-arena.673

Guidelines:674

• The answer NA means that paper does not include experiments requiring code.675

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/676

public/guides/CodeSubmissionPolicy) for more details.677

• While we encourage the release of code and data, we understand that this might not be678

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not679

including code, unless this is central to the contribution (e.g., for a new open-source680

benchmark).681

• The instructions should contain the exact command and environment needed to run to682

reproduce the results. See the NeurIPS code and data submission guidelines (https:683

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.684

• The authors should provide instructions on data access and preparation, including how685

to access the raw data, preprocessed data, intermediate data, and generated data, etc.686

• The authors should provide scripts to reproduce all experimental results for the new687

proposed method and baselines. If only a subset of experiments are reproducible, they688

should state which ones are omitted from the script and why.689

• At submission time, to preserve anonymity, the authors should release anonymized690

versions (if applicable).691

• Providing as much information as possible in supplemental material (appended to the692

paper) is recommended, but including URLs to data and code is permitted.693

6. Experimental setting/details694

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-695

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the696

results?697

Answer: [Yes]698

Justification: We introduce datasets and thoroughly describe them. For the baselines we run,699

we use exactly the data we introduce in the paper.700

Guidelines:701

• The answer NA means that the paper does not include experiments.702

• The experimental setting should be presented in the core of the paper to a level of detail703

that is necessary to appreciate the results and make sense of them.704

• The full details can be provided either with the code, in appendix, or as supplemental705

material.706

7. Experiment statistical significance707

Question: Does the paper report error bars suitably and correctly defined or other appropriate708

information about the statistical significance of the experiments?709

Answer: [NA]710

Justification: The paper’s main scope is the introduction of novel benchmarks and not711

experiments.712

Guidelines:713

• The answer NA means that the paper does not include experiments.714

• The authors should answer "Yes" if the results are accompanied by error bars, confi-715

dence intervals, or statistical significance tests, at least for the experiments that support716

the main claims of the paper.717
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• The factors of variability that the error bars are capturing should be clearly stated (for718

example, train/test split, initialization, random drawing of some parameter, or overall719

run with given experimental conditions).720

• The method for calculating the error bars should be explained (closed form formula,721

call to a library function, bootstrap, etc.)722

• The assumptions made should be given (e.g., Normally distributed errors).723

• It should be clear whether the error bar is the standard deviation or the standard error724

of the mean.725

• It is OK to report 1-sigma error bars, but one should state it. The authors should726

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis727

of Normality of errors is not verified.728

• For asymmetric distributions, the authors should be careful not to show in tables or729

figures symmetric error bars that would yield results that are out of range (e.g. negative730

error rates).731

• If error bars are reported in tables or plots, The authors should explain in the text how732

they were calculated and reference the corresponding figures or tables in the text.733

8. Experiments compute resources734

Question: For each experiment, does the paper provide sufficient information on the com-735

puter resources (type of compute workers, memory, time of execution) needed to reproduce736

the experiments?737

Answer: [Yes]738

Justification: The reproduction of most evaluations is done via access to APIs from To-739

gether.AI, OpenAI, Mistral, Anthropic, Google. We further describe the resources required740

for reproduction in Supplementary Materials when applicable.741

Guidelines:742

• The answer NA means that the paper does not include experiments.743

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,744

or cloud provider, including relevant memory and storage.745

• The paper should provide the amount of compute required for each of the individual746

experimental runs as well as estimate the total compute.747

• The paper should disclose whether the full research project required more compute748

than the experiments reported in the paper (e.g., preliminary or failed experiments that749

didn’t make it into the paper).750

9. Code of ethics751

Question: Does the research conducted in the paper conform, in every respect, with the752

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?753

Answer: [Yes]754

Justification: The paper conforms with the Code of Ethics.755

Guidelines:756

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.757

• If the authors answer No, they should explain the special circumstances that require a758

deviation from the Code of Ethics.759

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-760

eration due to laws or regulations in their jurisdiction).761

10. Broader impacts762

Question: Does the paper discuss both potential positive societal impacts and negative763

societal impacts of the work performed?764

Answer: [Yes]765

Justification: We discuss this in Section 6.766

Guidelines:767

• The answer NA means that there is no societal impact of the work performed.768
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• If the authors answer NA or No, they should explain why their work has no societal769

impact or why the paper does not address societal impact.770

• Examples of negative societal impacts include potential malicious or unintended uses771

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations772

(e.g., deployment of technologies that could make decisions that unfairly impact specific773

groups), privacy considerations, and security considerations.774

• The conference expects that many papers will be foundational research and not tied775

to particular applications, let alone deployments. However, if there is a direct path to776

any negative applications, the authors should point it out. For example, it is legitimate777

to point out that an improvement in the quality of generative models could be used to778

generate deepfakes for disinformation. On the other hand, it is not needed to point out779

that a generic algorithm for optimizing neural networks could enable people to train780

models that generate Deepfakes faster.781

• The authors should consider possible harms that could arise when the technology is782

being used as intended and functioning correctly, harms that could arise when the783

technology is being used as intended but gives incorrect results, and harms following784

from (intentional or unintentional) misuse of the technology.785

• If there are negative societal impacts, the authors could also discuss possible mitigation786

strategies (e.g., gated release of models, providing defenses in addition to attacks,787

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from788

feedback over time, improving the efficiency and accessibility of ML).789

11. Safeguards790

Question: Does the paper describe safeguards that have been put in place for responsible791

release of data or models that have a high risk for misuse (e.g., pretrained language models,792

image generators, or scraped datasets)?793

Answer: [Yes]794

Justification: We describe the data collection strategy. We only use data with permissive795

licenses for the datasets.796

Guidelines:797

• The answer NA means that the paper poses no such risks.798

• Released models that have a high risk for misuse or dual-use should be released with799

necessary safeguards to allow for controlled use of the model, for example by requiring800

that users adhere to usage guidelines or restrictions to access the model or implementing801

safety filters.802

• Datasets that have been scraped from the Internet could pose safety risks. The authors803

should describe how they avoided releasing unsafe images.804

• We recognize that providing effective safeguards is challenging, and many papers do805

not require this, but we encourage authors to take this into account and make a best806

faith effort.807

12. Licenses for existing assets808

Question: Are the creators or original owners of assets (e.g., code, data, models), used in809

the paper, properly credited and are the license and terms of use explicitly mentioned and810

properly respected?811

Answer: [Yes]812

Justification: The datasets are published under the Apache-2.0 license. This information is813

included for all the assets.814

Guidelines:815

• The answer NA means that the paper does not use existing assets.816

• The authors should cite the original paper that produced the code package or dataset.817

• The authors should state which version of the asset is used and, if possible, include a818

URL.819

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.820
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• For scraped data from a particular source (e.g., website), the copyright and terms of821

service of that source should be provided.822

• If assets are released, the license, copyright information, and terms of use in the823

package should be provided. For popular datasets, paperswithcode.com/datasets824

has curated licenses for some datasets. Their licensing guide can help determine the825

license of a dataset.826

• For existing datasets that are re-packaged, both the original license and the license of827

the derived asset (if it has changed) should be provided.828

• If this information is not available online, the authors are encouraged to reach out to829

the asset’s creators.830

13. New assets831

Question: Are new assets introduced in the paper well documented and is the documentation832

provided alongside the assets?833

Answer: [Yes]834

Justification: Yes, they are described both in the paper and online. We only use publicly835

available data with permissive licenses.836

Guidelines:837

• The answer NA means that the paper does not release new assets.838

• Researchers should communicate the details of the dataset/code/model as part of their839

submissions via structured templates. This includes details about training, license,840

limitations, etc.841

• The paper should discuss whether and how consent was obtained from people whose842

asset is used.843

• At submission time, remember to anonymize your assets (if applicable). You can either844

create an anonymized URL or include an anonymized zip file.845

14. Crowdsourcing and research with human subjects846

Question: For crowdsourcing experiments and research with human subjects, does the paper847

include the full text of instructions given to participants and screenshots, if applicable, as848

well as details about compensation (if any)?849

Answer: [NA]850

Justification: The paper does not include human studies.851

Guidelines:852

• The answer NA means that the paper does not involve crowdsourcing nor research with853

human subjects.854

• Including this information in the supplemental material is fine, but if the main contribu-855

tion of the paper involves human subjects, then as much detail as possible should be856

included in the main paper.857

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,858

or other labor should be paid at least the minimum wage in the country of the data859

collector.860

15. Institutional review board (IRB) approvals or equivalent for research with human861

subjects862

Question: Does the paper describe potential risks incurred by study participants, whether863

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)864

approvals (or an equivalent approval/review based on the requirements of your country or865

institution) were obtained?866

Answer: [NA]867

Justification: No research on human subjects was conducted.868

Guidelines:869

• The answer NA means that the paper does not involve crowdsourcing nor research with870

human subjects.871
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• Depending on the country in which research is conducted, IRB approval (or equivalent)872

may be required for any human subjects research. If you obtained IRB approval, you873

should clearly state this in the paper.874

• We recognize that the procedures for this may vary significantly between institutions875

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the876

guidelines for their institution.877

• For initial submissions, do not include any information that would break anonymity (if878

applicable), such as the institution conducting the review.879

16. Declaration of LLM usage880

Question: Does the paper describe the usage of LLMs if it is an important, original, or881

non-standard component of the core methods in this research? Note that if the LLM is used882

only for writing, editing, or formatting purposes and does not impact the core methodology,883

scientific rigorousness, or originality of the research, declaration is not required.884

Answer: [Yes]885

Justification: We use LLMs as a part of evaluation suite for module summarization and886

describe it in the paper and supplementary materials.887

Guidelines:888

• The answer NA means that the core method development in this research does not889

involve LLMs as any important, original, or non-standard components.890

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)891

for what should or should not be described.892
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Supplementary Materials893

A Library-Based Code Generation894

A.1 Dataset Collection and Processing895

The resulting dataset consists of 150 samples, each representing an instruction that a machine896

learning model should follow when generating a Python program, reference data for evaluation of the897

generation quality, and relevant data that can be used to improve generation. This relevant data is898

the source code of an entire Python library, based on a usage example from which we created the899

instruction for generation.900

The structure of the individual datapoints is presented in Table 5. The labels are available in two901

forms: the reference program that was written by library authors as an example of library usage, and902

the list of library-specific API calls that the reference program makes. Both the program itself and903

the list of API calls can be used to assess the quality of a program generated by a machine learning904

model under evaluation. The dataset is self-contained, as it provides the snapshots of all associated905

repositories.906

In order to collect the data, we use the following protocol:907

1. We collect repositories from GitHub with at least 1,000 commits, at least ten contributors,908

issues, and stars, at least 10,000 lines of code, not a fork, last commit after 01.06.2023,909

and a permissive license (we use the most popular permissive licenses — MIT, Apache-2.0,910

BSD-3-Clause, and BSD-2-Clause). For the library-specific code generation task, we leave911

only repositories having Python as the main language.912

2. For each repository, we detect the folder with usage examples: a folder with “.py” files that913

contains “examples” in its name. If a repository does not have such a folder, we filter it out.914

After this step, we are left with 883 repositories that have usage examples.915

3. We then identify library-specific APIs for each of the 883 repositories. We extract all916

names of all methods, classes, and constants defined in these repositories, and treat as917

“library-specific” the ones that appear only in a single repository.918

4. We then collect all Python files from the folders with examples and filter them: (i) remove919

examples shorter than 100 or longer than 40,000 characters (excluding comments), (ii)920

Table 5: The structure of datapoints in the library-based code generation dataset.

Field Description
repo_full_name Concatenated repository name and owner

repo_name Library repository name
repo_owner Library repository owner
instruction Task for code generation
reference Reference program written by the library authors

clean_reference Reference program with comments removed
path_to_reference_file Path to the reference in the repository (removed in

repository snapshots to prevent data leakages)
path_to_examples_folder Path to the directory with examples in the reposi-

tory (removed in repository snapshots to prevent
data leakages)

n_unique_apis Number of calls to library-specific APIs in the ref-
erence program

unique_apis List of calls to library-specific APIs in the refer-
ence program

project_defined_elements All class and method names in the repository
api_calls All API calls in the reference program

internal_apis All API calls to the respective library in the refer-
ence program

21



remove examples that have fewer than 400 characters of comments in order to then write921

high-quality instruction for generation, (iii) remove examples that use fewer than ten API922

calls specific to the given library. These filters result in 150 files (usage examples) from 62923

libraries, with each file heavily relying on the APIs of the respective project.924

5. After we have the usage examples for libraries, we create instructions for generating them.925

We first run the selected 150 files through GPT-4 [1], prompting it to generate an instruction926

for generating the respective file. You can see the prompt for generation in Figure 2. This927

leaves us with step-by-step instructions that the LLM should then follow to generate a script928

that utilizes the library at hand. Then, we manually fix each instruction in order to reduce929

hinting to specific library methods and ensure their correctness.930

SYSTEM: We are developing a benchmark to assess quality of
code generation models. As a part of the benchmark, we include
the task of generating code based that uses the particular
library from a description in natural language. As a source of
data for this task we will use coding examples in Python
provided by library developers. Your task will be to generate
a text description of the provided Python code that will then
be used as an input for the generation task.

USER: Here is the code. You should write an instruction that
summarizes its contents and would allow another model to
generate this snippet of code, excluding the comments. Make
the instruction abstract, do not mention specific code
constructions that the generator should use. Be concise.
Generator will be able to access the contents of the following
library: [LIBRARY_NAME]. Use wording such as "Generate code
that ..." in your instruction.

[CODE]

Figure 2: Prompt for generating instructions from library usage examples.

B Project-Level Code Completion931

B.1 Datapoint Structure932

Each instance that comprises the dataset consists of three key elements: a repository snapshot, a933

completion file, and target lines for the completion task. A repository snapshot is a list of all the934

filenames and contents of all text files from the repository (code, documentation, etc.). The state935

of the repository is before the commit where the completion file was added. A completion file is936

a Python file added in a particular commit. Target lines are a list of lines from the completion file937

that the model under evaluation should generate. Each line is also assigned one of classes that we938

describe in the following subsection.939

The structure of datapoints:940

• repo – repository name in the format {GitHub_user_name}__{repository_name}941

• commit_hash – hash of the commit where the completion file was added942

• completion_file – dictionary with the completion file content in the following format:943

– filename – path to the completion file944

– content – content of the completion file945

• completion_lines – dictionary where keys are categories of lines and values are a list946

of integers (numbers of lines to complete). The categories are described in the following947

subsection.948

• repo_snapshot – dictionary with a snapshot of the repository before the commit. Has the949

same structure as completion_file, but filenames and contents are organized as lists.950
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• completion_lines_raw – the same as completion_lines, but before sampling.951

Targets for the completion task are provided in the completion_lines field. To get a target line for952

completion, split the completion file by newline characters and select lines using the provided indices.953

Line categories are also provided.954

B.2 Dataset Collection and Processing955

Starting with the common corpus of repositories, we then follow the following process to acquire the956

data:957

1. Traverse Git history: We collect commits that add at least one new .py file. These files are958

candidates for the completion files.959

2. Filtering collected commits: We filter the commits to retain only those with the potential960

completion files containing between 200 and 2,000 lines, and with creation dates after961

January 1st, 2022.962

3. Extract repository snapshots: We create snapshots of the repositories based on the filtered963

commits, ensuring that we capture the state of the repository before the collected commit.964

The repository snapshots are intentionally not filtered to ensure that all possible information965

could be utilized. As a result, the dataset includes sources of noise, such as auto-generated966

files, CSV data, etc.967

4. Split by the size of relevant context: We split all the data into four groups based on the968

number of characters in .py files from the repository snapshots. The groups are: (i) small-969

context: less than 48K characters; (ii) medium-context: from 48K to 192K characters;970

(iii) large-context: from 192K to 768K characters; (iv) huge-context: more than 768K971

characters;972

5. Sample datapoints: we randomly sample 5 datapoints for each repository, and we randomly973

sample 75 repositories for each group. If fewer than 5 datapoints or 75 repositories are974

available, we use all available datapoints or repositories. We keep all 80 repositories for the975

medium-context dataset.976

6. Classify lines: We perform line classification that is introduced in the paper and assign a977

main category to each line of the completion file.978

7. Sample completion lines: We sample lines from each category such that the average number979

of lines is no more than 5 for non-informative and random categories, and no more than 10980

for other categories.981

Classification of the lines is done for each of the completion files. There are six categories of982

completion lines according to various completion scenarios.983

1. infile – a line contains at least one function or class that was declared in the completion file.984

2. inproject – a line contains at least one function or class that was declared in the repository985

snapshot files.986

3. common – a line contains at least one function or class that was classified to be common,987

e.g., main, get, etc.988

4. committed – a line contains at least one function or class that was declared in the files that989

were created in the same commit as the completion file (excluding the completion file).990

5. non-informative – a line that satisfies at least on of the following criteria: (i) shorter than 5991

characters or longer than 150 characters, (ii) a line with print, (iii) a line with import, (iv)992

a declaration of a function or a class, (v) a comment or contains an inline comment.993

6. random – all the lines that do not have any category.994

Some lines may have more than one category after the classification. We additionally identify the995

main category for each line based on the following approach.996

• If a line has a committed category, then the main category is committed.997
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Figure 3: Large Context set, File-level.

• If a line does not satisfy the previous condition, but has an inproject category, then the main998

category is inproject.999

• If a line does not satisfy previous conditions, but has an infile category, then the main1000

category is infile.1001

• If a line does not satisfy previous conditions, but has a common category, then the main1002

category is common.1003

• If a line has a non-informative category, then the main category is non-informative.1004

• If a line has a random category, then this is the only category for the line, and the main1005

category is random.1006

The dataset has been collected in December of 2023. Considering the filtering process, the data1007

within the dataset spans from January 2022 to December 2023.1008

We provide a distribution of lines for each set and each category in Table 6.

Table 6: Line counts for different sets in the project-level code completion dataset.

Set infile inproject common committed non-informative random all Avg. for one file
Small 1,430 95 500 1,426 532 703 4,686 32.5
Medium 2,224 2,236 779 1,495 858 1,084 8,676 38.7
Large 2,691 2,595 693 1,322 1,019 1,311 9,631 35.7
Huge 2,608 2,901 692 1,019 1,164 1,426 9,810 33.1

1009

B.3 Extensive Evaluation1010

B.3.1 Models Comparison1011

We compare a variety of models: CodeLlama-7B [49], DeepSeek-coder (1.3B, 6.7B, 33B) [23],1012

Llama (3.1-8B, 3.2-1B, 3B) [15], and Qwen2.5-coder (0.5B, 3B, 14B, 32B) [27]. Comparison is made1013

within the same setting: file-level completion, path distance composer with 16K context window, and1014

the relative difference in Exact Match scores.1015

Figure 3 demonstrates that as the model size increases, performance metrics improve accordingly.1016

Models effectively handle completion tasks across random, committed, and infile lines for the Large1017

Context set. It is expected for random and infile, but it is unusual for committed. It could be1018

an evidence that repositories from the large context set were in model’s training data or that the1019

committed API is too obvious.1020

Figure 4 shows that the Path Distance Composer enhances completion quality across all models,1021

regardless of their family or size. The distribution of Exact Match scores per line category changes1022

which supports our classification and the hypothesis behind it.1023
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Figure 4: Large Context set, Path Distance composer, context window size is 16000.

Figure 5: Large Context set, Difference between Path Distance 16K and File-level.

Figure 5 highlights the tendency that the bigger the model from a family the lower its completion1024

quality gain from the context. That can be related to a fact that bigger models know more factual1025

information, but smaller models successfully use in-context learning instead.1026

B.3.2 Context Size Impact1027

We compare results of Qwen2.5-coder 7B on all the sets with different context window sizes: from1028

256 to 32000. Figure 6 illustrates that completion quality is better for a longer context across every1029

line category. There are a few rapid shifts, e.g., inproject category for medium context set or common1030

category for large context set. This behavior can be a result of a perfect file in the context.1031

An unexpected observation here is that inproject and infile categories improve with the same pace. So,1032

the file-level information is not enough for the highest quality completion even for the infile lines.1033

Figure 6: Qwen2.5-coder 7B, Path Distance context composer.

25



Figure 7: Qwen2.5-coder family of models with different context window sizes.

B.3.3 Model Size vs Context Size1034

One of the possible applications of the presented dataset is to identify if the model size or context1035

window matters the most. For example, Figure 7 shows that Qwen2.5-coder 32B with 32K context1036

window performs almost the same as Qwen2.5-coder 14B with 32K context window, and Qwen2.5-1037

coder 1.5B with 16K context window is equal to or better than any other Qwen2.5-coder model with1038

4K context window for most line types.1039

Overall, Figure 7 supports the general intuition that both context window size and model size1040

positively impact performance. For the Qwen2.5-coder family, increasing both context length and1041

model size leads to improved results across all task categories.1042

C CI Builds Repair1043

CI Build Repair asks models to generate a patch that fixes a real-life issue in a CI setup. The minimal1044

set of data for the task consists of a repository snapshot at the commit that caused the failure of the1045

workflow (failed commit hereafter) and the logs of the failed step. The task can also be performed in1046

a simplified oracle setup by prompting a model with a list of files and their content or code blocks in1047

them to change. In this case, the code blocks come from the ground-truth fixing diff provided in the1048

dataset. An important feature of this task is run-based evaluation: we utilize GitHub Actions to run1049

the generated fixes and assess their correctness.1050

C.1 Dataset Collection and Processing1051

The final dataset consists of the datapoints with structure presented in Table 7. In order to collect and1052

process the data, we use the following protocol:1053

1. We limited ourselves to the 100 largest Python repositories (main language: Python, the1054

ratio of the main language > 0.95) with permissive licences. From each repository, we take1055

no more than three branches, for each branch — no more than three different workflows, and1056

for each workflow — no more than three datapoints. Thus, each repository could contribute1057

up to 27 datapoints.1058

2. For all the collected Python repositories, we get the full list of the actions run in the repository,1059

limited to last 90 days. Downloaded data contains action status (failed or successful) and1060

links to the action runs.1061
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Table 7: The structure of datapoints in the CI builds repair dataset.

Field Description
contributor The username of the contributor that committed changes

difficulty The difficulty of the problem according to an assessor on
a 1–3 scale

diff Contents of the diff between the failed and the successful
commits

head_branch Name of the original branch that the commit was pushed
to

id Unique ID of the datapoint
language The main language of the repository

logs List of dictionaries with logs of the failed job and name
of the failed step in this job

repo_name Name of the original repository
repo_owner Owner of the original repository

sha_fail SHA of the failed commit
sha_success SHA of the successful commit

workflow Contents of the workflow file
workflow_filename The name of the workflow file (without full path)

workflow_name The name of the workflow
workflow_path The full path to the workflow file
changed_files List of files changed in the diff
commit_link URL to a commit corresponding to the failed job

3. We gather a list of pairs of consecutive commits in which the first commit causes a failure of1062

a workflow but the next one makes it build successfully.1063

4. For each pair of commits, we download:1064

• logs of the failed step of the failed commit;1065

• diff between the failed and successful commit (correction diff );1066

• metadata of the failed commit.1067

During the download, we clean the data according to the following filters (on the fly, to1068

avoid excessive requests to GitHub API):1069

• To reduce the benchmarking time, we eliminate runs that take more than 10 minutes1070

(measured on successful action run).1071

• To minimize the number of actions that contain pure formatting issues, we filter out1072

datapoints, in which the names of the workflow, target, or failed step contain any of1073

the following substrings: {mypy, lint, flake8, black}. We allow these substrings in the1074

target name if there is more than one target in the action run.1075

• We remove runs for which the workflow file contains substrings {token, secret} to1076

ensure that we can run them without any prerequisites.1077

• We keep only datapoints for which the correction diff (i) contains at least one .py file,1078

and (ii) only contains files that match either of the following items: {code file, *.md,1079

*.rst, LICENSE*, readme*, doc/*}. We do so to ensure that there are no changes in1080

artifacts such as resources or data files, which the model cannot fix given the present1081

context.1082

5. To isolate the problem to a single issue per datapoint, when running the benchmark, we delete1083

all .yaml files in the .github/workflows/ directory, ensuring that only this workflow1084

would be run. We also remove workflows that contain links to other workflow files to make1085

sure that the target workflow is independent.1086

6. The human assessor assessed the datapoints to verify that logs contain all the necessary1087

information to fix the issue and graded the datapoints on a 1–3 scale according to their1088

difficulty. Table 8 describes the difficulty levels and the sizes of the available buckets.1089

7. In the last step, we run all datapoints through our benchmark at both the failed and the1090

successful commit. We then keep only the datapoints that remained failing / passing at the1091
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Table 8: Data split by the difficulty.

Difficulty # of datapoints Description
1 36 Issues with formatting
2 7 Local issues or issues with typing
3 25 Issues that require information about

other files in the repository

Total 68

Table 9: Number of datapoints on each mining step.

Data mining step # of datapoints
Initial set of sampled workflows 336

Datapoints that passed assessor verification 210
Datapoints that passed GitHub Actions 144

Datapoints that passed GitHub Actions after 14 months 68

respective commits. Moreover, we repeat the procedure after 14 months from the initial1092

procedure to ensure the durability of the dataset. This last step is crucial as it filtered out1093

50% of the datapoints: quite many passing workflows started failing due to changes in1094

library versions that were not specified by repository owners, connection issues, missing1095

remote files or certificates. Table 9 reports the number of filtered datapoints at each step.1096

Context-related statistics are presented in Table 101097

Table 10: Context-related statistics.

Context metric Mean Median
Symbols in logs 145K 6.5K

Files in repository 610 240
Lines in repository 170K 56K

Symbols in repository 7.5M 2.4M

C.2 Evaluation1098

We implement the benchmark for using the CI builds repair dataset in our repository. The benchmark1099

requires a user-implemented function (fix_repo_function) that repairs locally stored repository, given1100

the logs of a failing build. The procedure is the following:1101

1. The benchmark clones each repository snapshot with depth equal to 1 to a local machine.1102

2. Then, the benchmark runs the model under evaluation, which takes a datapoint as input1103

(mainly — log and workflow files) and needs to repair the repository on the local machine1104

by editing or replacing files.1105

3. The benchmark edits the workflow files to run only one workflow.1106

4. Then, it pushes the current state of the repository to a new branch in the separate GitHub1107

organization.1108

5. When results of builds in GitHub Actions become available, the benchmark collects, ana-1109

lyzes, and returns them.1110

To use the benchmark, one needs to send a request to join the GitHub organization3 since the procedure1111

requires pushing changes to repositories in that organization. Moreover, keeping repositories as forks1112

in a separate organization ensures that they will remain available. The function fix_repo_function1113

takes the following (all optional) arguments:1114

3GitHub Organization for the benchmark: https://github.com/LCA-CI-builds-repair
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1. datapoint: datapoint from the dataset1115

2. repo_path: path to the repository on the user’s machine1116

3. repo: git.Repo object from the GitPython library1117

4. out_folder: directory for outputting the benchmark results1118

Intermediate results contain datapoint ID and meta information, as well as the SHA of the commit1119

pushed to the target repository. After collecting the results, the benchmark adds the status of the1120

GitHub Actions build to this information.1121

We use the collected dataset to assess multiple LLMs in the CI builds repair task.1122

To make the task easier to tackle, we provide models with an oracle — when asking to fix the build,1123

we also provide the list of files and specific code blocks in them that should be fixed. The information1124

on which files need fixing comes from the ground truth commit that fixed the build. In the future, if1125

the task becomes too easy for the models, oracle can be simply removed to make the task even more1126

realistic and challenging.1127

To avoid compatibility issues with external packages, we implemented time machine, which ensures1128

that installed package versions match those available at the time of the commit.1129

To prompt the models to solve the task, we use the following strategy. To prepare an instruction,1130

we locate the first occurrence of case-insensitive substring “error”, "failure", "failed" or "traceback"1131

in the logs and take a 200-line context around this occurrence (100 lines before and after). If the1132

substring is not found, we use 200 last log lines. The instruction then reads as follows:1133

Title: Tests Failed After New Commit

## Overview
A recent commit caused one or more tests to fail in the repository.
We need to investigate the relevant logs, determine the problem, and propose a fix.

## Relevant Logs
Below is a focused snippet of the CI logs surrounding the failure:

{relevant_logs}1134

We then prompt the LLM to modify the code blocks provided by an oracle to align with the given1135

instructions, and pass all the files in a single request in the following way:1136

[start of file.py]
...
[end of file.py]1137

LLM replies with a unified diff4. During evaluation of the benchmark results, these diffs are applied1138

and the patched version is sent to GitHub Actions to be tested. The statistics of the context length1139

(OpenAI models’ tokens [45]) is following: min = 859, max = 61,982, mean = 13,994, std = 14,379,1140

median = 9,726.1141

Table 11 shows the evaluation results for three independent runs of several models: proprietary1142

OpenAI GPT-4o [43], Anthropic Claude 3.5 Sonnet, 3 Opus, 3 Haiku [2], and Google Gemini 1.51143

Pro [55] (max context length = 32,768 due to technical reasons), as well as open-source DeepSeek-1144

R1 [14] (max context length = 16384) and Llama instruct models [15]: INT8 Llama 3.1 (8B, 70B,1145

405B). If not stated otherwise, all models have context length ≥ 64,000 tokens.1146

4Aider: https://aider.chat/docs/unified-diffs.html
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Table 12: The structure of datapoints in the commit message generation dataset.

Field Description
repo The full name of the GitHub repository the

commit comes from
hash The SHA hash of the commit, serves as an

identifier inside individual repository
date The timestamp of the commit (from the

commit author)
license The type of the license in the repository of

the commit
message The ground truth commit message

mods The changes performed in a commit, rep-
resented as a list of per-file modifications,
where the structure of a per-file modifica-
tion is described in Table 13

Table 11: Pass@1 scores of the CI builds repair benchmark for various LLMs. Average of three runs.

Model Pass@1, %
DeepSeek-R1 23 ± 1

Claude-3.5-Sonnet 24 ± 1
GPT-o1 19 ± 1

Claude-3-Opus 14 ± 3
Claude-3-Haiku 2 ± 2
Gemini-pro-1.5 10 ± 3

GPT-4o 10 ± 1
Llama-3.1-405B 4 ± 1
Llama-3.1-70B 5 ± 3
Llama-3.1-8B 0

D Commit Message Generation1147

In Commit Message Generation (CMG) for large commits, a model should generate a natural language1148

description of changes performed in a single commit. The changes can be represented in different1149

ways — in various diff formats, as separate versions of each file before and after the changes took1150

place, and others. Moreover, models can utilize information from unchanged project files to better1151

understand how changes impacted the project. In this work, we present a manually curated dataset1152

for CMG tailored for larger commits.1153

D.1 Dataset Structure1154

Each instance in the dataset represents a commit from a GitHub repository, with metadata like commit1155

SHA and full repository name, ground truth commit message, and the list of performed changes1156

in the Git diff format. Additionally, the dataset includes snapshots of all associated repositories to1157

facilitate context construction. The detailed structure of each datapoint is presented in Table 12.1158

D.2 Dataset Collection and Processing1159

We use the CommitChronicle dataset [16] as the initial source of commits for our dataset. We refer1160

the reader to the work of Eliseeva et al. [16] for the details about data collection. In this work, we1161

focus on Python language only and thus consider only the subset of the CommitChronicle test set1162

that includes changes to at least one .py file.1163

We perform extensive filtering, including manual validation, to select high-quality examples with1164

long diffs and commit messages. The exact data filtering steps are listed in Table 14. For the commit1165

message quality filter, we refine the dataset released in a recent study from Li and Ahmed to make it1166
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Table 13: The structure of a per-file modification in the commit message generation dataset.

Field Description
change_type The type of change to the current file, one

of: ADD, COPY, RENAME, DELETE,
MODIFY, or UNKNOWN

old_path The path to file before the change (might be
empty if the file was created)

new_path The path to file after change (might be
empty if the file was deleted)

diff The changes to the current file, represented
in a Git diff format

Table 14: Filters applied to the CommitChronicle subset to build the commit message generation
dataset from Long Code Arena. *Since the Quality filter is based on a deep learning classifier, it was
applied only to the subset of 3,366 commits obtained by running all the other filters.

Filter Description Filter Details Number of commits
rejected by the filter
(% of initial sample)

Diff Filters

Hash Diffs Diff has whitespace-separated character-to-words
ratio ≤ 20 [35].

437 (0.25%)

Modification Diff consists only of modifications of existing files
(no additions, deletions, renaming, or copying).

25,750 (14.95%)

Message Filters

Capitalization Message starts with an uppercase letter [42]. 68,384 (39.70%)
Verbs Message starts with any of the curated set of verbs

from the recent work of Muennighoff et al. [42].
90,696 (52.66%)

References Message does not contain external references
(URLs or references to issues/pull requests).

31,487 (18.28%)

Noise Message does not follow certain patterns consid-
ered automatically generated or trivial [16, 42].

6,304 (3.66%)

Min Words Message contains ≥ 4 words (whitespace-
separated).

24,474 (14.21%)

Min Lines Message contains ≥ 2 lines. 138,160 (80.22%)
Hash Messages Message has whitespace-separated character-to-

words ratio ≤ 20 [35] and does not contain any
SHA hashes [16].

12,540 (7.28%)

Quality Message is considered good by the commit mes-
sage quality classifier.

106 (3.14%)*

more suitable for data filtering purposes, and fine-tune the CodeBERT [17] model. After filtering,1167

we retain 3,260 commits. Since we aim to target commits with larger changes, after the initial1168

filtering, we only keep samples where the number of characters in diffs related to .py files is ≥ 3,0001169

characters. That leaves us with 858 commits that we further filter manually. The manual labeling1170

is conducted by one of the authors. We employ a 5-point Likert scale and additionally provide1171

comments that elaborate on the reasoning for most of the samples. To facilitate further research, we1172

made all the labels and comments available in the dataset.1173

D.3 Evaluation1174

We run multiple instruction-tuned LLMs on the presented commit message generation benchmark in1175

a zero-shot setting (i.e., no examples in the prompt, only a natural language instruction). We employ1176

the same prompt for all models. The prompt is presented in Figure 8. It was crafted through several1177

iterations, addressing the most frequent issues in the generated messages from pilot experiments. In1178

our main experiments, we only incorporate commit changes represented as diffs returned by the git1179

diff command to prompt the LLMs. Additionally, we run the CodeT5 [59] model fine-tuned for1180

commit message generation task on the training part of the CommitChronicle dataset. This model1181

only takes the commit diff as an input.1182

We access proprietary LLMs through the official APIs. For Mixtral, Mistral, DeepSeekCoder,1183

CodeLLaMA, and CodeT5, we use a single NVIDIA A100 GPU with default precision (except1184
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Write a commit message for a given diff. Start with a heading that
serves as a summary of the whole diff: a single sentence in an
imperative form, no more than 50 characters long. If you have details
to add, do it after a blank line. Do your best to be specific, do not
use ‘refactor’ unless you are absolutely sure that this change is ONLY
a refactoring. Your goal is to communicate what the change does
without having to look at the source code. Do not go into low-level
details like all the changed files, do not be overly verbose. Avoid
adding any external references like issue tags, URLs or emails. Diff:

[DIFF]

Commit message:

Figure 8: The primary prompt for the commit message generation task.

for Mixtral, where we use 8-bit precision) and FlashAttention-2 [12] enabled. For the rest of the1185

considered models, we use Together API.5 For all the models, we set the temperature to 0.8 and allow1186

them to generate up to 512 tokens. This upper bound is mostly set due to practical considerations, as1187

the maximum length of a commit message in our dataset is only 58 whitespace-separated words. The1188

results are presented in Table 15.1189

Additionally, we experiment with two alternative strategies for composing the context for the LLMs.1190

Among the models, we select o1-mini from OpenAI as the best compromise between speed and1191

quality among proprietary models and DeepSeek-V3, the highest-scoring OSS model in terms of1192

ROUGE-1. We use DeepSeek-V3 tokenizer to calculate the number of tokens through the rest of the1193

section. The first context gathering strategy is to pass the full contents of the modified files rather1194

than diffs. Similar setting was previously employed for commit message generation by [42]. In our1195

dataset, modified files for one commit take around 54k tokens on average, however, the maximum1196

value is 300k, which exceeds maximum context length of 128k tokens for both o1-mini and for1197

DeepSeek-V3. Hence, we limit the maximum allowed context length, truncating the modified files1198

up to max_num_tokens
num_files each. We consider several upper bounds in terms of maximum context length: 4k,1199

8k, 16k, 32k, 64k. Due to technical limitations, we were able to obtain results for DeepSeek-V3 with1200

contexts only up to 16k tokens. The second context gathering strategy is to further extend the prompt1201

from our main experiments (Figure 8) with relevant context via retrieval. We use a simple BM25 [48]1202

retriever among non-changed .py files in the corresponding repository, similar to the setting adopted1203

by Jimenez et al. [32]. We retrieve up to 50 most relevant files and add them until the maximum1204

context length in tokens is exceeded, possibly truncating the last file to ensure it fits the restriction on1205

the maximum length. We consider several upper bounds in terms of maximum context length: 4k, 8k,1206

16k.1207

The results are presented in Table 16. We observe that neither of the alternative context gathering1208

strategies leads to substantial improvements compared to our primary approach using only the commit1209

diff. For Full File setting, the quality grows with the increase in the context size, but even at its1210

largest (64k tokens), it remains consistently inferior to the results achieved with diffs. One reason1211

for the inefficiency of the Full File is the large size of modifications in our dataset, which span 3.41212

files on average. When including complete file contents, the input can reach up to 300k tokens.1213

Our naive truncation strategy likely discards critical information. While additional context that1214

facilitates better repository understanding could help generate more appropriate commit messages,1215

BM25 retrieval might fail to uncover relevant files, leading to insignificant improvements or even1216

degradation. Interestingly, unlike [32], we do not observe stable decrease in quality with the growth1217

of BM25 context. We leave the exploration of more efficient and sophisticated context gathering1218

strategies to future research.1219

5Together: https://www.together.ai/
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Table 15: Results for the CMG benchmark from Long Code Arena. R stands for ROUGE metric, BS
stands for BERTScore metric, where BS (norm.) is the normalized version. All model categories are
sorted by the ROUGE-1 metric. The best result in the category is highlighted in bold, and the second
best result is underlined. *CodeT5 is the only model fine-tuned for the CMG task as opposed to the
zero-shot setting for the rest of the models.

Model BLEU ChrF R-1 R-2 R-L BS BS
(norm.)

Proprietary

o1-preview (2024-09-12) 4.212 36.38 29.28 7.66 20.52 0.8635 0.191
Gemini 1.5 Pro 3.656 34.87 28.94 6.363 20.15 0.8593 0.1666
Claude 3.5 Sonnet 4.195 34.85 28.79 6.134 19.67 0.8626 0.1857
Claude 3 Opus 4.219 36.59 28.67 7.656 20.14 0.8583 0.1606
o1-mini (2024-09-12) 4.09 34.33 27.96 6.712 20.05 0.8605 0.1737
Gemini 1.5 Flash 2.918 34.64 27.38 5.865 18.68 0.8581 0.1595
GPT-4 Turbo (1106) 2.803 34.39 26.62 5.296 17.72 0.8559 0.1462
GPT-4o (2024-11-20) 3.066 34.81 26.07 5.548 17.65 0.854 0.1351
GPT-4o mini (2024-07-18) 2.841 34.12 25.66 5.158 17.33 0.8579 0.1583
GPT-4 (0613) 2.127 32.62 23.5 5.217 16.03 0.8522 0.1243
Claude 3 Haiku 1.957 30.12 21.01 5.045 14.38 0.843 0.0695
GPT-3.5 Turbo (0613) 2.101 26.664 19.976 4.227 14.447 0.846 0.087
GPT-3.5 Turbo (1106) 1.885 20.698 18.424 3.815 14.087 0.854 0.136

OSS (big)

DeepSeek-V3 (671B) 3.788 35.76 28.63 6.599 19.81 0.8625 0.1851
Llama-3.3 (70B) 3.751 33.54 28.38 6.415 20.12 0.8645 0.1969
Llama-3.1 (405B) 3.563 34.83 28.25 6.516 19.94 0.8626 0.1861
Llama-3.1 (70B) 3.634 34.66 27.62 6.626 19.27 0.8611 0.177
DeepSeek-R1 (671B) 4.19 34.94 27.07 5.94 18.94 0.8644 0.1962

OSS (medium)

Qwen2.5-Coder (32B) 3.415 33.74 27.93 6.038 20.1 0.8616 0.1797
Mixtral 8 bit (8x7B) 2.189 31.98 23.61 5.376 16.33 0.8476 0.09688
DeepSeek Coder (33B) 1.742 29.08 21.01 4.471 14.46 0.8425 0.06697
CodeLLaMA (34B) 1.586 24.632 17.817 3.684 13.114 0.844 0.073
QwQ (32B) 0.529 14.07 14.66 3.381 10.26 0.8275 -0.02194

OSS (small)

Llama-3.1 (8B) 2.409 31.02 23.66 4.768 16.67 0.8538 0.1335
Mistral (7B) 1.895 30.719 23.648 4.458 16.262 0.847 0.096
DeepSeek Coder (6.7B) 1.634 28.567 20.188 3.604 14.116 0.843 0.068
CodeLLaMA (13B) 1.727 23.099 18.207 3.642 13.479 0.844 0.075
CodeLLaMA (7B) 1.108 26.638 16.961 2.807 12.028 0.835 0.021

OSS (tiny)
Llama-3.2 (3B) 2.108 26.34 21.05 4.102 15.15 0.8461 0.088
DeepSeek Coder (1.3B) 0.75 22.449 13.815 2.029 9.753 0.822 -0.057
CodeT5* (220M) 0.355 11.862 13.615 2.633 11.439 0.845 0.083

E Bug Localization1220

Bug Localization task can be formulated as follows: given an issue with a bug description and a1221

repository snapshot in a state where the bug is reproducible, identify the files within the repository1222

that need to be modified to address the reported bug. Although this is a subset of the larger bug-fixing1223

problem, partially covered by SWE-Bench, bug localization requires its own separate evaluation.1224

This independent assessment can provide a better understanding of the various approaches and their1225

efficiency in identifying the precise location of bugs within the large code bases.1226

E.1 Dataset Structure1227

The bug localization dataset includes real issues that describe bugs, together with the respective pull1228

requests (PRs) that fix them. Each datapoint contains three key elements: the bug description, the1229

state of the repository where the bug is reproducible, and the list of files that need to be modified to1230

resolve the bug. The bug description represents the body of the issue that was assigned a bug-related1231

label. The repository state is represented by the commit SHA. The list of files that should be modified1232

comes from the pull request that resolves the respective bug report. The full datapoint structure is1233

presented in the Table 171234

The final dataset contains 7,479 datapoints in total divided, between three sets by language:1235

• py — change contains only Python files (4,339 datapoints);1236
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Table 16: Results with alternative contexts for the CMG benchmark from Long Code Arena. R stands
for ROUGE metric, BS stands for BERTScore metric, where BS (norm.) is the normalized version.
The best result for the model is highlighted in bold, and the second best result is underlined. The
context size is reported in tokens from DeepSeek-V3 tokenizer. The context size for Diff context is
the average number of tokens in diffs in our dataset.

Model Context Type Context Size BLEU ChrF R-1 R-2 R-L BS BS
(norm.)

o1-mini

Diff 2.3k 4.09 34.33 27.96 6.712 20.05 0.8605 0.1737

Full File

4k 2.342 27.18 20.44 3.464 14.95 0.8457 0.0856
8k 2.646 29.92 22.71 4.241 16.67 0.8493 0.1071
16k 2.753 31.69 24.43 5.066 17.49 0.8512 0.1181
32k 2.572 31.89 24.36 4.85 17.41 0.8504 0.1137
64k 3.324 32.86 24.82 5.335 17.67 0.8525 0.1259

Diff + BM25
4k 3.454 34.42 27.84 6.229 19.75 0.8584 0.1613
8k 3.573 34.59 27.31 6.201 19.11 0.8564 0.1491
16k 3.364 33.85 27.28 6.355 19.08 0.8563 0.1488

DeepSeek-V3

Diff 2.3k 3.788 35.76 28.63 6.599 19.81 0.8625 0.1851

Full File
4k 2.229 28.88 21.76 3.507 15.45 0.8521 0.1237
8k 2.801 31.34 24.15 4.81 17.11 0.8552 0.1421
16k 3.345 33.59 26.47 5.647 18.77 0.859 0.1648

Diff + BM25
4k 3.457 34.85 28.97 6.955 20.11 0.8631 0.1888
8k 3.554 35.05 28.05 6.285 19.68 0.8627 0.1863
16k 3.697 34.98 28.35 6.419 20.03 0.8627 0.1862

• java — change contains only Java files (2,522 datapoints);1237

• kt — change contains only Kotlin files (618 datapoints).1238

For each language 50 datapoints are manually verified in order to form a test subset for model1239

evaluation (150 datapoints in total).1240

Based on the core fields, we calculated the number of statistics and attached them to each datapoint.1241

The additional fields are presented in Table 18. We excluded test files from the experiment because1242

their modifications typically only support program repairs and do not contain the actual bugs. Thus,1243

all metrics are calculated on all project files except for the test files.1244

E.2 Dataset Collection and Preprocessing1245

To collect the data, we use the following protocol:1246

1. Collect issues, pull requests, comments. We start with the common corpus of collected1247

GitHub repositories. Then, for each repository, we download information about all issues,1248

pull requests, and comments using the GitHub API. As a result, we download more than 8M1249

issues, 7M pull requests, and 34.4M comments.1250

2. Match issues with pull requests. GitHub API does not provide information about relations1251

between issues and pull requests. We obtain these relations by parsing references from1252

descriptions or comments. To do so, we write regular expressions for extracting all possible1253

referencing formats as provided in GitHub documentation. To also collect the context around1254

the reference, we capture one “fix”-related keyword (e.g., close, closes, closed, fix,1255

fixes, fixed, resolve, resolves, resolved, solve, solves, solved) before and after1256

the link with the regular expressions. We also check if references are mutual (if the issue1257

refers to the pull request and vice versa) or not (if only a single link from either the issue or1258

the pull request exists).1259

3. Sort by stars. We sort all issue-PR pairs by the number of stars in the respective repository1260

and assign each pair an ID based on its index in the sorted order. We populate the diff1261

field by running a git command in a locally cloned repository to get the diff in a text format.1262

Unfortunately, this method does not work for pull requests created from forks, so we save a1263

null value for such cases.1264
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Table 17: Description of datapoints in the bug localization dataset.

Field Description
id Datapoint ID

repo_owner Bug issue repository owner
repo_name Bug issue repository name

text_id Datapoint text ID
issue_url GitHub link to issue
issue_title Issue title
issue_body Issue body with bug description
issue_labels List of labels assigned to issue

pull_url GitHub link to PR
pull_create_at Date of PR creation in format of yyyy-mm-ddThh:mm:ssZ

base_sha PR base SHA
head_sha PR head SHA
diff_url PR diff URL between base and head SHA

diff PR diff content
changed_files List of changed files parsed from diff

link_url GitHub link to issue or PR comment from which the link was
parsed

links_count Number of links between the issue and the PR, equals 2 if the
link is mutual, 1 if it is one-sided

link_keyword "Fix"-related keyword which surrounds the issue link
stars Number of repository stars

language Main programming language for repository

To enhance the quality of our data, first, we apply several empirical filters and preprocessing steps1265

based on the fields from the dataset:1266

1. Select bug issues. We retain only issues with “bug” mentioned in the labels and non-empty1267

descriptions. Additionally, we remove issues containing links to media, as they may include1268

crucial data visualizations that are inaccessible through other means. To ensure that most1269

models can use the dataset for evaluation, we only keep issues written in English.1270

2. Select processable changes. For pull requests, we filter out those introducing new files and1271

retain only pull requests modifying existing files, provided their diffs could be extracted1272

from the cloned repository. Furthermore, to facilitate the future manual labeling process, we1273

leave only pull requests written in Python, Java, or Kotlin, as these are languages known1274

well to authors. To work with diffs and patches, as well as to extract the changed files and1275

their modification modes, we use the unidiff package.6 Additionally, we avoid pull requests1276

that include changes to media files with non-UTF-8 encoding, as such changes are often1277

difficult to reproduce. The most crucial filter ensures that each pull request is associated with1278

exactly one issue, and vice versa, to maintain the relevance of changes to issue descriptions1279

and to prevent situations where a pull request addresses multiple issues or an issue is fixed1280

by several pull requests.1281

The dataset size reduction after applying these empirical filters is summarized in Table 19.1282

As a result of these filtering steps, 10,195 datapoints remain in the dataset.1283

3. Filter outliers. On top of the previous filtering step, we remove outliers for sev-1284

eral numerical fields, including changed_files_count, changed_lines_count, and1285

issue_tokens_count. Table 20 shows the result of removing outliers.1286

4. Data analysis. After data filtration, we are left with 7,479 datapoints that comprise the1287

entire dataset. Table 21 presents statistics of the dataset, with the difference in statistics1288

between languages being negligible.1289

5. Manual data labelling. After the analysis of the dataset, we carry out manual data labeling1290

and verification process to select the subset of high-quality datapoints for evaluation. First,1291

we sort the datapoints by the number of stars in the respective repositories, assuming that1292

6Undiff: https://pypi.org/project/unidiff/
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Table 18: Description of additional metrics calculated on the bug localization dataset.

Metric Description
issue_symbols_count Number of symbols in issue description
issue_tokens_count Number of tokens in issue description
issue_words_count Number of words in issue description
issue_lines_count Number of lines in issue description

issue_code_blocks_count Number of triple quotes blocks parsed in
issue description

issue_links_count Number of links parsed in issue description

diff_symbols_count Number of symbols in diff
diff_tokens_count Number of tokens in diff
diff_words_count Number of words in diff
issue_lines_count Number of lines in diff

changed_files_count Number of all changed files mentioned in
diff

changed_files_without_test_count Number of changed files not including test
files mentioned in diff

code_changed_files_count Number of files written in Python, Java, or
Kotlin mentioned in diff

py_changed_files_count Number of Python files mentioned as
changed in diff

java_changed_files_count Number of Java files mentioned as changed
in diff

kt_changed_files_count Number of Kotlin files mentioned as
changed in diff

repo_symbols_count Total number of symbols in repository’s
files

repo_tokens_count Total number of tokens in repository’s files.
repo_words_count Total number of words in repository’s files
repo_lines_count Total number of lines in repository’s files
repo_files_count Total number of files in repository

repo_files_without_test_count Total number of files without tests in the
repository

popular repositories have better processes and quality for issue tracking and bug reporting.1293

Then, we go through datapoints of each repository, selecting ones that meet the following1294

criteria:1295

• The issue describes a single bug completely and exhaustively.1296

• The pull request is linked to the issue and resolves this issue alone.1297

• All changes are relevant to the described issue, with no extra functionality or side1298

refactorings included.1299

• The changes were reviewed and accepted.1300

If a datapoint does not meet these criteria, we go to another one from the same repository, or1301

if none are left, we move on to the next repository by the number of stars, until we select 501302

good datapoints per language. To keep the distribution of the number of changed files, for1303

each repository, we try to pick one datapoint with a single changed file and one datapoint1304

with two or more changed files. This strategy allows us to collect a diverse set of datapoints1305

from different repositories and keep the distribution of the number of changed files similar1306

to the complete set of issues.1307

E.3 Evaluation1308

We evaluate several LLMs on the bug localization task using the presented dataset.1309
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Table 19: Empirical filters applied to the bug localization dataset.

Field Description Number of data-
points rejected by
the filter (% of the
initial set)

issue_labels At least one label should include "bug" as a sub-
string

3,472,057 (79.8%)

issue_body Description should not be empty 16,265 (0.37%)
issue_body Description should contain only text without at-

tached media
145,225 (3.34%)

issue_body Description should be written mostly in English 35,942 (0.83%)

diff Diff can be extracted and should not be empty or
corrupted

475,447 (10.93%)

diff Diff should consist only of modifications of exist-
ing files and no introduction of new files

30,572 (0.7%)

diff Diff should include at least one file in either Python,
Java, or Kotlin

138,653 (3.19%)

diff Diff should include only UTF-8 files to filter out
unreadable or graphical objects

18 (≤ 0.01%)

base_commit Repository content on base commit can be ex-
tracted and should not be empty or corrupted

6,198 (0.14%)

pull_url PR should refer to no more than one issue 7,376 (0.17%)
issue_url Issue should refer to no more than one pull request 1,934 (0.04%)

link_keyword "fix"-related keyword should stay before or after
link in the issue description.

10,406 (0.24%)

Table 20: Outlier filters applied to the bug localization dataset.

Field Description Number of data-
points rejected by
the filter (% of
initial set)

changed_files_count Number of changed files should not be more than
22 (0.99 quantile)

100 (≤ 0.01%)

changed_lines_count Number of changed lines should not be more than
594 (0.99 quantile)

102 (≤ 0.01%)

issue_tokens_count Issue description can be tokenized using GPT-4
tokenizer

43 (≤ 0.01%)

issue_tokens_count Issue description should contain at least 13 tokens
(0.01 quantile)

85 (≤ 0.01%)

issue_tokens_count Issue description should contain no more than
4,500 tokens (0.99 quantile)

103 (≤ 0.01%)

For all models, we adopted a unified prompt structure (Figure 9), which includes the repository name,1310

issue title, and description, along with optional additional context.1311

First, we evaluate two context-filling strategies to understand how context influences the quality of1312

bug localization and how it can be optimized for more efficient use by LLMs in solving this particular1313

task:1314

• Only issue description context. This configuration only considers the issue description as1315

context to determine whether it contains sufficient information for bug localization. It also1316

serves to analyze the potential impact of data contamination.1317

• Repo file paths list. This strategy adds a list of all files in the repository as context, enabling1318

the model to utilize structural information from the codebase. This approach assesses1319
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Table 21: Final statistics of the dataset.

Field Min Median Mean Max
repo_files_count 16 331 1,077 33,644
repo_lines_count 9 52,743 145,377 8,687,912

repo_tokens_count 78 488,286 1,684,619 225,649,725

changed_files_count 1 1 2 21
changed_lines_count 1 15 37 594

changed_tokens_count 1 158 608 837,626

issue_words_count 1 106 149 1,806
issue_lines_count 1 22 33 586

issue_tokens_count 13 227 432 4,491

issue_links_count 0 0 0.80 56
issue_code_blocks_count 0 1 0.99 31

SYSTEM:
You are an AI assistant specialized in software bug localization.
Your task is to identify the MOST likely files to be modified to
fix the given bug. You will be provided with the repository name and
a GitHub bug issue description*. Analyze the issue description and
determine the files in the repository that are MOST likely to require
modification to resolve the issue. Provide the output in JSON format
with the list of file paths under the key "files".
Provide JSON ONLY without any additional comments.

USER:
GitHub repo name:
[REPO_OWNER/REPO_NAME]

Issue description:
[ISSUE_TITLE]
[ISSUE_BODY]

[CONTEXT]

Figure 9: Prompt for bug localization. ∗Can slightly vary to describe the content and structure of the
context provided.

whether the mere presence of file names aids effective bug localization. To prioritize the1320

most relevant file paths in the context, we employed the following algorithm:1321

1. Ranking. We use a simple NLTK tokenizer and BM25 to rank the files in the repository1322

based on their lexical similarity to the issue description.1323

2. Filling. Based on the ranking, we concatenate the context for each file (file path along1324

with imports).1325

3. Cutting. Since the context appears last in the prompt, we trim the final message to fit1326

the total context size of each model.1327

The expected output of the LLMs is a list of files which contain bugs. To measure the quality of this1328

output and compare it with the expected list of buggy files, we calculate the following metrics:1329

• P (Precision). This metric shows how many predicted files were correct.1330

• R (Recall). This metric shows how many actual bugged files were correct.1331

• FPR (False Positive Rate). This metric shows how many non-buggy files were incorrectly1332

predicted.1333

• F1-score. The balance between Precision and Recall.1334
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Table 22: The baseline results for the bug localization task without additional context.

Model Context Size P R F1-score FPR All correct All incorrect # Output
o1 128k 0.299 0.286 0.255 0.015 0.07 0.55 1.97
GPT-4o 128k 0.303 0.305 0.270 0.018 0.12 0.54 2.29
GPT-4o mini 128k 0.112 0.164 0.117 0.042 0.03 0.77 3.79
GPT-3.5 Turbo (1106) 16k 0.219 0.178 0.177 0.017 0.09 0.73 1.93
Gemini 1.5 Pro 1M 0.309 0.294 0.270 0.020 0.14 0.55 2.52
Claude 3 Opus 200k - - - - - - -
Claude 3 Haiku 200k - - - - - - -
Claude 3.5 Sonnet 200k 0.199 0.254 0.196 0.021 0.05 0.61 3.16
Claude 3.5 Haiku 200k 0.212 0.256 0.211 0.026 0.08 0.61 2.76

Llama-3.2 (3B) 128k 0.114 0.215 0.130 0.158 0.0 0.74 3.11
Llama-3.1 (8B) 128k 0.072 0.143 0.084 0.056 0.01 0.81 5.60
Llama-3.1 (70B) 128k 0.156 0.196 0.157 0.035 0.05 0.72 3.90
Llama-3.1 (405B) 128k - - - - - - -

Qwen2.5 (7B) 128k 0.172 0.141 0.140 0.016 0.08 0.79 2.00
Qwen2 (72B) 128k 0.191 0.157 0.159 0.023 0.09 0.76 2.45

DeepSeek R1 (671B) - - - - - - - -
DeepSeek V3 (671B) - - - - - - - -

• All correct. The percentage of cases where all files were correctly identified.1335

• All incorrect. The percentage of cases where all files were incorrectly identified.1336

• # Output. The average number of buggy files detected.1337

All results are presented in two separate tables: Table 22 reports results for the small-context setting,1338

while Table 23 presents results for the large-context setting. The evaluation demonstrated that even a1339

simple additional context can double the effectiveness of bug localization. In small-context settings,1340

the average token usage is less than 1k (minimum: 149, maximum: 149), whereas, in large-context1341

settings, it reaches approximately 10k (minimum: 251, maximum: > 200,000). This indicates that,1342

for certain data points, even larger contexts can be provided, potentially leading to higher scores.1343

However, we observed an interesting pattern in LLaMA-based models: increasing the context size1344

adversely affected their performance. Specifically, with larger contexts, these models often produced1345

excessively long lists of files or failed to generate JSON outputs in the correct format. This mean that1346

the context and the output format should be kind of model specific and not universal. This suggests1347

that both context handling and output formatting are model-specific rather than universally applicable.1348

F Module Summarization1349

For the Module Summarization task, the model should write textual documentation based on the mod-1350

ule’s or project’s source code and intent (a one-sentence description of the expected documentation1351

content). This task greatly increases the context size available to the models compared to the existing1352

benchmarks that cover method- or class-level summarization.1353

F.1 Dataset Collection and Processing1354

The dataset consists of the datapoints with their structure as in Table 24.1355

To collect the data, we use the following protocol:1356

1. We start with the Python subset of the common corpus of GitHub repositories. For each1357

repository, we extract documentation files — files with extensions .md, .txt, and .rst,1358

located in the docs directory of the repository.1359
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Table 23: The baseline results for the bug localization task with file paths list context.

Model Context Size P R F1-score FPR All correct All incorrect # Output
o1 128k 0.622 0.630 0.576 0.010 0.28 0.15 2.22
GPT-4o 128k 0.535 0.635 0.527 0.012 0.23 0.12 2.85
GPT-4o mini 128k 0.350 0.666 0.416 0.035 0.07 0.13 5.44
GPT-3.5 Turbo (1106) 16k 0.436 0.497 0.421 0.021 0.17 0.31 3.35
Gemini 1.5 Pro 1M 0.471 0.671 0.501 0.015 0.17 0.09 3.55
Claude 3 Opus 200k 0.471 0.637 0.481 0.018 0.2 0.1 3.77
Claude 3 Haiku 200k 0.429 0.59 0.441 0.029 0.13 0.2 4.04
Claude 3.5 Sonnet 200k 0.461 0.748 0.523 0.017 0.13 0.11 3.48
Claude 3.5 Haiku 200k 0.553 0.741 0.583 0.038 0.22 0.1 2.88

Llama-3.2 (3B) 128k 0.268 0.748 0.321 0.204 0.14 0.1 18.10
Llama-3.1 (8B) 128k 0.234 0.737 0.305 0.145 0.05 0.1 16.03
Llama-3.1 (70B) 128k 0.287 0.664 0.351 0.041 0.05 0.13 8.37
Llama-3.1 (405B) 128k 0.432 0.639 0.465 0.025 0.16 0.14 4.36

Qwen2.5 (7B) 128k 0.559 0.572 0.517 0.013 0.25 0.22 2.79
Qwen2 (72B) 128k 0.431 0.686 0.483 0.026 0.14 0.1 5.16

DeepSeek R1 (671B) 128k 0.529 0.68 0.538 0.021 0.2 0.1 3.04
DeepSeek V3 (671B) 128k 0.489 0.697 0.523 0.025 0.19 0.08 3.61

Table 24: The structure of datapoints in the module summarization dataset.

Field Description
repo The full name of the GitHub repository the

commit comes from
docfile_name The name of the documentation file. May

be useful in the prompt
intent Small manually gathered intent that de-

scribes what we expect from the generated
documentation

license The type of the license in the repository of
the commit

path_to_docfile The path to file with documentation in the
repository

relevant_code_files List of paths in the repository to the poten-
tially relevant code files

relevant_code_dir Directory with relevant code, field can be
empty

target_text The text of the target documentation —
ground truth in our task

relevant_code_context Code context joined from relevant code files
and directories

2. For each documentation file, we extract the associated source code. To do this, we parse the1360

target documentation and extract names of all code files and directories mentioned in it. If a1361

file does not contain any such mentions, we skip it.1362

3. To further filter the documentation files, we convert documentation into a plain text format1363

by removing specific Markdown syntax (as well as text between Markdown tags like code,1364

autosummary, etc.). We then ensure that each document contains valuable information and1365

has at least 10 lines of text remaining after cleaning. Since the filtering is quite strict, we1366

believe that only important documents remain after this stage.1367

4. We perform manual review of the datapoints to ensure that the content contains not only1368

information about the code but also summarizes the entire module or project. After manual1369

review, we leave 216 out of 461 files. Most of the files that we reject contain non-informative1370
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text that is not related to code. Also, for each documentation file, we manually specify an1371

intent that the model under evaluation can use during generation.1372

• Manual verification is essential, as our experience with data frequently reveals instances1373

where a docfile lacks useful content or does not provide substantial information in the plain1374

text format, without special extensions that enrich documentation.1375

F.2 Evaluation1376

• We run several LLMs on the collected module summarization dataset with different length of1377

the relevant code context. To assess the quality of the generated documentation, we introduce1378

a new metric called CompScore that uses LLM (Mistral-7B in our case) as an assessor.1379

CompScore feeds the assessor LLM relevant code and two versions of documentation: the1380

ground truth and the model-generated text. The LLM then evaluates which documentation1381

better explains and fits the code. To mitigate variance and potential ordering effects in1382

model responses, we calculate the probability that the generated documentation is superior1383

by averaging the results of two queries:1384

CompScore =
P (pred | LLM(code, pred, gold)) + P (pred | LLM(code, gold, pred))

2

To count P (pred | LLM(code, pred, gold)), we follow several steps:1385

1. Construct the prompt and feed it into the assessor LLM (see Figure 10).1386

I have 2 different documentations about {intent}. Decide which
documentation is better: documentation A or documentation B.
My code: [TRIMMED_CODE_CONTEXT]
Documentation A: [PREDICTED_DOC]
Documentation B: [GROUND_TRUTH_DOC]
Better documentation is documentation

Figure 10: Prompt for the CompScore metric.

2. Get logits for the next token being “A” and “B” (logitA and logitB) and convert them1387

into probabilities:1388

probA, probB = exp (log_softmax([logitA, logitB ]))

3. P (pred | LLM(code, pred, gold)) = probA shows the probabilty that the predicted1389

documentation is better than the original from the perspective of the LLM assessor.1390

• For our experiments, we use Mistral-7B-Instruct-v0.2 as LLM assessor. We truncate1391

relevant code up to 6,000 tokens in the prompt for metric computation. We evaluate all the1392

models presented in Table 25 via OpenAI API or TogetherAI API with the same generation1393

parameters. We use zero temperature and predict up to 2,000 new tokens without any1394

penalties to get deterministic results during generation. Table 26 shows the results for all the1395

evaluated LLMs with varying length of available relevant code context.1396

• We observe that both increasing the context size and the size of the model leads to higher1397

quality. The o1 model outperforms the others, achieving a notable CompScore of 72.22.1398

Interestingly, the CodeLlama and Llama3 models show worse performance than the Llama21399

model on small contexts. Although doubling the context size does not significantly impact1400

the CompScore, a substantial difference emerges when comparing the metrics for the1401

smallest and largest context windows. Investigating which context is most relevant for this1402

task, as well as exploring different context composition strategies, is left for future research.1403
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Table 25: CompScore metric in the module summarization benchmark for various LLMs.

Model 128 tokens 512 tokens 1k tokens 2k tokens
Mistral-7B-v0.3 35.84 39.18 41.03 46.23
Mixtral-8x7B 34.63 38.48 39.96 40.89
Mixtral-8x22B 35.33 38.48 39.49 42.24
Llama2-7B 36.33 44.21 44.13 46.19
Llama2-13B 40.96 47.37 46.57 48.12
Llama2-70B 39.78 45.97 46.37 48.24
CodeLlama-7B 33.02 36.88 36.49 38.06
CodeLlama-70B 38.36 38.74 39.76 37.23
Llama3-8B 25.37 32.14 33.84 37.35
Llama3-70B 24.79 30.08 33.18 36.45
Gemma-2B 16.43 21.04 21.85 25.38
Gemma-7B 24.16 28.24 30.44 33.96
GPT-3.5 36.83 41.59 45.59 49.48
GPT-4 45.62 52.59 56.22 57.33
o1 63.53 63.99 65.10 66.33
gpt-4o 58.27 61.67 63.74 65.95
Llama3.3-70B-Instruct 51.03 54.30 56.49 59.67
Qwen2.5-72B-Instruct 59.27 63.15 65.14 66.37
deepseek-ai-DeepSeek-V3 59.27 63.15 65.14 66.37
deepseek-ai-DeepSeek-R1 61.53 62.49 64.20 64.87

Table 26: CompScore metric in the module summarization benchmark for various LLMs on large
contexts.

Model 4k tokens 8k tokens 16k tokens 64k tokens 100k tokens
o1 68.36 69.93 70.93 71.53 72.22
gpt-4o 66.61 66.96 67.02 68.09 68.12
Llama3.3-Instruct 60.54 61.3 62.86 63.14 64.20
Qwen2.5-72B-Instruct 67.72 68.44 68.73 69.25 69.73
deepseek-ai-DeepSeek-R1 66.51 67.45 66.62 - -
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