
Chaotic Systems and Neural Networks
Claudiu Craciun1, Anirbit Mukherjee 2

1Student in the Department of Computer Science, The University of Manchester, UK
2Department of Computer Science, The University of Manchester, UK

∗Contact: claudiu.craciun@student.manchester.ac.uk, anirbit.mukherjee@manchester.ac.uk

1 Introduction
Chaotic dynamical systems have a strong dependence on initial conditions, making their future state hard to predict. They are
believed to arise in scenarios such as weather forecasting.Lor96 Numerical approaches for meteorological data prediction have
started to be replaced by deep learning-based approaches.SBG+21 In standard ML, the training data is sampled from the same
data distribution the model is expected to predict on. However, in such ”forecasting” tasks, the model is required to make
predictions for future times outside the temporal support of the data distribution sampled from during training. Hence this is
fundamentally different from standard ML. The deep-learning models studied here are tasked to approximate chaotic systems
and thus can be seen as toy weather models. But, because of the analytic setup, we can do hard tests of performance like
exploring the ability of the network to match known invariants of the dynamical system.

Two of the main measures of “chaos” are given by the Lyapunov Exponents and the Kaplan-Yorke dimension. These are some
invariants that determine the stability and predictability of a system.ABK91 Therefore, when training a neural network to learn
dynamics beyond the training times, matching these values is a strong test of its performance.

Definition 1 (Lyapunov Spectrum). Let f ∶ Rd → Rd be a function with the associated Jacobian matrix Df . A d-dimensional
discrete time dynamical system of the form xt+1 = ft(x0) with starting point x0 has d Lyapunov Exponents (LEs) and the ith

Lyapunov Exponent associated with x0 is given as,

λi(x0) ∶= lim
t→∞

1

2t
ln (µi(t,x0))

where µi(t,x0) is the ith largest eigenvalue of Df t(x0)⊺Df t(x0). In the case of d = 1 this formula is equivalent to, λ(f, x) =
limn→∞ 1

n ∑
n−1
k=0 log ∣f ′(xk)∣. A system is said to be chaotic if λ1 > 0.

Definition 2. The Kaplan-Yorke (KY) dimension of a multi-dimensional dynamical system is defined as,

DKY ∶= k +
k

∑
i=1

λi

∣λk+1∣
where λi are the LEs and k is the largest integer so that the sum of the first k Lyapunov Exponents is positive.

In ergodic systems, the LEs do not depend on the choice of initial conditions,VCC09 showing that both the LEs and the KY
dimension are invariant measures of the system. All systems we will study here are ergodic.SN79, MABB19, PV17, LM10

Computation of the Lyapunov Exponents in Practice

• For estimating the LE of 1D systems such as the Logistic map f(x) = 4x(1−x) and the Cubic map f(x) = rx3+(1−r)x,
Definition 1 was used on a predicted/actual orbit xi as, λ̂(f, x0) = 1

T ∑
T
i=0 ln ∣4 − 8xi∣ and λ̂(f, x0) = 1

T ∑
T
i=0 ln ∣3rx2

i + 1 − r∣
respectively.

• For 2D systems, the Jacobian is Df t(x0) =Df(xt−1)Df(xt−2) . . .Df(x1)Df(x0). Direct usage of Definition 1 gave
a good approximation for the first LE, but not the second one. The solution was to compute λ1 and the sum λ1 + λ2:

λ1 + λ2 =
1

2T
ln ∣(µ1(t,x0))∣ +

1

2T
ln ∣(µ2(t,x0))∣ =

1

2T
ln ∣(µ1(t,x0)µ2(t,x0))∣

= 1

2T
ln ∣(det(Df t(x0)⊺Df t(x0)))∣ =

1

T
ln ∣(det(Df t(x0)))∣ =

1

T

T−1
∑
i=0

ln ∣det(Df(xt)))∣
(1)
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• For the 3D Lorentz system, a discrete orbit u[i] of size T = 400 and separation ∆t = 0.01 was generated. Three new
orbits q1[i],q2[i],q3[i] were created from some initial conditions such that {q1[0]−u[0],q2[0]−u[0],q3[0]−u[0]}
forms an orthonormal set. Define P1[i] = q1[i]−u[i],P2[i] = q2[i]−u[i],P3[i] = q3[i]−u[i], three vectors that record
the pointwise perturbations of q1,q2,q3 from u. After each 10 iterations, the perturbations were re-orthonormalized
using the Gram-Schmidt process and their magnitudes were recorded in the arrays N1,N2,N3. During the orthonormal-
isation step, let p1,p2,p3 be the last elements of P1,P2,P3. The update equations for the errors are,

1. n1 ← ∥p1∥2 3. p̂2
′ = p2 − (pT

2 p̂1)p̂1 5. p̂3
′ = p3 − (pT

3 p̂1)p̂1 − (pT
3 p̂2)p̂2

2. p̂1 ←
p1

n1
, 4. n2 ← ∥p̂2

′∥
2
, p̂2 ←

p̂2
′

n2
6. n3 ← ∥p̂3

′∥
2
, p̂3 ←

p̂3
′

n3

(2)

n1, n2, n3 are recorded in N1,N2,N3. The new start points for generating the next 10 values in the perturbed orbits are
q1[10i] = u[10i] + p̂1,q2[10i] = u[10i] + p̂2,q3[10i] = u[10i] + p̂3. The LEs are computed using:San96

λi(f,u[0]) =
1

T ×∆t

T /10
∑
k=1

log(Ni[k]) (3)

2 Experiments
A fully-connected neural network was used to approximate each of the first 4 systems in Table 1. Each net was a function
f ∶ Rd → Rd, f(x) = γ(W3σ(W2σ(W1x))), where d is the dimension of the system, W1 ∈ R500×d,W2 ∈ R500×500,
W3 ∈ Rd×500, σ(x) = 1

1+e−x is the Sigmoid activation function applied component-wise and γ is the sigmoid function for the
Logistic map and the linear activation for the Cubic, Henon and Standard maps. The loss function used to train the model
was the Mean Squared Error Loss(MSE), loss({xi,yi}i=1,...,Ttrain

) = 1
Ttrain

∑Ttrain

i=1 ∥f(xi) − yi∥22. An orbit of size T = 100
is generated by iterating f , starting from an initial point x0 different from the initial point used to generate the training data:
x̂i = f(x̂i−1) for 0 < i ≤ T . This predicted orbit is then plugged into the formulas from Section 1 to compute the LEs. Those
algorithms are first validated by approximating the LE of the original system before being used for its neural surrogate.

Lorentz System setup: For this case we built a LSTM that predicts the next state of a discretized version of the system. An
LSTM with a dense layer stacked at the end was used. The LSTM had a lookback window of 10 previous time steps and a
hidden state hk ∈ R64, for k = 0, . . . ,10. Let LSTM(x̄) ∈ R64 be the output of the 10 LSTM cells,HS97 where x̄ contains 10
consecutive positions. The kth cell updates hk, and the output of the LSTM is h10. The fully connected layer at the end is
used to bring the size 64 × 1 output back to 3 × 1. Let the last layer matrix be WD ∈ R3×64. The loss function is the MSE loss:
loss({x̄i,yi}i=1,...,Ttrain

) = 1
Ttrain

∑Ttrain

i=1 ((WDLSTM(x̄i))−yi)2. The training data is 90% of an orbit of length Tmax = 1000
and separation ∆t = 0.01. Four orbits are generated iteratively by the NN for computing the LEs as described in Eq. 3.

3 Results
For the systems in Table 1, the KY dimension of the neural approximation is similar to the real KY dimension, showing that
they manage to capture the chaotic behavior from the systems they approximate.

Table 1: LEs and KY dimension of the neural approximations trained on 30% of the generated orbits (90% for Lorentz)

System architecture true KY approx. KY(1) KY(NN)(2) true LE approx. LE(1) LE(NN)(2)

Logistic Map (1D) 1-500-500-1(3) N/A N/A N/A 0.6931 0.6921 6527
Cubic Map (1D) 1-500-500-1 N/A N/A N/A ≈ 0.79ZWZZ20 0.77 0.76
Henon Map (2D) 2-500-500-2 1.26KR20 1.25 1.27 0.604,-2.34KR20 0.59,-2.33 0.65,-2.39
Standard Map (2D) 2-500-500-2 2Spr04 1.99 1.99 ±0.10497Spr04 ±0.039 ± 0.095
Lorentz (3D) LSTM 2.07KR20 2.06 2.01 2.16, 0, -32.4KR20 2.5,-0.4,-32.2 1.9,-1.8,-27.4

Note that some LEs are computed using ln, while others using log2, depending on the source.
(1) This is an approximation based on real orbits from the system using the algorithms described in Section 1.
(2) This approximation uses the same algorithms, but is based on orbits generated by the neural network.
(3) A detailed explanation for the architecture can be found in Section 2.
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