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ABSTRACT

Sparsity has become one of the promising methods to compress and accelerate Deep
Neural Networks (DNNs). Structured sparsity has garnered significant interest
as a result of relatively modest hardware overhead and improved efficiency on
contemporary DNN accelerators. In particular, N:M sparsity is attractive because
of hardware accelerator architectures capable of harnessing specific variations of
N:M structured sparsity, enhancing computational efficiency. Additionally, this
form of sparsity holds considerable appeal for reducing the DNN memory footprint
owing to their modest representation overhead. Although there have been efforts
to develop training recipes for N:M structured sparsity, they primarily focus on
low-sparsity regions (~50%). As a consequence, the performance of models
trained using these approaches tends to decline when confronted with high-sparsity
regions. In this work, we extensively study the effectiveness of existing training
recipes for N:M structured sparsity at high-sparsity regions and argue that these
methods fail to sustain the model quality on par with low-sparsity regions. We
demonstrate that the significant factor contributing to this disparity is the presence
of elevated levels of induced noise in the gradient magnitudes. In order to mitigate
this undesirable effect, we present two new sparse training recipes, namely “Mask
Decay Gradient Flow (MDGF)” and “Structure Decay Gradient Flow (SDGF)”
which employ decay mechanisms to progressively restrict the flow of gradients. Our
results demonstrate that enabling the propagation of gradients plays a crucial role in
preserving superior model performance while simultaneously attaining a high level
of sparsity. Our evaluations of diverse sparsity configurations demonstrate that the
proposed methods consistently achieve SOTA accuracy against conventional sparse
recipes in a range of attention-based models used for various tasks encompassing
both vision (up to A(Acc) ~ +2%) and language (up to A(Acc) ~ +5%).

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved notable success in many domains, such as computer
vision, language understanding, and machine translation. A prevailing tendency in state-of-the-art
DNN models is the rapid increase in their model size over time. For example, T5 from Google (Raffel
et al., 2019), OPT from Meta (Zhang et al., 2022a), and GPT-4 from OpenAl (OpenAl, 2023) have
over 100 billion parameters. The exponential increase in model size poses significant obstacles to the
deployment of these models, particularly in devices with limited computational resources. To address
this hurdle, an expanding body of research proposes model compression techniques such as quantiza-
tion (Shen et al., 2020; Kim et al., 2021; Zafrir et al., 2019; Zhang et al., 2020), sparsification (Evci
et al., 2019; Guo et al., 2016; He et al., 2017; Yao et al., 2019), and distillation (Gou et al., 2021).

This paper focuses on sparsification, which involves selectively eliminating model parameters by
imposing zero values upon them. The benefits of sparsification are multi-fold. Firstly, sparsification
offers the potential to decrease computational requirements by avoiding multiplications involving
pruned weights. Secondly, it reduces the memory usage by employing compressed sparse represen-
tations (Qin et al., 2021), unlocking the possibility of deploying large models in resource-limited
devices (Seshadri et al., 2022). Lastly, sparsification saves energy by eliminating unnecessary memory
accesses for pruned weights and bypassing ineffectual computations.



Under review as a conference paper at ICLR 2024

While appealing, sparsification predominantly revolves around the inherent trade-offs between the
quality of the model and compression ratio'. For example, some studies (Guo et al., 2016; Han et al.,
2015b) have demonstrated promising results in achieving unstructured sparsity levels of around 90%-
95% in image classification models while maintaining the quality of dense models. Similarly, the
noticeable achievements of transformer-based models, primarily driven by their exponential growth in
model size (Wei et al., 2022), have stimulated interest (Child et al., 2019; Beltagy et al., 2020; Kitaev
et al., 2020) in exploring sparsification recipes for such models with high sparsity ratio. This serves
as a significant incentive for the sparsification of attention-based models, as it enables the pruning of
a substantial number of model parameters (>70%), resulting in a remarkable reduction in model size
while maintaining an acceptable level of accuracy (Tay et al., 2022; Jaszczur et al., 2021). Despite its
inherent ability to trim the memory footprint of large models, the realization of unstructured sparsity
in hardware poses nontrivial challenges for acceleration. The irregularity in the sparsity pattern
hinders the efficient execution of sparse models by natively dense accelerators such as GPUs and
TPUs. The sparsity-induced models frequently exhibit comparable or inferior performance to their
dense counterparts because of the additional intricacies involved in compression/decompression of
model parameters (Nvidia, 2021a; Ma et al., 2021; Renda et al., 2020; Lin et al., 2021; Gamboa et al.,
2020; Zhu et al., 2019).

In light of this objective, structured sparsity has gained significant popularity because of its hardware-
friendly characteristics, with a focus on regulating sparsity patterns such as channel/filter sparsity (Li
et al., 2016; Wen et al., 2016; He et al., 2017) or block sparsity (Ma et al., 2021; Pool & Yu, 2021;
Mishra et al., 2021; Nvidia, 2021b; Zhou et al., 2021). For example, dense accelerators can bypass an
entire channel computation without requiring any hardware modifications. The caveat, however, these
form of sparsification generally entails a higher magnitude of quality loss. Yao et al. (2019); Kang
(2019) found that employing fine-grained N:M structured sparsity, which keeps N out of consecutive
M elements, can mitigate the degradation in quality. Moreover, the debut of 2:4 structured-sparse
tensor core in GPU Ampere architecture (Nvidia, 2021a) has generated additional enthusiasm in
developing efficient N:M training recipes. Although recent methods (Pool & Yu, 2021; Mishra et al.,
2021; Nvidia, 2021b; Zhou et al., 2021) demonstrate acceptable quality, their main focus lies in
addressing sparsity levels up to 2:8. These methods, however, are less effective when dealing with
high sparsity regimes such as 1:16, 1:32, and higher. Our studies show that elevated levels of induced
noise in the gradient magnitudes constitute a notable contributing factor to the diminished model
quality observed in current training recipes. This phenomenon can be primarily attributed to either
the absence (Johnson & Zhang, 2013; Wang et al., 2013) or perturbation of gradient flow of existing
sparse training recipes. Building on the insights from this study, we introduce alternative training
recipes that demonstrate substantial improvements in model quality relative to existing methods,
particularly under higher sparsity ratios. In summary, this paper presents the following contributions:

* The impact of gradient perturbations becomes increasingly evident at elevated levels of
sparsity, leading to a deterioration in the quality of the model. We present empirical evidence
that SR-STE, a state-of-the-art N:M structured training recipe (Zhou et al., 2021), is less effective
at high sparsity regions, > 75%. We attribute the lower performance of SR-STE to the nontrivial
perturbation of gradient magnitudes, especially as the sparsity ratio increases. This perturbation
during the initial stages of training” adversely amplifies the variance of gradients, resulting in a
diminished model quality.

* Gradient flow is all you need. In order to alleviate the adverse effects caused by noisy gradients, we
introduce two decaying-based sparse training recipes tailored for N:M structured sparsity: (1) Mask
Decay Gradient Flow (MDGF) and (2) Structure Decay Gradient Flow (SDGF). The fundamental
principle underlying both methods involves progressively limiting the propagation of gradients for
pruned weights, while allowing the gradients to freely flow at the early stages of training. More
specifically, MDGF gradually decays the sparsity mask, either linearly or exponentially, instead of
employing the conventional binary mask. In contrast, SDGF encompasses a collection of iterative
pruning methods that progressively increases the sparsity ratio, while maintaining the overall N:M
sparsity patterns. We compare the proposed methods against SR-STE across range of transformer
models and under different sparsity configurations. Our results demonstrate that the decaying-based

'In this paper, we designate algorithmic-wise factors such as accuracy, recall, and precision as model quality..
Additionally, we denote model runtime/latency as model performance.

’Recent studies (not particularly for sparse models) (Lu et al., 2023; Johnson & Zhang, 2013) have shown that
the early stage of training (critical region) is imperative in the quality of training recipes.
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Fig. 1: The computation flow of (a) Dense training, (b) Sparsify, (c) Fine-tuning, and (d) Sparse
training. The training schedule of (e) regular dense training, (f) fine-tuning with one-shot
sparsifying, (g) fine-tuning with iterative sparsifying, (h) from-scratch with learned one-shot
sparsity pattern, and (i) from-scratch while learning sparsity pattern.

methods consistently outperform SR-STE by up to 2%-5% in terms of model quality, while pruning
~97% of model parameters.

2 BACKGROUND AND RELATED WORKS

This work primarily focuses on weight sparsity, which poses a significant challenge in serving the
ever-increasing model parameters of transformer-based models.

2.1 COMPUTATION FLOW OF SPARSE TRAINING RECIPES

Figure 1 summarizes the computation flows of various training recipes for the sparsification of model
parameters. A sparsification recipe broadly entails 1) pruning criteria, 2) pruning schedule, and 3)
sparsity pattern.

(1) Pruning criteria. The pruning criteria refers to the set of criteria used to determine the specific
elements within the weight tensor that should be pruned. Magnitude pruning, which selects the
pruning elements based on their absolute values, is one of the most widely used criteria for sparsifica-
tion (Renda et al., 2020; Frankle & Carbin, 2019; Gale et al., 2019; Zhu & Gupta, 2017; Liu et al.,
2018). Recent work employs other pruning criteria such as gradient (Yeom et al., 2021; Evci et al.,
2020), Hessian (LeCun et al., 1989; Frantar & Alistarh, 2023), connection sensitivity (Lee et al.,
2019), and importance estimation (Molchanov et al., 2019). In this paper, we employ magnitude
pruning, following SR-STE (Zhou et al., 2021) the state-of-the-art structured N:M training recipe.

(2) Pruning schedule. We classify the pruning schedules into the following broad categories:

* “Fine-tuning with one-shot pruning” (Mishra et al., 2021; Pool & Yu, 2021; Frankle & Carbin,
2019; Lee et al., 2019), as shown in Figure 1f. This approach involves training a dense model,
followed by 1-shot weight pruning , and finely the pruned model is retrained.

» “Fine-tuning with iterative pruning” (Evci et al., 2019; Han et al., 2015a; Guo et al., 2016; He et al.,
2017; Molchanov et al., 2016; Yao et al., 2019; Zhu & Gupta, 2017; Gamboa et al., 2020; Narang
et al., 2017a;b; Elsen et al., 2020; Evci et al., 2020), as shown in Figure 1g. This method trains a
dense model followed by iterative cycles of pruning and re-training, which generally exhibits a
greater capacity to regain lost quality.

* “From-scratch with learned one-shot pruning pattern” (Frankle et al., 2020; Evci et al., 2019), as
shown in Figure 1h. This pruning schedule establishes the sparsity pattern based on the pretrained
dense model and subsequently trains a sparse model from scratch.

* “From-scratch while learning sparsity pattern” (Wortsman et al., 2019; Dettmers & Zettlemoyer,
2019; Gale et al., 2019; Kusupati et al., 2020; Evci et al., 2020; Bellec et al., 2018; Mocanu et al.,
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Fig. 2: The weight update scheme of (a) SR-STE and (b)Methods proposed in this work.

2018), as shown in Figure 1i. This method trains a sparse model from scratch while concurrently
learning the sparsity pattern.

(3) Sparsity pattern. We broadly categorize sparsity patterns into following groups:

» “Unstructured Sparsity” refers to the process of pruning a model without imposing any constraints
on the sparsity pattern (Renda et al., 2020; Guo et al., 2016; Lee et al., 2019; Frankle & Carbin,
2019; Gale et al., 2019). This can prune the model size to very small sizes while maintaing accuracy
but often leads to increased runtime overhead.

» “Coarse-grained Structured Sparsity” enforces coarse-grained sparsity patterns, as its name implies,
including techniques like filter/channel pruning (Li et al., 2016; Wen et al., 2016; He et al., 2017)
and block-wise pruning (Wen et al., 2016; Ma et al., 2021; Narang et al., 2017b; Gray et al., 2017).
This can achieve speedup in tranditional dense hardwares but results in a reduction in model quality.

* “Fine-grained Structured N:M Sparsity”, which prunes (M-N) out of M consecutive elements.
Several preliminary studies rely on special threading and grouping techniques (Yao et al., 2019)
or specialized sparse accelerators (Kang, 2019) to exploit this fine-grained sparsity pattern. With
the inclusion of 2:4 structured-sparse GEMM support in tensor cores in GPU Ampere architec-
ture (Nvidia, 2021a), recent work starts to investigate effective training recipes for N:M sparsity
patterns to harness the existing accelerators (Pool & Yu, 2021; Mishra et al., 2021; Nvidia, 2021b;
Zhou et al., 2021; Fang et al., 2022; Zhang et al., 2022b)

2.2 SPARSIFICATION OF ATTENTION MODELS

Related Works. Several related work has investigated N:M structured sparsity in attention-based
models. SR-STE (Zhou et al., 2021) proposes a training recipe with fine-grained N:M structured
sparsity from scratch. Figure 2(a) demonstrates the weight update scheme for the forward and
backward pass of SR-STE. Nvidia ASP (Nvidia, 2021b) focuses on low sparsity (2:4) and employs
channel permutations to maximize the accuracy of N:M sparse networks. SparseGPT (Frantar
& Alistarh, 2023) introduces a post-training sparsification recipe tailored for GPT-family models.
SparseGPT shows on-par model quality with up to 50% weight pruning under unstructured and N:M
structured sparsity. LBC (Zhang et al., 2022b) learns best combinations during initial dense training,
and than keeps the best combinations. IDP (Fang et al., 2022) iteratively prunes from dense to final
target N:M ratio. No work focuses on the sparsifying attention model to N:M structured sparsity at a
High sparsity ratio (>90%) .

3 DECAYING-BASED TRAINING RECIPES FOR SPARSITY

This section covers the proposed decaying-based training recipes for fine-grained N:M sparsity. These
techniques are designed to gradually increase the sparsity ratio until the intended target sparsity
level is attained. We classify the proposed decaying-based training recipes into two main categories,
“Mask Decay Gradient Flow” (MDGF) and “Structure Decay Gradient Flow” (SDGF), each with
two variants which we discuss in details below. Unlike previous work (Zhou et al., 2021), we refrain
from modifying the gradient update rules in either of these categories. Instead, we employ different
gradual update rules for sparsity pattern or sparsity mask tensor, facilitating unimpeded gradient flow
during the entire sparse training process.
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Fig. 3: The sparsification schedules for MDGF and SDGF variants. The variables 5* and N:M
are same as explained in Figure 2(b).

Implementation. In order to implement these methods, we employ the process of pruning dense

weight tensors (W;) to generate sparse weight tensors (W/t), adhering to the following rule during the
forward pass:

W = F(W,N, M, ®,5,5) =Wo [®&W,N,M,j) +D(H)(1 - B(W,N,M,j))]

Here o represents the Hadamard product between the matrices. ®(-) and D(-) calculate a decaying-
based binary mask and decay mask factor, respectively. Each function’s implementations establish
distinct decaying-based training recipes. ®(+) calculates a binary mask that matches the dimensions
of the input weight tensor (W). The location of Os and 1s in the binary mask refers to pruned and
unpruned weights, respectively. In fine-grained N:M structured sparsity with magnitude pruning,
®(-) assigns a value of 1 to the N weight tensor elements with the highest absolute magnitude within
a contiguous block of M elements. Simultaneously, it enforces all the other elements within the block
to be set to 0. In all of our experimental setups, we induce N:M sparsity along the row dimension of
the weight tensor. In addition, D(-) calculates the decaying factor for binary mask according to the
target decaying-based training recipe.

@ Mask Decay Gradient Flow (MDGF). In the first training recipe Figure 3 (a and b), we propose
the use of a diminishing value ranging from O to 1, as opposed to the commonly-used binary pruning
mask (e.g., “0” and “1” representing pruned and unpruned values, respectively). Note that for the
mask-decay training recipes, the function ®(-) produces a mask tensor either with all ones (dense
training) or with a sparsity pattern following target N:M fine-grained structured sparsity. In the initial
phase of training, we use a mask comprising solely of ones and assign a constant value of 1 to D(-),
i.e., dense training.

Upon starting the sparse training phase, D(-) produces gradually diminishing floating-point values
between 1 and 0. The output of function D(-) depends on the current decaying interval. Using
a diminishing decaying factor facilitates unrestricted gradient flow for both pruned and unpruned
weights. This is in contrast to prior work in which D(-) is null which may cause instability in the
training process. We propose two variations for D(-), (a) Linear and (b) Exponential.

MDGE-Linear uses D(j) = max(1l — K, x j,0) that reduces the decay mask values linearly with
respect to training steps. In MDGF-Exponential, as its name implies, we use D(j) = e Kn*J,
indicating an exponential decrease in the mask decay value relative to the ongoing training step. In
both sparsity schedules, the value of K/, determines the rate of decay. To ensure a binary mask
value for the target N:M sparsity pattern, after sufficient decaying intervals, D(-) approaches zero.
After achieving the target N:M sparsity pattern, we proceed with few additional training epochs to
restore the model accuracy. We postulate that the utilization of non-binary pruning mask values
facilitates the smooth propagation of gradients in pruned weights, resulting in more stable sparse
training and better model performance.

@ Structure Decay Gradient Flow (SDGF). The second decaying-based training recipe decays the
structure of the pruning mask, e.g. gradually altering the sparsity level, e.g. % — i. In contrast
to MDGEF, this method strictly confines the pruning mask values to either 1 or 0, e.g. D(-) = 0. We
propose two alternative implementations of ®(-), (a) Stepwise and (b) Geometric.

The SDGF-Stepwise starts by inducing M-1:M structured sparsity. Subsequently, it gradually increases
the level of sparsity following 2Md : M formulation in which d denotes the index of the decaying

interval until QMd == N. For example, to retain a target sparsity level of 1:8, the method applies the
following sparsity patterns at different decaying intervals % — % — % — %.
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The core idea of SDGF-Geometric is to maintain a constant ratio of % throughout successive decay

intervals by adjusting the values of N and M in proportion to each other. In all experiments, we
configure ®(-) to be k;j” : k;dN . Unless specified otherwise, for our experiments, we start with
k = 16. We empirically find that k£ > 16 offers negligible improvements in terms of model quality.
For example, for a targe} sparSQity of 11 :8, we induce the following sparsity patterns at each decaying

H 16 8 4 2
interval, o5 — &7 — 35 = 15— 5

For both sparsity schedules, we evenly partition the total sparsification epochs throughout the
decaying intervals. Figure 3 (c and d) illustrate the allocation of epochs for SDGF sparsity schedules.
Fundamentally, this approach follows a hypothesis akin to MDGF. Enabling the flow of gradients of
pruned weights throughout the model potentially leads to higher model accuracy.

4  WHY IS GRADIENT FLOW CRUCIAL TO THE PERFORMANCE OF
SPARSIFICATION RECIPES?

To gauge the potency of the proposed sparsification methods before doing detailed studies, we will
observe the training metadata. We will observe two key metrics. These metrics are widely used in the
community for evaluating the efficacy of gradient-based learning. 1. Variance Change,||V;|| studies
indicate that lower variance of moments can help models learn better and converge faster. (Lu et al.,
2023; Kingma & Ba, 2014) . 2. Gradient Variance: Lower variance in gradient will lead to faster
convergence and better performance. (Johnson & Zhang, 2013; Wang et al., 2013)

We perform these studies on a Vision Transformer(ViT)-tiny with 3 encoder layers. We trained this
model on the CIFAR-10 image classification dataset for 200 epochs with AdamW optimizer.

4.1 ASSESSMENT OF VARIANCE IN SECOND MOMENT ACROSS SPARSE TRAINING RECIPES

Figure 4(a) shows the variance of the second moment of gradient for Feed-Forward-2(FF2) in 1st
layers of the model. During the training process, the variance steadily decreases in magnitude for
MDGF, while in the case of SR-STE, the variance persists at a relatively high level even during the
later stages of training. This suggests that higher noise in gradients for SR-STE, even during the later
stages of training, would result in lower accuracy compared to the MDGF-exponential.

4.2 ASSESSMENT OF GRADIENT VARIANCE ACROSS SPARSE TRAINING RECIPES

Figure 4(b) shows the variance of absolute back-propogation gradients(which we use to quantify the
noise in gradient). These are for gradients of the Feed-Forward-1(FF1) layer-0 in the model, [The
trend is similar for all FF blocks in all layers as shown in the appendix figure, Figure 7]. For MDGF
training, the variance of gradient falls quickly, in contrast, for SR-STE, the fall is gradual, taking a
higher amount of steps. When the variance of the gradient is high, the optimizer spends time bouncing
around, leading to slower convergence and worse performance. The variance for MDGF-Exponential
comes down rather quickly thus the gradients are less noisy compared to SR-STE. This would result
in higher accuracy for MDGF-Exponential.

These observations confirm that the proposed recipes can deliver better accuracy against SR-STE.



Under review as a conference paper at ICLR 2024

5 EXPERIMENT

In this section, we evaluate the effectiveness of various training recipes for N:M fine-grained struc-
tured sparsity in a range of attention-based models and tasks, encompassing image classification,
language translation and understanding. Motivated by the relatively substantial contribution of FF
layers (Section 11) in total FLOPs (~64%) and parameter count (~63.4%), we center our experiments
around mainly sparsification of these layers within the encoder and decoder blocks. In addition, we
conduct experiments on the pruning of projection layers (Q/X/V) for a variant of ViT-Base (Dosovit-
skiy et al., 2021), a variant of SwinV2-Base (Liu et al., 2022), and T5X-Base (Raffel et al., 2019). For
image classification tasks, we branched (commit: 1304589) our implementation from PyTorch Image
Models (Wightman, 2019) and use NVIDIA A100 GPUs for training on ImageNet-1K dataset (Deng
et al., 2009). For T5X-Base, we extend the official Google T5X release (commit: d3d3cbf) with
sparsification training recipes and use Google TPUv3. We train these models from scratch using
different training recipes across different patterns of N:M fine-grained structured sparsity. SR-STE
serves as the baseline sparse training recipe to assess the effectiveness of the proposed training recipes
in terms of model accuracy. Section 9 presents a detailed compilation of training hyperparameters,
dataset details, and evaluation metrics.

5.1 IMAGE CLASSIFICATION — ViT-Base AND SwinV2 AND ResNet50

Table 1: ImageNet-1K Top-1 validation accuracy on ViT-Base across different N:M sparsity
patterns and training recipes.

Sparse Target | Dense | SR-STE ~ MDGF-Linear ~ MDGF-Exponential ~ SDGF-Stepwise ~ SDGF-Geometric
2:4 (FF) 76.389 71.761 77.613 76.381 77.081 77.363
1:4 (FF) 76.389 78.782 78.512 78.579 71.357 78.347
1:8 (FF) 76.389 77.869 78.019 78.009 71.025 78.175
1:16 (FF) 76.389 75.637 76.594 71.325 75.923 76.869
1:32 (FF) 76.389 73.056 75.807 76.068 74.394 74.910
1:128 (FF) 76.389 72.069 74.012 74.180 71.725 69.801
1:4 (FF) + 1:4 (QK) 76.389 78.145 717.755 78.113 77.163 78.229
1:8 (FF) + 1:8 (QK) 76.389 75.527 76.473 77.349 76.617 76.334
1:8 (FF) + 1:4 (QK) 76.389 78.144 78.025 78.273 77.163 76.839
1:8 (FF) + 1:4 (QKV) | 76.389 78.222 78.319 78.319 71.309 78.213

ViT-Base model quality. Table 1 presents Top-1 validation accuracy for variations of N:M sparsity in
ViT-Base, with the highest accuracy model indicated in bold. The “Sparse Target” column signifies
the intented level of N:M sparsity. For example, a sparsity target of 1:32 indicates that sparse tensors
exhibit at most one non-zero for every 32 contiguous elements. In low sparsity scenarios (e.g., 2:4
and 1:4), both MDGF and SR-STE demonstrate comparable performance. However, with increases in
sparsity degree (e.g., 1:8 and higher) employing SR-STE is detrimental to model quality. In contrast,
the proposed decaying-based training recipes, MDGF-Exp and SDGF-Geo, yield the highest accuracy.
Interestingly, when aiming for a sparsity target of 1:32 (approximately 97%), MDGF-Exponential
showcases a mere 0.3% reduction in accuracy compared to a fully dense model (76.389 vs. 76.068).
Additionally, we notice that the model accuracy increases at modest sparsity degrees, specifically
in 2:4/1:4/1:8 (FF) patterns, resulting in an improvement of up to A(Acc) = +2.4% in 1:4 (FF).
The increase in model accuracy, can be attributed to Occam’s Hill, wherein the positive impact of
sparsity as a means of regularization is elucidated (Rasmussen & Ghahramani, 2001). In summary,
the performance of MDGF-Exponential training recipe is comparable to that of SR-STE when dealing
with low-sparsity scenarios. MDGF-Exponential performs best among all at high-sparsity regions.

SwinV2-Base model quality. Table 2 demonstrate Top-1 validation accuracy for SwinV2-Base.
Similar to ViT-Base, we observe that the proposed decaying-based algorithms outperforms SR-STE
across various N:M sparsity patterns. In 1:4 and 1:8 (FJF), SDGF-Geometric yields the highest
Top-1 validation accuracy. Whereas, in the realm of high-sparsity patterns, MDGF-Exponential
demonstrates superior performance compared to SR-STE. To summarize, the results from the two
image classification models demonstrate that the proposed training recipes, MDGF and SDGF, which
incorporate decaying-based approaches for N:M fine-grained structured sparsity, yield superior
performance compared to SR-STE.


https://github.com/huggingface/pytorch-image-models/commit/130458988a61c961cd78eb95c427472af5a26e50
https://github.com/google-research/t5x/commit/d3d3cbfc5c204244393f625b11d56f64f1138dbd
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Table 2: ImageNet-1K Top-1 validation accuracy on Swinv2-Base across different N:M sparse
patterns and training recipes.

Sparse Target ‘ Dense ‘ SR-STE ~ MDGF-Exponential ~ SDGF-Stepwise ~ SDGF-Geometric
1:4 (FF) 83.45 82.355 82.491 82.267 82.469
1:8 (FF) 83.45 81.437 81.382 81.382 81.466
1:16 (FF) 83.45 80.154 80.542 80.386 80.274
1:32 (FF) 83.45 78.972 79.545 76.480 79.271
1:8 (FF) + 1:8(QK) 83.45 81.441 81.550 81.218 81.438

Table 3: ResNet-50 Top-1 validation accuracy for different N:M sparsity patterns.

Sparse Target | Dense | SR-STE  MDGF-Exponential ~ SDGF-Stepwise
2:8 ‘ 85.09 ‘ 83.33 83.60 82.97

1:8 85.09 80.78 82.48 81.17

Table 4: The comparisons of the training recipes performance (FLOPs) and model accuracy.

Model Sparsity recipe Sparsity Target ~ Top-1 Acc (%) 1t Param (M) | FLOPs (G)|

ViT-Base - Dense 76.389 85.70 (100%) 33.29 (100%)
ViT-Base SR-STE 1:16 (FF) 75.637 32.61 (38%) 12.48 (37.5%)
ViT-Base MDGF-Exp 1:16 (FF) 77.325 32.61 (38%) 12.48 (37.5%)
ViT-Base SR-STE 1:8 (FF + KV) 75.527 2377 (27.7%)  9.01 (27.08%)
ViT-Base = SDGF-Geometric 1:8 (FF + KV) 77.349 23.77 (27.7%)  9.01 (27.08%)

ResNet-50 model quality. While we focus majorly on sparsifiying attention based networks, for
sake of completeness, we also test the efficacy of our recipe on CNNs. For this purpose, we train
ResNet-50 on Cifar-10, and sparsify all the convolution layers. We do this for SR-STE, MDGF-Exp,
and SDGF-Stepwise. Table 3 shows the Top-1 validation accuracy. We see that similar to ViT and
Swin, here also MDGF-Exponential outperforms SR-STE in both cases.

Training performance. Note that no off-the-shelf accelerator can natively support high-sparsity
patterns. In order to assess the potential performance benefits of various training recipes, we employ
an analytical cost model to estimate the savings in training and inference FLOPs as well as memory
usage. Table 4 depicts that implementing a sparsity pattern of 1:16 (FF), there is a reduction of 62%
in the size of model parameters, along with a decrease of approximately 62.5% in the inference cost
measured in FLOPs. MDGF-Exponential has 1.68% better accuracy than SR-STE at 1:16. For 1:8
sparsification of FJ and QXK weights, the model parameters and inference FLOPs are reduced by
~73%. Section 11 details the numerical calculation for parameters and flops shown in Table 4. In
this case, MDGF-Exponential has 1.82% better accuracy than SR-STE.

5.2 LANGUAGE UNDERSTANDING — T5X-Base

Additionally, we analyze the effectiveness of the proposed decaying-based training recipes for the
language understanding task. We employ a dense pre-trained T5X-Base model trained on the C4
dataset with a span-corruption objective (Raffel et al., 2019). The dense pre-trained model undergoes
fine-tuning using the GLUE dataset (Wang et al., 2019) with various training recipes for N:M
structured sparsity. Table 5 depicts the overall score, summarized across eight different GLUE tasks.
We observe a consistent trend where SDGF outperforms SR-STE at high-sparsity patterns and an
increasing number of sparse layers. Notably, we observe a relative difference of A = +5.3 in 1:8
(FF) + 1:8 (QKV) sparsity pattern. Section 8.1 and Section 8.2 provide details about the T5X-Base
model, per-task evaluation metrics, and additional ablation studies.

5.3 LANGUAGE TRANSLATION — Enc-Dec

Next, we compare the performance of different sparse training recipes on WMT language translation
task (Bojar et al., 2017). For that, we use an encoder-decoder transformer-based model (Vaswani
et al., 2017). Section 9 outlines the details about this model and the training hyperparameters.
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Table 5: The GLUE overall score on the sparsified T5X-Base model across different N:M sparse
training recipes and patterns.

Model | Sparsity Target | Dense | SR-STE SDGE-Stepwise SDGE-Geometric
T5X-Base 1:4 (FF) 86.2 84.1 83.7(A = —0.4) 834
T5X-Base 1:32 (FF) 86.2 79.4 809 (A = +1.5) 79.3
T5X-Base 1:8 (FF) + 1:8 (QK) 86.2 75.8 80.7 (A = +4.9) 76.8
T5X-Base 1:8 (FF) + 1:4(QKYV) 86.2 78 80.3 (A = +2.3) 78.9
T5X-Base 1:8 (FF) + 1:8 (QKV) 86.2 742 79.5 (A = +5.3) 75.8

Table 6 demonstrates the accuracy results across range of sparsity patterns and training recipes.
We observe that SDGF and MDGEF collectively outperform SR-STE across various N:M structured
sparsity patterns. However, we note that the difference in accuracy achieved through different training
recipes is relatively smaller. This can be attributed to the smaller model size, as well as the nature of
the translation task, which appears to be less sensitive to sparsity patterns and training recipes-.

Table 6: The translation accuracy across different N:M sparsity patterns and training recipes.

Model | Sparsity Target | Dense | SR-STE  SDGF-Stepwise =~ MDGF-Exp
Enc-Dec (WMT) 1:16 74.7 70.9 71.7 71.7
Enc-Dec (WMT) 1:32 74.7 70.7 71.3 714
Enc-Dec (WMT) 1:64 74.7 70.7 71.0 71.1
Enc-Dec (WMT) 1:128 74.7 70.7 70.8 71.1

5.4 BASELINE COMPARISONS

SR-STE is our primary baseline in our evaluations as it has shown good results in low-sparsity regions
[2:4,1:4] and is considered SOTA for N:M training. We also compared against other techniques like
Inherited Dynamic Pruning(IDP)(Fang et al., 2022), and SNIP: Single-shot Network Pruning(Lee
et al., 2019). Table 7 compares the results on T5X with GLUE dataset. We also tried to test against
LBC(Zhang et al., 2022b) but could not recreate the results shown in the paper.*

Sparse Target | SR-STE | SNIP | IDP | MDGF-Exponential
132 (FF) | 794 | 795 | 80.6 | 80.9

Table 7: Comparing various sparsification techniques by fine-tuning T5X on GLUE dataset.

6 LIMITATIONS AND FUTURE WORKS

The prevalence of self-attention models and their growing parameter size inspired this work to study
the impact of sparsity for such models. In this work, we only study each sparsification recipe in
isolation (either MDGF or SDGF). Nonetheless, combining these methods (SDGF-Geo + MDGF-Exp)
at different training regions may lead to better training recipe for structured sparsity.

7 CONCLUSION

This work studies the efficacy of recent sparsity recipes for structured N:M sparsity across range
of transformer-based DNN models. We observe that conventional methods introduce nontrivial
noise to gradient values, especially at high-sparsity regimes (>75%). Building on this observation,
we propose and compare two new decaying-based training recipes, namely MDGF and SDGF, for
N:M structured sparsity. Our results demonstrate that our method, MDGF-Exponential and SDGF-
Geometric consistently deliver SOTA model accuracy for a variety of vision and language models,
with more than ~2% (Vision) and ~5% (Language) improvement at high structured sparsity regime
compared to other pruning techniques.

*Model accuracy is less affected as we increase the sparsity level beyond 1:32.
“We have contacted the authors but cannot solve the issue.
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8 APPENDIX

8.1 ABLATIONS STUDIES

This section shows the various ablation studies we performed during our experiments.

8.1.1 EFFECT OF DENSE TRAINING STEPS (d)

Both our proposed methods, MDGF and SDGF include a dense training phase. We do an ablation
study on different amounts of dense training steps(% of total steps) in Table 8. We perform this
study on the language translation model (more implementation details in section §9.2.4) trained on
WMT-17. We found that changing the dense step between 1.25% - 10% of the total training steps
does not observably change the accuracy performance. However, empirically, we found that the
dense training phase is still essential. The model cannot achieve as competitive accuracy without few
epochs of dense training.

Table 8: Ablation: The effect of number of dense training steps (d).

Accuracy MDGE-Linear SDGF-Stepwise
Sparsity Target 1:16 1:32 1:64 1:128 1:16 1:32 1:64 1:128

125%  0.7155  0.7134  0.7106 ~ 0.7100  0.7157  0.7134  0.7108  0.7106
25% 07160  0.7127  0.7110  0.7093  0.7160  0.7136  0.7117  0.7100
5%  0.7157 07137  0.7103  0.7094  0.7164  0.7141  0.7107  0.7098
10%  0.7156  0.7126  0.7107  0.7104  0.7165 0.7128  0.7115  0.7107

Dense steps (d)

8.1.2 EFFECTS OF FINE-TUNING STEPS ()

We also have a sets of study on number of fine-tuning steps in Table 9. We perform this study on
the language translation model (more implementation details in section §9.2.4) trained on WMT-17.
We found that for all of our proposed methods, the fine-tuning steps between 10% - 20% of the total
training steps do not observably change the accuracy performance. However, empirically, we also
found few steps of fine-tuning at the end are essential to recovering the accuracy.

Table 9: Ablation: The effect of number of fine-tuning steps (s).

Accuracy MDGF-Linear SDGF-Stepwise
Sparsity Target 1:16 1:32 1:64 1:128 1:16 1:32 1:64 1:128

10%  0.7153  0.7130  0.7107  0.7098  0.7160  0.7125  0.7095  0.7072
20%  0.7161  0.7132  0.7106  0.7097  0.7121  0.7093  0.7081  0.7065

Fine-tuning steps (s)

8.1.3 EFFECT OF () IN MDGF-LINEAR

We also study on effect of decay rate on model’s accuracy in Table 10. We do experiments with
varying 3? for ViT-Base trained on Imagenet-1k for different sparsity targets.

We observe that a higher decay rate is beneficial at low sparsity targets (2:4,1:4), but for targets higher

than 1:8, we found lower decay rate works better.
Table 10: Ablation: The effect of mask decay rate (3*) for MDGF-Linear.

Sparsity Target 2:4 1:4 1:8

0.0002 | 77.495  78.448 78.019
0.001 77.613 78512  76.4075

Mask decay rate BYH

8.2 DETAILED RESULTS FOR T5X-Base SPARSIFICATION ON GLUE DATASET

We compared sparsification methods N:M block sparsification against state-of-the-art technique,
SR-STE on. T5 model uses a span-based masked language modeling (MLM) objective. T5 models
were introduced in Raffel et al. (2019) and the updated models are available at T5X-github. We train
a pre trained t5x-base model on GLUE dataset (Wang et al., 2019).
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The main paper shows a snapshot of the performance across various sparsity targets using the overall
score as metric. Table 11 presents all 9 scores for each sparsification technique and sparsity target.

Table 11: GLUE full score using various T5X-base with different N:M sparse targets and various
sparsification techniques.

‘ overall score  CoLA MNLI matched ~ MNLI mismatched MRPC QNLI QQP RTE SST-2 STS-B
Dense - | 862 58.9 87.2 87 924/892(90.8) 936  920/892(90.6) 823 95  90.1/90.0(90.0)
SR-STE (Zero Dense) 14 83.1 418 852 853 928/90.0(914) 923  OI8/889(903) 791 936  89.5/89.2(89.3)
SR-STE (10K Dense) 1:4 84.1 48.1 85.7 85.6 92.4/89.5(91.0) 92.1 91.8/89.0 (90.4) 82.7 93.6 87.9/87.7 (87.8)
MDGF-Stepwise (10K Dense) 1:4 837 488 853 85.4 924/892(90.8) 923 918/89.0(90.4) 805 935  865/863(864)
MDGF-Geometric (Zero Dense) 1:4 83.3 484 853 853 920/89.0(90.5) 918  O18/889(903) 78 928  87.3/874(87.3)
MDGEF-Geometric (10K Dense) 1:4 834 472 854 853 92.6/89.7(91.1) 92 91.8/89.0 (90.4) 798 929 86.7/86.4 (86.5)
SR-STE (Zero Dense) 1:32 77.1 19 81.3 81.3 90.9/87.0 (89.0) 86.9 90.6/87.4 (89.0) 711 89.9 86.7/86.8 (86.8)
SR-STE (10K Dense) 1:32 79.4 294 822 826 915/88.5(90.0) 896  O12/882(89.7) 726 914  87.1/87.2(87.2)
MDGE-Stepwise (10K Dense) 1:32 80.9 383 83.6 83.7 92.5/89.7 (91.1) 90.5 91.5/88.5 (90.0) 744 91.2 85.2/85.0(85.1)
MDGF-Geometric (Zero Dense) 1:32 71.6 202 81.3 81.6 91.8/88.5(90.1) 87.2 90.8/87.7 (89.2) 733 90.1 85.8/85.5(85.6)
MDGF-Geometric (10K Dense) 132 793 292 823 829 913/88.0(89.6) 904  OI3/883(89.8) 733 905  854/854(854)
SR-STE (Zero Dense) 1:8(FF) + 1:8(QK) 74.4 157 772 776 899/858(878) 836  897/862(879) 675 882  84.1/839(840)
SR-STE (10K Dense) 1:8(FF) + 1:8(QK) 75.8 19.9 78.6 79.4 89.7/86.0 (87.9) 84 90.1/86.7 (88.4) 70 89.4 84.5/84.2(84.4)
MDGF-Stepwise (10K Dense) 1:8(FF) + 1:8(QK) 80.7 387 83.1 83.2 90.9/87.7(89.3) 899  91.2/882(89.7) 762 919  845/84.5(845)
MDGF-Geometric (Zero Dense) | 1:8(FF) + 1:8(QK) 758 216 788 79 90.0/86.0(88.0) 836  90.1/866(883) 697 889  84.0/839(839)
MDGF-Geometric (10K Dense) 1:8(FF) + 1:8(QK) 76.8 223 80.7 80.9 89.8/85.8 (87.8) 86.3 90.5/87.4 (89.0) 70 91.1 83.7/83.4(83.6)
SR-STE (Zero Dense) 1:8(FF) + 1:8(QKV) 732 135 76.3 76.4 89.0/84.6 (86.8) 83.2 89.5/85.9 (87.7) 63.9 87 84.3/84.2(84.2)
SR-STE (10K Dense) 1:8(FF) + 1:8(QKV) 742 16.1 71.7 716 88.5/84.1(86.3) 829 89.9/86.3 (88.1) 66.4 88.8 84.4/84.2(84.3)
MDGF-Stepwise (10K Dense) | 1:8(FF) + 1:8(QKV) 795 3 823 823 91.3/87.7(89.5 892  910/880(895) 744  9LI  84.5/848(84.6)
MDGF-Geometric (Zero Dense) 1:8(FF) + 1:8(QKV) 75.5 221 78.6 78.7 90.5/86.8 (88.6) 834 90.0/86.5 (88.2) 67.9 88.2 84.2/84.2(84.2)
MDGF-Geometric (10K Dense) |  1:8(FF) + 1:8(QKV) 7538 195 794 79.6 89.4/853(873) 845  902/868(885 704 898  833/830(832)
SR-STE (Zero Dense) 1:8(FF) + 1:4(QKV) 75.1 15 784 79 90.5/86.8 (88.6) 84.2 90.1/86.6 (88.4) 67.9 88.4 86.2/86.1 (86.2)
SR-STE (10K Dense) 1:8(FF) + 1:4(QKV) 78 245 81.2 81.6 91.1/87.7(89.4) 87.1 90.6/87.3 (89.0) 722 90.9 85.8/85.8(85.8)
MDGF-Stepwise (10K Dense) 1:8(FF) + 1:4(QKV) 80.3 36.4 83.2 834 90.9/87.3 (89.1) 90.3 91.3/88.3 (89.8) 74.7 90.9 85.2/85.0(85.1)
MDGF-Geometric (Zero Dense) | 1:S(FF) + 1:4(QKV) 768 202 805 80.8 91.3/87.7(89.5) 854  903/870(886) 708 904  849/849(849)
MDGF-Geometric (10K Dense) 1:8(FF) + 1:4(QKV) 78.9 277 824 824 91.3/87.7 (89.5) 88.8 91.0/88.1(89.6) 744 91.3 84.5/84.5(84.5)

Here is an itemized list of nine tasks used in the GLUE dataset, along with brief descriptions of each:

CoLA (Corpus of Linguistic Acceptability): Classify whether a given sentence is gram-
matically acceptable or not.

MNLI (Multi-Genre Natural Language Inference): Classify the relationship between a
given premise and hypothesis as entailment, contradiction, or neutral. We use the standard
test set, for which we obtained private labels from the authors, and evaluate on both the
matched (in-domain) and mismatched (cross-domain) sections.

MRPC (Microsoft Research Paraphrase Corpus): Determine whether a pair of sentences
express the same meaning or not.

QNLI (Question-answering Natural Language Inference): Determine whether a given
question can be answered correctly using a given sentence.

QQP (Quora Question Pairs): Determine whether a pair of questions from Quora are
semantically equivalent or not.

RTE (Recognizing Textual Entailment): Classify the relationship between a given premise
and hypothesis as entailment or not.

SST-2 (Stanford Sentiment Treebank): Determine the sentiment of a given sentence as
either positive or negative.

STS-B (Semantic Textual Similarity Benchmark): Calculate the similarity score between
two sentences on a scale from O to 5.

These tasks cover various aspects of language understanding, including sentence acceptability,
sentiment analysis, paraphrase detection, textual similarity, natural language inference, question-
answering, and co-reference resolution.

Figure 5 shows the accuracy vs. fine-tuneing step curve for each of the 9 benchmarks of GLUE.

9 DETAILED EXPERIMENTAL SETTINGS

9.1
9.1.1

DATASETS

IMAGENET-1K

ImageNet-1K (Deng et al., 2009) is a large-scale image classification task, known as one of the most
challenging image classification benchmarks. It consists of more than 1.2 million training images and
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Fig. 5: Per-task evaluations for T5X-Base model finetuned on the GLUE dataset for 50K steps.

50K validation images with a size of 224x224 pixels, each with 3 channels. Each image is labeled as
one of the 1K classes. We use this dataset for studies in Section 4.1 of the main paper. For ViT and
SwinV2 experiments, we use a patch size of 16. This converts the 224x224 pixel image into an input
of sequence length 224/16 * 224/16 = 196.

Evaluation metrics. All reported results follow standard Top-1 validation accuracy.
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9.1.2 CIFARI10

CIFAR-10 (Krizhevsky et al., 2009) is a smaller-scale image classification dataset consisting of 10
classes. Each class has 6000 color images of 32x32 pixels in size.

Evaluation metrics. All reported results to follow standard Top-1 accuracy.

9.1.3 GLUE

The General Language Understanding Evaluation (GLUE) (Wang et al., 2019) benchmark is a
collection of resources for training, evaluating, and analyzing natural language understanding systems.
GLUE consists of: A benchmark of nine sentence- or sentence-pair language understanding tasks
built on established existing datasets and selected to cover a diverse range of dataset sizes, text genres,
and degrees of difficulty, Table 11 shows the overall score for each sparsity target using different
sparsification methods.

Evaluation metrics. All reported results in the main paper use the overall average score.

9.1.4 WMT

WMT-17 (English-German) (Bojar et al., 2017) is a key benchmark in machine translation research.
They hold several translation datasets across different languages. The training set consists of about
4.5 million bilingual sentence pairs from WMT 2014.

Evaluation metrics. We calculate accuracy by comparing the translated output to the correct
translation in the validation datasets.

9.2 HYPERPARMETERS FOR DIFFERENT MODELS
9.2.1 IMAGE CLASSIFICATION — VISION TRANSFORMERS (ViT)

We train the ViT-Base model on ImageNet-1k with hyperparameters presented in Table 12. We
follow the hyperparameter setting in (Wightman, 2019) for all ViT experiments. For ViT-Base, we
use fixed-size patches (resolution 16 16) on images with resolution 224. We also use the same
hyperparameters to train ViT-Tiny model ( 3 layers, 3 attention head per layer, Embedding dimension:
192) on CIFAR-10 for initial experiments in Section 3.2 for analysing the trends of weights, gradients
and optimizer moments and comparing those with SR-STE.

Table 12: Hyperparameters used for training ViT on ImageNet-1K.

Batch Size 256
Training Epoches 350
Learning Rate le-3
LR Warmup Epoches 15
LR Decay schedular Cosine
Decay Rate 0.1
Decay Epoches 100
Optimizer AdamW
Optimizer coefs betal = 0.9, beta2 = 0.999

The detailed list of all hyperparameters can be found at hyperparaters.yaml. For ViT-Base, the training
phase takes ~ 44 hours on 16 - A100 GPUs.

Figure 6 shows the Top-1 and Top-5 accuracy trends for training ViT to various sparsity targets with
different sparsification techniques. We observe generally, MDGF and SDGF are better than SR-STE,
especially for high-sparsity targets.
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9.2.2 IMAGE CLASSIFICATION — SWIN TRANSFORMER V2 (SwinV2)

We train the SwinV2-Base model on imagenet-1k with hyperparameters presented in Table 13. We
follow the hyperparameter setting in (Liu et al., 2022) for all SwinV2 experiments. In SwinV2-Base,
we employ window sizes of 8 x 8 on images with resolution 256.

Table 13: Hyperparameters used for training SwinV2 on ImageNet-1K.

Batch Size 128
Training Epoches 350
Learning Rate le-3
LR Warmup Epoches 20
LR Decay schedular Cosine
Decay Rate 0.1
Decay Epoches 30
Optimizer AdamW
Optimizer coefs betal = 0.9, beta2 = 0.999

The detailed model configuration is the same as present in the original Microsoft research GitHub
repo, SwinV2-base.yaml The detailed list of all hyperparameters was taken from config.yaml. For
SwinV2-Base, the training phase takes ~ 54 hours on 16 - A100 GPUs.

9.2.3 LANGUAGE UNDERSTANDING — T5X

We train the T5X-Base model on GLUE with hyperparameters presented in Table 14. We follow the
hyperparameter setting in (Raffel et al., 2019) for all T5X training experiments.

The detailed model configuration is the same as present in the original Google research GitHub repo,
T5X model T5X-Base’s training phase takes ~ 22 hours on 8 x Google Cloud TPUV3 cores.

Table 14: Hyperparameters used for training T5X on GLUE.

Batch Size 128
Training Steps 100k
Learning Rate le-3
LR Warmup Steps 1000
LR Decay schedular Constant
Optimizer AdamW
Optimizer coefs betal = 0.9, beta2 = 0.999

9.2.4 LANGUAGE TRANSLATION MODEL — Enc-Dec

We train an encoder-decoder-based model on WMT-17 with hyperparameters presented in Table 15.
The model is inspired by the attention paper (Vaswani et al., 2017). We follow the hyperparameter
setting in (Devlin et al., 2019) to train all models. The training phase takes ~ 8 hours on 32 - Google
Cloud TPU v3 cores.

10 ADDITIONAL RESULTS ON THE IMPACT OF SPARSIFICATION METHODS ON
GRADIENTS

Figure 7 shows the gradient variance for all feed-forward blocks in all ViT-tiny layers. As explained
in Section 4.2, lower gradient noise earlier in training would help bring down the optimiser to a
higher accuracy stage early. Comparing gradient variance for MDGF-exponential and SR-STE, we
see that, for MDGF-exponential the variance drops very early compared to SR-STE, hence reaching
the higher final accuracy.
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Table 15: Model configurations and hyperparameters for training model on WMT.

Number of Encoder Layers
Number of Decoder Layer
Hidden Dimension Size
Feed-Forward Dimension Size
Number of Attention Heads
Max Sequence Length
Training Dataset

Testing Dataset

Batch Size

Training Steps

Learning Rate

LR Warmup Steps

Decay Factor

Optimizer

Optimizer coefs

6

6

1024
4096

16

256
WMT-17
WMT-14
512
200K
0.0625
1000

0.5
Adam
betal = 0.9, beta2 =0.92
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Fig. 6: Training Epochs vs Accuracy graph for different sparsity targets. We train viT-Base on
ImageNet-1K.

11 PARAMETERS AND FLOPS CALCULATION
We show the details of the model params, training FLOPS and Inference FLOPS calculation for
Table 4.

The calculations are for ViT-Base Model (Table 16). Table 17 shows how the model parameters are
being calculated for different sparsity levels. Table 18 shows the FLOPS calculation for inference.

Table 16: ViT model parameters.

Number of Encoder Layers 12
Hidden Dimension Size 768
Feed-Forward Dimension Size 4%*768 = 3072
Number of Attention Heads 12
Sequence Length 1967
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Fig. 7: The variance of gradient w.r.t. training steps for all layers and FFs of tiny-Vit.

Table 17: ViT Weights Calculation.

Layer Calculation Weights
Wouery 125768%768* ~e 7077888t

Wicey 12%768%768% 2k N 7077888% 2V Nk
W atues 12%768*763 7077888
Woutput 12%768%768 7077888

N N

Wrer 12#2%768%3072* JEE 56623104 FEE
Wre 768+1000 768000
Total Weights 7077888*(2+%+A% ) +56623104* JEE +768000

Table 18: ViT Inference Flops Calculation.

Layer FLOPS Calculation Weights
Wauery 12%2% 196*768*768* 2,774,532, 096>‘<

Wiey 12%2%196*768*768* T/ N’* 2,774,532,096* i\;’“
WV aiues 12*2*196*768*768 2,774,532, 096
Woutput 12*2%196*768*768 2,774,532,096
Wrr 12*2*196*2*768*3072*% 11,098,128,384*m
Total Weights 2,774,532 096*(2+M M E) +11,098,128,384* NFF

12 CODEBASE

Our ViT and SWINV2 codebase is made by modifying the TIMM code base of hugging-face vision
transformers (Wightman, 2019). We add sparsity layers to various models and modify the training
loop to support training recipes presented in this work. Similarly, we modify the jax-based codebases
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for T5X and Language translation model experiments. Our anonymous codebase with training recipes
can be found at https://anonymous.4open.science/r/n_m_decay_ 1605-E77F/.
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