
Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

NEURAL INTEGRAL FUNCTIONALS

Zheyuan Hua, b, Tianbo Lia, Zekun Shia, b, Kunhao Zhenga, Giovanni Vignalec,
Kenji Kawaguchib, Shuicheng Yana, Min Lina

aSEA AI Lab, bSchool of Computing, National University of Singapore,
cInstitute for Functional Intelligent Materials, National University of Singapore
zyhu2001@gmail.com, linmin@sea.com

ABSTRACT

Functionals map input functions to output scalars, which are ubiquitous in various
scientific fields. In this work, we propose neural integral functional (NIF), which is
a general functional approximator that suits a large number of scientific problems
including the brachistochrone curve problem in classical physics and density
functional theory in quantum physics. One key ingredient that enables NIF on
these problems is the functional’s explicit dependence on the derivative of the input
function. We demonstrate that this is crucial for NIF to outperform neural operators
(NOs) despite the fact that NOs are theoretically universal. With NIF, we further
propose to jointly train the functional and its functional derivation (FD) to improve
generalization and to enable applications that require accurate FD. We validate
these claims with experiments on functional fitting and functional minimization.

1 INTRODUCTION

Functionals (Engel & Dreizler, 2011) are mappings from an input function to an output scalar. In
machine learning, the losses (e.g., cross-entropy, mean square error) mapping a classifier/predictor
function to the scalar loss value to be minimized by gradient descent are functionals. Functional
derivative (FD) is in turn, the analog of “gradient” for functionals, which can be used for finding the
minima of the functionals. FD is ubiquitous in physics, whose applications involve solving partial
differential equations (PDEs), quantum and analytical mechanics, and density functional theory
(DFT). Specifically, all of these problems can be formulated as functional minimization problems.

There have been some efforts in learning functionals with ML. One line of work is the neural
operators (NOs) (Lu et al., 2019; Li et al., 2020), which can be used as functionals by integrating
their output function into a scalar. NOs are theoretically universal as they are essentially multilayer
perception (MLP) for functions. However, the difficulty of applying NOs lies in the integrations in
their intermediate layers. In practice, these integrals are computed numerically using grids, which
can lead to a bias that diminishes its generalization ability. Due to the same reason, it is difficult for
NOs to capture the derivative of the input function if not given explicitly.

In this paper, we introduce a novel method, named Neural Integral Functional (NIF), as a general
approximator for the classical integral-type of functionals defined by

J [f] =

∫
I(x, f(x),∇f(x))dx. (1)

In some quantum physics literature, this type of functional is also called “semilocal”. This form
of the functional is prevalent. Many scientific problems can be written in such forms, such as the
brachistochrone curve problem in classical physics and density functional theory in quantum physics.
Unlike NOs that rely solely on the input function, NIF takes the derivative of the input function as an
extra input. We demonstrate that the explicit dependence on the FD is critical for fitting an accurate
functional. Our experiments show that NIF excels on tasks where NOs fail. NIF can be used to target
a wide range of applications for learning functionals in physics.

Furthermore, the FD of integral-type functionals (Equation 1) has the following analytical form
derived from the well-known Euler-Lagrange equation (Fox, 1987)

δJ

δf
(x) =

∂I

∂f(x)
−∇ ·

(
∂I

∂ (∇f(x))

)
, (2)

1

mailto:zyhu2001@gmail.com
mailto:linmin@sea.com

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

by auto-differentiation software. The FD of NIF has several important uses, including accurate FD
prediction, Sobolev training (Czarnecki et al., 2017), and solving variational problems.

We conduct extensive experiments to demonstrate the capability of NIF on functional fitting and
functional minimization, from which we validate the importance of the input function derivative and
the effectiveness of FD training.

2 PRELIMINARIES

In this work, we consider integral-type functionals given below.
Definition 2.1 (Definite Integral Functional). Given a function f ∈ L2(Rd, R) with input x ∈ Rd, a
functional J : L2(Rd, R) → R maps a function to a scalar via the following transformation:

J [f] =

∫
Ω

I(x, f(x),∇f(x)) dx, (3)

where Ω is a subset of Rd and the integrand I is a real-valued function on three vector inputs.

In real-world applications, the minimum of functionals is of great interest, e.g., minimizing the CE
loss for classification in machine learning. Analogous to gradient descent for the minimum of a
function, to find the minimum of functionals, we require the concept of functional derivative.

For the integral-type functionals, we can derive its FD using the Euler-Lagrange equation (Fox, 1987)
given in Equation (2). The detailed definition of FD and the derivation of the above FD formula are
presented in Appendix B, in which we also provide examples of FD for several functionals.

3 METHOD

3.1 NEURAL INTEGRAL FUNCTIONAL

We propose Neural Integral Functional (NIF) to approximate functional and its FD with neural
networks. NIF takes function f as input, applies transformation recursively and constructs a complex
nonlinear functional. NIF contains: (1) the function transformation layers and (2) the integral layer.

Function Transformation Layers The first part of NIF is a transformation of the input functions.
The flexibility of NIF allows I to be arbitrary types of neural networks. Here we consider MLP:

Iθl = σ
(
WlI

θ
l−1

(
x, f(x),∇f(x)

)
+ bl

)
,Wl ∈ Rhl×hl−1 , bl ∈ Rhl , 1 ≤ l ≤ L, (4)

where Wl, bl are the trainable parameters, and σ is the elementwise activation.

Integral Layer Differently, at the (L + 1)-th layer, we compute the integral to transform the
output function from the previous layer to a scalar, such that the entire model Jθ[f] is a functional.
Specifically, we design the integral at the last layer to be a numerical integral scheme, i.e.,

Jθ[f] =

∫
IθL

(
x, f(x),∇f(x)

)
dx ≈

Ngrid∑
i=1

wi I
θ
L(xi, f(xi),∇f(xi)), (5)

where wi are the corresponding weights. It is noteworthy that the grid points in NIF can be arbitrary.

Functional Derivative (FD) The FD of the NIF Jθ[f] w.r.t. the input function f can be computed
analytically by Equation (2), where the FD is reduced to function differentiation w.r.t. x, f,∇f .

As an emerging tool, NIF is capable of performing various tasks.

3.2 FITTING FUNCTIONAL, FUNCTIONAL DERIVATIVE & SOBOLEV TRAINING

Here, we formulate functional fitting problem and the FD loss for FD fitting and Sobolev training.

We consider an arbitrary grid for integral X = {xi}
Ngrid
i=1 , a set of train functions F =

{f1, f2, · · · , fNtrain}, and the functional to be learned J [f]. In the cases where the FDs δJ
δf are

2

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Table 1: Relative L2 error results for fitting two synthetic functionals with polynomial and sinusoid
input functions, with (λf = 1) and without (λf = 0) the FD loss.

Component Error of Functional I0 (Polynomial) Error of Functional I0 (Sinusoid)

Model FD ∇f Integrand Integral FD Integrand Integral FD

FNO × NA 1.270E-03 4.896E-03 2.451E-02 5.197E-04 4.946E-04 6.062E-02
FNO ✓ NA 6.943E-04 4.563E-03 7.775E-04 1.498E-04 5.620E-04 1.582E-03
NIF × × 6.605E-04 4.773E-03 8.169E-04 1.948E-04 5.123E-04 9.270E-04
NIF ✓ × 3.845E-04 4.455E-03 2.963E-04 1.473E-04 4.896E-04 3.060E-04
NIF × ✓ 1.141E-03 5.266E-03 7.852E-02 7.151E-04 6.052E-04 3.728E-02
NIF ✓ ✓ 1.117E-03 4.910E-03 6.333E-03 4.135E-04 5.757E-04 1.939E-03

Component Error of Functional I1 (Polynomial) Error of Functional I1 (Sinusoid)

Model FD ∇f Integrand Integral FD Integrand Integral FD

FNO × NA 9.974E-03 2.092E-02 1.223E+01 5.231E-03 1.965E-03 3.868E+00
FNO ✓ NA 2.555E-01 5.754E-01 6.587E+00 2.698E-01 2.283E-01 3.289E+00
NIF × × 6.182E-01 6.030E-01 3.536E+00 9.407E-01 8.675E-01 1.893E+00
NIF ✓ × 6.759E-01 6.361E-01 2.081E+00 9.118E-01 7.980E-01 6.153E-01
NIF × ✓ 7.667E-03 2.146E-02 8.071E-01 3.494E-03 3.439E-03 7.760E-02
NIF ✓ ✓ 7.361E-03 2.091E-02 3.704E-02 7.841E-04 1.040E-03 5.713E-03

available, we can add a loss term for the FD to improve the performance. The overall training loss for
fitting the functional is minθ Lfunc(θ) + λfLFD(θ), where

Lfunc(θ) =
1

|F|
∑
f∈F

Ngrid∑
i=1

wi

(
IθL,i − Ii

)2
, LFD(θ) =

1

|F|
∑
f∈F

Ngrid∑
i=1

wi

(
δJθ

δf
(xi)−

δJ

δf
(xi)

)2

.

The first functional loss aims to fit the functional itself on the pointwise values, where IθL,i :=

IθL(xi, f(xi),∇f(xi)) is the output at the L-th layer given a sample point xi and wi is the integral
weight in Equation (5). The second term, FD loss, regularizes the similarity between the FD of the
model and the ground truth. LFD is crucial when downstream tasks require explicitly the FD, or for
Sobolev training that improves generalization (Czarnecki et al., 2017).

3.3 SOLVING VARIATION PROBLEMS

When the functional is known, searching for a function that minimizes the functional is called the
variation problem, i.e., to find f∗ such that f∗ = argminf∈F J [f].

To solve the variational problem, we first train a NIF Jθ to approximate J on both functional and FD.
Once we obtain the trained NIF Jθ, the variation problem searches for the f∗ = argminf J

θ[f]. In
practice, we need to use a parameterized function fϕ. Then it is converted into a parameter space
problem ϕ∗ = argminϕ J

θ[fϕ]. One common choice for fϕ is the linear combination of basis
functions, where ϕ denotes the combination coefficients.

4 EXPERIMENTS

In this section, we present experiments. More details are listed in Appendix C.

4.1 FUNCTIONAL FITTING: SYNTHETIC FUNCTIONAL

We use NIF to fit the following synthetic functionals, which are used to illustrate the effectiveness of
the training scheme of our NIF method: J0 : f(x) 7→

∫ 1

0
f(x)dx, J1 : f(x) 7→

∫ 1

0
xf ′(x)dx. The

FDs of J0 and J1 w.r.t. f are 1 and −1, respectively.

Data Generation To fit the functional and its FD, we first generate a synthetic dataset of input
functions f and the corresponding ground-truth functional output J [f]. This is analogous to the
data and labels in machine learning. The input function is sampled from linear combinations of

3

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

1.0 0.5 0.0 0.5 1.0
0.25

0.20

0.15

0.10

0.05

0.00

Solving Poisson's Equation

Ground Truth
NIF
FNO

1.0 0.5 0.0 0.5 1.0
0.30

0.25

0.20

0.15

0.10

0.05

0.00

Solving Poisson's Equation

Ground Truth
NIF
FNO

Figure 1: Comaprison between ground truth and the solutions obtained from NIF and FNO in
Poisson’s equation with two different ground truths u1 (left) and u2 (right).

sinusoids and polynomials, i.e. fpoly =
∑N−1

i=0 aix
i and fsin =

∑M−1
i=0 bi sin(cix). Both are universal

approximators to ensure good coverage of the input space by tuning the parameters. We choose
N = M = 20, ai, bi ∼ Uniform(−1, 1) and ci ∼ Uniform(0.1, 2.1). 1100 data points are randomly
generated with 90% for training and the rest 10% for testing.

Compared Models (1) Fourier neural operator (FNO) (Li et al., 2020): We append an integral layer
at the end of FNO, and its input only includes x, f(x). (2) NIF with/without FD loss: to investigate
if the FD loss is able to reduce test FD error and the regression error at the functional level, i.e., the
effectiveness of FD-based Sobolev training on improving generalization. (3) NIF with/without ∇f as
input: to validate the necessity of ∇f as a direct input to NIF.

Evaluation metrics We evaluate the fitting performance with relative L2 errors for the functional J
and functional derivative δJ/δf , as well as pointwise error on the integrated I . They are shown in
Table 1 under column “integral”, “FD” and “integrand” respectively.

The relative L2 errors at test time are shown in Table 1, where we have several observations.

∇f is necessary for fitting functionals. For the functional I0, since the ground truth doesn’t include
∇f , FNO and NIF work well in every metric. However, NIF with ∇f greatly outperforms others
when fitting I1. NIF without ∇f works even better for I0, since the ground truth doesn’t include
∇f , which prevents the noisy feature for this specific functional. But, ∇f does show up in most
real-world functionals. This justifies the effectiveness of inputting ∇f in NIF.

The use of FD regularization is beneficial for the fitting of functionals. The use of FD loss leads
to a significant reduction in all three errors, bringing the model closer to the ground-truth functional.
Both FNO and NIF have even lower errors when FD regularization is applied.

4.2 SOLVING POISSON’S EQUATION

In this section, we solve Poisson’s problem −∆u = f(x), in x ∈ Ω = [−1, 1] by NIFs, whose
corresponding functional is

∫
− 1

2 |∇u|2 + uf , i.e., the condition that its FD equals zero is just the
original Poisson’s equation. We consider the zero boundary condition, i.e., the ground truth solution
u(x) = 0 on ∂Ω, while f is generated by the true solutions u1(x) = (x2 − 1)(0.8x5 + 0.9x4) and
u2(x) = (x2 − 1)(−0.8x7 + x2). The input functions generating the training set for functional and
FD learning are polynomials of the form (x2 − 1)P (x) where (x2 − 1) to ensure the zero boundary
condition, and P (x) =

∑19
i=0 aix

i and ai ∼ Unif(−1, 1).

The ground truth solution and solutions obtained from NIF and FNO are compared in Figure 1. The
ground truth and the solution obtained from NIF are almost indistinguishable, while the error of FNO
is much larger, i.e., NIF significantly outperforms FNO.

5 CONCLUSION

In this paper, we propose the NIF, adopting MLP to approximate functionals and enabling FD
computation by the definition of FD. It is capable of fitting unknown functionals & their FD and
minimizing functionals. Extensive experiments on functional fitting and functional minimization
validate the design of NIF that inputs the derivatives of the input function, and its FD computation.

4

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

REFERENCES

Yixiao Chen, Linfeng Zhang, Han Wang, and Weinan E. Deepks: A comprehensive data-driven
approach toward chemically accurate density functional theory. Journal of Chemical Theory and
Computation, 17(1):170–181, 2020.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho.
Lagrangian neural networks. arXiv preprint arXiv:2003.04630, 2020.

Wojciech M Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz, and Razvan Pascanu.
Sobolev training for neural networks. Advances in Neural Information Processing Systems, 30,
2017.

Sebastian Dick and Marivi Fernandez-Serra. Machine learning accurate exchange and correlation
functionals of the electronic density. Nature communications, 11(1):1–10, 2020.

Emilien Dupont, Yee Whye Teh, and Arnaud Doucet. Generative models as distributions of functions.
arXiv preprint arXiv:2102.04776, 2021.

Emilien Dupont, Hyunjik Kim, SM Eslami, Danilo Rezende, and Dan Rosenbaum. From data
to functa: Your data point is a function and you should treat it like one. arXiv preprint
arXiv:2201.12204, 2022.

E. Engel and R.M. Dreizler. Density Functional Theory: An Advanced Course. Theoretical and
Mathematical Physics. Springer Berlin Heidelberg, 2011. ISBN 9783642140907.

Charles Fox. An introduction to the calculus of variations. Courier Corporation, 1987.

S Alireza Ghasemi and Thomas D Kühne. Artificial neural networks for the kinetic energy functional
of non-interacting fermions. The Journal of Chemical Physics, 154(7):074107, 2021.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. Advances in
neural information processing systems, 32, 2019.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

James Kirkpatrick, Brendan McMorrow, David HP Turban, Alexander L Gaunt, James S Spencer,
Alexander GDG Matthews, Annette Obika, Louis Thiry, Meire Fortunato, David Pfau, et al.
Pushing the frontiers of density functionals by solving the fractional electron problem. Science,
374(6573):1385–1389, 2021.

Li Li, Thomas E Baker, Steven R White, Kieron Burke, et al. Pure density functional for strong
correlation and the thermodynamic limit from machine learning. Physical Review B, 94(24):
245129, 2016.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Chao Ma and José Miguel Hernández-Lobato. Functional variational inference based on stochastic
process generators. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 21795–21807.
Curran Associates, Inc., 2021.

Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. Boosting algorithms as gradient
descent. In S. Solla, T. Leen, and K. Müller (eds.), Advances in Neural Information Processing
Systems, volume 12. MIT Press, 1999.

Yuxiang Mo, Guocai Tian, and Jianmin Tao. Comparative study of semilocal density functionals on
solids and surfaces. Chemical Physics Letters, 682:38–42, 2017.

5

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

John P Perdew and Karla Schmidt. Jacob’s ladder of density functional approximations for the
exchange-correlation energy. In AIP Conference Proceedings, volume 577, pp. 1–20. American
Institute of Physics, 2001.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

Kevin Ryczko, David A Strubbe, and Isaac Tamblyn. Deep learning and density-functional theory.
Physical Review A, 100(2):022512, 2019.

John C Snyder, Matthias Rupp, Katja Hansen, Klaus-Robert Müller, and Kieron Burke. Finding
density functionals with machine learning. Physical review letters, 108(25):253002, 2012.

Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger Grosse. Functional variational bayesian
neural networks. arXiv preprint arXiv:1903.05779, 2019.

Kevin Vu, John C Snyder, Li Li, Matthias Rupp, Brandon F Chen, Tarek Khelif, Klaus-Robert
Müller, and Kieron Burke. Understanding kernel ridge regression: Common behaviors from simple
functions to density functionals. International Journal of Quantum Chemistry, 115(16):1115–1128,
2015.

A RELATED WORK

Machine Learning and Functionals In machine learning, Dupont et al. (2022; 2021) proposed
to view images, 3D shapes, and neural radiance fields as continuous function inputs and tested the
function data on meta-learning, generative modeling, and classification. However, physics-related
functionals, where the definition of functional comes from, and FD are not considered. Functionals
are also adopted to solve specific applications including functional variational inference (Ma &
Hernández-Lobato, 2021) and variational Bayes (Sun et al., 2019). Mason et al. (1999) provided a
functional derivative perspective for optimization.

Another major field that learns functionals with ML is density functional theory (DFT). Before the
era of deep learning, early work mainly focused on kernel regression to learn density functionals.
Vu et al. (2015) investigated the importance of hyperparameter setting in kernel ridge regression
for DFT. However, Vu et al. (2015) did not consider the FD, which is critical to the DFT problem.
Snyder et al. (2012) computed FD by direct differentiation to the input discretized density. Their
computed self-consistent density suffered from inaccuracy: the error is an order of magnitude larger
than the true self-consistent density. Li et al. (2016) utilized a density matrix renormalization group
for self-consistency computation. Ghasemi & Kühne (2021); Ryczko et al. (2019) fit every density
functional in DFT computation and achieved chemical accuracy, but their model did not compute the
FD. Our framework enables FD for all neural network-based functionals, so that the model in Ryczko
et al. (2019) can be flexibly embedded.

DFT has seen the emerging applications of functional learning. Examples include learning kinetic
functionals or exchange-correlation (XC) functionals (Snyder et al., 2012; Li et al., 2016; Vu et al.,
2015; Dick & Fernandez-Serra, 2020; Chen et al., 2020; Kirkpatrick et al., 2021). Unlike NOs,
the functionals studied in DFT are usually semilocal (Mo et al., 2017; Engel & Dreizler, 2011),
i.e., only depending on local values of the input function and its derivatives. They can be written
as an integral over the pointwise mapping of the input function. In contrast with neural operators,
the integral in this type of functional can be amortized using stochastic integration and thus can be
asymptotically unbiased. The limitation of the functionals in DFT is that it is not universal enough to
model non-local functionals. It is alleviated by introducing the derivative of the input function or
even the second-order derivative of the input function, i.e., GGA and meta-GGA functionals (Perdew
& Schmidt, 2001).

Physics-Informed Machine Learning Although functionals have not drawn much attention from
the machine learning community, machine learning has become popular in other physics, and science-
related fields, e.g., physics-informed neural networks (PINNs) (Raissi et al., 2019) for solving PDEs,
DeepONet (Lu et al., 2019) and Fourier neural operator (FNO) (Li et al., 2020) for learning operators
for solving the Kohn-Sham DFT, Hamiltonian neural networks (HNNs) (Greydanus et al., 2019)

6

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

and Lagrangian neural network (Cranmer et al., 2020) for discovering the physical law governs by
Hamiltonians Euler-Lagrangian equation in analytical mechanics.

B FUNCTIONAL DERIVATIVE

Definition B.1 (Variation of a Functional). The variation of a functional J [·] is defined as δJ :=
J [f + ϵη]− J [f], ϵ ∈ R, where ϵ is an infinitesimal number, and η is an arbitrary function called the
test function.
Definition B.2 (Functional Derivative). In this section, we provide detailed definitions of functional
derivatives. We follow the definition provided in (Engel & Dreizler, 2011) The functional derivative
of a functional J [·] is defined as a function δJ

δf (x) whose inner product with any test function yields
the first order expansion of functional variation δJ , treated as an ordinary function of the infinitesimal
ϵ:

⟨δJ
δf

, η⟩ =
∫

dx
δJ

δf
(x)η(x) =

d

dϵ
δJ

∣∣∣∣
ϵ=0

=
d

dϵ
(J [f + ϵη]− J [f])

∣∣∣∣
ϵ=0

=
d

dϵ
J [f + ϵη]

∣∣∣∣
ϵ=0

.

(6)

Thus we can rewrite the Taylor expansion of ϵ around 0 as

J [f + ϵη] =J [f] +
d

dϵ
J [f + ϵη]

∣∣∣∣
ϵ=0

ϵ+ O(ϵ2)

=J [f] + ⟨δJ
δf

, η⟩ϵ+ O(ϵ2).

Consider the definite integral-based functional:

J =

∫
I(x, f(x),∇f(x), · · · ,∇nf(x))dx.

Based on the definition of FD,

J [f + ϵη]− J [f] =

∫
(I(x, f(x) + ϵη(x), · · · ,∇nf(x) + ϵ∇nη(x))− I(x, f(x), · · · ,∇nf(x))) dx

= ϵ

n∑
i=0

∫
∂I

∂ (∇if(x))
∇i (η(x)) dx+ O(ϵ2)

= ϵ

n∑
i=0

(−1)i
∫

∇i

(
∂I

∂ (∇if(x))

)
η(x)dx+ O(ϵ2),

(7)
where in the last equation we consider integral by parts.

For instance, we consider the following basic functionals:

J0 : f(x) 7→
∫

f(x)dx,
δI0
δf

(x) = 1.

J1 : f(x) 7→
∫

xf ′(x)dx,
δI1
δf

(x) = −1.

J2 : f(x) 7→
∫

fn(x)dx,
δI2
δf

(x) = nfn−1(x), n ∈ N∗.

For J0, we have I0(x, f(x)) = f(x), so ∂I0
∂f(x) = 1 and δJ0

δf (x) = ∂I0
∂f(x) = 1. For J1, we have

I1[x,∇f(x)] = x∇f(x), so ∂I1
∂f(x) = x, d

dx

(
∂I1

∂f(x)

)
= 1 and δJ1

δf (x) = − d
dx

(
∂I1

∂f(x)

)
= −1. For

J2, we have I2[x, f(x)] = fn(x), so ∂I2
∂f(x) = nfn−1(x) and δJ2

δf (x) = ∂I2
∂f(x) = nfn−1(x).

C EXPERIMENTAL DETAIL

The results are the average of 5 independent runs. We omit its standard deviation since it is 1 to 2
orders of magnitude smaller than the mean.

7

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

C.1 FITTING SYNTHETIC FUNCTIONALS

We generate 1100 data, the number of uniform grid points is 256, and the model is trained for 10001
epochs with Adam of 1e-3 learning rate. λf = 1 for FD training. The network is a 4-layer net with 64
units at hidden layers, activated by GeLU (Hendrycks & Gimpel, 2016). For Fourier neural operator
(FNO) (Li et al., 2020), we use a 4-layer FNO with 64 hidden units activated by GeLU.

C.2 SOLVING POISSON’S EQUATION WITH NIF

We generate 1100 data, the number of grid points is 256, and the model is trained for 100001 epochs
with Adam + lr exponential decay (decay epoch=5k). λf = 0.1. The network is a 4-layer net with 64
units at hidden layers, activated by GeLU (Hendrycks & Gimpel, 2016). For Fourier neural operator
(FNO) (Li et al., 2020), we use a 4-layer FNO with 32 hidden units activated by GeLU. The functional
minimization process after obtained the trained functional by NIF/FNO is conducted for 100001
epochs with Adam + lr exponential decay (decay epoch=5k).

8

	Introduction
	Preliminaries
	Method
	Neural Integral Functional
	Fitting Functional, Functional Derivative & Sobolev Training
	Solving Variation Problems

	Experiments
	Functional Fitting: Synthetic Functional
	Solving Poisson's Equation

	Conclusion
	Related Work
	Functional Derivative
	Experimental Detail
	Fitting Synthetic Functionals
	Solving Poisson’s Equation with NIF

