
On Feature Learning in
Structured State Space Models

Leena Chennuru Vankadara†1 Jin Xu†2 Moritz Haas 3 Volkan Cevher1,4

1AGI Foundations, Amazon 2University of Oxford∗
3University of Tübingen, Tübingen AI Center∗, 4LIONS, EPFL∗

Abstract

This paper studies the scaling behavior of state-space models (SSMs) and their
structured variants, such as Mamba, that have recently arisen in popularity as
alternatives to transformer-based neural network architectures. Specifically, we
focus on the capability of SSMs to learn features as their network width approaches
infinity. Our findings reveal that established scaling rules, such as the Maximal
Update Parameterization, fail to support feature learning as these models cannot
be represented in the form of Tensor Programs. Additionally, we demonstrate that
spectral scaling conditions, shown to be effective for feature learning in a host
of other architectures, do not hold the same implications for SSMs. Through a
detailed signal propagation analysis in SSMs, both forward and backward, we
identify the appropriate scaling necessary for non-trivial feature evolution in the
infinite-width limit. Our proposed scaling shows behavior akin to the Maximal
Update Parameterization, such as improved stability, better generalization, and
transferability of optimal hyper-parameters from small to large scale SSMs.

1 Introduction
State-space models (SSMs), such as Mamba (Gu and Dao, 2023), have become popular in deep learn-
ing as alternatives to transformers like GPT and BERT series (Radford et al., 2019, Brown et al., 2020,
Achiam et al., 2023, Devlin et al., 2018, Touvron et al., 2023, Chowdhery et al., 2023, Gemini Team
et al., 2023). SSMs integrate elements from RNNs, CNNs, and control models, excelling in inference
and handling long contexts (Gu et al., 2021, Gupta et al., 2022, Gu et al., 2022, Smith et al., 2022).

The success of foundation models based on transformers and SSMs alike is largely attributed to
their scale—both in terms of data and model size. However, this increased scale often introduces
challenges, such as precision issues due to instability or the vanishing/exploding gradient problems.
Additionally, the sequential nature of state-space models (SSMs) makes them notoriously difficult
to train. Therefore, developing a rigorous understanding of how SSMs scale as their dimensions
increase and identifying optimal scaling rules is crucial.

In this vein, infinite-width asymptotics, such as Neural tangent kernel (NTK) analyses have been a
central tool providing key insights in DL theory. However, a key limitation of the NTK analysis is
the lack of feature learning in the infinite width limit (Yang and Littwin, 2023). Feature learning
addresses the more realistic training setting where we have unrestricted movement of the neural
network parameters (Yang and Littwin, 2023).

Intriguingly, recent work by Yang and Hu (2021) showed that under an expanded space of hyper-
parameters, which includes layer-wise scaling of the learning rates, one can find a unique parame-
terization called Maximal Update pPrameterization (µP) that induces non-trivial feature evolution

∗† denotes equal contribution. This work was conducted during Jin’s, Moritz’ and Volkan’s time at Amazon.
Correspondence to: aaron.jin.xu@gmail.com

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

SP

(Heuristic)

(Ours)

SSM Latent States, ZOH SSM Output States, ZOH SSM Latent States, Euler SSM Output States, Euler

-SSM

Figure 1: Under our derived scaling µP-SSM, Mamba achieves feature learning in all three SSM
layers. In contrast, both Standard Parametrization (SP) and µP (heuristic) lead to instability or
vanishing updates for either the latent states x(i)

l or the output signal yl or both in each SSM layer.
The figures above illustrate the scalings when l = 1, but they exhibit the same trend across recurrence
steps. We simultaneously scale upNx andNu. We run each experiment 10 times, and the shaded areas
indicate the standard deviation of these runs. Both Zero-Order Hold (ZOH) and Euler discretization
of Bl are studied and indicated in the subtitle.

even in the infinite width limit for a host of key architectures. The results are obtained via the
mathematical framework of Tensor Programs, which provides the foundation to study the effects of
parameterizations on the learning dynamics in the limit. To this end, it is natural to ask:

When do SSMs admit feature learning in the infinite-width limit?

Our research tackles this question by investigating the behavior of SSMs as network width approaches
infinity. We examine how SSMs learn and evolve features in this context and assess the adequacy of
recent scaling rules such as µP and spectral scaling conditions.

Our contributions:

• We provide a detailed scaling analysis of forward and backward signal propagation in SSMs
as the width approaches infinity, identifying that standard scalings lead to unbounded signals.

• We demonstrate theoretically and empirically that popular scaling rules like µP do not
yield correct scaling for SSMs due to—as we prove—their non-representability as Tensor
Programs (cf., Figure 1).

• We derive a unique correction that ensures correctly balanced signals in both the forward
and backward passes, stabilizing the training process and enhancing model performance.

• Empirically, we validate that our proposed scaling facilitates hyper-parameter transfer from
small-scale to large-scale SSMs, similar to the effects observed in MLPs and transformers.

2 On the lack of feature learning in SSMs at infinite width
2.1 Feature learning in sequence models

Sequence models are built by combining sequential layers that transform input sequences into output
sequences. A sequence layer can be represented as y1:L = fseq(u1:L) where u1:L is a compact
notation for sequence u1, . . . ,uL, with ul ∈ RNu , yl ∈ RNy . Note that fseq can be easily generalized
to accept and output multiple sequences as in residual connections and multi-branch architectures (see
Appendix B.1). Here Nu and Ny are treated as widths of the sequence model, which can be scaled
up to create larger sequence models. To denote the backward pass of a model concisely, let L be the
overall training loss, and we write •̄ = ∂L

∂• . Instead of studying the scaling of each element in a vector
u ∈ RNu , we study the norm ∥u∥2. When elements in u are in Θ(1), we have ∥u∥2 ∈ Θ(

√
Nu).

Throughout this work, we will use Θ to represent the asymptotic order in the limit (Nu → ∞ in this
case), but omit the precise notation for readability.

2

In layerwise sequence models, where the k-th layer is denoted as u(k)
1:n = fk(u

(k−1)
1:n) with u

(k)
l ∈

RNk , we have the following definition for feature learning:
Definition 2.1 (Feature Learning in Layerwise Sequence Models). A layerwise sequence model is in
the feature learning regime if for any k ∈ [K], the features u(k)

1:L and the updates of features ∆u
(k)
1:L

after one gradient update have the following scaling:

∃ l ∈ [L], ∥u(k)
l ∥2 ∈ Θ(

√
Nk) (Stability at initialization) (INIT)

∃ l ∈ [L], ∥∆u
(k)
l ∥2 ∈ Θ(

√
Nk) (Non-trivial feature updates) (∆)

Note that the first condition is a stability condition that demands the activations to remain coordinate-
wise Θ(1) in the forward pass, whereas the second condition ensures nonvanishing and nonexploding
activation updates. This definition can be easily generalized to general cases for arbitrary sequence
models in Appendix B.1.

For a particular sequence layer in the model, if we assume the inputs to the layer are asymptotically
independent and identically distributed (i.i.d), correctly scaled, and the gradients backpropagated into
the sequence layer have the correct scaling (as in Assumption 3.1), and this sequence layer satisfies
the two conditions (INIT) and (∆), we say this sequence layer admits feature learning. The corrected
scaling µP -SSM we propose in Section 3 satisfies an even stronger condition: The updates of all
trainable weights should have nonvanishing and nonexploding effect on the activation and output
function updates. We then say that the sequence model is effectively feature learning. This is similar
in spirit to the requirements for µP from Yang and Hu (2021) that ensure maximal stable updates
of all trainable weights in standard architectures like MLPs, but requires different initialization and
learning rate scaling rules for the trainable weights in SSMs, as we show in Section 3.

2.2 Tensor Programs, spectral scaling, and the Maximal Update Parmeterization
Tensor Programs. The framework of Tensor Programs (TP) (Yang, 2019) was initially developed
to understand the behavior of wide neural networks both at initialization and during training. While
there are many versions of Tensor Programs, the most general version (that subsumes all the previous
versions) is referred to as the NE⊗OR⊤ program (Yang and Littwin, 2023). A NE⊗OR⊤ program
constitutes a sequence of vectors in Rn and a sequence of scalars in R inductively generated from
an initial set of random scalars, vectors, and matrices following a specified set of instructions: matrix
multiplications, non-linear outer products, and vector averages. Yang and Littwin (2023) show that
for any architecture whose forward pass can be represented as a NE⊗OR⊤ program (which includes
many modern architectures used in practice including transformers and convolutional networks),
there exists a unique scaling rule called Maximal Update Parametrization (µP) under which features
in every single layer evolve in a width-independent fashion with scale. Interestingly, it has been
shown that unlike standard parameterizations, µP allows transferability of optimal hyper-parameters
from small to large scale models.

The key idea of the “Tensor Program Ansatz” (Yang, 2019) is that pre-activations and their gradients
arising in training most neural network architectures via standard update rules (such as SGD and
ADAM) can be represented as vectors in a NE⊗OR⊤ program. The Ansatz suggests that vectors
in a TP become asymptotically independent as well as identically distributed both at initialization
as well as during training. Leveraging this, the framework allows for a mechanistic tracking of
the behaviour of such vectors by assigning a random variable Zv to represent the (asymptotically
identical) distribution of the coordinates of the vector v. This principle underlies the development of
the key theoretical result of the Tensor Program machinery — the Master Theorem — which can
be viewed as the compositional, non-linear generalization of the law of large numbers. It allows the
theoretical computation of infinite width limits of different quantities such as (pre-)activations or the
output of a neural network.

While the following proposition also holds for other structured SSMs such as MAMBA, for clarity,
we first introduce the simpler S4 model.

The S4 recurrent layer. The S4 recurrent layer y1:L = fS4(u1:L;w = {B,C}) can be viewed as a
discretization of a continuous-time SSM given by

d

dt
xt = Axt +But and yt = Re[Cxt] (1)

3

for l = 1, . . . , L with x0 = 0 and where Re(·) gives the real part of a complex vector, and where we
let A = Diag(a) with a ∈ CNx , B ∈ CNx×Nu , C ∈ CNy×Nx . We have the discretized sequence to
sequence mapping fS4 as follows:

xl = A′xl−1 +B′ul and yl = Re[C′xl] (2)

where we follow the Zero-Order-Hold (ZOH) discretization method,

A′ = exp(τ ·A), B′ = (A′ − I)A−1B, and C′ = C. (3)

In practice, simple Euler discretization can also be used for B, i.e., B′ = τB. To model long-range
dependency, S4 advocates for HiPPO theory (Gu et al., 2020). There are many possible Hippo-based
initializations possible for the structured transition matrices A (e.g., Hippo-Leg-S, S4D-Inv, and
S4D-Real) and our result holds for all the parameterizations.

While the training of most common architectures including transformers or convolutional networks
via update rules such as SGD or ADAM are representable as a NE⊗OR⊤ program, Proposition 2.2
shows that this does not hold in general for structured state space models.
Proposition 2.2 (Structured SSMs are not generally representable as NE⊗OR⊤ programs). The
forward and backward signal propagation of structured SSMs including S4 (2) and (3) and MAMBA
(Section 3.1) trained via standard algorithms such as SGD or ADAM are not representable as a
NE⊗OR⊤ program. Indeed this holds for all existing Hippo-parameterizations of the structured
matrix A including HiPPO-LegS, HiPPO-LegS-N, HiPPO-LegS-D, S4D-Inv, S4D-Lin, and S4D-Real.

Proof sketch. The formal proofs are provided in Appendix C. The key architectural component that
is not representable in a NE⊗OR⊤ program is the Hippo-based structured transition matrix A. Due
to the rapid decay of the diagonal entries of A−1, the hidden states x0 are not even asymptotically
identically distributed, already at initialization. Therefore coordinates of x0 cannot be generated by
a sequence of NE⊗OR⊤ computations, neither at initialization nor over the course of training. As we
will discuss in Section 6, developing a TP-like framework to cover SSMs requires a substantial gen-
eralization of the existing TP framework and is beyond the scope of the current paper. Nevertheless,
in Section 6, we outline the key challenges and potential paths toward such a generalization.

Spectral scaling condition. Yang et al. (2023a) showed that many practical architectures admit
feature learning if certain spectral scaling conditions are satisfied. Let Wl and ∆Wl ∈ RNl×Nl−1

denote the lth layer weight matrices and their gradient updates. The condition states that for feature
learning to hold, the spectral norms of the matrices should satisfy:

∥Wl∥∗ ∈ Θ

(√
Nl

Nl−1

)
and ∥∆Wl∥∗ ∈ Θ

(√
Nl

Nl−1

)
for all l ∈ [L]. (∗)

Under µP, architectures that are representable as a NE⊗OR⊤ program satisfy the spectral scaling
condition (Yang et al., 2023a). Here, we show that for structured SSMs, architectures that satisfy
spectral scaling conditions do not in general satisfy conditions for feature learning.
Proposition 2.3 (Spectral scaling does not generally imply feature learning in SSMs). Structured
SSMs including S4 and Mamba trained via standard algorithms such as SGD or ADAM that satisfy
spectral scaling conditions (∗) do not satisfy conditions for feature learning given in condition (∆).
Indeed this holds for all well-known Hippo-parameterizations of the structured matrix A including
HiPPO-LegS, HiPPO-LegS-N, HiPPO-LegS-D, S4D-Inv, S4D-Lin, and S4D-Real.

Proof sketch. The formal proofs are provided in Appendix C. To gather some intuition for this result
in a simplified setting, consider the scale of the hidden states for token index 0, which is already
wrong at initialization. By definition, ∥x1∥2 = ∥B′u1∥2 = ∥ΛBu1∥2 , where Λ = (A′ − I)A−1.
Now, observe that ∥B′u1∥22 is a sum of independent random variables that satisfy the Kolmogorov
condition, so that the sum behaves according to the strong law of large numbers. For spectral scaling
conditions to yield the right scaling of the initialization variance, it is crucial that the following
condition holds:

∥B′u1∥2 ∈ Θ(∥B′∥∗ ∥u1∥2) . (4)

However, using standard tools from random matrix theory one can show that
∥B′u∥

2

(∥B′∥∗∥u1∥2)
∈ Θ(1√

Nu
)

which clearly violates (4).

4

ZOH Discretization
∣∣ Euler Discretization

SP µP (Heuristic) µP-SSM (Ours)

σB
1√
Nu

1√
Nu

min{1,
√

Nx
Nu

}
√

Nx
Nu

∣∣ 1√
Nu

σC
1√
Nu

1√
Nu

min{1,
√

Nx
Nu

} 1√
NxNu

ηa 1
√

Nu
Nx

Nu

∣∣√NxNu

ηB 1 Nx
Nu

Nx√
Nu

∣∣ √Nx
Nu

ηC 1 Nx
Nu

1
Nx

√
Nu∥∥∥x(i)

l

∥∥∥
2

Θ(1)
∣∣ Θ(

√
Nx) Θ(min{1,

√
Nx
Nu

})
∣∣ Θ(

√
Nx min{1,

√
Nx
Nu

}) Θ(
√
Nx)

∥yl∥2 Θ(
√
Nu)

∣∣ Θ(
√
NxNu) Θ(

√
Nu min{1, Nx

Nu
})

∣∣ Θ(
√
NxNu min{1, Nx

Nu
}) Θ(

√
Nu)∥∥∥∆x

(i)
l

∥∥∥
2

Θ(
√
Nu)

∣∣ Θ(
√
NxNu) Θ(Nx√

Nu
min{1,

√
Nx
Nu

})
∣∣ Θ(Nx

√
Nx√

Nu
min{1,

√
Nx
Nu

}) Θ(
√
Nx)

∥∆yl∥2 Θ(Nu)
∣∣ Θ(

√
NxNu) Θ(Nx√

Nu
min{1, Nx

Nu
})

∣∣ Θ(Nx
√
Nx√

Nu
min{1, Nx

Nu
}) Θ(

√
Nu)

Table 1: Overview of the different parameterizations and their corresponding scaling for latent states,
outputs and their updates. Results for ZOH and Euler discretization are separated by |.

3 Identifying the unique scaling for effective feature learning in SSMs

In this section, we analyze the forward and backward signal propagation in structured SSMs. Due
to the generality of the architecture, we consider MAMBA as the basis for the analysis. Similar
arguments apply for other SSMs such as S4, S5, H3, or DSS. In the appendix, we also provide a
detailed analysis of signal propagation in S4 and identify the correct scaling conditions for maximal
stable weight updates.

3.1 Selective State Space Models

Selective SSMs in the Mamba architecture y1:L = fMamba(u1:L) can be written as follows:

Bl = LinNx
(ul;WB ,bB) ∈ RNx , (5)

Cl = LinNy (ul;WC ,bC) ∈ RNx , (6)

τl = Softplus(τ0 +BroadcastNu
(Lin1(ul;Wτ ,bτ)), τ0, τl ∈ RNu . (7)

For i = 1, . . . , Nu, we have Nu 1D SSMs:

A(i) = Diag(− exp(a
(i)
log)), a

(i)
log ∈ RNx ,

A
′(i)
l ,B

′(i)
l = ZOH(τ

(i)
l ,A(i),Bl), τ

(i)
l ∈ R,

x
(i)
l = A

′(i)
l x

(i)
l−1 + u

(i)
l B

′(i)
l , u

(i)
l ∈ R, x(i)

l ∈ RNx ,

y
(i)
l = Cl

⊺x
(i)
l , y

(i)
l ∈ R.

where x
(i)
0 = 0, a

(i)
log, τ0 ∈ RNu , and all linear layer weights WB ,bB ,WC ,bC ,Wτ ,bτ

are trainable parameters. The Zero-Order-Hold (ZOH) discretization procedure A
′(i)
l ,B

′(i)
l =

ZOH(τ,A(i),B
′(i)
l) can be written as:

A
′(i)
l = exp(τ

(i)
l ·A(i)), B

′(i)
l = (A

′(i)
l − I)A(i)−1

B
(i)
l . (8)

In a nutshell, Mamba can be seen as Nu SSMs, one for each input channel. Weights for these SSMs
are shared and depend on the input at that recurrent step. Because of the dependency on inputs,
Mamba can model non-stationary sequences. Weight matrices are initialized as follows:

WB ∼ N (0, σ2
BI) ∈ RNx×Nu , WC ∼ N (0, σ2

CI) ∈ RNx×Nu , Wτ ∼ N (0, σ2
τ I) ∈ R1×Nu ,

and zero initialization for all biases. For each SSM, A(i) is still initialized according to the HiPPO
theory. When A(i) is real-valued, we let a(i)log[j] = log(j + 1) and τ0 can be seen as a bias term
initialized to τ0 ∼ Softplus−1(U(0.001, 0.1)). We will assume that τ0 is not trained, as this does not
have any effect on the scale of the different quantities under consideration. This is a minor technical
assumption and our results would also hold if we considered τ as a trainable parameter.

5

Per Channel Linear
Recurrence......

Selection

Discretization

Per Channel Parameter Generation

Figure 2: Illustration of the Mamba S6 Layer. The computation is modularized into three
components: selection, discretization, and per-channel linear recurrence. Mamba introduces a
selection mechanism where weight matrices Bl, Cl depend on the inputs ul. These weight matrices
are then separated into per-channel parameters, and discretized using either the ZOH or Euler methods.
The discretized, per-channel weights are then applied in a linear recurrence, allowing each channel to
perform computations in parallel. Trainable parameters are shown in blue.

3.2 Forward signal propagation through a S6 Mamba layer

To derive the correct choice of initialization scalings σB and σC , we begin by analyzing the scale of
activations (i.e., hidden states and outputs) in a S6 Mamba layer in the first forward pass as Nu → ∞
then Nx → ∞. We believe that our results would also hold in the proportional limit where Nu → ∞
and Nx → ∞ with Nx

Nu
∈ Θ(1). However deriving the results in this setting would incur a significant

technical overhead and we defer this analysis to a future work. We briefly discuss this in Section
6. As is common in practice, we assume that the SSM layer is embedded into a neural network
architecture containing standard architectural blocks such as MLPs, normalization layers, or residual
connections. All proofs are provided in Appendix C.2.

Assumption 3.1. Assume that the forward pass of all the components of the network except the SSM
layer are expressible as NE⊗OR⊤ programs and are parameterized according to µP.

This assumption ensures that the inputs to the SSM layer are asymptotically i.i.d and correctly scaled.
It also ensures that gradients into the SSM layer have the correct scaling. All results in this section
are stated under Assumption 3.1. Through the forward signal propagation analysis, we identify
the correct scale of initialization for weight matrices WB and WC . We show that both standard
parameterization as well as spectral scaling conditions do not yield the correct scale of initialization
for the weight matrices. The key results are summarized in Table 1.

For simplicity of exposition, first consider the scale of x
(i)
1 = (A

′(i)
l − I)A(i)−1

B1u
(i)
1 before

generalizing to arbitrary l ∈ [L].

Proposition 3.2 (Scale of hidden states x
(i)
1 in Mamba at initialization). Under the ZOH dis-

cretization procedure, as Nu then Nx approach infinity, for any i ∈ [Nu], the squared l2-norm of the

hidden states ∥x(i)
1 ∥22 is a.s. scaled as ∥x(i)

1 ∥22 ∈ Θ
(
ζ(2)σ2

B ∥u1∥2 (u(i)1)2
)

, where ζ(2) denotes the
Riemann zeta function at 2.

Following condition (INIT), the 1D SSM admits stability at initialization under the following
conditions:

If |u(i)l | ∈ Θ(1) then ∥x(i)
l ∥ ∈ Θ(

√
Nx) and |y(i)l | ∈ Θ(1).

6

Therefore, for stability at initialization, the initialization should scale as σB ∈ Θ(
√

Nx

Nu
). Note

that, under both standard parameterization (e.g., Kaiming or LeCun initialization) and spectral
scaling conditions, σB is initialized as Θ(

√
1

Nu
), which leads to vanishing hidden states according to

Proposition 3.2. We empirically verify this fact in Figure 1.

Proposition 3.3 provides the scale of the output of a Mamba layer.

Proposition 3.3 (Scale of outputs y
(i)
1 of a Mamba layer at initialization). Under the ZOH

discretization procedure as Nu then Nx approach infinity, for any i ∈ [Nu], the output y(i)1 converges
in distribution to a Gaussian with mean 0 and standard deviation CσBσC ∥u1∥22 for some width-
independent constant C > 0.

Accordingly, imposing the conditions for stability of y(i)1 according to condition (INIT) implies

the initialization scaling condition σC ∈ Θ(
√

1
NxNu

). Note again that standard parameterization

suggests initializing σC ∈ Θ(
√

1
Nu

) under which the outputs would diverge with scale. Under
spectral scaling, σC is initialized much larger. However, since the hidden states vanish with width,
the outputs of the SSM admit the correct scaling here as demonstrated in Figure 1.
Generalizing to arbitrary l ∈ [L]. The corrected scalings of σB and σC derived above generalize
to the entire sequence, as a sum over the sequence usually does not cancel out the scaling. More
formally, for all l ∈ [L], we have

x
(i)
l =

l−1∑
m=0

(A
′(i)
l)mB

′(i)
l−mu

(i)
l−m.

First, observe that the operator (A′(i)
l)m does not change the width-scaling. To see this note that since

A
′(i)
l = Diag(a′1, . . . , a

′
Nx

) with a′n = e−
1
2 τ

(i)
l (cos(τ

(i)
l πn) + i sin(τ

(i)
l πn)), we have that, for all

complex vectors v ∈ CNx it holds that ∥(A′(i)
l)mv∥2 = e−mτ

(i)
l /2∥v∥2 for any m ∈ [L]. Now since,

for any ul, setting σB ∈ Θ(
√

Nx

Nu
) yields

∥∥∥B′(i)
l ul

∥∥∥
2
∈ Θ(

√
Nx), each term in the summation is

of order Θ(
√
Nx). Unless, for every l, the term B

′(i)
l ul perfectly cancels out with the terms before

to affect the width scaling , we have that
∥∥∥x(i)

l

∥∥∥
2
∈ Θ(

√
Nx). The same argument can be used to

show the stability of y(i)l . Concluding this argument, we have derived the correct scaling of the
initialization variances σB and σC for feature stability in a Mamba layer summarized below.

Conditions for stability of a S6 Mamba layer at initialization. The features of a S6 Mamba
recurrent layer y1:L = fmamba(u1:L;w) are stable at initialization in the infinite-width limit under
the following scaling conditions:

σB ∈ Θ

(√
Nx

Nu

)
and σC ∈ Θ

(√
1

NxNu

)
.

3.3 Backward signal propagation in a S6 Mamba Layer

In this section, we provide the correct scaling of the learning rates ηa, ηB , and ηC by a detailed
analysis of the backward signal propagation in the limit of Nu → ∞ then Nx → ∞. Specifically, we
analyze the scale of the activation updates for both hidden states and outputs in the first backward
pass through a Mamba layer. We also show that both standard parameterization as well as spectral
scaling conditions do not yield the correct scale of learning rates for the weight matrices. The key
results are summarized in Table 1.
Proposition 3.4 (Scale of the updates of hidden states ∆x

(i)
1 after 1 step of SGD). Under the

ZOH discretization procedure, as Nx then Nu approach infinity, for every 1D SSM, the squared
l2-norm of the updates ∥∆x

(i)
1 ∥2 of the hidden states after one step of SGD is a.s. scaled as

∥∆x
(i)
1 ∥2 ∈ Θ

(
ηB

1√
Nu
σC ∥u1∥32 ζ(4)

1
2

)
, where ζ(4) denotes the Riemann zeta function at 4.

7

The Riemann zeta function at 4 evaluates to a width-independent constant and σC ∈ Θ(
√

1
NxNu

)

due to Proposition 3.3 for stability of outputs. Therefore, for the scale of the hidden state updates
to be Θ(

√
Nx), the correct scaling of the learning rate ηB is given by Θ(Nx√

Nu
). On the other hand,

spectral scaling suggests that ηB must scale as Θ(Nx

Nu
). Under this scaling, however, updates of the

hidden states would vanish with width and therefore the first block of the SSM is in the lazy regime.
This is corroborated by our experiments in Figure 1.

Next, to derive the correct scaling of the learning rate ηC , we consider the scale of output updates.

Proposition 3.5 (Scale of the updates of outputs ∆y
(i)
1 after 1 step of SGD). Under the ZOH

discretization procedure, as Nu then Nx approach infinity, for every 1D SSM, the squared l2-norm of
the updates of the hidden states after one step of SGD scales as |∆y(i)1 |2 ∈ Θ

(
ηCσ

2
B

√
1

Nu
∥u1∥42

)
.

The result suggests that for the correct scaling of the updates, the learning rate ηC must scale as
Θ(1

Nx

√
Nu

). Under spectral scaling, ηC scales much larger as Θ(Nx

Nu
). However, since the updates of

the hidden states vanish under spectral scaling, this larger incorrect scaling of ηC downward corrects
the scale of the updates in the outputs as shown in Table 1 and empirically verified in Figure 1.

On the correct scaling of ηa. It turns out that the scaling of the learning rate ηa does not play a role
in either stability at initialization or for non-trivial updates with scale. However, if ηa is not scaled
correctly, then the transition matrix A is not updated. In particular, as shown in Appendix C.2, ηa
needs to scale as Θ(Nu). Below we summarize the correct scaling conditions to achieve non-trivial
feature updates in the infinite-width limit of a Mamba layer.

In the same vein as the discussion in Section 3.2, it is straightforward to verify that our results hold
for arbitrary l ∈ [L] and more gradient steps as soon as we assume that the updates of the weight
matrices and activations do not perfectly cancel out the corresponding initial quantities.

Conditions for non-trivial feature updates in a S6 Mamba Layer. The updates in a S6 Mamba
recurrent layer y1:L = fmamba(u1:L;w) evolve non-trivially in the infinite-width limit under the
following conditions:

σB ∈ Θ(

√
Nx

Nu
), σC ∈ Θ(

1√
NxNu

), ηa ∈ Θ(Nu), ηB ∈ Θ(
Nx√
Nu

), and ηC ∈ Θ(
1

Nx

√
Nu

)

.

4 µP-SSM implies stability and feature learning in Mamba

Empirical verification of different scalings in Table 1. First, we verify that our derived µP-SSM
scaling (see Table 1) for Mamba indeed leads to feature learning, i.e., it ensures stability at
initialization as defined in condition (INIT) and non-trivial feature updates during training as defined
in condition (∆). We scale up the SSM latent state size Nx and the SSM output dimension Nu

simultaneously and track the scaling of both features and feature updates. Due to the linear decay
in the eigenvalues of the transition matrix A−1, we typically observe a strong finite sample effect
at small Nx. Constrained by computational resources, we opt for a much smaller Nu (Nu = Nx/8)
than is usually employed in practice. This adjustment enables us to scale up Nx effectively, thus
mitigating the finite-sample effect and to more clearly demonstrate the scaling behavior in the
asymptotic limit in Figure 1. For all experiments in this section, we train Mamba with 3 SSM blocks
for language modelling on the wikitext dataset (Merity et al., 2016) and use plain Stochastic Gradient
Descent (SGD) to perform gradient updates. We use the huggingface (Wolf et al., 2019) Mamba
implementation and the µP package (Yang et al., 2022) for scaling in our experiments.

As shown in Figure 1, under Standard Parametrization (SP), both the SSM latent states and the outputs
explode at initialization, and their updates also explode, leading to instability both at initialization and
during training. Under the spectral scaling parameterization prescribed in Yang et al. (2023a), other
layers except for the SSM layers have the correct scaling by design. However, in the SSM layer, when
using Zero-Order Hold (ZOH) discretization for Bl, the latent states at initialization and their updates
vanish when scaling up the width, while the output signals still have the right scaling as predicted by
theory. On the other hand, when Euler discretization is used for Bl, the latent states will have the
correct scaling, but the output signals will explode. The results clearly highlight the importance of

8

correcting the scaling of the µP parameterization. When using the corrected scaling which we call
µP-SSM, both the latent states and the output signals have the right scaling at initialization, and their
updates have the same correct scaling. This holds true for both discretization schemes. Note that the
slight shift in scaling when the width is small is due to finite sample effects. It stabilizes once the
width is sufficiently large.

Stability, generalization, and hyper-parameter transfer. In Figure 3, we employ Mamba as a
generative model on the wikitext-103 dataset and conduct single-epoch training for 20K iterations.
We plot the test loss against the learning rate on a logarithmic scale and compare the results across
different model widths (both Nu and Nx). In this experiment, we use the standard setting where
Nu ≫ Nx (Nu = 16Nx in this case). Using µP-SSM scaling or µP (heuristic) significantly
improves test performance compared to standard parameterization of Mamba for this task. For larger
learning rate, µP-SSM shows better stability compared to µP (heuristic), highlighting the importance
of deriving the correct scaling for SSMs rather than heuristically adopting µP (heuristic) without
investigation. Furthermore, previously unreported, we observe stable HP transfer from small to large
widths and monotonically improving performance with increasing model widths in structured SSMs.
In contrast, we observe completely non-monotonic behavior under standard scaling of SSMs.

Note that optimal learning rate also appears to transfer under spectral scaling. The reasoning behind
why optimal hyper-parameters transfer across scales is not completely understood. For instance,
the optimal learning rate has been empirically shown to transfer across depth in transformers under
appropriate depth-dependent scaling of the residual branches (Bordelon et al., 2023). However, from
a theoretical standpoint, layers within each residual block of a transformer are in the lazy regime in
the limit (Yang et al., 2023b). This is very similar to Mamba under spectral scaling. Under the ZOH
discretization, the first block of the SSM is in the lazy regime but the outputs themselves are updated
non-trivially. This suggests that a more thorough understanding of both necessary and sufficient
conditions of the transferrability of hyper-parameters is warranted.

SP (Heuristic)

Te
st

 lo
ss

-SSM (Ours)

Figure 3: Test loss against learning rate on Mamba with varying widths (Nu and Nx). Using µP-SSM
scaling leads to substantially improved test performance compared to the SP scaling. Compared to
µP (heuristic), µP-SSM scaling provides greater stability when utilizing large learning rates. Notably,
we observe stable learning rate transfer from small to large model widths. Performance improves
monotonically across widths in structured SSMs under µP-SSM scaling, as opposed to standard
scaling where performance actually drops with scale after a certain width.

5 Related work

Signal propagation. Our work can be seen as scaling theory or signal propagation theory with
the goal of preventing both vanishing and exploding signals in forward and backward passes. In
this sense, we build on a rich literature, often restricted to an analysis at or close to initialization
(Schoenholz et al., 2016, Poole et al., 2016, Hanin and Rolnick, 2018, Xiao et al., 2020). Towards
understanding infinite-width limits of neural networks, kernel-based approaches (Neal, 1996, Jacot
et al., 2018) and applications of mean-field theory (Mei et al., 2018) have yielded valuable insights.

Tensor Programs. Most promisingly, the Tensor Programs framework (Yang, 2019, Yang and Hu,
2021, Yang and Littwin, 2023, Yang et al., 2022, 2023b) covers many modern deep learning archi-
tectures, optimization algorithms and arbitrary abc-parameterizations. Each abc-parameterization is
essentially defined by a layerwise scaling of initialization variance and learning rate as a function of

9

network width. Seminal work by Yang and Hu (2021) shows that there exists a unique maximal update
parameterization (µP) that attains a stable feature learning infinite-width limit. This parameterization
has since been shown to be a good model for understanding the properties of large models (Vyas
et al., 2024), and has been extended to infinite width and depth limits of ResNets (Hayou et al., 2021,
Li et al., 2021, Bordelon et al., 2023, Yang et al., 2023b) and Transformers (Noci et al., 2022, 2024).

Structured SSMs. Our analysis focuses on structured state space models (SSMs). The S4 model
(Gu et al., 2021) is inspired by continuous-time linear SSMs, which are well-studied in control
systems, and its specific initialization is motivated by the HiPPO theory (Gu et al., 2020). S4 and its
variants e.g. DSS(Gu et al., 2022), S4D(Gupta et al., 2022), S5(Smith et al., 2022), etc., demonstrate
impressive long-range dependency and overcome the quadratic computational cost of transformer
models (Vaswani et al., 2017) w.r.t. sequence length. However, these models are less effective at
modeling text, or even perform simple tasks such as selective copying (Gu and Dao, 2023). Mamba
(Gu and Dao, 2023) is proposed to address such issues with selection mechanism. This line of work
has also inspired revisiting Recurrent Neural Networks (RNNs) (Orvieto et al., 2023, De et al., 2024,
Beck et al., 2024), leading to the growing interest in RNN-based sequence models.

6 Discussion

In this work, we study the scaling behavior of forward and backward signal propagation in structured
state space models – a promising class of recent architectures. We show that existing scaling rules
such as standard parameterization, µP , or spectral scaling conditions do not yield desirable properties
such as feature learning in SSMs at scale. Through our analysis, we propose the correct scaling
of state space models under which we empirically observe feature learning and transferability of
hyper-parameters from small to large scale models.

On Generalizing Tensor Programs. While our proposed scaling has been derived by a thorough
analysis of signal propagation in SSM layers, our results are still limited to the Nu then Nx tend
to infinity setting. A completely rigorous analysis of SSMs in the proportional limit where Nu and
Nx approach infinity with Nx

Nu
held roughly constant requires us to carefully track how the different

activations and the updates are correlated with each other. For most standard architectures, the
Tensor Program (TP) machinery provides the appropriate tools to do precisely this. Therefore, it is of
considerable interest to generalize the TP framework. The key assumption that requires relaxation
is that the different vectors in a TP (such as activations or updates) are asymptotically identically
distributed. As discussed earlier, this assumption crucially underlies the key theoretical results of
TP called Master Theorems. However, a potential path toward generalizing TP may be found by
noting that the Master Theorems can be viewed as a non-linear compositional form of the law of large
numbers or central limit theorem. Accordingly, it may be possible to relax the assumption of being
identically distributed in the limit and instead ask that the entries of the vectors in a TP asymptotically
satisfy weaker conditions such as Lindenberg or Kolmogorov conditions. Note however, that any
such generalization is highly technical and is beyond the scope of the current work.

10

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

Blake Bordelon, Lorenzo Noci, Mufan Bill Li, Boris Hanin, and Cengiz Pehlevan. Depthwise
hyperparameter transfer in residual networks: Dynamics and scaling limit. arXiv:2309.16620,
2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert
Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mix-
ing gated linear recurrences with local attention for efficient language models. arXiv preprint
arXiv:2402.19427, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. In Advances in Neural Information Processing Systems,
volume 33, pages 1474–1487, 2020.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2021.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–
35983, 2022.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. Advances in Neural Information Processing Systems, 35:22982–22994, 2022.

Boris Hanin and David Rolnick. How to start training: The effect of initialization and architecture.
Advances in neural information processing systems, 31, 2018.

Soufiane Hayou, Eugenio Clerico, Bobby He, George Deligiannidis, Arnaud Doucet, and Judith
Rousseau. Stable resnet. In International Conference on Artificial Intelligence and Statistics, pages
1324–1332. PMLR, 2021.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural Tangent Kernel: Convergence and gener-
alization in neural networks. In Advances in Neural Information Processing Systems (NeurIPS),
pages 8571–8580, 2018.

11

Mufan Li, Mihai Nica, and Dan Roy. The future is log-gaussian: Resnets and their infinite-depth-and-
width limit at initialization. In Advances in Neural Information Processing Systems (NeurIPS),
volume 34, pages 7852–7864, 2021.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-
layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671,
2018.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2016.

Radford M. Neal. Priors for Infinite Networks, pages 29–53. Springer New York, 1996.

Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and Aurelien
Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of rank collapse.
Advances in Neural Information Processing Systems, 35:27198–27211, 2022.

Lorenzo Noci, Chuning Li, Mufan Li, Bobby He, Thomas Hofmann, Chris J Maddison, and Dan
Roy. The shaped transformer: Attention models in the infinite depth-and-width limit. Advances in
Neural Information Processing Systems, 36, 2024.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu,
and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, pages 26670–26698. PMLR, 2023.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponential
expressivity in deep neural networks through transient chaos. Advances in neural information
processing systems, 29, 2016.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019. URL https://api.semanticscholar.org/
CorpusID:160025533.

Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information
propagation. arXiv:1611.01232, 2016.

Pranab K Sen and Julio M Singer. Large sample methods in statistics: an introduction with applica-
tions, volume 25. CRC press, 1994.

Jimmy TH Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
sequence modeling. In The Eleventh International Conference on Learning Representations, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Roman Vershynin. Spectral norm of products of random and deterministic matrices. Probability
theory and related fields, 150(3):471–509, 2011.

Nikhil Vyas, Alexander Atanasov, Blake Bordelon, Depen Morwani, Sabarish Sainathan, and Cengiz
Pehlevan. Feature-learning networks are consistent across widths at realistic scales. Advances in
Neural Information Processing Systems, 36, 2024.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Lechao Xiao, Jeffrey Pennington, and Samuel Schoenholz. Disentangling trainability and gener-
alization in deep neural networks. In International Conference on Machine Learning, pages
10462–10472. PMLR, 2020.

12

https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533

Greg Yang. Wide feedforward or recurrent neural networks of any architecture are gaussian processes.
Advances in Neural Information Processing Systems, 32, 2019.

Greg Yang and Edward J. Hu. Tensor programs iv: Feature learning in infinite-width neural networks.
In International Conference on Machine Learning (ICML), 2021.

Greg Yang and Etai Littwin. Tensor programs ivb: Adaptive optimization in the infinite-width limit.
arXiv:2308.01814, 2023.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural networks
via zero-shot hyperparameter transfer. arXiv:2203.03466, 2022.

Greg Yang, James B Simon, and Jeremy Bernstein. A spectral condition for feature learning. arXiv
preprint arXiv:2310.17813, 2023a.

Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs vi: Feature learning in
infinite-depth neural networks. arXiv preprint arXiv:2310.02244, 2023b.

13

A Background

A.1 NE⊗OR⊤, abc-parameterizations and µP

NE⊗OR⊤ programs. For the precise definitions and theorems of the NE⊗OR⊤ framework we refer
to Yang and Littwin (2023). Here we try to provide an intuitive introduction.

A NE⊗OR⊤ program consists of a set of vectors inductively generated from a set of initial ma-
trices, vectors, and scalars following a set of allowed instructions: vector averages (Avg), matrix
multiplications (MatMul), and non-linear outer products (OuterNonlin).

All entries of an initial vector v are sampled iid from N(0, 1). Every entry of an initial matrix A is
sampled independently from distributions that all have mean 0, variance n−1 and that satisfy a techni-
cal boundedness assumption on all higher-order moments. Nonlinearities ψ used for OuterNonlin
operations are either pseudo-Lipschitz or polynomially smooth. Initial scalars c converge to 0 a.s.

New scalars c can be introduced into the program by the Avg operation over a vector v, defined as
c = 1

n

∑n
α vα. Now the NE⊗OR⊤Master Theorem implies c → c̊ := EZv almost surely. Matrix

multiplications Av are defined as usual. In the limit, a non-trivial interaction term arises if A⊤

had appeared in a NE⊗OR⊤ operation that has generated the vector v. To define the OuterNonlin
operation, aggregate a fixed amount |x| of NE⊗OR⊤ vectors in x and fix r ∈ N. Denote the
collection of all l defined NE⊗OR⊤ scalars by c. Then a OuterNonlin operation with nonlinearity
ψ : R|x|(r+1)+l → R, is given by

yα =
1

nr

n∑
β1,...,βr

ψ(xα,xβ1 , . . . ,xβr ; c),

and, due to the NE⊗OR⊤Master Theorem, behaves in the limit as
Zy = f(Zx), where f : R|x| → R, f(Zx) = E[ψ(Zx, Zx

1 , . . . , Z
x
r , c̊)],

where Zx is an r-dimensional random vector with the limiting distribution of x, and Zx
1 , . . . , Z

x
r are

iid copies of Zx.

The Maximal Update Parameterization (µP). For any architecture/component whose forward
pass is representable as a NE⊗OR⊤ program, µP can be derived following the instructions below.
Let each parameter tensor W be parameterized as W = n−aWw where w is a trainable parameter
with initialization wαβ ∼ N (0, n−2bW). Let the learning rate be parameterized as ηn−c for some
width-independent η > 0. Then µP is prescribed as follows: Set c = 0 and bW = 1/2 for all
parameter tensors W .

• aW = 0 if the input and output to W are width-independent (e.g., scalars),
• aW = 2 if both input and output to W scale with width (e.g., attention matrices).
• aW = 1 if input is width-independent and output scales with width (e.g., input embeddings).
• aW = 1/2 if input scales with width and output is width-independent (e.g., output matrices).

A.2 Classical Limit Theorems

Here we recapitulate classical results about large sums of random variables that we use in our proofs.
We present the versions of the Kolmogorov strong law of large numbers and the Lindenberg-Feller
Central Limit Theorem provided in Sen and Singer (1994, Theorems 3.2.10 and 3.3.3).
Theorem A.1 (Kolmogorov Strong Law of Large Numbers). Let Xi, i ≥ 1, be independent random
variables such that EXi = µi and V ar(Xi) = σ2

i exist for every i ≥ 1. Then∑
k≥1

k−2σ2
k <∞ =⇒ n−1

n∑
i=1

Xi − n−1
n∑

i=1

µi
a.s.−−→ 0.

Theorem A.2 (Lindenberg-Feller-Central Limit Theorem). Let Xi, i ≥ 1, be independent random
variables such that EXi = µi and V ar(Xi) = σ2

i exist for every i ≥ 1. Also let s2n =
∑n

i=1 σ
2
i and

Zn = s−1
n (
∑n

i=1Xi −
∑n

i=1 µi). Then the Lindenberg-Feller condition

∀ε > 0,
1

s2n

n∑
i=1

E
[
(Xi − µi)

2I{|Xi−µi|≥εsn}
]
→ 0, as n→ ∞,

14

holds if and only if both

(i) max1≤i≤n
σ2
i

s2n
→ 0 as n→ ∞, and

(ii) Zn converges in distribution to a Gaussian with mean 0 and standard deviation 1.

B Definitions

Definition B.1 (Softplus). The softplus function is defined as Softplus(x) = 1
β log(1 + exp(βx))

with default smoothing value β = 1.

B.1 Feature Learning in General Sequence Models

Let G be a directed acyclic graph (DAG) with vertices V(G) and edges E(G). For each node v ∈ V(G),
its parent nodes are denoted by PA(v). In a sequence model, each node v corresponds to a sequence
v1:L with length L, computed from its parent node sequences with operation v1:L = fv({u1:L|u ∈
PA(v)}). These sequence layers can be shared instance-wise multi-layer perceptrons (MLPs),
normalizations, residual summation, or transformers/recurrent layers, etc.
Definition B.2 (Feature Learning in Sequence Models). A sequence model is in the feature learning
regime if for any v ∈ V(G), the features v1:L where v ∈ RNv and the updates of features ∆v1:L

after one gradient update have the following scaling:

∃ l ∈ [L], ∥vl∥2 = Θ(
√
Nv) (Stability at initialization) (9)

∃ l ∈ [L], ∥∆vl∥2 = Θ(
√
Nv) (Non-trivial feature updates) (10)

C Proofs

C.1 Structured SSMs are not covered by previous approaches

Proposition C.1 (Structured SSMs are not generally representable as NE⊗OR⊤ programs). The
forward and backward signal propagation of structured SSMs including S4 and MAMBA trained via
standard algorithms such as SGD or ADAM are not representable as a NE⊗OR⊤ program. Indeed
this holds for all existing Hippo-parameterizations of the structured matrix A including HiPPO-LegS,
HiPPO-LegS-N, HiPPO-LegS-D, S4D-Inv, S4D-Lin, and S4D-Real.

Proof. Recall the definition of a NE⊗OR⊤ program (Yang and Littwin, 2023). Let A be any of
the HiPPO or S4D structured matrices. As the entries of A at initialization are deterministic
and differ, A can neither be an initial NE⊗OR⊤matrix, nor be generated by an OuterNonlin of
random NE⊗OR⊤ vectors (acting on all coordinate dimensions in the same way). This is because no
allowed NE⊗OR⊤ operation can generate a NE⊗OR⊤ vector with differing variance in its coordinates,
whereas the multiplication with A clearly produces differing variances in each entry. All that is left
to do is to show this claim via induction.

Claim: All NE⊗OR⊤ vectors have the same variance in each coordinate.

To start the induction, all entries of an initial vector v are sampled iid from N(0, 1).

Now assume all vectors v currently defined in the NE⊗OR⊤ program have the same variance. The
allowed operations to generate a NE⊗OR⊤ vector are matrix multiplication with an initial matrix and
OuterNonlin. As initial matrices A0 have independent entries with mean 0 and variance n−1, the
multiplication A0v will again generate a vector with the same variance in each coordinate.

An OuterNonlin operation takes in previously defined NE⊗OR⊤ vectors and treats all coordinates in
the same way. Consequently it will again generate a NE⊗OR⊤ vector with the same variance in each
coordinate.

There is no other way to generate a new NE⊗OR⊤ vector, which concludes the induction.

To see that the structured matrix A produces nonisotropic coordinate distributions, we detail the
argument for an S4 recurrent layer. The other choices of A follow via analogous arguments. Recall

15

that the S4 recurrent layer y1:L = fS4(u1:L;w = {B,C}) can be viewed as a discretization of a
continuous-time SSM given by

d

dt
xt = Axt +But and yt = Re[Cxt] (11)

for l = 1, . . . , L with x0 = 0 and where Re(·) gives the real part of a complex vector, and where we
let A = diag(a) with a ∈ CNx , B ∈ CNx×Nu , C ∈ CNy×Nx . We have the discretized sequence to
sequence mapping fS4 as follows:

xl = A′xl−1 +B′ul and yl = Re[C′xl] (12)

where we follow the Zero-Order-Hold (ZOH) discretization method,

A′ = exp(τ ·A), B′ = (A′ − I)A−1B, and C′ = C. (13)

To model long-range dependency, S4 advocates for HiPPO theory (Gu et al., 2020). While there
are many possible Hippo-based initializations possible for the structured transition matrices (e.g.,
Hippo-Leg-S, S4D-Inv, and S4D-Real) and our result holds for all the parameterizations, let us
consider a simplified initialization for clarity. Following S4D-Lin, we can set an = − 1

2 + iπn. B
and C are initialized such that the entries are i.i.d and follow a Gaussian distribution with mean 0 and
variance σ2

B and σ2
C respectively (for both real and imaginary parts).

Assume for now that the inputs to the SSM layer are i.i.d which holds asymptotically in general
say if they are outputs of a previous layer such as an MLP. Let us consider the distribution of the
hidden states for token index 0 at initialization: x0 = B′u0, where B′ = (A′ − I)A−1B, and
A′ = diag(a′1, . . . , a

′
Nx

) with a′n = e−
1
2 τ (cos(τπn) + i sin(τπn)), then the eigenvalues of A′ are

clearly Θ(1). To further simplify, if we set τ = 2, then ∥A′∥∗ = e−1 and for all complex vectors
v ∈ CNx it holds that A′v = −e−1v. SinceB is an i.i.d Gaussian matrix, for sufficiently large width,
Bu0 is distributed i.i.d by a simple Central Limit Theorem argument. However, B′ also depends on
A−1 = diag(a−1

n) with a−1
n = − 1+2πni

1/2+2π2n2 . Due to the linear decay of the diagonal entries of A−1,
the hidden states x0 already at initialization are not (even asymptotically) identically distributed.
Therefore, there cannot exist a coordinate distribution that represents the entries of vectors arising in
modern SSMs such as MAMBA neither at initialization nor over the course of training.

Proposition C.2 (Spectral scaling does not generally imply feature learning in SSMs). Structured
SSMs including S4 and MAMBA trained via standard algorithms such as SGD or ADAM that satisfy
spectral scaling conditions (∗) do not satisfy conditions for feature learning given in Equation (∆).
Indeed this holds for all well-known Hippo-parameterizations of the structured matrix A including
HiPPO-LegS, HiPPO-LegS-N, HiPPO-LegS-D, S4D-Inv, S4D-Lin, and S4D-Real.

Proof. Let A be any of the HiPPO or S4D structured matrices.

Consider the scale of the hidden states at initialization for token index 0. By definition,
∥x1∥2 = ∥B′u1∥2 = ∥ΛBu1∥2 , where Λ = (A′ − I)A−1. Then, observe that ∥B′u1∥22 =
Nx∑
i=1

Λ2
i

(Nu∑
j=1

Bi,ju1,j
)2

is a sum of Nx independent (but not identically distributed) random variables.

However, it is easy to verify that they satisfy the Kolmogorov condition and therefore the sum behaves
according to the strong law of large numbers. Intuitively, this is allowed by the polynomial decay
of eigenvalues of Λ and the correct scaling of the inputs to the S4 layer. Applying the Kolmogorov
SLLN (Theorem A.1), we obtain

Nx∑
i=1

Λ2
i

(Nu∑
j=1

Bi,ju1,j
)2 a.s.−→ σ2

B ∥u1∥2 c ζ(2),

where ζ(2) denotes the Riemann zeta function at 2 and equates to π2/6, and c > 0 is some width-
independent constant. The zeta function appears due to c ζ(2) ≤

∑Nx

i=1 Λ
2
i ≤

∑Nx

i=1
1

(i+1)2 ≤ ζ(2)

for Nx large enough (see (37) for more details). Here and throughout the paper, for the formal
application of the LLN or the CLT, we first adequately normalize all quantities to arrive at a well-
defined width-independent limit statements, but do not write out such technicalities for conciseness.

16

Observe that, for spectral scaling conditions to yield the right scaling of the initialization variance, it
is crucial that the following condition holds:

∥B′u1∥2 ∈ Θ(∥B′∥∗ ∥u1∥2) . (14)

Since the spectrum of (A′ − I)A−1 is less than 1, an upper bound on the spectral norm of
B′ = (A′ − I)A−1B can be found in Vershynin (2011) and is given by c(

√
Nx +

√
Nu)

for some width-independent constant c. A matching lower bound can be easily found by not-
ing that the spectral norm is lower bounded by the maximal row and column norm: ∥B′∥∗ ≥

max

{
max

i
∥B′

i:∥2 ,max
j

∥∥B′
:j

∥∥
2

}
≥

√
NuσB . Therefore

∥B′u∥
2

(∥B′∥∗∥u1∥2)
∈ Θ(1√

Nu
) which clearly

violates (14). This spectral decay is induced by all of the considered choices of A.

C.2 S6 Mamba recurrent layer

Recall that a S6 Mamba layer y1:L = fMamba(u1:L) can be written as follows:

Bl = LinNx
(ul;WB ,bB) ∈ RNx , (15)

Cl = LinNy
(ul;WC ,bC) ∈ RNx , (16)

τl = Softplus(τ0 +BroadcastNu
(Lin1(ul;Wτ ,bτ)), τ0, τl ∈ RNu . (17)

For i = 1, . . . , Nu, we have Nu 1D SSMs:

A(i) = Diag(− exp(a
(i)
log)), a

(i)
log ∈ RNx ,

A
′(i)
l ,B

′(i)
l = ZOH(τ

(i)
l ,A(i),Bl), τ

(i)
l ∈ R,

x
(i)
l = A

′(i)
l x

(i)
l−1 + u

(i)
l B

′(i)
l , u

(i)
l ∈ R, x(i)

l ∈ RNx ,

y
(i)
l = Cl

⊺x
(i)
l , y

(i)
l ∈ R.

where x
(i)
0 = 0, a

(i)
log, τ0 ∈ RNu , and all linear layer weights WB ,bB ,WC ,bC ,Wτ ,bτ

are trainable parameters. The Zero-Order-Hold (ZOH) discretization procedure A
′(i)
l ,B

′(i)
l =

ZOH(τ,A(i),B
′(i)
l) can be written as:

A
′(i)
l = exp(τ

(i)
l ·A(i)), B

′(i)
l = (A

′(i)
l − I)A(i)−1

B
(i)
l . (18)

In a nutshell, Mamba can be seen as Nu SSMs, one for each input channel. Weights for these SSMs
are shared and depend on the input at that recurrent step. Because of the dependency on inputs,
Mamba can model non-stationary sequences. Weight matrices are initialized as follows:

WB ∼ N (0, σ2
BI) ∈ RNx×Nu , WC ∼ N (0, σ2

CI) ∈ RNx×Nu , Wτ ∼ N (0, σ2
τ I) ∈ R1×Nu ,

and zero initialization for all biases. For each SSM, A(i) is still initialized according to the HiPPO
theory. When A(i) is real-valued, we let a(i)log[j] = log(j+1) and τ0 can be seen a bias term initialized
to τ0 ∼ Softplus−1(U(0.001, 0.1)).
Below we restate Propositions 3.2 and 3.3 followed by their proofs.

Proposition 3.2 (Scale of hidden states x
(i)
1 in Mamba at initialization). Under the ZOH dis-

cretization procedure, as Nu then Nx approach infinity, for any i ∈ [Nu], the squared l2-norm of the

hidden states ∥x(i)
1 ∥22 is a.s. scaled as ∥x(i)

1 ∥22 ∈ Θ
(
ζ(2)σ2

B ∥u1∥2 (u(i)1)2
)

, where ζ(2) denotes the
Riemann zeta function at 2.

Proposition 3.3 (Scale of outputs y
(i)
1 of a Mamba layer at initialization). Under the ZOH

discretization procedure as Nu then Nx approach infinity, for any i ∈ [Nu], the output y(i)1 converges
in distribution to a Gaussian with mean 0 and standard deviation CσBσC ∥u1∥22 for some width-
independent constant C > 0.

Proofs for Proposition 3.2 and Proposition 3.3. For the following 1D linear state space model:(
x
(i)
l = A

′(i)
l x

(i)
l−1 +B

′(i)
l u

(i)
l , u

(i)
l ∈ R, x(i)

l ∈ RNx ,

y
(i)
l = C⊺

l x
(i)
l , y

(i)
l ∈ R.

(19)

17

Following condition (INIT), the 1D SSM admits stability at initialization, when the following
condition is satisfied:

If |u(i)l | ∈ Θ(1) then ∥x(i)
l ∥ ∈ Θ(

√
Nx) and |y(i)l | ∈ Θ(1).

For simplicity of exposition, let’s begin by considering the scale of x
(i)
1 = (A

′(i)
l −

I)(A(i))−1B
(i)
1 u

(i)
l before generalizing to arbitrary l ∈ [L].

Since B1 = WBu1 + bB with bB = 0 at initialization,∥∥∥x(i)
1

∥∥∥2
2
=
∥∥∥(A′(i)

l − I)(A(i))−1WBu1u
(i)
1

∥∥∥2
2
=

Nx∑
m=1

(Λi)
2
m,m(u

(i)
1)2

(Nu∑
n=1

(WB)m,n(u
(n)
1)
)2
,

where Λi = (A
′(i)
l − I)(A(i))−1.

Note that the inner summation can be expressed as

(Nu∑
n=1

(WB)m,n(u
(n)
1)
)2

=

Nu∑
n=1

(WB)
2
m,n(u

(n)
1)2 +

Nu∑
n′ ̸=n′′=1

(WB)m,n′u
(n′)
1 (WB)m,n′′u

(n′′)
1 .

Since WB has i.i.d Gaussian entries and due to Assumption 3.1, as Nu → ∞, the first term behaves
according to law of large numbers and converges almost surely to σ2

B∥u1∥2. The second term
behaves according to central limit theorem and converges in distribution to a Gaussian with mean 0

and variance σ4
B

Nu∑
n′ ̸=n′′=1

u
(n′)
1 u

(n′′)
1 . Therefore, as Nu → ∞,

(Nu∑
n=1

(WB)m,n(u
(n)
1)
)2

converges to

a Gaussian distribution with mean σ2
B∥u1∥2 and variance σ4

B

Nu∑
n′ ̸=n′′=1

u
(n′)
1 u

(n′′)
1 .

For applying Kolmogorov SLLN (Theorem A.1), note that c · ζ(2) ≤
∑Nx

m=1(Λi)
2
m,m ≤∑Nx

m=1
1

(i+1)2 ≤ ζ(2) and c · ζ(4) ≤
∑Nx

m=1(Λi)
4
m,m ≤

∑Nx

m=1
1

(i+1)4 ≤ ζ(4) for some constant c ∈
(0, 1) and for Nx large enough (see (37) for more details). For random variables vm ∼ N (σ2

B , C
2)

for some C2 > 0, it holds that V ar((Λi)
2
m,mvm) ≤ E[(Λi)

4
m,mv

2
m] ≤ (Λi)

4
m,m(σ4

B + C2), so that
the Kolmogorov condition is fulfilled, and we have that as Nu then Nx approach infinity, for some
width-independent constant c > 0,

Nx∑
m=1

(Λi)
2
m,m(u

(i)
1)2

(Nu∑
n=1

(WB)m,n(u
(n)
1)
)2 a.s.−→ σ2

B(u
(i)
1)2 ∥u1∥2 c ζ(2).

Therefore, for stability at initialization, the scale of initialization σB ∈ Θ(
√

Nx

Nu
).

Scale of y(i)l . When l = 1, y(i)1 = C1x
(i)
1 , where x

(i)
1 = B

′(i)
1 u

(i)
1 and we have

y
(i)
1 = u

(i)
1

Nx∑
m=1

(Λi)m,m

Nu∑
j,k=1

(WC)m,j(WB)m,ku
(j)
1 u

(k)
1

Applying the Lindenberg-Feller CLT (Theorem A.2), we have that, as Nu then Nx approach infinity,

u
(i)
1

Nx∑
m=1

(Λi)m,m

Nu∑
j,k=1

(WC)m,j(WB)m,ku
(j)
1 u

(k)
1 converges to a Gaussian distribution with mean

0 and variance c ζ(2)u(i)1 σBσC ∥u1∥22 .

Accordingly, imposing the conditions for stability of y(i)1 requires that σC ∈ Θ(
√

1
NxNu

).

Stability of x
(i)
l and y

(i)
l for arbitrary l ∈ [L]. For all l ∈ [L], we have x

(i)
l =∑l−1

m=0(A
′(i)
l)mB

′(i)
l−mu

(i)
l−m. First, observe that since A′ = diag(a′1, . . . , a

′
Nx

) with a′n =

e−
1
2 τ

(i)
l (cos(τ

(i)
l πn) + i sin(τ

(i)
l πn)), we have that, for all complex vectors v ∈ CNx it holds

18

that for any m ∈ [L], ∥(A′)mv∥2 = e−mτ
(i)
l /2∥v∥2. Therefore, the operator (A′

i)
m does not

change the width-scaling. Since, for any ul, setting σB ∈ Θ(
√

Nx

Nu
) yields

∥∥∥B′(i)
l ul

∥∥∥
2
∈ Θ(

√
Nx).

Therefore, each term in the summation is of order Θ(
√
Nx) and unless, for every l, the term B

′(i)
l ul

perfectly cancels out with the terms before to affect the width scaling, we have that ∥x(i)
l ∥ ∈ Θ(

√
Nx).

The same argument can be used to show the stability of y(i)l .

Proposition 3.4 (Scale of the updates of hidden states ∆x
(i)
1 after 1 step of SGD). Under the

ZOH discretization procedure, as Nx then Nu approach infinity, for every 1D SSM, the squared
l2-norm of the updates ∥∆x

(i)
1 ∥2 of the hidden states after one step of SGD is a.s. scaled as

∥∆x
(i)
1 ∥2 ∈ Θ

(
ηB

1√
Nu
σC ∥u1∥32 ζ(4)

1
2

)
, where ζ(4) denotes the Riemann zeta function at 4.

Proof of Proposition 3.4. Following condition (∆), the features of the 1D SSM evolve non-trivially
with width, when the following condition is satisfied:

If |∆u(i)l | ∈ Θ(1) then
∥∥∥∆x

(i)
l

∥∥∥
2
∈ Θ(

√
Nx) and |∆y(i)l | ∈ Θ(1).

Scale of the updates ∆x(i)l after 1 SGD step.

First, note that, for the discretization step ZOH, we have

Ā(i) = τ (i)Ā′(i)A′(i) + (τ (i)A′(i)A(i)−1 − (A(i))−2(A′(i) − I))(B̄
′(i)
l B

(i)⊺
l ⊙ I)

B̄l =

Nu∑
i=1

(A′(i) − I)(A(i))−1B̄
′(i)
l

Diag(Ā
(i)
log) = Ā(i)A(i)

W̄B = B̄lu
⊺
l

x̄
(i)
l = ȳ

(i)
l C⊺

l

Ā′(i) =

L∑
l=1

(x̄
(i)
l x

(i)⊺
l−1)⊙ I

B̄
′(i)
l = u

(i)
l x̄

(i)
l

C̄l =

Nu∑
i=1

ȳ
(i)
l x

(i)⊺
l

For any quantity ·, letting ·̃ denote the updated quantity after one step of SGD, we can write

Ã(i) = Diag(exp (a
(i)
log − ηaĀ

(i)
log)) = A(i)

(
exp (−ηaĀ(i)A(i))⊙ I

)
,

B̃l = W̃Bũl = (WB − ηBB̄lu
T
l)(ul +∆ul).

For clarity, let us again begin by considering the scale of x(i)
1 . We can follow the same argumentation

as before to generalize the result to arbitrary l ∈ [L]. The updates ∆x
(i)
1 can therefore be computed

as B̃′(i)
1 ũ

(i)
1 −B

′(i)
1 u

(i)
1 , where B̃

′(i)
1 = ((Ã′)(i) − I)(Ã(i))−1B̃1 and Ã′(i) = exp(τÃ(i)). Since

u
(i)
l and ũ(i)l are assumed to be Θ(1) due to Assumption 3.1, the scale of ∆x

(i)
1 is determined by that

of B̃′(i)
1 and B̃

′(i)
1 −B

′(i)
1 .

Scaling of B̃
′(i)
l . Recall that B̃′(i)

1 = (Ã′(i) − I)(Ã(i))−1B̃1 = (Ã′(i) − I)(Ã(i))−1(WB +
∆WB)(u1 +∆u1).

Let’s begin by understanding the scale of (Ã′(i) − I)(Ã(i))−1(∆WBu1). Since ∆WB =

−ηBB̄1u
T
1 , letting Λ̃i = (Ã′(i) − I)(Ã(i))−1, we can express the l2-norm of (Ã′(i) −

I)(Ã(i))−1∆WBu1 as follows:∥∥∥(Ã′(i) − I)(Ã(i))−1∆WBu1

∥∥∥
2
=
∥∥ΛiηBB̄1u

T
1 u1

∥∥
2
= |ηB |

∥∥ΛiB̄1

∥∥
2
∥u1∥22

Note that since Λ̃i∆WB is a rank-one matrix, its spectral norm can be decomposed as

∥Λi∆WBu1∥∗ = |ηB |
∥∥ΛiB̄1

∥∥
2
∥u1∥2

19

Therefore, since ∥u1∥2 ∈ Θ(
√
Nu), if the spectral norm of Λi∆WB is scaled as Θ(

√
Nx

Nu
),∥∥∥(Ã′(i) − I)(Ã(i))−1∆WBu1

∥∥∥
2
∈ Θ(

√
Nx).

Claim. If ∥∆WB∥∗ ∈ Θ(
√

Nx

Nu
), then

∥∥∥(Ã′(i) − I)(Ã(i))−1∆WBu1

∥∥∥
2
∈ Θ(

√
Nx).

Essentially, this follows if (Ã′(i)−I)(Ã(i))−1 does not affect the width-scaling of the spectral norm of
∆WB , that is, ∥Λi∆WB∥∗ = ∥∆WB∥∗. This is equivalent to showing that

∥∥∥Λ̃iB̄1

∥∥∥
2
=
∥∥B̄1

∥∥
2
.

Note the following Lemma which states that the scaling of ∥Λ̃iB̄1∥2 is identical to that of ∥A−1B̄1∥2.

Lemma C.3. Let Qi,1 = (exp (−ηaĀ(i)A(i)). For any complex vector v ∈ CNx , the width-scaling
of v remains invariant under the operator (Ã′(i) − I)Q−1

i,1 , that is, ∥(Ã′(i) − I)Q−1
i,1v∥2 ∈ Θ(∥v∥2).

Proof of Lemma C.3. Recall that Λ̃i = (Ã′(i) − I)Ã−1
i , where Ãi = A(i)Qi,1 and

Qi,1 =
(
exp (−ηaĀ(i)A(i))⊙ I

)
= exp

(
− ηa((τ

(i)A
′(i)
l − (A(i))−1(A

′(i)
l − I))(B̄

′(i)
1 B

(i)T
1 ⊙ I))

)
⊙ I.

Since [A(i)]j = −(j + 1), it’s easy to see that, for any positive value of τ (i), the eigenvalues of
τ (i)A

′(i)
l − (A(i))−1(A

′(i)
l − I) are negative, in Θ(1), and converge to 0 from below. The expression

evaluates to

τ (i)A
′(i)
l − (A(i))−1(A

′(i)
l − I) = τ (i) exp(−τ (i)(j + 1)) +

exp(−τ (i)(j + 1))− 1

(j + 1)

Since B̄
′(i)
1 = u

(i)
1 x̄

(i)
1 and x̄

(i)
1 = ȳ

(i)
1 CT

1 ,

[B̄
′(i)
1 B

(i)T
1]j,j = (

Nu∑
m=1

[WB]j,mu
(m)
1)(

Nu∑
m′=1

[WC]j,m′u
(m′)
1)u

(i)
1 ȳ

(i)
1 .

Due to Assumption 3.1, ȳ(i)1 is distributed i.i.d as Nu → ∞ and ȳ(i)1 ∈ Θ(1
Nu

) (Yang and Hu,

2021). A CLT argument reveals that, under the scaling σB ∈ Θ(
√

Nx

Nu
) and σC ∈ Θ(

√
1

NxNu
), the

eigenvalues of (B̄′(i)
1 B

(i)T
1 ⊙ I) are in Θ(1

Nu
). Lemma C.4 follows as a consequence of this result.

Lemma C.4. As Nu then Nx approach infinity, ∥Ã(i) −A(i)∥∗ ∈ Θ(1) and ∥Ã(i)∥∗ ∈ Ω(1) if and
only if ηa ∈ Θ(Nu).

Accordingly, all the eigenvalues of Qi,1 are in Θ(1) and therefore, for any complex vector v,
∥Qi,1v∥2 ∈ Θ(∥v∥2). Together with the fact that the spectrum of A′(i) is Θ(1), we have Λ̃i

′ ∈ Θ(1).
Further note that the entries of Ã(i) and consequently those of Λ̃i are independent of each other since
the entries [

¯
B

′(i)
1 B1

(i)T]m,m are independent for different m ∈ [Nx].

Since B̄1 =
Nu∑
i=1

(A′(i) − I)(A(i))−1B̄
′(i)
1 , it follows from Lemma C.3 that

∥∥∥Λ̃iB̄1

∥∥∥
2
=
∥∥B̄1

∥∥
2
.

Therefore, for the correct scaling of the updates, ηB should be scaled as Θ(Nx√
Nu

). Similar computa-
tions reveal that ηC should be scaled as Θ(1√

NxNu
).

Proposition 3.5 (Scale of the updates of outputs ∆y
(i)
1 after 1 step of SGD). Under the ZOH

discretization procedure, as Nu then Nx approach infinity, for every 1D SSM, the squared l2-norm of
the updates of the hidden states after one step of SGD scales as |∆y(i)1 |2 ∈ Θ

(
ηCσ

2
B

√
1

Nu
∥u1∥42

)
.

20

Before we present the proof of Proposition 3.5, we first provide the following Lemma.

Lemma C.5. As Nu → ∞,
Nu∑
i=1

ȳ
(i)
1 u

(i)
1 converges to a normal distribution with mean 0 and variance

NuVar(ȳ(i)1 u
(i)
1). Note that since we assume that the rest of the network is scaled correctly (under

µP), ȳ(i)1 is distributed i.i.d asymptotically and ȳ(i)1 ∈ Θ(1
Nu

) (Yang and Hu, 2021). Therefore
Nu∑
i=1

ȳ
(i)
1 u

(i)
1 ∈ Θ(1√

Nu
).

Proof. For i ∈ [Nu], the output of the 1D SSM is given by

y
(i)
1 = C1x

(i)
1 where C1 = (WCu1)

T and x
(i)
1 = B

′(i)
1 u

(i)
1 = (A′(i) − I)A(i)−1

WBu1. (20)

Using the notation ·̃ to denote the updated quantity · after 1 step of SGD,

ỹ
(i)
1 = C̃1x̃

(i)
1 = (W̃C ũ1)

T (Λ̃iW̃Bũ1)ũ
(i)
1 . (21)

The updated quantities W̃B and W̃C are derived as

W̃B = WB+∆WB , W̃C = WC+∆WC with ∆WB = −ηBW̄B , ∆WC = −ηCW̄C ,

where W̄B and W̄C denote the gradient of the loss with respect to the quantities WB and WC

respectively and can be computed according to

W̄B =

Nu∑
i=1

ȳ
(i)
1 u

(i)
1 ΛiWBu1u1

T and W̄C =

Nu∑
i=1

ȳ
(i)
1 u

(i)
1 ΛiC1

Tu1
T . (22)

Also, Λ̃i = (˜A′(i) − I)Ã(i)
−1
, where Ã(i) = Diag(exp (alogi − ηaĀ

(i)
log)) = A(i)Qi, with

Qi =
(
exp (−ηaĀ(i)A(i))⊙ I

)
and

Ā(i) = (τ (i)A′(i)(A(i))−1 − (A(i))−2(A′(i) − I))(B̄
′(i)
1 B

(i)⊺
1 ⊙ I).

Therefore ỹ(i)1 can be represented as follows

ỹ
(i)
1 =

[
(WC +∆WC)(u1 +∆u1)

]T [
Λ̃i(WB +∆WB)(u1 +∆u1)

]
(u

(i)
1 +∆u

(i)
1), (23)

and the updates ỹ(i)1 − y
(i)
1 can be expressed as

ỹ
(i)
1 − y

(i)
1 = (WCu1)

T Λ̃iWBu1u
(i)
1 − (WCu1)

TΛiWBu1u
(i)
1 +M,

where M =
[
(WC + ∆WC)(u1 + ∆u1)

]T [
Λ̃i(WB + ∆WB)(u1 + ∆u1)

]
(u

(i)
1 + ∆u

(i)
1) −

(WCu1)
T Λ̃iWBu1u

(i)
1 − (WCu1)

TΛiWBu1u
(i)
1 represents the remainder of the terms in (23).

First, let us consider the scaling of the update term without remainder term,

(WCu1)
T (Λ̃i −Λi)WBu1u

(i)
1 =

Nx∑
m=1

Km,m

Nu∑
m′,m′′=1

WCm,m′WBm,m′′u1
(m′)u1

(m′′),

where K = (Λ̃i −Λi).

Letting vm =
Nu∑

m′,m′′=1

WCm,m′WBm,m′′u1
(m′)u1

(m′′), as Nu → ∞, {vm}Nx

m=1 are independent

and are distributed normally with mean 0 and variance σ2
Bσ

2
C∥u1∥4 by an application of Lindenberg-

Feller Central Limit Theorem.

Independence of entries of K. Next, we show that the entries of the diagonal matrix K are
independent of each other.

Observe that
K = (Λ̃i −Λi) = (˜A′(i) − I)Ã(i)

−1
− (A′(i) − I)(A(i))−1,

21

where Ã(i) = Diag(exp (alogi − ηaĀ
(i)
log)) = A(i)Qi, with Qi =

(
exp (−ηaĀ(i)A(i))⊙ I

)
and

Ā(i) = (τ (i)A′(i)(A(i))−1 − (A(i))−2(A′(i) − I))(B̄
′(i)
1 B

(i)⊺
1 ⊙ I).

Since the entries of A are deterministic, and we assume that τ (i) is some fixed deterministic scalar,
the entries of K are independent of each other iff the entries of (B̄′(i)

1 B
(i)⊺
1 ⊙ I) are independent.

Now consider

[
¯

B
′(i)
1 B1

(i)T]m,m =

Nu∑
m′,m′′=1

WBm,m′WCm,m′′u1
(m′)u1

(m′′)u
(i)
1 ȳ

(i)
1 .

Since WB and WC are Gaussian matrices with i.i.d entries and the entries of u1 are assumed to be
i.i.d, the entries [B̄′(i)

1 B1
(i)T]m,m are independent for different m ∈ [Nx].

Furthermore, following the same line of argumentation as in Lemma C.3, the matrix K can be
represented as K = K′A−1, where the entries of K′ are Θ(1) and accordingly for any vector the
scaling of v remains invariant under the operator K′.

To compute the scale of
Nx∑
m=1

Km,mvm, we can therefore instead consider the scaling of
Nx∑
m=1

A−1
m,mvm

where {vm}Nx

m=1 are independent and are distributed normally with mean 0 and variance σ2
Bσ

2
C∥u1∥4.

As Nx → ∞,
Nx∑
m=1

A−1
m,mvm converges to a normal distribution with mean 0 and variance

c ζ(2)σ2
Bσ

2
C∥u1∥4, where ζ(2) denotes the Riemann zeta function at 2 and c ζ(2) > 0 evaluates to a

width-independent constant.

When σB ∈ Θ(
√

Nx

Nu
) and σC ∈ Θ(1√

NxNu
), we get (WCu1)

T (Λ̃i −Λi)WBu1u
(i)
1 ∈ Θ(1).

Scale of M.

Note that since u(i)1 and ∆u
(i)
1 are scalars and in order 1, the scale of M is determined by that of

[(WC +∆WC)(u1 +∆u1)]
T [Λ̃i(WB +∆WB)(u1 +∆u1)].

Recall that both u1 and ∆u1 are assumed have i.i.d coordinates and have the scaling ∥u1∥ ∈ Θ(
√
Nx)

and ∥∆u1∥ ∈ Θ(
√
Nx). Therefore, we only need to consider the scaling of

[(WC +∆WC)u1]
T [Λ̃i(WB +∆WB)(u1)].

It is easy to verify that the scaling of (WCu1)
T (Λ̃i − Λi)WBu1 is the same as that of

(WCu1)
T (Λ̃i)WBu1u

(i)
1 following the same arguments as above.

Scale of (∆WCu1)
T (Λ̃i)WBu1u

(i)
1 .

Recall that the updates ∆WB and ∆WC are defined as

∆WB = −ηBW̄B and ∆WC = −ηCW̄C ,

where W̄B and W̄C denote the gradient of the loss with respect to the quantities WB and WC

respectively and computed as

W̄B =

Nu∑
i=1

ȳ
(i)
1 u

(i)
1 ΛiWBu1u1

T and W̄C =

Nu∑
i=1

ȳ
(i)
1 u

(i)
1 ΛiC1

Tu1
T . (24)

So, ∆WCu1 = −ηC
Nu∑
i=1

ȳ
(i)
1 u

(i)
1 ΛiWBu1u1

Tu1 = −ηC∥u1∥2ΛiWBu1

Nu∑
i=1

ȳ
(i)
1 u

(i)
1 (Λi is iden-

tical for all i ∈ [Nu]).

Therefore, letting Ξ = −ηC∥u1∥2
Nu∑
i=1

ȳ
(i)
1 u

(i)
1 , we get

22

(∆WCu1)
T (Λ̃iWBu1) = Ξ(ΛiWBu1)

T (Λ̃iWBu1)

= Ξ

Nx∑
m=1

Λim,mΛ̃im,m

Nu∑
m′,m′′=1

WBm,m′WBm,m′′u1
(m′)u1

(m′′).

Letting wm =
Nu∑

m′,m′′=1

WBm,m′WBm,m′′u1
(m′)u1

(m′′), it is easy to verify that as Nx → ∞

each vm is distributed normally with mean σ2
B∥u1∥2 and variance σ4

B

Nu∑
m′ ̸=m′′=1

u1
(m′)2u1

(m′′)2 .

Furthermore {wm}Nx

m=1 are independent.

Therefore, due to Kolmogorov’s SLLN, as Nx → ∞, it holds that

Nx∑
m=1

Λim,mΛ̃im,mwB
a.s→ σ2

B∥u1∥2.

Combining this with the result from Lemma C.5, we conclude that as Nu → ∞ then Nx → ∞,
(∆WCu1)

T (Λ̃iWBu1) ∈ Θ(ηCσ
2
B∥u1∥4 1√

Nu
).

Therefore, for the updates ∆y(i)1 to be of order 1, ηC must be scaled as Θ(1
Nx

√
Nu

).

Scale of (∆WCu1)
T (Λ̃i)∆WBu1u

(i)
1 .

Recall that the updates ∆WB and ∆WC are defined as

∆WB = −ηBW̄B and ∆WC = −ηCW̄C ,

where W̄B and W̄C denote the gradient of the loss with respect to the quantities WB and WC

respectively and computed as

W̄C =

Nu∑
i=1

ȳ
(i)
1 u

(i)
1 ΛiWBu1u1

T and W̄B =

Nu∑
i=1

ȳ
(i)
1 u

(i)
1 ΛiC1

Tu1
T . (25)

Hence, we get ∆WCu1 = −ηC
Nu∑
i=1

ȳ
(i)
1 u

(i)
1 ΛiWBu1u1

Tu1 = −ηC∥u1∥2ΛiWBu1

Nu∑
i=1

ȳ
(i)
1 u

(i)
1

(Λi is identical for all i ∈ [Nu]) and ∆WBu1 = ΛiWCu1u1
T

Nu∑
i=1

ȳ
(i)
1 u

(i)
1 , which yields

(∆WCu1)
T (Λ̃i∆WBu1) = (

Nu∑
i=1

ȳ
(i)
1 u

(i)
1)2ηCηB ∥u1∥4 (ΛiWBu1)

T (Λ̃iWCu1).

Following the same line of argumentation as before, we obtain that as Nu → ∞ then Nx → ∞,
(∆WCu1)

T (Λ̃i∆WBu1) ∈ Θ(σBσCηBηC∥u1∥6 1
Nu

).

Substituting σB ∈ Θ(
√

Nx

Nu
), σC ∈ Θ(1√

NxNu
), ηB ∈ Θ(Nx√

Nu
) yields the same scaling: ηC ∈

Θ(1
Nx

√
Nu

).

Scale of (WCu1)
T (Λ̃i)∆WBu1u

(i)
1 . Following the same steps as for the previous terms, we obtain

(WCu1)
T (Λ̃i)∆WBu1u

(i)
1 ∈ Θ(ηB

1√
Nu
σ2
C ∥u1∥2). This term vanishes under the scaling ηB ∈

Θ(Nx√
Nu

) and σC ∈ Θ(1√
NxNu

).

23

C.3 Time-invariant S4 recurrent layer

The S4 recurrent layer y1:L = fS4(u1:L;w = {B,C}) is a sequence to sequence mapping:

xl = A′xl−1 +B′ul (26)

yl = R[C′xl] (27)

for l = 1, . . . , L with x0 = 0, which is a discretization of the continuous-time SSM:

d

dt
xt = Axt +But (28)

yt = R[Cxt] (29)

where R(·) gives the real part of a complex vector, A = diag(a) and a ∈ CNx , B ∈ CNx×Nu ,
C ∈ CNy×Nx .

The Zero-Order-Hold (ZOH) discretization method gives that:

A′ = exp(τ
(i)
l ·A) (30)

B′ = (A′ − I)A−1B (31)

C′ = C (32)

To model long-range dependency, S4 advocates for HiPPO theory. While our results hold for every
Hippo initialization matrix, here, we show the result for S4D-Lin and set an = − 1

2 + iπn. Note that
A is not parameterized and will not be trained. It has been observed that complex values are not
essential and S4D-real with an = −(n+ 1) may perform similarly well.

The backward pass for fS4 is as follows:

x̄l = C′⊺ȳl +A′⊺x̄l+1 (33)

C̄′ =

L∑
l=1

ȳlx
⊺
l (34)

B̄′ =

L∑
l=1

x̄lu
⊺
l (35)

ūl = B′⊺x̄l (36)

Since we want all learnable weight matrices to learn features, we split each S4 layer into two sublayers
and demand them both to admit feature learning. The first one being the state space equation (26)
and the second one being the decoder (27).
Claim C.1 (Scale of hidden states x1 in S4 at initialization). Under the ZOH discretization
procedure, as Nx and Nu approach infinity with Nu/Nx ∈ Θ(1), for any i ∈ [Nu], the squared

l2-norm of the hidden states
∥∥∥x(i)

1

∥∥∥2
2

is almost surely scaled as
∥∥∥x(i)

1

∥∥∥2
2
∈ Θ

(
ζ(2)σ2

B ∥u∥2
)

, where

ζ(2) is the Riemann zeta function at 2.

Proof. Stability at initialization.

First, we show that the size of x1 = B′u1 at initialization is Θ(
√
Nx). By definition,

∥x1∥2 = ∥B′u1∥2 = ∥ΛBu1∥2 ,

where Λ = (A′ − I)A−1. Then, writing u = u1 for readability, observe that

∥B′u∥22 =

Nx∑
i=1

Λ2
i

(Nu∑
j=1

Bi,juj
)2

is a sum of Nx independent but not identically distributed random variables. However, we show that
they satisfy the Kolmogorov condition and therefore the sum behaves according to the strong law

24

of large numbers. Intuitively, this is allowed by the polynomial decay of eigenvalues of Λ and the
correct scaling of the inputs to the S4 layer.

Verifying that the sequence satisfies Kolmogorov condition.

For any i ∈ [Nx],

V ar(Λ2
i

(Nu∑
j=1

Bi,juj
)2
) = E

[
Λ4
i

(Nu∑
j=1

Bi,juj
)4]− E

[
Λ2
i

(Nu∑
j=1

Bi,juj
)2]2

≤ E
[
Λ4
i

(Nu∑
j=1

Bi,juj
)4]

= Λ4
iE
[Nu∑
j,j′,k,k′=1

Bi,jBi,j′Bi,kBi,k′ujuj′ , uk, uk′
]

= Λ4
i

(
E
[Nu∑
j=1

B4
i,ju

4
j

]
+ E

[Nu∑
j ̸=j′=1

B2
i,jB

2
i,j′u

2
ju

2
j′
])

= Λ4
i

(
3σ4

B

Nu∑
j=1

u4j + σ4
B

Nu∑
j ̸=j′=1

u2ju
2
j′

)
≤ 3σ4

BΛ
4
i ∥u∥

4
2

Nx∑
i=1

V ar(Λ2
i

(Nu∑
j=1

Bi,juj
)2
) ≤ 3σ4

B ∥u∥42
Nx∑
i=1

Λ4
i

= 3σ4
B ∥u∥42

Nx∑
i=1

(exp(−(i+ 1) · τ (i)l)− 1)4

(i+ 1)4

≤ 3σ4
B ∥u∥42

Nx∑
i=1

1

(i+ 1)4

= 3σ4
B ∥u∥42 ζ(4), (37)

where ζ(4) denotes the Riemann zeta function at 4 for which a closed form is given by |B4|(2π)4
2·4! .

Note that, due to the rapid decay of exp(−(i + 1) · τ (i)l) → 0 with i → ∞, the zeta function also

lower bounds the spectral sums
Nx∑
i=1

Λ2
i ≥ c · ζ(2) and

Nx∑
i=1

Λ4
i ≥ c · ζ(4) for some width-independent

constant c ∈ (0, 1) for Nx large enough.

By assumption, the inputs to the S4 layer are scaled such that ∥u∥ ∈ Θ(
√
Nx) and therefore, as long

as σ2
B ∈ O(1) the sequence of random variables satisfies the Kolmogorov condition.

Limiting behavior of ∥B′u∥22.

Applying SLLN, we have

Nx∑
i=1

Λ2
i

(Nu∑
j=1

Bi,juj
)2 −→

Nx∑
i=1

Λ2
iE
[(Nu∑

j=1

Bi,juj
)2]

=

Nx∑
i=1

Λ2
iE
[Nu∑
j=1

B2
i,ju

2
j

]
= σ2

B

Nx∑
i=1

Λ2
i

Nu∑
j=1

u2j

= c ζ(2)σ2
B ∥u∥2 ,

25

where ζ(2) denotes the Riemann zeta function at 2 and equates to π2/6, and c ∈ (0, 1) is some
width-independent constant.

Spectral scaling does not yield the correct scale of initialization for σB .

For spectral scaling conditions to yield the right scaling of the initialization variance, it is crucial that
the following condition holds:

∥B′u∥2 ∈ Θ(∥B′∥∗ ∥u∥2).

Since the spectrum of (A′ − I)A−1 is less than 1, an upper bound on the spectral norm of B′ =
(A′ − I)A−1B can be found in (Vershynin, 2011) and is given by C(

√
Nx +

√
Nu) for some

width-independent constant C.

A matching lower bound can be easily found by noting that the spectral norm is lower bounded by
the maximal row and column norm.

∥B′∥∗ ≥ max

{
max

i
∥B′

i:∥2 ,max
j

∥∥B′
:j

∥∥
2

}
≥ max

i
∥B′

i:∥2
= max

i
|Λi| ∥Bi:∥2

= max
i

|Λi|(
Nu∑
j=1

B2
i,j)

1/2

≈ max
i

|Λi|
√
NuσB

≥
√
NuσB

Therefore
∥B′u∥

2

(∥B′∥∗∥u∥2)
∈ Θ(1√

Nu
)

Correct scale of σB for stability at initialization.

We know that ∥B′u∥2 ∈ Θ(σB ∥u∥2) and since ∥u∥2 ∈ Θ(
√
Nu) (since we assumed stablity

of activations in the previous layer), imposing stability of ∥B′u∥2 yields the following scaling:

σB ∈ Θ(
√

Nx

Nu
).

Stability of xl for arbitrary l ∈ [L].

For all l ∈ [L], we have xl =
∑l−1

m=1(A
′)mB′ul−m = A′(

∑l−2
m=1(A

′)mB′ul−m)+B′ul. First, ob-
serve that since A′ = diag(a′1, . . . ,a

′
Nx

) with a′n = e−
1
2 τ

(i)
l (cos(τ

(i)
l πn) + i sin(τ

(i)
l πn)), we have

that, for all complex vectors v ∈ CNx it holds that for any m ∈ [L], ∥(A′)mv∥2 = e−mτ
(i)
l /2∥v∥2.

Therefore, the operator (A′)m does not change the width-scaling. We showed earlier that for any

ul, setting σB ∈ Θ(
√

Nx

Nu
) yields ∥B′ul∥2 ∈ Θ(

√
Nx). Therefore, each term in the summation is of

order Θ(
√
Nx) and unless, for every l, the term B′ul perfectly cancels out with the terms before to

affect the width scaling, we have that xl ∈ Θ(
√
Nx) for all l ∈ [L].

Claim C.2 (Scale of output y(i) of S4 at initialization). Under the ZOH discretization procedure
as Nx and Nu approach infinity with Nu/Nx ∈ Θ(1), for any i ∈ [Nu], the output y(i)1 converges
in distribution to a Gaussian with mean 0 and standard deviation CσBσC ∥u1∥22 for some width-
independent constant C.

Proof. Correct scaling of updates (and learning rate) can be achieved by correctly scaling the
spectral norm of the updates of weight matrices (σB and σC).

To give concrete update/learning rate scaling rules, we need to choose a concrete update rule. We
first consider SGD as an example. First, we show that while spectral scaling of weight matrices does

26

not imply the correct scaling of (pre-)activations, spectral scaling conditions on the updates of weight
matrices imply the correct scaling of the activation updates.

To simplify cumbersome notation, lets first consider the scale of updates x1 = B′u1 after a single
step of SGD on ((u1, y1)).

∥∆B′u1∥2 = ∥Λ∆Bu1∥2 =
∥∥Ληx̄1u

T
1 u1

∥∥
2
= |η| ∥u1∥22 ∥Λx̄1∥2

Since the update matrix ∆B′ is a rank one matrix, we have

∥∆B′∥∗ = ∥Λ∆B∥∗ = η
∥∥(Λx̄1)u

T
1

∥∥
∗ = |η| ∥u1∥2 ∥Λx̄1∥2

The updates ∆x1 are given by ∆x1 = (B′ + ∆B′)(u1 + ∆u1) − B′u1 = B′∆u1 + ∆B′u1 +
∆B′∆u1.

If the spectral norm of ∆B′ is scaled as Θ(
√

Nx

Nu
), then ∆B′u1 ∈ Θ(

√
Nx). We also have that

∆B′∆u1 ≤ ∥∆B′∥∗ ∥∆u1∥2 ∈ O(
√
Nx). Since ∥∆u1∥2 ∈ Θ(

√
Nu), when σB is set to Θ(

√
Nx

Nu
),

B′∆u1 ∈ Θ(
√
Nx). Therefore, unless the scale of ∆B′u1 perfectly cancels out with the remaining

two terms, ∥∆x1∥ ∈ Θ(
√
Nx).

Generalizing to more gradient steps (and l > 1) follows immediately if we assume that updates do
not perfectly cancel out initial quantities, combined with the fact that A′ does not change the width
scaling.

D Additional Experiments

We conducted additional experiments to validate our theoretical derivations and to compare with
baseline parameterizations for SSMs. Focusing exclusively on the SSM components, as parame-
terization for other parts of the model are already addressed in Yang and Hu (2021), Yang et al.
(2023a), we decoupled the learning rates for SSM and non-SSM layers. First, we tuned the learning
rate for the non-SSM layers and then evaluated test performance across various SSM learning rates,
using the optimal non-SSM learning rate. The results, presented in Figure 4, show that the µP-SSM
parameterization exhibits better monotonicity and stability.

Te
st

 lo
ss

-SSM (Ours)SP (Heuristic)

Figure 4: Decoupled learning rates. Test loss against SSM learning rate in Mamba with varying
widths (Nu and Nx) on the 4M tokens sampled from the WikiText-103 dataset. The learning rate for
non-SSM components is fixed and chosen via hyper-parameter tuning.

In Figure 5, we present results on a randomly sampled subset of the Fineweb dataset. While
computational constraints prevented us from training on the entire dataset or using larger model
widths, at small scales, our observations on Fineweb align with the wikitext-103 results reported in
the main paper.

27

SP

Te
st

 lo
ss

-SSM (Ours) (Heuristic)

Figure 5: Results on the FineWeb dataset. Test loss against SSM learning rate in Mamba with
varying widths (Nu and Nx) on the 20M tokens from the FineWeb dataset.

28

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We state all our contributions while acknowledging related work. All main
claims are theoretically proven or empirically verified.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

29

Justification: We state all assumptions in the main paper and provide all formal proofs in the
appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer:[Yes]

Justification: Experimental details relevant for reproducing the results to the extent that it
affects the main claims are disclosed in the main paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

30

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We only propose a correction of the width-dependent scaling of hyper-
parameters of existing architectures, and precisely specify the corrected scalings in the
main paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [No]

Justification: Some experimental details are disclosed in Section 5 but not all details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In Figure 1, we report σ-confidence intervals over 10 runs. Due to limited
computational resources, we were unable to repeat the large-scale experiment for Figure 3
multiple times.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: All experiments run within 24 hours on 24 NVIDIA A10G GPUs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We provide a theoretical analysis of widely used architectures and propose a
correction. We do not foresee any ethical concerns.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper provides fundamental research toward understanding and improving
existing neural architectures. We do not release any model or data.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

32

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We only use standard datasets in our experiments and do not release any data
or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the code and data assets according to standard practice.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

33

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

34

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

35

	Introduction
	On the lack of feature learning in SSMs at infinite width
	Feature learning in sequence models
	Tensor Programs, spectral scaling, and the Maximal Update Parmeterization

	Identifying the unique scaling for effective feature learning in SSMs
	Selective State Space Models
	Forward signal propagation through a S6 Mamba layer
	Backward signal propagation in a S6 Mamba Layer

	P-SSM implies stability and feature learning in Mamba
	Related work
	Discussion
	Background
	Neor, abc-parameterizations and P
	Classical Limit Theorems

	Definitions
	Feature Learning in General Sequence Models

	Proofs
	Structured SSMs are not covered by previous approaches
	S6 Mamba recurrent layer
	Time-invariant S4 recurrent layer

	Additional Experiments

