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Abstract
Datasets involving irregular occurrences of different types of events over the timeline are increas-
ingly commonly available. Proximal graphical event models (PGEMs) are a recent graphical rep-
resentation for modeling relationships between different event types in such datasets. Existing
algorithms for learning PGEMs from event datasets perform poorly on the task of structure dis-
covery, which is particularly important for causal inference since the underlying graph determines
the effect of interventions. In this paper, we explore causal semantics in PGEMs and study pro-
cess independencies implied by the graphical structure of the model. We introduce (conditional)
process independence tests for causal PGEMs, deploying them using variations of constraint-based
structure discovery algorithms for Bayesian networks. Through experiments with synthetic and
real datasets, we show that the proposed approaches are better at balancing precision and recall,
demonstrating improved F1 scores over state-of-the-art baselines.
Keywords: Event datasets, Structure discovery, Event models, Graphical event models, Process
independence, Local independence, Constraint-based methods

1. Introduction and Related Work

Causal discovery is of great interest in artificial intelligence, machine learning and statistics, and
indeed in the broader realm of scientific discovery. While data obtained from intervening in a
system and then measuring the ramifications is typically the gold standard for causal inference,
it can be impractical to design and/or expect such data in many practical situations. As a result,
causal discovery from purely observational data receives widespread attention in the literature and
in practice across various domains.

Pearl (2009) proposed the framework of graphical models, particularly Bayesian networks, as
a representation for causal analysis. By enforcing causal semantics on directed acyclic graphs
describing conditional independence relationships between variables, Pearl developed an elegant
mathematical theory that could analyze complex causal situations from simple probabilistic rules.

While causal Bayesian networks are powerful representations, they do not adequately capture
temporal aspects, which can be key to effective causal modeling in practice. Early work on explic-
itly including time includes counterfactual/potential outcome approaches, such as by Robins (1994)
on the structural nested mean model, along with approaches more aligned with classical statis-
tics that are formulated as models on actual observations, such as Granger causality for time series
(Granger, 1969). Graphical representations were later developed for representing discrete-time tem-
poral processes, including dynamic Bayesian networks (Dean and Kanazawa, 1989; Murphy, 2002)
and graphs for time series (Eichler, 1999).
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In many domains, it is more common to observe irregular occurrences of ‘events’ rather than
regular measurements that are typical in time series data. This is the case in clinical medicine and
epidemiology, system maintenance, retail, politics, and numerous other applications. Such data is
better represented by continuous time models. Graphical event models (GEMs) (Didelez, 2008;
Gunawardana and Meek, 2016) are representations for marked (or multivariate) point processes for
continuous-time event occurrences. They capture dependencies between various types of events
over time, providing a framework that generalizes many parametric temporal models, including
continuous time Bayesian networks (Nodelman et al., 2002), Poisson networks (Rajaram et al.,
2005), Poisson cascades (Simma and Jordan, 2010), piecewise-constant conditional intensity mod-
els (Gunawardana et al., 2011), and forest-based point processes (Weiss and Page, 2013), among
many others.

While GEMs are a useful high-level framework, it is necessary in practice to make specific
assumptions about historical dependencies to actually learn a model from a real-world dataset. Any
GEM needs to be specified in terms of the exact manner in which historical occurrences affect
the rate at which an event occurs. Proximal graphical event models (PGEMs) have been proposed
recently as a GEM where only the recent history determines the rate at which an event occurs
(Bhattacharjya et al., 2018). As opposed to the more general PCIM (Gunawardana et al., 2011),
they do not require domain knowledge if it is unavailable and avoid over-fitting during learning.

However, a major disadvantage of the state-of-the-art learner for PGEMs – a score-based method
based on the Bayesian information criterion (BIC) – is its relatively poor performance on structure
discovery when data is limited. As we will show through experiments, the learned graph from this
prior work is often extremely sparse and fails to discover many true parents in the case of limited
data. Most prior work on learning specific parametric graphical event models as well as closely
related graphical representations use score-based approaches (Nodelman et al., 2003; Gunawardana
et al., 2011; Bhattacharjya et al., 2020a,b,c). These approaches are generally inspired by score-based
methods for Bayesian networks (Chickering, 2002).

Here we consider PGEMs through a causal lens and follow Didelez (2008) in exploring process
independence in marked point processes associated with PGEMs. Process independence is a notion
of independence pertaining to systems exhibiting temporal dynamics; variations of this idea have
been studied previously and subsequently (Schweder, 1970; Meek, 2014; Mogensen et al., 2018).
PGEMs are graphical representations that are particularly suitable for causal modeling of multivari-
ate event streams, as the underlying assumption around the pertinence of recent occurrences often
approximates the nature of causal influences in the real world. Process independence in causal
PGEMs provides a useful avenue for learning such models from data, analogous to constraint-
based methods for causal Bayesian networks (Spirtes et al., 2001). Constraint-based methods have
been shown to have several advantages that are well known in the Bayesian network literature, in-
cluding around handling confounders. Our intuition is that conducting statistical tests for process
independence could provide similar benefits while doing multivariate conditioning in event streams.

While there is plenty of literature in statistics on determining dependence between two point
processes (Perkel et al., 1967; Brillinger et al., 1976; Doss, 1989), there is hardly any literature on
the sort of multivariate conditioning that is required for GEMs. Meek (2014) discussed the promise
of testing for process independence in GEMs but assumed the availability of an oracle tester that
verified process independence statements. We are unaware of prior work on relevant testers in this
space, and therefore any prior empirical demonstrations in this regard. Furthermore, we note that
while it may be possible to adapt testers for atemporal (i.i.d) datasets for (causal) Bayesian networks
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to regular time series (Runge et al., 2017), this is not straightforward for datasets involving irregular
occurrences of events. In general, one cannot directly deploy standard constraint-based testers from
the vast literature on causal networks for the PGEM setting, since here we are interested in testing
for process independence among multivariate event processes rather than conditional independence
among multiple random variables.

Contributions. In this paper, we make the following contributions: 1) we explore process in-
dependence in PGEMs and formalize dynamic Markov properties, consistent with prior work on
graphical event models; 2) we propose constraint-based algorithms for learning PGEMs, including
a max-min parents (MMP) algorithm, as well as two process independence testers. One of these
testers estimates the influence of a candidate parent in a Boolean function, whereas the other ap-
proximates a likelihood ratio; 3) we conduct an experimental investigation comparing the proposed
methods with state-of-the-art approaches. We show some improvements in F1 score for structure
discovery using synthetic event datasets generated from PGEMs, as well as an increase in the num-
ber of parents identified for select real-world datasets, but more work is required in the future to
tackle this difficult task.

2. Notation and Background

Graph Notation. We review some basic graph related terminology needed for future sections.
G = (L, E) refers to a directed graph over a set of nodes L and with directed edges E represented as
ordered pairs from L × L. A path in G is a sequence of nodes with edges between successive pairs
of nodes, oriented in either direction. A path is directed if the sequence only has edges pointing
forward in order, and is trivial if the sequence has cardinality 1. Node X on a path is a collider
only if there are directed edges into X from both the nodes before and after it in the sequence; it is
referred to as a non-collider otherwise. U refers to the parents of a node X in G. Ancestors of a
node X include X as well as all nodes with a directed path emanating from them to X .

We are now armed with the necessary notation required to define a graph separation criterion –
d∗-separation, which is a modification of the well-known d-separation for Bayesian networks. This
will be used to define an important Markov property later.

Definition 1 A path d∗-connects nodes X and Y given the set of vertices Z in graph G if every
collider on the path is an ancestor of Z and every non-collider is not in Z . For sets X,Y,Z ⊂ L
s.t. Y ∩ Z = ∅, X is d∗-separated from Y by Z in G if and only if there does not exist a non-trivial
path that d∗-connects any node in X to any node in Y given Z in G.

Marked Point Processes and GEMs. Event datasets involve a single stream or multiple inde-
pendent streams of events in the form D = {(li, ti)}Ni=1, where ti is the occurrence time of the ith

event, ti ∈ R+, assumed temporally ordered between start time t0 = 0 and final time tN+1 = T ,
and li is an event label/type belonging to an alphabet L. We refer to T as the time horizon of
the event dataset. These sorts of datasets are widely available across domains; examples include
datasets involving web logs, customer transactions, network notifications, political events, financial
events, insurance claims, health episodes, etc. Figure 1(a) depicts an example of a single stream
event dataset over 3 recurring event labels from the domain of healthcare.

A marked point process for event streams involving event labels from L is associated with
counting processes for each label (Daley and Vere-Jones, 2002). Prior work uses a Doob-Meyer
decomposition to show that a conditional intensity function that measures the rate at which an
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Figure 1: (a) Illustrative event dataset over 3 event labels from the domain of healthcare: prescription refills,
hospital admissions and home health visits. (b) Structure for an illustrative graphical event model (GEM)
over the same 3 event labels shown in the event dataset in (a). (Note that both figures are merely illustrative
and that the graph in (b) is not related to the dataset in (a).)

event label occurs is sufficient to characterize these processes (Aalen et al., 2008). In general, the
conditional intensity for event label X at any time t can be written as a function of the history, i.e.
λx(t|ht) where ht = {(li, ti) : ti < t}.

Didelez (2008) introduced the notion of process independence among event labels to character-
ize relationships among the labels’ counting processes. The basic idea is that the intensity of one
type of event does not depend on certain past events once we know about specific other past events.
It should be clear that this is an asymmetric concept, similar to Granger causality. We provide the
following informal definition, referring the reader to Didelez (2008) for formal details involving
measurability in counting processes:

Definition 2 For X,Y,Z ⊂ L s.t. Y ∩ Z = ∅, X is process independent of Y given Z, denoted
Y 6→ X|Z, when all event labels in X have conditional intensities such that if the historical occur-
rences of label set Z are known, then those of label set Y do not provide any further information.

Graphical event models specify local historical (in)dependencies among the labels’ counting
processes (Didelez, 2008; Meek, 2014). They can be viewed as representations that indicate how
various events labels are generated over time, given the historical occurrences of their parents in
the graph. Thus, the conditional intensity for an arbitrary label X at any time t depends only on
historical occurrences of its parent event labels, implying that λx(t|ht) = λx(t|[h(U)]t), where
U are X’s parents and [h(U)]t is the history restricted to labels in set U, i.e. only the historical
occurrences of event labels in set U are considered. Figure 1(b) depicts an illustrative GEM over the
same 3 event labels from Figure 1(a). In this example, given the historical occurrences of hospital
admissions, the rate of home health visits does not depend on prior occurrences of prescription
refills. Note that GEMs as described here may in general involve self loops.

PGEMs. A proximal graphical event model is a particular kind of GEM where only the most
recent historical occurrences of a node X’s parents U within corresponding time windows affect
its conditional intensity (Bhattacharjya et al., 2018). At the structural level, the relationships in a
PGEM are therefore described just like any GEM, with a graph G where there is a node for every
event type in L. We continue to use X to refer to an arbitrary node in the PGEM graph and denote
U as its set of parents.

A PGEM also includes quantitative information along with the qualitative structure. Every edge
in the graph has an associated time interval (window) from a set W , which specifies the recent
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Figure 2: Graphs of 5 example PGEMs, each with 5 nodes, numbered in increasing order of graph density.
Green and red arcs indicate excitation and inhibition effects respectively.

time period that the model is sensitive to, with regards to historical dependence for every edge. In
addition, a PGEM includes conditional intensity rate parameters Λ = {λwx

x|u : ∀X ∈ L} where the

conditioning is on u, which is an instantiation of X’s parents – one of 2|U| possible binary vectors,
analogous to a Bayesian network with binary random variables. Conditional intensity parameters
represent the rate at which an event label occurs at any time, given the historical condition of its
parents, i.e. whether or not a parent has occurred at least once in the corresponding window. The
superscript wx here refers to the set of all windows corresponding to edges that lead into X; we
omit this in expressions to avoid notational clutter. In a PGEM, the log likelihood for node X given
parents U, with windows wx and conditional intensities λx|u is:

logL(X|U) =
∑
u

(
−λx|uD(u) +N(x;u) ln(λx|u)

)
, (1)

where N(x;u) is the number of times that X is observed in the dataset and that the condition u is
true in the relevant preceding windows, and D(u) is the duration from time 0 to T where u is true.
Formally, N(x;u) =

∑N
i=1 I(li = X)Iwx

u (ti) and D(u) =
∑N+1

i=1

∫ ti
ti−1

Iwx
u (t)dt, where Iwx

u (t) is
an indicator for whether u is true at time t as a function of the relevant windows wx. N(x;u) and
D(u) are summary statistics that can be computed by scanning through an event dataset.

A complete model for a PGEM is denoted M, where M = {G,W,Λ}. Figure 2 illustrates
examples of 5 PGEM graphs, each with 5 nodes. The graphical structure captures process indepen-
dence. For instance, in model #1, the structure captures the fact that the rate at which D occurs at
any time depends on whether A and B occur in their respective time windows. In this figure, the
colors of the edges indicate whether the effects from A and B are excitatory (green) or inhibitory
(red), i.e. increase or decrease the conditional intensity respectively. Further information about
the windows and the conditional intensity parameters for these synthetic models are provided in
Appendix A. We will use these models later in an experimental investigation.

3. Causal Proximal Graphical Event Models

3.1. Causality and Process Independence

Causality is naturally related to processes developing over time. Pearl (2009) refers to the word
‘mechanism’ several times in his seminal work, emphasizing the importance of understanding the
inner workings of a system for making causal inferences. We take a mechanistic view of the causal
temporal dynamics in event processes (Cox, 1992; Aalen et al., 2012). Specifically, we assume an
underlying causal marked point process PM associated with a PGEMM which includes graph G.

For any GEM (including a PGEM), there are certain inherent (local) process independencies
that are defined by the construction of a GEM graph G for an underlying marked point process P .
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We follow Didelez (2008) and refer to this as the local dynamic Markov property, where the word
‘dynamic’ is used to distinguish from the analogous property in (causal) Bayesian networks, which
is the local Markov property. In general, we refer the reader to the relevant prior work mentioned in
this section to appreciate the analogies with concepts from the Bayesian networks literature.

Definition 3 A marked point process P satisfies the local dynamic Markov property w.r.t graph G
if L \U 6→ X|U ∀X ∈ L.

Lemma 4 A marked point process PM corresponding to a PGEM satisfies the local dynamic
Markov property with respect to the PGEM graph G.

In the work on atemporal causal discovery as modeled by (causal) Bayesian networks, a graphi-
cal separation method known as d-separation is used to infer additional conditional independencies
in the underlying joint probability distribution (Verma and Pearl, 1990; Spirtes et al., 2001). Its
modification to allow for self loops, d∗-separation, was briefly defined in the previous section. This
idea of ‘reading off’ additional independencies from the graph was extended by Didelez (2008) and
subsequently by Meek (2014) to process independence for graphical event models; Meek’s exten-
sion was to enable an event label to be independent of its own history. We follow this convention,
using δ∗-separation as a means of defining the global dynamic Markov property.

Definition 5 For X,Y,Z ⊂ L s.t. Y ∩ Z = ∅, X is δ∗-separated from Y by Z in graph G if and
only if X is d∗-separated from Y by Z in the graph formed by deleting any non self-loop outgoing
edges from X in G.

Definition 6 A marked point process P satisfies the global dynamic Markov property w.r.t graph
G if for labels X,Y and set Z ⊂ L s.t. Y ∩ Z = ∅, X is δ∗-separated from Y by Z in G =⇒
Y 6→ X|Z.

The following result confirms that a marked point process associated with a PGEM also satisfies
the global dynamic Markov property, in addition to the local dynamic Markov property.

Theorem 7 A point process PM corresponding to PGEMM satisfies the global dynamic Markov
property with respect to the PGEM graph G.

The above result highlights an important implication of δ∗-separation – that one can make addi-
tional statements about process independencies from a PGEM graph. For example, consider model
#4 in Figure 2. From the local dynamic Markov property applied to event label E, {A,D} 6→
E|{B,C} since B and C are parents of E; A’s effect on E is indirectly through C. From the
global dynamic Markov property, we can also say, for instance, that D 6→ E|{A,B} because all
paths from D to E go through either A or B. Note that process independence can be asymmetric in
general, although in this instance one can see that E 6→ D|{A,B} by applying the local dynamic
Markov property to D.

In (causal) Bayesian networks, a family of algorithms known as constraint-based methods re-
cover the underlying structure by estimating from the data whether certain conditional independen-
cies between the variables hold; the PC algorithm is a classic example (Spirtes et al., 2001). We
apply this approach to GEMs, estimating process independencies between event labels. Algorithm 1
outlines the PC algorithm as applied to GEMs. Since there are no acyclicity constraints in GEMs,
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one can learn the parents for each target node X ∈ L separately. The algorithm works by growing
the conditioning set Z until process independence is discovered, in which case the edge from the
candidate parent Y to target node X is removed. Note that a process independence tester needs to
be plugged into the algorithm, which we assume outputs a score that is monotonically increasing in
the amount of dependence. Independence is assumed when the tester’s score is less than a function
g(·) of a threshold α. We introduce two such testers for PGEMs in the next sub-section.

Together with the global dynamic Markov property, the following assumption, which is anal-
ogous to the causal faithfulness assumption in Bayesian networks, helps specify processes where
the only dependencies are those that can be determined by δ∗-separation. For such processes, and
when a perfect process independence tester is available, the PC algorithm for PGEMs is sound and
complete, i.e. the true graph is learned.

Algorithm 1 PC Algorithm for Structure Dis-
covery in GEMs
Data: Event label X ∈ L, event dataset D

(over L), threshold parameter for tester
α

Result: Parents U for X
U = L
for all Y in L do

flag = False, n = 0, Z∗ = U \ Y
while n ≤ |Z∗| and flag = False do

for all Z that are subsets of size n in
Z∗ do

Obtain score from a process inde-
pendence test

if score ≤ τ = g(α) (indicating
process independence) then

flag = True, U = U \ Y
Break from loop

end
end
n = n+ 1

end
end

Algorithm 2 MMP (Max-Min Parents) Algo-
rithm for Structure Discovery in GEMs
Data: Event label X ∈ L, event dataset

D (over L), threshold parameters for
tester α and β

Result: Parents U for X
U = ∅
Phase I:
t = 1
while t 6= 0 do

P = argmaxminα(X;U)
t = maxminα(X;U)
if t > 0 then

U = U ∪ P
end

end
Phase II:
for Y ∈ U do

t = min
F⊂X\Y

Assocβ(Y → X;F )

if t = 0 then
U = U \ Y

end
end

Definition 8 A marked point process P satisfies the causal dependence assumption w.r.t graph G
if for sets X,Y,Z ⊂ L s.t. Y ∩ Z = ∅, Y 6→ X|Z =⇒ X is δ∗-separated from Y given Z in G.

Note that discovering the true structure is only possible even under strict assumptions when the
parameters can be estimated perfectly from data; this is often violated in practice when only a finite
amount of data is available. Existing literature has studied the impact of faithfulness violation for
i.i.d. data (Robins et al., 2003; Uhler et al., 2013).
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Theorem 9 If a marked point process PM corresponding to a PGEM satisfies the causal depen-
dence assumption, the PC algorithm with a perfect process independence tester recovers the true
underlying PGEM graph G.

Inspired by the max-min hill climbing algorithm for Bayesian networks (Tsamardinos et al.,
2006), we propose a variant for GEMs structure learning called the max-min parents (MMP) algo-
rithm, outlined in Algorithm 2. It consists of two phases: the first phase picks candidate parents
while the second prunes the list picked in the first phase. Again, we assume that a tester returns
a score which measures dependence. We define a measure of association from the score and a
threshold α:

Assocα(Y → X;Z) = max(α, (score))− α (2)

We also define the functions: maxminα(X;Z) = maxX 6=Y minF⊂Z Assocα(Y → X;F) and
argmaxminα(X;Z) = arg maxY 6=X minF⊂Z Assocα(Y → X;F).

The algorithm proceeds as follows: given a current set of parents in Phase 1, conditioned on all
subsets of current parent set, we check for the minimum association measure for a candidate parent.
Amongst several choices, we pick the candidate parent with the maximum minimum measure of
association. If all parents are picked and if the tester is accurate (outputs a score ≤ α on inde-
pendence), this measure will be zero. If a parent is left out, the measure will always be non-zero.
Phase 1 may end with including extraneous nodes other than the true parents. Phase 2 attempts to
eliminate these extra nodes by conditioning on all subsets of the remaining parent set to eliminate.
Again, extraneous nodes will be thrown for a perfect process independence tester.

MMP has some potential advantages over the PC algorithm, which starts from a complete graph
and relies only on process independence relations to reduce the number of edges. Statistically, with
a larger conditioning set, due to noise it can be more difficult for PC to detect independence. In
contrast, the MMP algorithm first builds a candidate parent set which is then pruned. The MMP
algorithm’s first phase is not affected if process independence is not detected properly while condi-
tional dependence needs to be picked. It may only lead to a larger candidate parent set. However, in
Phase 2, thresholds can be made stricter to strengthen conditional independencies to prune the set
obtained at the end of Phase 1. This could reduce false positive rates better than the PC algorithm.

3.2. Process Independence Testers

The main challenge in learning with the PC and MMP algorithms lies in finding an effective tester.
We propose two process independence testers that use properties of the PGEM representation. As
far as we are aware, there is not much prior work on testers for models within the broad family
of GEMs. Both our testers take as input a target node X , a conditioning set of event labels Z, a
candidate parent Y 6∈ Z, and of course an event dataset D, returning a score as output. In the
PC algorithm, if the score is less than a specified threshold, process independence is declared, i.e.
Y 6→ X|Z. The MMP algorithm is similar except that it has two thresholds – one for the forward
phase as the graph grows, and one for the backward phase where spurious edges are removed. For
experiments, these two thresholds are set to be identical.

For both testers, we assume that when X has parents U, the windows for edges into X (wx)
are known, and therefore one can easily compute the conditional intensity parameters through max-
imum likelihood estimation using summary statistics, λ̂x|u = N(x;u)

D(u) (see equation 1). Specifically,
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we use the ‘independent windows’ approach from Bhattacharjya et al. (2018) to estimate windows,
where the window for each edge Y to X is estimated by assuming that X has no other parent(s).
Finding optimal windows, i.e. those that maximize the log likelihood, is known to be a hard combi-
natorial problem, so it is necessary to make an approximation of this sort for tractability.

3.2.1. NORMALIZED INFLUENCE (NI) TESTER

For a PGEM, the conditional intensities λx|u for a node X with parents U = {Y,Z} are Boolean
functions from {0, 1}|Z|+1 → R, therefore one can estimate the influence (or synonymously sensi-
tivity) of Y on the function λx|u through analysis of this Boolean function (O’Donnell, 2014). For
a multi-dimensional Boolean function f(·), the influence of a variable i is defined as E[(Dif)2]
where Dif is the derivative operator measuring the change in the function from toggling the ith

variable bit from 0 to 1. Formally, Dif(θ) = f(θ(i→1))−f(θ(i→0))
2 . We normalize this influence by

the second moment of the function, E[f2], to gauge Y ’s contribution to the variance. Computing
E[(Dif)2]
E[f2]

for a PGEM conditional intensity function f = λx|u with i = Y and U = {Y,Z} results
in the following normalized influence score:

NI score =
1

2

∑
z

(
λx|y,z − λx|ȳ,z

)2∑
z

(
λx|y,z + λx|ȳ,z

)2 , (3)

where y and ȳ in the subscript for conditional intensity indicate the parental states where Y has
and has not occurred in its window, respectively. The NI score estimates the contribution of Y to a
Boolean function that also includes event labels Z. If the score is less than a threshold τ , we declare
that Y does not have enough additional impact on X given Z. For this tester, we set the threshold
τ = α

|Z|+1 for some threshold parameter α, so as to adjust the level of meaningful contribution
depending on the size of Z. For instance, if α = 0.1 and |Z| = 3, then a score ≤ 2.5% implies
process independence, i.e. Y 6→ X|Z.

3.2.2. LIKELIHOOD RATIO (LR) TESTER

For this tester, we consider 2 models – a coarser model where the set of parents for a node X is Z,
and a more refined model where Y is also a parent in addition. Note that these are nested models
for a PGEM, in the sense that the conditional intensity parameters λx|u with parents {Y,Z} can
subsume the case where Y is not a parent by setting λx|y,z = λx|ȳ,z∀z.

A function of the ratio between two likelihoods is often used to compare models in hypothesis
testing. Specifically, the ratio compares a likelihood found by maximizing over a broader class
of models and another found after imposing some constraints. Adapting this to PGEMs, we use
LR = −2 [logL∗(X|Y,Z)− logL∗(X|Z)], where the maximum log likelihoods L∗(X|U) are
found by replacing maximum likelihood estimates for conditional intensities, λ̂x|u = N(x;u)

D(u) , in
equation 1.

A classic result states that for a class of nested models, the LR statistic asymptotically tends
to a chi-squared distribution with number of degrees equal to the difference between the number of
parameters of the two nested models (Wilks, 1938). For PGEMs, this difference is 2|Z|; we therefore
use the following score to test for process independence:

LR score = Fχ2

2|Z|
(−2 [logL∗(X|Y,Z)− logL∗(X|Z)]) , (4)
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where F (·) is the cumulative distribution function of a chi-squared random variable with 2|Z| de-
grees of freedom. We declare process independence Y 6→ X|Z when the score is less than a
threshold τ , to determine that the gain in the log likelihood from including Y with Z is close to 0
and therefore not substantial. For this tester, we set the threshold τ = α for threshold parameter α
since the score is a probability. Please note that it is merely 1 minus the p-value of the test statistic.
This deliberate non standard choice is chosen just to have a score that is high when dependence is
high.

When applied to PGEMs, the LR test statistic and associated score is an approximation as: 1)
we are concerned with testers for limited data, 2) the linearity assumptions required of the parameter
space for the asymptotic results are not satisfied by the PGEM conditional intensity functions, and
3) marginal models of an underlying PGEM are not PGEMs.

4. Experiments

4.1. Synthetic Datasets: Structure Discovery for 5 Specific PGEMs

Setup. We begin our experimental investigation by considering 5 specific PGEMs, each with 5
nodes. Their graphs are shown in Figure 2 in increasing order of graph density (number of arcs)
and therefore complexity. For each model, we generate 20 event streams up to T = 1000 days
(approximately 3 years in units of days). The complete model specifications, i.e. including windows
and conditional intensity parameters for these models are specified in Appendix A.

We compare the proposed testers, as deployed by the PC and MMP algorithms, along with three
baselines with the following hyper-parameter settings:

• The score-based BIC learner for PGEMs was run with window increment ε = 0.001 for
window search, as proposed in Bhattacharjya et al. (2018).

• For the CPCIM learner, which is an algorithm to learn GEMs with piecewise constant con-
ditional intensities over historical basis functions (Parikh et al., 2012), we took the following
approach for hyper-parameters. The structural prior κ was set to 0.1. For conjugate prior
pseudo-count α and pseudo-duration β for each label, we used identical values for all labels.
We compute ratio ρ of the total number of all arrivals over all labels to the total duration for
all labels (the product of the number of labels and the horizon T under consideration) which
provides an empirically based estimate of the arrival rate. We ran experiments using α = Kρ,
β = K, for various values of K = 10, 20, . . . , where higher values of K increase the prior’s
influence. K = 20 was chosen. Intervals of the form [t− t∗, t) are the basis functions, where
we chose t∗ ∈ {1, 2, 3, 4, 5, 6, 7, 15, 30, 45, 60, 75, 90, 180}.

• We also considered CAUSE, which fits a neural point process for an event stream and then
extracts a graph structure from a Granger causality statistic based on an axiomatic attribution
method (Zhang et al., 2020). This is a relatively recent approach that is supposed to be
appropriate for GEMs in general. We use publicly available code1 at the default settings.

We determine the optimal threshold τ for the testers by searching over a grid of threshold pa-
rameters (treated as hyper-parameters) on a training set of the first 10 event streams for each model.
Each learner is then evaluated with its optimal threshold setting on a test set of the remaining 10

1. https://github.com/razhangwei/CAUSE
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Table 1: Comparing structure discovery F1 scores over 5 example PGEMs.

Model CPCIM CAUSE BIC PC-LR PC-NI MMP-LR MMP-NI

#1 0± 0 0.27± 0 0.38± 0.3 0.3± 0.07 0.29± 0.04 0.49± 0.22 0.29± 0.04
#2 0± 0 0.33± 0 0.16± 0.16 0.31± 0.14 0.4± 0.14 0.36± 0.06 0.3± 0.2
#3 0± 0 0.39± 0 0.29± 0.13 0.37± 0.1 0.39± 0.1 0.39± 0.11 0.39± 0.1
#4 0.25± 0 0.44± 0 0.23± 0.22 0.3± 0.1 0.41± 0.06 0.39± 0.1 0.41± 0.06
#5 0.22± 0 0.48± 0 0.15± 0.2 0.41± 0.1 0.5± 0.12 0.49± 0.16 0.5± 0.12

event streams per model. Tester threshold parameters for training were chosen from a grid T as fol-
lows: {0.3, 0.25, 0.2, 0.15, 0.1, 0.05, 0.03} for the NI tester and {0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5}
for the LR tester.

Results. Table 1 shows the mean F1 scores along with the error, as measured by half of the 90th
and 10th percentiles across the 10 event streams, for each model-learner combination. CPCIM often
cannot recover any true parents. BIC exhibits poor F1 scores as it learns sparse graphs, usually with
good precision but poor recall. While BIC performs well in comparison to the PC learners for
the sparsest model (model #1) due to fewer arcs to recall, performance deteriorates for the more
complex models. In contrast, the strong baseline CAUSE generally performs well for the more
dense graphs but poorly for the sparse ones. The PC and MMP algorithms are generally similar
in their performance. The NI tester works better than the LR tester for the more complex models.
MMP-LR is robust in that it performs well across the 5 PGEMs, and appears to be a reasonable
choice for PGEM structure discovery. MMP has the advantage of being more efficient than PC.

Note that the NI tester leverages the proximal assumption in the graphical event models that
were studied, whereas the LR tester is more general and could potentially be more robust over a
broader class of models, although that remains to be empirically demonstrated. The results however
generally reveal the testers to be comparable. Note that F1 scores are generally low throughout,
exhibiting that the task of uncovering causal relations from event streams is a challenging one and
requires further investigation.

4.2. Synthetic Datasets: Structure Discovery for 20 Randomly Generated PGEMs

Setup. To illustrate the generality of our observation that the newly proposed constraint-based
methods (PC and MMP) improve recall and therefore the F1 score beyond the score-based BIC
learner, we repeat the previous experiment with 20 randomly generated PGEMs.

PGEMs were randomly generated similar to the approach described in the supplementary ma-
terial in Bhattacharjya et al. (2018). For a PGEM over label set L, for each node, the number of its
parents K are chosen uniformly from the parameters Kmin = 0, · · · ,Kmax = b|L|/2c in integer
increments. A random subset of size K from L is then chosen as its parent set. Windows for each
edge are generated uniformly from wmin = 15 to wmax = 30 in increments of ∆w = 5. For the
conditional intensity rates, we assume that each node’s parent either has a multiplicative amplifi-
cation or damping rate beyond a baseline rate of r/|L|, where r is generated uniformly between
rmin = 0.05 and rmax = 0.2. Nodes that always increase occurrence rate for their children are
obtained by randomly choosing a subset LA of size KA = b|L|/2c from L. Nodes in the sets
LA and L\LA have an amplification and damping rate of γA = 1.5 and γD = 0.25 respectively.
These numbers are chosen to roughly keep the number of events N generated by each model to be
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Table 2: Comparing structure discovery F1 scores for two different dataset sizes, with results averaged over
20 randomly generated PGEMs.

T (End Time) BIC PC-LR PC-NI MMP-LR MMP-NI

500 0.28± 0.29 0.31± 0.17 0.33± 0.11 0.33± 0.17 0.33± 0.17
1000 0.3± 0.21 0.39± 0.16 0.37± 0.14 0.37± 0.18 0.37± 0.14

commensurate with T , but this is not enforced rigorously, thereby allowing the dataset sizes to vary
across models.

The experimental setup is otherwise identical to earlier, except that the results are averaged over
the 20 models as well as the 10 event streams over each model. This analysis is done for synthetic
datasets of varying lengths: T = 500 and T = 1000, to appreciate the effect of data size.

Results. We observe from Table 2 that PC and MMP perform similarly and that again they beat
the BIC score approach. All methods exhibit improved performance with more data.

4.3. Real Datasets: Number of Parents

Setup. Here we consider a select few real event datasets from various domains with unknown
ground truth graphs. We investigate how many additional parents could potentially be learned by a
constraint-based method. We stress that this does not mean that the proposed methods only recover
more true parents. In fact, our synthetic experiments reveal that the tester-based learners almost
always involve false positives. The intent is merely to show how under reasonable values of thresh-
olds, one can recover more than the sparser graphs learned by BIC. This could be useful in practice
for analysts and scientists, particularly when combined with their domain knowledge.

The datasets considered are: 1) the books Leviathan and the Bible, available from the SPMF
data mining library (Fournier-Viger et al., 2014). The 100 most frequent words were removed and
the next most frequent M = 10 words were used as labels and their positions in the books as time
stamps; 2) political events in Argentina, Mexico and Venezuela, three countries from the curated
version of the ICEWS political event dataset (Bhattacharjya et al., 2018); 3) MIMIC – a medical
dataset with clinical visit records by patients; this has been used in other event modeling work (Du
et al., 2016).

Results. Table 3 compares the average number of parents per node that are learned by the baseline
BIC and MMP-LR. We use {0.99, 0.95, 0.9} as the identical threshold parameters for MMP-LR.
Recall that a higher valued threshold results in more process independencies and therefore a smaller
parent set. Only the MMP is considered here as it is more efficient than PC and can handle the larger
datasets. Thresholds are set to be identical, i.e. α = β. We observe that MMP-LR learns between
twice and four times the number of parents than BIC for these datasets from varying domains.
MMP-NI learns graphs that are even denser than MMP-LR but the numbers are not shown here.

5. Conclusions

In this paper, we presented one of the first constraint-based investigations of graphical event models,
including a novel max-min parents algorithm and two process independence testers for an important
family of models – proximal graphical event models. Learning causal graphical representations
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Table 3: Comparing average number of parents across learners over select real datasets.

Dataset BIC MMP-LR
0.99 0.95 0.9

Leviathan 1 3.2 3.7 3.9
Bible 1.5 4.3 4.7 4.9
Argentina 1.12 2.26 2.8 2.91
Mexico 1.04 1.87 2.19 2.3
Venezuela 0.91 2.01 2.36 2.54
MIMIC 0.49 0.96 1.11 1.17

for event streams is challenging, and although our proposed approaches show improvement over
baselines for the task of structure discovery in PGEMs, the low F1 scores indicate that there is
substantial scope for further advances. Indeed, there is scope for future work around testers that
could potentially detect process independence across a reasonably broad class of models within
the GEMs family. The major difficulty is that the complex nature of such data results in time
dependent confounding where the temporal interaction between occurrences makes it difficult to
extricate direct causes. Keiding (1999) provides some discussion about the challenges in this regard.
We anticipate further advances in the future around the challenging area of structure discovery for
stochastic processes in general.
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Appendix A. Model Details for PGEMs for Synthetic Data Experiments

We provide details about the 5 PGEMs in Figure 2. In what follows, the windows corresponding to
the parents are listed in the same order as parents. We use binary vectors to indicate parental states,
again in the same order as listed parents. For instance, if a node A has parents [B,C] then windows
[15, 30] represent information that the windows from B and C to A respectively are 15 and 30. The
binary parental state [0, 1] implies that only C has occurred in its window, whereas [1, 1] represents
the case where both B and C have occurred in their respective windows.

Model #1

• parents = {’A’: [], ’B’: [], ’C’: [’B’], ’D’: [’A’, ’B’], ’E’: [C’]}

• windows = {’A’: [], ’B’: [], ’C’: [15], ’D’: [15, 30], ’E’: [15]}

• lambdas = { ’A’: {[]: 0.2}, ’B’: {[]: 0.05}, ’C’: {[0]: 0.2, [1]: 0.3}, ’D’: {[0, 0]: 0.1, [0, 1]:
0.05, [1, 0]: 0.3, [1, 1]: 0.2}, ’E’: {[0]: 0.1, [1]: 0.3}, }

Model #2

• parents = {’A’: [’B’], ’B’: [’B’], ’C’: [’B’], ’D’: [’A’], ’E’: [’C’]}

• windows = {’A’: [15], ’B’: [30], ’C’: [15], ’D’: [30], ’E’: [30]}

• lambdas = { ’A’: {[0]: 0.3, [1]: 0.2}, ’B’: {[0]: 0.2, [1]: 0.4}, ’C’: {[0]: 0.4, [1]: 0.1}, ’D’:
{[0]: 0.05, [1]: 0.2}, ’E’: {[0]: 0.1, [1]: 0.3} }

Model #3

• parents = {’A’: [’B’, ’D’], ’B’: [], ’C’: [’B’, ’E’], ’D’: [’B’], ’E’: [’B’]}

• windows = {’A’: [15, 30], ’B’: [], ’C’: [15, 30], ’D’: [30], ’E’: [30]}

• lambdas = { ’A’: {[0,0]: 0.1, [0,1]: 0.05, [1,0]: 0.3, [1,1]: 0.2}, ’B’: {[]: 0.2}, ’C’: {[0,0]:
0.2, [0,1]: 0.05, [1,0]: 0.4, [1,1]: 0.3}, ’D’: {[0]: 0.1, [1]: 0.2}, ’E’: {[0]: 0.1, [1]: 0.4} }
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Model #4

• parents = {’A’: [’B’], ’B’: [’C’], ’C’: [’A’], ’D’: [’A’, ’B’], ’E’: [’B’, ’C’]}

• windows = {’A’: [15], ’B’: [30], ’C’: [15], ’D’: [15, 30], ’E’: [30, 15]}

• lambdas = { ’A’: {[0]: 0.05, [1]: 0.2}, ’B’: {[0]: 0.1, [1]: 0.3}, ’C’: {[0]: 0.4, [1]: 0.2}, ’D’:
{[0, 0]: 0.1, [0, 1]: 0.3, [1, 0]: 0.05, [1, 1]: 0.2}, ’E’: {[0, 0]: 0.1, [0, 1]: 0.02, [1, 0]: 0.4, [1,
1]: 0.1} }

Model #5

• parents = {’A’: [’A’], ’B’: [’A’, ’C’], ’C’: [’C’], ’D’: [’A’, ’E’], ’E’: [’C’, ’D’]}

• windows = {’A’: [15], ’B’: [30, 30], ’C’: [15], ’D’: [15, 30], ’E’: [15, 30]}

• lambdas = { ’A’: {[0]: 0.1, [1]: 0.3}, ’B’: {[0,0]: 0.01, [0,1]: 0.05, [1,0]: 0.1, [1,1]: 0.5},
’C’: {[0]: 0.2, [1]: 0.4}, ’D’: {[0, 0]: 0.05, [0, 1]: 0.02, [1, 0]: 0.2, [1, 1]: 0.1}, ’E’: {[0, 0]:
0.1, [0, 1]: 0.01, [1, 0]: 0.3, [1, 1]: 0.1}, }

Appendix B. Proofs

B.1. Proof for Lemma 4

This follows from the definition of a GEM. For a PGEM, if a nodeX has parent nodes U, then at any
time with parent condition u (as determined by recent historical occurrences in the corresponding
windows), the rate at which X occurs is λx|u. Additional information about historical occurrences
of any non-parent has no effect on the conditional intensity rate at any time, therefore process
independence is true for any non-parent given the history of parent event labels.

B.2. Proof for Theorem 7

The global Markov property is satisfied when any δ∗-separation statement for valid X , Y , Z im-
plies process independence Y 6→ X|Z. The separation itself is defined based on a graph that cuts
outgoing edges, except self-loops, from X . We refer to this graph as G̃DX ; the superscript indicates
the graph is directed. Consider an undirected graph formed from G̃DX by taking the subgraph over
ancestors of X , Y , Z, and connecting edges between any parents with common children if they are
not already connected (this operation is known as ‘moralizing’). We denote this as G̃UX .

Suppose X is δ∗-separated from Y given Z in G̃DX . We consider a node to be a blocker in
a path if it prevents a path from connecting X and Y given Z for the separation criterion under
consideration. Note that if a path is being blocked by a non-collider in G̃DX , it will also be blocked
by that non-collider in the undirected version G̃UX . Consider a path that is blocked by a collider
in G̃DX . In this path, X must have an incoming edge in G̃DX as outgoing edges have been removed.
Furthermore, the collider must not be an ancestor of Z as it is a path blocker. There must be a path in
G̃UX from the corresponding collider node to either X or Y . It can be shown that a violation occurs
for the assumption of X being δ∗-separated from Y given Z; some other non-blocking path must
exist between X and Y as this path cannot include Z, otherwise the collider would be an ancestor
of Z, which is not possible. The original path must be blocked by the collider in G̃UX . The result
follows from applying Theorem 3.4 in Didelez (2008) which uses graphical separation in G̃UX .
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B.3. Proof for Theorem 9

The PC algorithm for GEMs is a variation on PC for Bayesian networks with the additional point of
simplification that a step for orienting edges to adhere to acyclicity constraints is not needed. Note
that the global dynamic Markov property applies to a PGEM from a prior theorem. Together with
the causal dependence assumption, this implies that the independencies in the underlying marked
point process are the same as those that can be determined from δ∗-separation in the graph. The ar-
gument that a perfect process independence tester with the GEMs PC algorithm results in sound and
consistent learning follows the argument for the PC algorithm for Bayesian networks. The equiva-
lence of independencies ensures that PC produces no false positives, while the causal dependence
assumption ensures no false negatives.
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