
Under review as a conference paper at ICLR 2023

SoTeacher: TOWARD STUDENT-ORIENTED TEACHER
NETWORK TRAINING FOR KNOWLEDGE DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

How to train an ideal teacher for knowledge distillation is still an open problem.
It has been widely observed that a best-performing teacher does not necessarily
yield the best-performing student, suggesting a fundamental discrepancy between
the current practice in teacher training and the distillation objective. To fill this
gap, we explore the feasibility of training a teacher that is oriented toward stu-
dent performance with empirical risk minimization. Our analyses are inspired by
the recent findings that the effectiveness of knowledge distillation hinges on the
teacher’s capability to approximate the true label distribution of training inputs.
We theoretically established that (1) the empirical risk minimizer can provably
approximate the true label distribution of training data if the loss function is a
proper scoring rule and the hypothesis function is locally-Lipschitz continuous
around training inputs; and (2) when data augmentation is employed for training,
an additional constraint is required that the minimizer has to produce consistent
predictions across augmented views of the same training input. In light of our
theory, we propose a teacher training method SoTeacher which renovates the em-
pirical risk minimization by incorporating Lipschitz regularization and consistency
regularization. Experiments on two benchmark datasets confirm that SoTeacher
can improve student performance significantly and consistently across various
knowledge distillation algorithms and teacher-student pairs.

1 INTRODUCTION

Knowledge distillation aims to train a small yet effective student neural network following the
guidance of a large teacher neural network (Hinton et al., 2015). It dates back to the pioneering idea
of model compression (Buciluǎ et al., 2006) and has a wide spectrum of real-world applications, such
as recommender systems (Tang & Wang, 2018; Zhang et al., 2020), question answering systems (Yang
et al., 2020; Wang et al., 2020) and machine translation (Liu et al., 2020).

Despite the prosperous research interests in knowledge distillation, one of its crucial components,
teacher training, is largely neglected. Existing training practice of teacher networks is often directly
targeting at maximizing the performance of the teacher, which does not necessarily transfer to the
performance of the student. Empirical evidence shows that a teacher trained toward convergence will
yield an inferior student (Cho & Hariharan, 2019) and regularization methods benefitting the teacher
may contradictorily degrade student performance (Müller et al., 2019). As also shown in Figure 1,
the teacher trained towards convergence will consistently reduce the performance of the student after
a certain point. This suggests a fundamental discrepancy between the common practice in neural
network training and the learning objective of knowledge distillation.

In this work, we explore both the theoretical feasibility and practical methodology of training
the teacher toward student performance. Our analyses are built upon the recent understanding of
knowledge distillation from a statistical perspective. In specific, Menon et al. (2021) show that the
soft prediction provided by the teacher is essentially an approximation to the true label distribution,
and true label distribution as supervision for the student improves the generalization bound compared
to one-hot labels. Dao et al. (2021) show that the accuracy of the student is directly bounded by the
distance between teacher’s prediction and the true label distribution through the Rademacher analysis.
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(a) Test accuracy and training loss of the
teacher at different epochs in training.
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(b) Student performance when distilled
from different teacher checkpoints.

Figure 1: On CIFAR-100, we store a teacher checkpoint every 10 epochs and distill a student from
it. We can observe that: (1) a standard teacher trained towards better teacher performance may
consistently deteriorate student performance upon knowledge distillation; (2) a teacher trained using
SoTeacher can achieve better student performance even with lower teacher performance.

Based on the above understanding, a teacher benefitting the student should be able to learn the true
label distribution of the distillation data 1. Since practically the distillation data is often reused
from the teacher’s training data, the teacher will have to learn the true label distribution of its own
training data. This might appear to be infeasible using standard empirical risk minimization, as the
teacher network often has enough capacity to fit all one-hot training labels, in which case, distilling
from teacher predictions should not outperform direct training based on one-hot labels. Previous
theoretical analyses tend to evade this dilemma by distilling from teacher predictions only on data
that is not used in teacher training (Menon et al., 2021; Dao et al., 2021).

Instead, we directly prove the feasibility of training the teacher to learn the true label distribution
of its training data. We show that the standard empirical risk minimizer can approach the true label
distribution of training data as long as the loss function is a proper scoring rule and the hypothesis
function is locally Lipschitz continuous around training samples. We further show that when data
augmentation is employed for training, our argument still holds true under an additional constraint,
i.e., predictions on the same training input under different augmentations have to be consistent.

In light of our theory, we show that explicitly imposing the Lipschitz and consistency constraint in
teacher training can facilitate the learning of the true label distribution and thus improve the student
performance. We conduct extensive experiments on two benchmark datasets using various knowledge
distillation algorithms and different teacher-student architecture pairs. The results confirm that our
method can improve student performance consistently and significantly.

To summarize, our main contributions can be listed as follows.

• We show that it is theoretically feasible to train the teacher to learn the true label distribution of
the distillation data even with data reuse, which explains why the current knowledge distillation
practice works.

• We show that explicitly imposing the Lipschitz and consistency regularization in teacher training
can better learn the true label distribution and improve the effectiveness of knowledge distillation.

We believe our work is among the first attempts to explore the theory and practice of training a
student-oriented teacher in knowledge distillation. We hope our exploration can serve as a stepping
stone to rethinking the teacher training and unleashing the full potential of knowledge distillation.

2 PROBLEM FORMULATION

Standard practice of teacher network training. We study knowledge distillation in the context
of multi-class classification. Specifically, we are given a set of training samples D = {(xi, yi)}i∈[N ],
where [N ] ≡ 1, 2, · · · , N . D is drawn from a probability distribution pX,Y that is defined jointly
over input space X ⊂ Rd and label space Y = [K]. In common practice, the teacher network

1For simplicity, we refer to the student’s training data in knowledge distillation as the distillation data (Stanton
et al., 2021)
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f : X → [0, 1]|Y| is trained to minimize the empirical risk given a loss function ℓ, namely

f∗ = argmin
f

E(x,y)∈D ℓ(f(x), y), (1)

where E(x,y)∈D is the empirical expectation.

Learning objective of teacher in knowledge distillation. Recent advances in understand-
ing knowledge distillation suggest a teacher should approximate the true label distribution of the
distillation data, which is often reused from the teacher’s training data. This implies

f∗ = argmin
f

E(x,y)∈D ∥f(x)− p∗(x)∥. (2)

Here, p∗(x) = pX,Y (·|x) denotes the true label distribution of an input x, namely the (unknown)
category distribution that its label is sampled from, which is not necessarily one-hot. And ∥ · ∥ is a
distance function induced by an arbitrary p-norm.

Our Research Questions. One can find that there is a fundamental discrepancy between the
common practice of teacher training (Eq. (1)) and the learning objective of the teacher in knowledge
distillation (Eq. (2)). In particular, if the minimizer f∗ in Eq. (1) is attained, f∗(x) = 1y for any
distillation input x, which significantly deviates from p∗(x) and challenges the effectiveness of
knowledge distillation. Therefore, in this work, we explore the following two questions.

(i) Can a teacher network learn the true label distribution of the training data with the standard
teacher training practice?

(ii) How to train a teacher to better learn the true label distribution and improve student performance?

We will present our findings of these two questions in Sec. 3 and Sec. 4, respectively.

3 THEORETICAL FEASIBILITY TO LEARN TRUE LABEL DISTRIBUTION OF
TRAINING DATA

We now explore the theoretical feasibility of training a teacher that learns the true label distribution
of the training data under the empirical risk minimization framework. Note that throughout the
discussion here, our major focus is the existence of a proper minimizer, instead of the details of the
optimization process.

3.1 A HYPOTHETICAL CASE WITH IDENTIFIABLE SIBLINGS

We first show that in a hypothetical case where the siblings of an input are known, the empirical
minimizer can produce predictions close to the true label distribution on the training data. We define
the notion of siblings as the set of all inputs sharing the same true label distribution as x in the set of
training inputs DX = {x|(x, y) ∈ D}.

Definition 3.1 (Siblings). We define the siblings of x in DX under p∗ as Sp∗(x) = {x′ ∈
DX |p∗(x′) = p∗(x)}.

The siblings of x have the property that the sample mean of their labels converges to x’s true label
distribution, namely Ex∈Sp∗ (x)[1y] → p∗(x). To see that, note the label y of an input x is a random
variable following the true label distribution, namely y|x ∼ pY |X(y|x) and thus E[1y] = p∗(x) (Neal,
2007). And per the definition of siblings, p∗(x′) = p∗(x) for all inputs x′ ∈ Sp∗(x), which means
that the labels of the siblings are identically distributed.

We now propose that if the loss function is properly selected and the network function is properly
regularized, the network minimizes the empirical risk on Sp∗(x) will produce predictions close to the
true label distribution. We first introduce the notion of a proper scoring rule (Gneiting & Raftery,
2007) and then discuss this proposition.

Definition 3.2 (Proper scoring rule). Let E be a class of probability mass functions defined on Y . ℓ(·, ·)
is a proper scoring rule with respect to E if for all p, q ∈ E , ℓ(p, q) ≥ ℓ(q, q), with equality if and
only if p = q. Note that many common loss functions are proper scoring rules (Lakshminarayanan
et al., 2017), including the negative-log likelihood loss (NLL) and the Mean Square Error (MSE) (also
known as the Brier score (Brier, 1950)).
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Proposition 3.3 (Approximation error of the empirical risk minimizer on siblings). Let ℓ(·, ·) be a
proper scoring rule. Let F be a family of functions that attains the same prediction on the siblings of
x, namely for all f ∈ F , f(x′) = f(x), ∀x′ ∈ Sp∗(x). Let f∗ ∈ F be a function that minimizes
the empirical risk on Sp∗(x). Then for any x ∈ Sp∗(x), with probability at least 1− δ,

∥f∗(x)− p∗(x)∥ ≤

√
2K

|Sp∗(x)|
log

2

δ
. (3)

The proof is rather straightforward, as based on the property of the proper scoring rule, f can only
achieve the minimum when f(x) = Ex∈Sp∗ (x)[1y], which converges to the true label distribution as
mentioned above. For example, when ℓ is NLL, we have Ê[−1y · log f(x)] = −Ê[1y] · log f(x) ≥
−Ê[1y] · log Ê[1y], with the minimum attained if and only if f(x) = Ê[1y] (the sample mean is
abbreviated as Ê for simplicity). Note that the last inequality here is in fact Gibbs’ inequality.

3.2 REALISTIC CASE

Proposition 3.3 requires identifying the siblings of an input x in DX under the true label distribution
p∗, which might not possible in a realistic scenario, because p∗ is usually unknown and DX may not
necessarily contain the siblings of x. We now introduce the notion of neighborhood and show such a
requirement can be relaxed.
Definition 3.4 (Neighborhood). The neighborhood of an input x is defined as the set of inputs that
are close to x, namely N (x) = {x′ ∈ DX | ∥x′ − x∥ ≤ r}.

Now if we assume the true label distribution p∗ is L-locally-Lipschitz continuous, we will have for
any x′ ∈ N (x), ∥p∗(x′)− p∗(x)∥ ≤ Lr. This means that any input in the neighborhood of x shares
a similar true label distribution as x, which is a relaxation of its siblings with an error controlled by L.

On the neighborhood set of x, we can still show that the empirical risk minimizer will produce
predictions close to the true label distribution. However, due to the relaxation, additional error terms
will be introduced to the approximation bound Eq. (3). And similar to siblings, the constraints on
the loss function and network function would still be necessary. First, the loss function has to be a
proper scoring rule. Second and slightly differently, the network function has to be locally-Lipschitz
continuous in the neighborhood of x.

Finally, to establish the approximation bound on all training inputs, we need to partition the training
set into multiple neighborhoods where the constraint of the empirical risk minimizer can be satisfied
individually. We achieve this by introducing a covering.
Definition 3.5 (r-external covering). We say C is a r-external covering of DX , if DX ⊆

⋃
x∈C{x′ ∈

X | ∥x′ − x∥ ≤ r}. We denote Nr as the covering number, namely the minimum cardinality of any
external covering of DX .

We are now ready to present our main theorem.
Theorem 3.6 (Approximation error of the empirical risk minimizer to the true label distribution ).
Assume p∗ is L∗-locally-Lipschitz continuous in a norm ball of radius r around x ∈ X . Let ℓ(·, ·)
be a proper scoring rule. Let C be an r-external covering of DX . Let F be a family of functions
that are L-locally-Lipschitz continuous in a norm ball of radius r around x ∈ C. Let f∗ ∈ F be a
function that minimizes the empirical risk Eq. (1). Let κ ≥ 1 be a number and D̃X be a subset of
DX with cardinality at least (1− 1/κ+ 1/(κNr))N . Then for any x ∈ D̃X , any p-norm ∥ · ∥, with
probability at least 1− δ, we have

∥f∗(x)− p∗(x)∥ ≤
√

2κNrK

N
log

2

δ
+ LrξK + 2L∗r. (4)

Here ξK = (1 +K∥1(·) −K−11∥), where 1(·) ∈ RK denotes the vector where an arbitrary entry is
1 and others are 0, and 1 ∈ RK denotes the vector where all entries are 1.

One can find that as long as L∗ and L are small enough, and the size of the training set N is sufficiently
large, the predictions can approach the true label distribution on a majority of the training inputs with
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high probability. This suggests that a teacher trained with standard empirical risk minimization is
still possible to learn the true label distribution of its training data, thus resolving the dilemma of why
knowledge distillation with data reuse can improve student generalization. Eq. (4) also shows that the
bound will be tighter if K is small, which implies learning the true label distribution of the training
data will be significantly easier on classification tasks with fewer classes.

3.3 THE CASE WITH DATA AUGMENTATION

When data augmentation is employed in training, we note that the neighborhood defined in Sect. 3.2
needs to be relaxed to include augmented training inputs. We now define the augmented neighborhood.
Definition 3.7 (Augmented neighborhood). Let A : X → X denote a set of data augmentation
functions. The augmented neighborhood of an input x is defined as the set of inputs that are close to
any augmented x, namely NA(x) = {x′ ∈ DX | ∥x′ −A(x)∥ ≤ r, for any A ∈ A}.

Now if we assume the true label distribution is nearly invariant under data augmentations, namely
∥p∗(A(x)) − p∗(x)∥ ≤ L′, we will still have for any x′ ∈ NA(x), ∥p∗(x′) − p∗(x)∥ ≤ Lr + L′.
Therefore, the approximation bound on the neighborhood can be readily extended to the augmented
neighborhood here.
Theorem 3.8 (Approximation error of the empirical loss minimizer with data augmentation). Con-
sider the same setting as Theorem 3.6, except each training input is now augmented by a set of
augmentation functions A. The empirical risk minimizer now becomes

f∗ = argmin
f∈F

E(x,y)∈DEA∈A ℓ(f(A(x)), y). (5)

Then with probability at least 1− δ, for any x ∈ D̃X ,

∥f∗(x)− p∗(x)∥ ≤
√

2κNrK

N
log

2

δ
+ LrξK + 2L∗r + LA

f ξK + LA
p , (6)

where LA
f = maxx∈C,A∈A,x′∈NA(x) ∥f∗(x′)−f∗(A(x))∥, LA

p = maxx∈C,A∈A,x′∈NA(x) ∥p∗(x′)−
p∗(A(x))∥.

Here LA
f and LA

p cannot be simply bounded by the local Lipschitz continuities of the hypothesis
function and true label distribution respectively, because the augmentation function A can significantly
change the data vector of the input, which means ∥A(x)− x∥ is not necessarily small. Therefore, to
ensure the true label distribution is properly learned with data augmentation, one has to explicitly
minimize these two error terms.

Note that although the training set is larger after data augmentation, the bound Eq. (6) is not improved
by a multiplier compared to the case with no augmentation Eq. (4). This is because the labels of
augmented inputs are statistically dependent, thus the bound in the concentration inequality will not
become tighter (see Lemma A.2).

4 PRACTICAL METHOD TO IMPROVE THE LEARNING OF TRUE LABEL
DISTRIBUTION OF THE TRAINING DATA

Following our theory, we explore practical methods to train the teacher to better learn the true label
distribution of the training data.

Loss function. Theorem 3.6 suggests that the necessary condition to learn the true label distribution
is to select a proper scoring rule as the loss function. This is already sufficed by current teacher
training practice where the loss function is typically NLL or MSE.

Lipschitz regularization. Theorem 3.6 also suggests that it is necessary to enforce the hypothesis
function to be locally Lipschitz continuous around certain samples. This may also be achieved by
current teacher training practice, as neural networks are often implicitly Lipschitz bounded (Bartlett
et al., 2017). Nevertheless, we observe that explicit Lipschitz regularization (LR) can still help in
multiple experiments (See Sect. 5). Therefore, we propose to incorporate a global Lipschitz constraint
into teacher’s training. For the implementation details, we follow the existing practice of Lipschitz
regularization (Yoshida & Miyato, 2017; Miyato et al., 2018) and defer them to Appendix C.
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Consistency regularization. When data augmentation is employed in training, Theorem 3.8
suggests that it is necessary to ensure both the true label distribution and the teacher prediction of
an input will not change significantly after data augmentations, We note that these two constraints
are missing in the current teacher training practice and thus have to be explicitly imposed. The
former can be sufficed by selecting proper data augmentations such as random cropping, rotation or
flipping commonly seen in the training practice. The latter is known as the consistency regularization
(CR) (Laine & Aila, 2017; Xie et al., 2020; Berthelot et al., 2019; Sohn et al., 2020) that is widely
used in semi-supervised learning.

To maximize the training efficiency of consistency regularization, we utilize temporal ensem-
bling (Laine & Aila, 2017), which penalizes the difference between the current prediction and
the aggregation of previous predictions for each training input. In this way, the consistency under data
augmentation is implicitly regularized since the augmentation is randomly sampled in each epoch.
And it is also efficient as no extra model evaluation is required for an input.

To scale the consistency loss, a loss weight is often adjusted based on a Gaussian ramp-up curve in
previous works (Laine & Aila, 2017). However, the specific parameterization of such a Gaussian curve
varies greatly across different implementations, where more than one additional hyperparameters
have to be set up and tuned heuristically. Here to avoid tedious hyperparameter tuning we simply
linearly interpolate the weight from 0 to its maximum value, namely λCR(t) =

t
T λ

max
CR , where T is

the total number of epochs.

Summary. To recap, our teacher training method introduces two additional regularization terms.
The loss function can thus be defined as ℓ = ℓStand. + λLRℓLR + λCRℓCR, where ℓStand. is the standard
empirical risk defined in Eq.(1) and λLR is the weight for Lipschitz regularization. Our method is
simple to implement and incurs only minimal computation overhead (see Section 5.2).

5 EXPERIMENTS
In this section, we evaluate the effectiveness of our teacher training method in knowledge distillation.
We focus on compressing a large network to a smaller one where the student is trained on the same
data set as the teacher, which is well-supported by our theoretical understanding.

5.1 EXPERIMENT SETUP

We denote our method as student-oriented teacher training (SoTeacher), since it aims to learn the
true label distribution to improve student performance, rather than to maximize teacher perfor-
mance. We compare our method with the standard practice for teacher training in knowledge distil-
lation (Standard) (i.e., Eq. (1)). We conduct experiments on benchmark datasets including CIFAR-
100 (Krizhevsky, 2009) and Tiny-ImageNet (Tin, 2017), a miniature version of ImageNet (Deng
et al., 2009) consisting of 100, 000 training samples selected from 200 classes. Unfortunately, due to
computational constraints, we were not able to conduct experiments on ImageNet. We experiment
with various backbone networks including ResNet (He et al., 2016), Wide ResNet (Zagoruyko &
Komodakis, 2016) and ShuffleNet (Zhang et al., 2018b; Tan et al., 2019). We test the applicability of
SoTeacher from different aspects of model compression in knowledge distillation including reduction
of the width or depth, and distillation between heterogeneous neural architectures.

For knowledge distillation algorithms, we experiment with the original knowledge distillation
method (KD) (Hinton et al., 2015), and a wide variety of other sophisticated knowledge distil-
lation algorithms (see Sect. 5.2). We report the classification accuracies on the test set of both teacher
and the student distilled from it. All results are presented with mean and standard deviation based on
3 independent runs. For Tiny-ImageNet, we also report the top-5 accuracy. For hyperparameters, we
set λmax

CR = 1 for both datasets. For Lipschitz regularization, we set λLR = 10−5 for CIFAR-100 and
λLR = 10−6 for Tiny-ImageNet, as the regularization term is the sum of the Lipschitz constants of
trainable parameters, and the teacher model for Tiny-ImageNet has approximately 10 times more
parameters than that for CIFAR-100. More detailed hyperparameter settings for neural network
training and knowledge distillation algorithms can be found in Appendix D.

5.2 RESULTS

End-to-end Knowledge Distillation Performance. Tables 1 and 2 show the evaluation results on
CIFAR-100 and Tiny-ImageNet, respectively. Our teacher training method SoTeacher can improve
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Table 1: Test accuracy of the teacher and student with knowledge distillation conducted on CIFAR-
100. SoTeacher achieves better student accuracy than Standard for various architectures, depsite a
lower teacher accuracy.

WRN40-2/WRN40-1 WRN40-2/WRN16-2 ResNet32x4/ShuffleNetV2

Student Teacher Student Teacher Student Teacher

Standard 73.73± 0.13 76.38± 0.13 74.87± 0.45 76.38± 0.13 74.86± 0.18 79.22± 0.03
SoTeacher 74.35± 0.23 74.95± 0.28 75.39± 0.23 74.95± 0.28 77.24± 0.09 78.49± 0.09

no-CR 74.34± 0.11 74.30± 0.12 75.20± 0.24 74.30± 0.12 76.52± 0.52 77.73± 0.17
no-LR 73.81± 0.15 76.71± 0.16 75.21± 0.13 76.71± 0.16 76.23± 0.18 80.01± 0.18

Table 2: Test accuracy of the teacher and student with knowledge distillation conducted on Tiny-
ImageNet. The teacher network is ResNet34 and the student network is ResNet18. SoTeacher
achieves better student accuracy than Standard with a lower teacher Top-1 accuracy.

Student (Top-1) Student (Top-5) Teacher (Top-1) Teacher (Top-5)

Standard 66.19± 0.17 85.74± 0.21 64.94± 0.32 84.33± 0.40
SoTeacher 66.83± 0.20 86.19± 0.22 64.88± 0.48 84.91± 0.41

no-CR 66.39± 0.27 86.05± 0.17 64.36± 0.43 84.10± 0.27
no-LR 66.48± 0.43 86.20± 0.40 64.26± 1.54 84.48± 0.84

the student’s test accuracy consistently across different datasets and teacher/student architecture pairs.
Note that the success of our teacher training method is not due to high accuracy of the teacher. In
Tables 1 and 2, one may already notice that our regularization method will hurt the accuracy of the
teacher, despite that it can improve the accuracy of the student distilled from it.

Table 3: Estimation of the uncertainty quality of the teacher network trained by Standard and
SoTeacher. The uncertainty quality is estimated by the ECE and NLL both before and after tempera-
ture scaling (TS).

Dataset Teacher Method ECE NLL ECE (w/ TS) NLL (w/ TS)

CIFAR-100 WRN40-2 Standard 0.113± 0.003 1.047± 0.007 0.028± 0.004 0.905± 0.008
SoTeacher 0.057± 0.002 0.911± 0.013 0.016± 0.003 0.876± 0.012

CIFAR-100 ResNet32x4 Standard 0.083± 0.003 0.871± 0.010 0.036± 0.001 0.815± 0.008
SoTeacher 0.037± 0.001 0.777± 0.006 0.021± 0.001 0.764± 0.003

Tiny-ImageNet ResNet34 Standard 0.107± 0.007 1.601± 0.037 0.043± 0.002 1.574± 0.015
SoTeacher 0.070± 0.007 1.496± 0.031 0.028± 0.002 1.505± 0.033

To further interpret the success of our teacher training method, we show that our regularization
can indeed improve the approximation of the true label distribution thus benefiting the student
generalization. Directly measuring the quality of the true distribution approximation is infeasible as
the true distribution is unknown for realistic datasets. Follow previous works (Menon et al., 2021), we
instead estimate the approximation quality by reporting the Expected Calibration Error (ECE) (Guo
et al., 2017) and NLL loss of the teacher on a holdout set with one-hot labels. Since scaling the
teacher predictions in knowledge distillation can improve the uncertainty quality (Menon et al., 2021),
we also report ECE and NLL after temperature scaling, where the optimal temperature is located on
an additional holdout set (Guo et al., 2017). As shown in Table 3, our teacher training method can
consistently improve the approximation quality for different datasets and teacher architectures.

Ablation Study. We toggle off the Lipschitz regularization (LR) or consistency regularization
(CR) in SoTeacher (denoted as no-LR and no-CR, respectively) to explore their individual effects. As
shown in Tables 1 and 2, LR and CR can both improve the performance individually. But on average,
SoTeacher achieves the best performance when combining both LR and CR, as also demonstrated
in our theoretical analyses. Note that in Table 2, using Lipschitz regularization is not particularly
effective because the regularization weight might not be properly tuned (see Figure 2).

Effect of Hyperparameters. We conduct additional experiments on Tiny-ImageNet as an example
to study the effect of two regularization terms introduced by our teacher training method. For
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Lipschitz regularization, we modulate the regularization weight λLR. For consistency regularization,
we try different maximum regularization weights λmax

CR and different weight schedulers including
linear, cosine, cyclic, and piecewise curves. Detailed descriptions of these schedulers can be found
in Appendix D. As shown in Figure 2, both Lipschitz and consistency regularizations can benefit
the teacher training in terms of the student generalization consistently for different hyperparameter
settings. This demonstrates that our regularizations are not sensitive to hyperparameter selection.
Note that the hyperparameter chosen to report the results in Tables 1 and 2 might not be optimal since
we didn’t perform extensive hyperparameter search in fear of overfitting small datasets. It is thus
possible to further boost the performance by careful hyperparameter tuning.

In particular, Figure 2(a) shows that, as Lipschitz regularization becomes stronger, the teacher
accuracy constantly decreases while the student accuracy increases and converges. This demonstrates
that excessively strong Lipschitz regularization hurts the performance of neural network training, but
it can help student generalization in the knowledge distillation context.
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Figure 2: Effect of varying the hyperparameters in our teacher training method, including the weight
for Lipschitz regularization λLR, the weight for consistency regularization λCR, and its scheduler.
The settings of our method used to report the results (e.g. Table 2) are denoted as “▲”. The standard
teacher training practice is denoted as “■” for comparison.

Other Knowledge Distillation Algorithms. Besides the original knowledge distillation algorithm,
we experiment with various feature distillation algorithms including FitNets (Romero et al., 2015),
AT (Zagoruyko & Komodakis, 2017), SP (Tung & Mori, 2019), CC (Peng et al., 2019), VID (Ahn
et al., 2019), RKD (Park et al., 2019), PKT (Passalis & Tefas, 2018), AB (Heo et al., 2019), FT (Kim
et al., 2018), NST (Huang & Wang, 2017), CRD (Tian et al., 2020) and SSKD (Xu et al., 2020). For the
implementation of these algorithms, we refer to existing repositories for knowledge distillation (Tian
et al., 2020; Shah et al., 2020; Matsubara, 2021) and author-provided codes. Although these distillation
algorithms match all types of features instead of predictions between teacher and student, they will
achieve the best distillation performance when combined with the prediction distillation (i.e. original
KD). Therefore, our teacher training method should still benefit the effectiveness of these distillation
algorithms. We also experiment with a curriculum distillation algorithm RCO (Jin et al., 2019) which
distills from multiple checkpoints in teacher’s training trajectory. Our teacher training method should
also benefit RCO as the later teacher checkpoints become more student-oriented. As shown in Table 6,
our SoTeacher can boost the distillation performance of almost all these distillation algorithms,
demonstrating its wide applicability.

Student fidelity. Recent works have underlined the importance of student fidelity in knowledge
distillation, namely the ability of the student to match teacher predictions (Stanton et al., 2021).
Student fidelity can be viewed as a measure of knowledge distillation effectiveness that is orthogonal
to student generalization, as the student is often unable to match the teacher predictions although its
accuracy on unseen data improves (Furlanello et al., 2018; Mobahi et al., 2020). Here we measure
the student fidelity by the average agreement between the student and teacher’s top-1 predicted labels
on the test set. As shown in Table 4, our teacher training method can consistently and significantly
improve the student fidelity for different datasets and teacher-student pairs, which aligns with the
improvement of student generalization shown by Table 1 and 2. This demonstrates that the teacher
can better transfer its “knowledge” to the student with our training method.

Training overhead. Compared to standard teacher training, the computation overhead of SoTeacher
is mainly due to the calculation of the Lipschitz constant, which is efficient as it only requires simple
arithmetic calculations of the trainable weights of a neural network (see Section 4). Empirically
we observe that training with SoTeacher is only slightly longer than the standard training for about
5%. The memory overhead of SoTeacher is incurred by buffering an average prediction for each
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Table 4: Average agreement (%) between the student and teacher’s top-1 predictions on the test set.

CIFAR-100 Tiny-ImageNet

WRN-40-2/WRN-40-1 WRN-40-2/WRN-16-2 ResNet32x4/ShuffleNetV2 ResNet34/ResNet18

Standard 76.16± 0.14 76.92± 0.29 76.63± 0.25 71.33± 0.07
SoTeacher 77.92± 0.27 79.41± 0.11 80.36± 0.13 73.36± 0.25

input. However, since such prediction requires no gradient calculation we can simply store it in a
memory-mapped file.

6 RELATED WORK

Alleviate “teacher overfitting”. Since in knowledge distillation the distillation data is often reused
from the teacher’s training data, a teacher trained toward convergence is very likely to overfit its soft
predictions on the distillation data. Intuitively, it is possible to tackle this problem by early stopping
the teacher training (Cho & Hariharan, 2019). However, a meticulous hyperparameter search may be
required since the epoch number to find the best checkpoint is often sensitive to the specific training
setting such as the learning rate schedule. It is also possible to save multiple early teacher checkpoints
for the student to be distilled from sequentially (Jin et al., 2019). Additionally, one can utilize a
“cross-fitting” procedure to prevent teacher from memorizing the training data. Namely, the training
data is first partitioned into several folds, where the teacher predictions on each fold are generated by
the teacher trained only on out-of-fold data (Dao et al., 2021). However, this may depart from the
standard teacher training practice and induce significant computation overhead. One can also train
the teacher network jointly with student’s network blocks, which imposes a regularization toward
the student performance (Park et al., 2021). However, this may also induce significant computation
overhead as every unique student architecture will require retraining the teacher. For multi-generation
knowledge distillation specifically (Furlanello et al., 2018), one can penalize the difference between
the predictive probability at the true class and the probabilities at other semantically relevant classes to
encourage the learning of secondary probabilities in teacher’s prediction, which is shown to improve
the performance of models in later generations (Yang et al., 2019). Different from these attempts, we
train the teacher to directly learn the true label distribution of its training data, leading to a simple
and practical student-oriented teacher training framework with minimum computation overhead.

Uncertainty learning on unseen data. Since the objective of our student-oriented teacher training
is to learn label distributions of the training data, it is related to those methods aiming to learn quality
uncertainty on the unseen data. We consider those methods that are feasible for large teacher network
training, including (1) classic approaches to overcome overfitting such as ℓ1 and ℓ2 regularization, (2)
modern regularizations such as label smoothing (Szegedy et al., 2016) and data augmentations such
as mixup (Zhang et al., 2018a) and Augmix (Hendrycks et al., 2020), (3) Post-training methods such
as temperature scaling (Guo et al., 2017), as well as (4) methods that incorporate uncertainty as a
learning ojective such as confidence-aware learning (CRL) (Moon et al., 2020).

We have conducted experiments on CIFAR-100 using all these methods and the results can be found
in Appendix F. Unfortunately, the performance of these regularization methods is unsatisfactory in
knowledge distillation — only CRL can slightly outperform the standard training. We believe the
reasons might be two-folds. First, most existing criteria for uncertainty quality on the unseen data
such as calibration error (Naeini et al., 2015) or ranking error (Geifman et al., 2019), only require the
model to output an uncertainty estimate that is correlated with the probability of prediction errors.
Such criteria may not be translated into the approximation error to the true label distribution. Second,
even if a model learns true label distribution on unseen data, it does not necessarily have to learn true
label distribution on the training data, as deep neural networks tend to memorize the training data.

7 CONCLUSION AND FUTURE WORK

In this work, we rigorously studied the feasibility to learn the true label distribution of the training
data under a standard empirical risk minimization framework. We also explore possible improvements
of current teacher training that facilitate such learning. In the future, we plan to adapt our theory to
other knowledge distillation scenarios such as transfer learning and mixture of experts, and explore
more effective student-oriented teacher network training methods.
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A PROOF OF THEOREM 3.6

Step I: Bound the difference between the true label distribution and the sample mean. First
we note that the set of all training inputs can be grouped into several subsets such that the inputs in
each subset possess similar true label distribution.

More formally, Let Cr = {x̄j}Nr
j=1 be an r-external covering of S with minimum cardinality, namely

S ⊆
⋃

x∈Cr

{x′ | ∥x′ − x∥ ≤ r}, (7)

where we refer x̄j as the covering center, and Nr is the covering number.

Let {Sr
j }

Nr
j=1 be any disjoint partition of S such that Sr

j ⊆ {x′|∥x′ − x̄j∥ ≤ r}. We show that Sr
j

attains a property that the true label distribution p∗(x) of any input x in this subset will not be too far
from the sample mean of one-hot labels ȳj = |Sr

j |
−1 ∑

x∈Sr
j
1y in this subset. Namely given any

ε > 0, we have

P (∥p∗(x)− ȳj∥ ≥ ε) ≤ 2 exp

(
−
|Sr

j |
2K

ε̃2
)
, (8)

where ε̃ = max(ε− 2L∗r, 0).

To prove this property we first present two lemmas.
Lemma A.1 (Lipschitz constraint of the true label distribution). Let Sr

j be a subset constructed
above and ȳj = |Sr

j |
−1 ∑

x∈Sr
j
1y . Then for any x ∈ Sr

j we have,

∥p∗(x)− E[ȳj ]∥ ≤ 2L∗r. (9)

Proof. First, since x ∈ Sr
j , we have ∥x− x̄j∥ ≤ r, which implies ∥p∗(x)− p∗(x̄j)∥ ≤ L∗r by the

locally Lipschitz continuity of p∗. Then for any x, x′ ∈ Sr
j , we will have ∥p∗(x)− p∗(x′)∥ ≤ 2L∗r

by the triangle inequality. Let NS = |Sr
j |. Therefore,∥∥∥∥∥∥p∗(x)− 1

NS

∑
x∈Sr

j

p∗(x)

∥∥∥∥∥∥ ≤ 2
NS − 1

NS
L∗r ≤ 2L∗r. (10)

Further, the linearity of the expectation implies

E[ȳ] = NS
−1

∑
x∈Sr

j

E[1y(x)] = NS
−1

∑
x∈Sr

j

p∗(x). (11)

Therefore ∥p∗(x)− E[ȳj ]∥ ≤ 2L∗r.

Lemma A.2 (Concentration inequality of the sample mean). Let S be a set of x with cardinality N .
Let ȳ = N−1

∑
x∈S 1y be the sample mean. Then for any p-norm ∥ · ∥ and any ε > 0, we have

P (∥ȳ − E [ȳ]∥ ≥ ε) ≤ 2 exp

(
− N

2K
ε2
)
. (12)

Proof. Note that ȳ obeys a multinomial distribution, i.e. ȳ ∼ N−1multinomial(N,E[ȳ]). We
utilize the classic results on the concentration properties of multinomial distribution based on ℓ1
norm (Weissman et al., 2003; Qian et al., 2020), namely

P (∥ȳ − E [ȳ]∥1 ≥ ε) ≤ 2 exp

(
− N

2K
ε2
)

(13)

Further, for any q ∈ RK , by the equivalence of p-norm we have ∥q∥ ≤ ∥q∥1. Therefore,

{q | ∥q∥ ≥ ε} ⊆ {q | ∥q∥1 ≥ ε} , (14)

which implies,
P (∥q∥ ≥ ε) ≤ P (∥q∥1 ≥ ε) . (15)

Combine inequality (13) and (15) we then have (12).
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One can see that Lemma A.1 bounds the difference between true label distribution of individual
inputs and the mean true label distribution, while Lemma A.2 bounds the difference between the
sample mean and the mean true label distribution. Therefore the difference between the true label
distribution and the sample mean is also bounded, since by the triangle inequality we have

∥p∗(x)− ȳ∥ ≤ ∥p∗(x)− E[ȳ]∥+ ∥ȳ − E[ȳ]∥. (16)

This implies
P (∥p∗(x)− ȳ∥ ≥ ε) ≤ P (∥ȳ − E[ȳ]∥ ≥ ε̃) , (17)

where ε̃ = max(ε− 2L∗r, 0). Apply Lemma A.2 we then have (8).

Step II: Bound the difference between the prediction given by the empirical risk minimizer and
the sample mean. Here we show that given the locally Lipschitz constraint established in each
disjoint partition we constructed above, the prediction given by the empirical risk minimizer will
be close to the sample mean. As an example, we focus on the negative log-likelihood loss, namely
ℓ(f(x), y) = −1y · log f(x). Other loss functions that are subject to the proper scoring rule can be
investigated in a similar manner.

First, we regroup the sum in (1) based on the partition constructed above, namely

R̂(f ,S) = 1

Nr

Nr∑
j=1

R̂(f ,Sr
j ), (18)

where R̂(f ,Sr
j ) = −|Sr

j |
−1 ∑|Sr

j |
i=1 1yi

· log f(xi) is the empirical risk in each partition. Since we are
only concerned with the existence of a desired minimizer of the empirical risk, we can view f as able
to achieve any labeling of the training inputs that suffices the local Lipschitz constraint. Thus the
empirical risk minimization is equivalent to the minimization of the empirical risk in each partition.
The problem can thus be defined as, for each j = 1, · · · , Nr,

min
f

R̂(f ,Sr
j )

s.t. ∥f(x)− f(x̄j)∥ ≤ Lr, ∀ x ∈ Sr
j ,

(19)

where the constraint is imposed by the locally-Lipschitz continuity of f . By the following lemma, we
show that the minimizer of such problem is achieved only if f(x̄j) is close to the sample mean.

Lemma A.3. Let ȳ = |Sr
j |

−1 ∑
x∈Sr

j
1y. The minimum of the problem (19) is achieved only if

f(x̄j) = ȳj(1 +KLr)− Lr.

Proof. We note that since the loss function we choose is strongly convex, to minimize the em-
pirical risk, the prediction of any input x must be as close to the one-hot labeling as possible.
Therefore the problem (19) can be formulated into a vector minimization where we can employ
Karush–Kuhn–Tucker (KKT) theorem to find the necessary conditions of the minimizer.

We rephrase the problem (19) as

min
{pi}N

i=1

− 1

N

∑
i

1yi
· logpi

s.t. ∥pi − p∥ ≤ ε,
∑
k

pk
i = 1,

∑
k

pk = 1,pk
i ≥ 0,pk ≥ 0.

(20)

Case I. We first discuss the case when pk + ε < 1 for all k. First, we observe that for any p,
the minimum of the above problem is achieved only if pyi

i = pyi + ε. Because by contradiction, if
pyi

i < pyi + ε, we will have − logpyi

i > − log(pyi + ε), and pyi + ε belongs to the feasible set,
which means pyi

i does not attain the minimum.

The above problem can then be rephrased as

min
p

− 1

N

∑
i

log(pyi + ε), s.t.
∑
k

pk = 1,pk ≥ 0, (21)
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where we have neglected the condition associated with pk ̸=yi

i , since they do not contribute to the
objective, they can be chosen arbitrarily as long as the constraints are sufficed, and clearly the
constraints are underdetermined.

Let Nk =
∑

i 1(yi = k), we have
∑

i log(p
yi + ε) =

∑
k Nk log(p

k + ε). Therefore the above
problem is equivalent to

min
p

−
∑
k

ȳk log(pk + ε), s.t.
∑
k

pk = 1,pk ≥ 0, (22)

where ȳ ≡ [N1/N, · · · , Nk/N ]T is equal to the sample mean N−1
∑

i 1yi
.

To solve the strongly convex minimization problem (22) it is easy to employ KKT conditions to show
that

p = ȳ(1 +Kε)− ε.

Case II. We now discuss the case when p̂ is the minimizer of (20) and there exists k′ such that
p̂k′

+ ε ≥ 1. And p̂ ̸= p∗, where p∗ = ȳ(1 +Kε)− ε is the form of the minimizer in the previous
case.

Considering a non-trivial case p∗k′
< 1− ε. Otherwise the true label distribution is already close to

the one-hot labeling, which is the minimizer of the empirical risk. Therefore by
∑

k ̸=k′ p∗k > ε we
have the condition ∑

k ̸=k′

ȳk >
Kε

1 +Kε
(23)

Now considering the minimization objective R(p) = −N−1
∑

i 1yi ·logpi. For all i with yi = k′, we
must have pyi

i = 1, otherwise the optimal cannot be attained by contradiction. Then the minimization
problem can be rephrased as

min
∑
k ̸=k′

ȳk log(p̂+ ε), s.t.
∑
k′ ̸=k

p̂k ≥ ε, p̂k ≥ 0, (24)

where the first constraint is imposed by p̂k′ ≥ 1− ε.

Employ KKT conditions similarly we can have p̂k = ȳk/λ− ε where λ is a constant. By checking
the constraint we can derive λ ≥

∑
k ȳ

k/(Kε).

However, the minimization objective

min
λ

−
∑
k ̸=k′

ȳk log
ȳk

λ
,

requires λ to be minimized. Therefore λ =
∑

k ̸=k′ ȳk/(Kε), which implies

p̂k = Kε
ȳk∑

k ̸=k′ ȳk
− ε. (25)

Now since p̂ = argminp R(p) and p̂ ̸= p∗, we must have R(p̂) < R(p∗). This means

−
∑
k ̸=k′

ȳk log
Kεȳk∑
k ̸=k′ ȳk

< −
∑
k ̸=k′

ȳk log[ȳk(1 +Kε)], (26)

which is reduced to ∑
k ̸=k′

ȳk <
Kε

1 +Kε
(27)

But this is contradict to our assumption.
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We are now be able to bound the difference between the predictions of the training inputs produced by
the empirical risk minimizer and the sample mean in each Sr

j . To see that we have for each x ∈ Sr
j .

∥f(x)− ȳj∥ ≤ ∥f(x)− f(x̄j)∥+ ∥f(x̄j)− ȳj∥
≤ Lr(1 +K∥ȳj −K−11∥)
≤ Lr(1 +K∥1(·) −K−11∥).

(28)

By Equation (8) we then have for any x ∈ Sr
j ,

P (∥f(x)− p∗(x)∥ ≥ ε) ≤ 2 exp

(
−
|Sr

j |
2K

ε̃2
)
, (29)

which means the difference between the predictions and the true label distribution is also bounded.
Here ε̃ = max(ε− Lr(1 +K∥1(·) −K−11∥)− 2L∗r, 0).

Step III: Show the disjoint partition is non-trivial. In (29), we have managed to bound
the difference between the predictions yielded by an empirical risk minimizer and the true label
distribution based on the cardinality of the subset |Sr

j |, namely the number of inputs in j-partition.
However |Sr

j | is critical to the bound here as if |Sr
j | = 1, then (29) becomes a trivial bound. Here we

show |Sr
j | is non-negligible based on simple combinatorics.

Lemma A.4. Let {Sr
j }

Nr
j=1 be a disjoint partition of the entire training set S. Denote Sr(x) as the

partition that includes x. Let N(x) = |Sr(x)| and N = |S|. Then for any κ ≥ 1,∣∣∣∣{x | N(x) ≥ N

κNr

}∣∣∣∣ ≥ (
1− 1

κ
+

1

κNr

)
N. (30)

Proof. We note that the problem is to show the minimum number of x such that N(x) ≥ N/(κNr).
This is equivalent to find the maximum number of x such that N(x) ≤ N/(κNr). Since we only have
Nr subsets, the maximum can be attained only if for Nr−1 subsets Sr, |Sr| = N/(κNr). Otherwise,
if for any one of these subsets |Sr| < N/(κNr), then it is always feasible to let |Sr| = N/(κNr)
and the maximum increases. Similarly, if the number of such subsets is less than Nr − 1, then it is
always feasible to let another subset subject to |Sr| = N/(κNr) and the maximum increases. We
can then conclude that at most N(Nr − 1)/(κNr) inputs can have the property N(x) ≤ N/(κNr).

The above lemma basically implies when partitioning N inputs into Nr subsets, a large fraction of
the inputs will be assigned to a subset with cardinality at least N/(κNr). Here Nr is the covering
number and is bounded above based on the property of the covering in the Euclidean space. Apply
Lemma A.4 to (29) we then arrive at Theorem 3.6.

Difference from the Lipschitz bound in generalization theory. We note that in Theorem 3.6,
the constraint on the local Lipschitz continuity of the hypothesis function is more strict than that is
required in typical generalization theory of deep neural networks (Sokolic et al., 2017; Bartlett et al.,
2017).
Remark A.5. In generalization theory we often require the hypothesis function to be locally Lipschitz
continuous around training inputs, such that the difference between the prediction of an unseen
input and the prediction of its nearest training input is bounded. However, for learning true label
distribution of the training data we need to bound the difference between the predictions of a subset
of training inputs. Therefore, our constraint requires the Lipschitz continuity to be established at a
larger scale in the input space.

Indeed, we observe from later experiments that our stronger Lipschitz constraint will actually hurt
the performance of the teacher on the test set, whereas it can still improve the student performance.

B LIMITATIONS

In this paper we focus on the theoretical feasibility of learning the true label distribution of training
examples with empirical risk minimization. Therefore we only analyze the existence of such a
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desired minimizer, but neglect the optimization process to achieve it. By explore the optimization
towards true label distribution, potentially more dynamics can be found to inspire new regularization
techniques.

Also, our proposed method for training a student-oriented teacher may not be able to advance the
state-of-the-art significantly, as the regularization techniques based inspired by our analyses such
as Lipschitz regularization and consistency regularization may more or less leveraged by existing
training practice of deep neural networks, either implicitly or explicitly.

C IMPLEMENTATION DETAILS

Lipschitz regularization. Following previous practice using Lipschitz regularization for gener-
alization on unseen data (Yoshida & Miyato, 2017) or stabilizing generative model (Miyato et al.,
2018), we regularize the Lipschitz constant of a network by constraining the Lipschitz constant
of each trainable component. The regularization term is thus defined as ℓLR =

∑
f Lip(f), where

f denotes a trainable component in the network f . The Lipschitz constant of a network compo-
nent Lip(f) induced by a norm ∥ · ∥ is the smallest value L such that for any input features h, h′,
∥f(h)− f(h′)∥ ≤ L∥h− h′∥. Here we adopt the Lipschitz constant induced by 1-norm, since its
calculation is accurate, simple and efficient. For calculating the Lipschitz constants of common
trainable components in deep neural networks, we refer to (Gouk et al., 2021) for a comprehensive
study.

Consistency regularization. We design our consistency regularization term as ℓCR =

1
N

∑
i

∥∥∥f(xi)− f(xi)
∥∥∥2
2
, where we follow previous work (Laine & Aila, 2017) and employ MSE to

penalize the difference. Here f(x) is the aggregated prediction of an input x, which we calculate
as the simple average of previous predictions f(x)t = 1

t

∑t−1
t′=0 f(x)t′ , where we omit the data

augmentation operator for simplicity. At epoch 0 we simply skip the consistency regularization. Note
that such a prediction average can be implemented in an online manner thus there is no need to store
every previous prediction of an input.

D DETAILS OF EXPERIMENT SETTING

D.1 HYPERPARAMETER SETTING FOR TEACHER NETWORK TRAINING

For all the experiments on CIFAR-100, we employ SGD as the optimizer and train for 240 epochs
with a batch size of 64. The learning rate is initialized at 0.05 and decayed by a factor of 10 at the
epochs 150, 180 and 210, with an exception for ShuffleNet where the learning rate is initialized
at 0.01 following existing practice (Tian et al., 2020; Park et al., 2021). The weight decay and
momentum are fixed as 0.0005 and 0.9 respectively. The training images are augmented with random
cropping and random horizontal flipping with a probability of 0.5.

For Tiny-ImageNet experiments, we employ SGD as the optimizer and conduct the teacher training
for 90 epochs with a batch size of 128. The learning rate starts at 0.1 and is decayed by a factor of 10
at epochs 30 and 60. The weight decay and momentum are fixed as 0.0005 and 0.9 respectively. The
training images are augmented with random rotation with a maximum degree of 20, random cropping
and random horizontal flipping with a probability of 0.5. For student training the only difference is
that we train for additional 10 epochs, with one more learning rate decay at epoch 90, aligned with
previous settings (Tian et al., 2020).

For consistency regularization in our teacher training method, we experiment with various weight
schedules besides the linear schedule mentioned in the main paper. We list the formulas for these
schedules in the following. Here t denotes the epoch number, T denotes the total number of epochs,
and λmax

CR denotes the maximum weight.

• Cosine schedule:

λCR(t) = cos

[(
1− t

T

)
π

2

]
λmax
CR
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Table 5: β for different feature distillation algorithms

β β β
Standard SoTeacher Standard SoTeacher Standard SoTeacher

FitNets 100 50 AT 1000 500 SP 3000 1500
CC 0.02 0.01 VID 1.0 0.5 RKD 1.0 0.5
PKT 30000 15000 AB 1.0 0.5 FT 200 100
NST 50 25 CRD 0.8 0.5

• Cyclic schedule:

λCR(t) =

√
1−

(
1− t

T

)2

λmax
CR

• Piecewise schedule:

λCR(t) =


0, 0 < t ≤ T/3,

λmax
CR /2, T/3 < t ≤ 2T/3,

λmax
CR , 2T/3 < t ≤ T.

D.2 HYPERPARAMETER SETTING FOR KNOWLEDGE DISTILLATION ALGORITHMS

For knowledge distillation algorithms we refer to the setting in RepDistiller 2. Specifically, for
original KD, the loss function used for student training is defined as

ℓ = αℓCross-Entropy + (1− α)ℓKD.

We grid search the best hyper-parameters that achieve the optimal performance, namely the loss
scaling ratio α is set as 0.5 and the temperature is set as 4 for both CIFAR-100 and Tiny-ImageNet.
For all feature distillation methods combined with KD the loss function can be summarized as (Tian
et al., 2020)

ℓ = γℓCross-Entropy + αℓKD + βℓDistill,

where we grid search the optimal γ and α to be 1.0 and 1.0 respectively. When using our teacher
training method, all these hyperparameters are kept same except that for all feature distillation
algorithms the scaling weights corresponding to the feature distillation losses β are cut by half, as we
wish to rely more on the original KD that is well supported by our theoretical understanding. Table 5
list β used in our experiments for all feature distillation algorithms. For SSKD (Xu et al., 2020)
the hyperparameters are set as λ1 = 1.0, λ2 = 1.0, λ3 = 2.7, λ4 = 10.0 for standard training and
λ1 = 1.0, λ2 = 1.0, λ3 = 1.0, λ4 = 10.0 for our methods. For the curriculum distillation algorithm
RCO we experiment based on one-stage EEI (equal epoch interval). We select 24 anchor points (or
equivalently every 10 epochs) from the teacher’s saved checkpoints.

E ADDITIONAL EXPERIMENT RESULTS

F EXPERIMENTS WITH UNCERTAINTY REGULARIZATION METHODS ON
UNSEEN DATA

Experiment setup. We conduct experiments on CIFAR-100 with teacher-student pair WRN40-
2/WRN40-1. We employ the original KD as the distillation algorithm. The hyperparameter settings
are the same as those mentioned in the main results (see Appendix D). For each regularization
method we grid search the hyperparameter that yields the best student performance. The results are
summarized in Table 7.

Classic regularization. We observe that with stronger ℓ2 or ℓ1 regularization the student
performance will not deteriorate significantly as teacher converges. However, it also greatly reduces
the performance of the teacher. Subsequently the performance of the student is not improved as
shown in Table 7.

2https://github.com/HobbitLong/RepDistiller
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Table 6: SoTeacher consistently outperforms Standard on CIFAR-100 with various KD algorithms.

WRN40-2/WRN40-1 WRN40-2/WRN16-2 ResNet32x4/ShuffleV2

Standard SoTeacher Standard SoTeacher Standard SoTeacher

FitNet 74.06± 0.20 74.88± 0.15 75.42± 0.38 75.64± 0.20 76.56± 0.15 77.91± 0.21
AT 73.78± 0.40 75.12± 0.17 75.45± 0.28 75.88± 0.09 76.20± 0.16 77.93± 0.15
SP 73.54± 0.20 74.71± 0.19 74.67± 0.37 75.94± 0.20 75.94± 0.16 78.06± 0.34
CC 73.46± 0.12 74.76± 0.16 75.08± 0.07 75.67± 0.39 75.43± 0.19 77.68± 0.28
VID 73.88± 0.30 74.89± 0.19 75.11± 0.07 75.71± 0.19 75.95± 0.11 77.57± 0.16
RKD 73.41± 0.47 74.66± 0.08 75.16± 0.21 75.59± 0.18 75.28± 0.11 77.46± 0.10
PKT 74.14± 0.43 74.89± 0.16 75.45± 0.09 75.53± 0.09 75.72± 0.18 77.84± 0.03
AB 73.93± 0.35 74.86± 0.10 70.09± 0.66 70.38± 0.87 76.27± 0.26 78.05± 0.21
FT 73.80± 0.15 74.75± 0.13 75.19± 0.15 75.68± 0.28 76.42± 0.17 77.56± 0.15
NST 73.95± 0.41 74.74± 0.14 74.95± 0.23 75.68± 0.16 76.07± 0.08 77.71± 0.10
CRD 74.44± 0.11 75.06± 0.37 75.52± 0.12 75.95± 0.02 76.28± 0.13 78.09± 0.13
SSKD 75.82± 0.22 75.94± 0.18 76.31± 0.07 76.32± 0.09 78.49± 0.10 79.37± 0.11
RCO 74.50± 0.32 74.81± 0.04 75.24± 0.34 75.50± 0.12 76.75± 0.13 77.59± 0.31

Table 7: Performance of the knowledge distillation when training the teacher using existing regular-
ization methods for learning quality uncertainty on unseen data.

WRN40-2/WRN40-1

Student Teacher

Standard 73.73± 0.13 76.38± 0.13
SoTeacher 74.35± 0.23 74.95± 0.28

ℓ2 (5× 10−4) 73.73± 0.13 76.38± 0.13
ℓ1 (10−5) 73.60± 0.15 73.52± 0.05
Mixup (α = 0.2) 73.19± 0.21 77.30± 0.20
Cutmix (α = 0.2) 73.61± 0.26 78.42± 0.07
Augmix (α = 1, k = 3) 73.83± 0.09 77.80± 0.30
CRL (λ = 1) 74.13± 0.29 76.69± 0.16

Label smoothing. Label smoothing is shown to not only improve the performance but also the
uncertainty estimates of deep neural networks (Müller et al., 2019). However, existing works have
already shown that label smoothing can hurt the effectiveness of knowledge distillation (Müller et al.,
2019), thus we neglect the results here. An intuitive explanation is that label smoothing encourages
the representations of samples to lie in equally separated clusters, thus “erasing” the information
encoding possible secondary classes in a sample (Müller et al., 2019).

Data augmentation. Previous works have demonstrated that mixup-like data augmentation
techniques can greatly improve the uncertainty estimation on unseen data (Thulasidasan et al., 2019;
Hendrycks et al., 2020). For example, Mixup augmented the training samples as x := αx+(1−α)x′,
and y := αy + (1− α)y′, where (x′, y′) is a randomly drawn pair not necessarily belonging to the
same class as x.

As shown in Table 7, stronger mixup can improve the performance of the teacher, whereas it can
barely improve or even hurt the performance of the student. Based on our theoretical understanding
(Theorem 3.8), we conjecture the reason might be that mixup distorts the true label distribution of an
input stochastically throughout the training, thus hampering the learning of true label distribution.

Temperature scaling. Previous works have suggested using the uncertainty on a validation set to
tune the temperature for knowledge distillation either in standard learning (Menon et al., 2021) or
robust learning (Dong et al., 2021). However, the optimal temperature may not be well aligned with
that selected based on uncertainty (Menon et al., 2021). We neglect the experiment results here as the
distillation temperature in our experiments is already fine-tuned.

Uncertainty learning. CRL designs the loss function as ℓ = ℓCE + λℓCRL, where ℓCE is the
cross-entropy loss and ℓCRL is an additional regularization term bearing the form of

ℓCRL = max (0,−g(c(xi), c(xj))(p(xi)− p(xj)) + |c(xi)− c(xj)|) , (31)
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where p(x) = maxk f(x)
k is the maximum probability of model’s prediction on a training sample x

and

c(x) =
1

t− 1

t−1∑
t′=1

1(argmax
k

f(x)kt′ = y)

is the frequency of correct predictions through the training up to the current epoch. Here g(ci, cj) = 1
if ci > cj and g(ci, cj) = −1 otherwise. Although originally proposed to improve the uncertainty
quality of deep neural networks in terms of ranking, we found that CRL with a proper hyperparameter
can improve the distillation performance, as shown in Table 7.

We note that the effectiveness of CRL on distillation can be interpreted by our theoretical understand-
ing, as its regularization term (31) is essentially a special form of consistency regularization. To see
this we first notice (31) is a margin loss penalizing the difference between p(x) and c(x) in terms of
ranking. We then rewrite c(x) as

c(x) = 1y ·
1

t− 1

t−1∑
t′=1

Onehot[f(x)t′ ], (32)

which is similar to our consistency regularization target, except the prediction is first converted into
one-hot encoding. Such variation may not be the best for knowledge distillation as we wish those
secondary class probabilities in the prediction be aligned as well.
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