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Abstract

Remote photoplethysmography (rPPG) enables non-contact physiological mea-
surement but remains highly susceptible to illumination changes, motion artifacts,
and limited temporal modeling. Large Language Models (LLMs) excel at captur-
ing long-range dependencies, offering a potential solution but struggle with the
continuous, noise-sensitive nature of rPPG signals due to their text-centric design.
To bridge this gap, we introduce the PhysLLM, a collaborative optimization frame-
work that synergizes LLMs with domain-specific rPPG components. Specifically,
the Text Prototype Guidance (TPG) strategy is proposed to establish cross-modal
alignment by projecting hemodynamic features into LLM-interpretable semantic
space, effectively bridging the representational gap between physiological signals
and linguistic tokens. Besides, a novel Dual-Domain Stationary (DDS) Algorithm
is proposed for resolving signal instability through adaptive time-frequency do-
main feature re-weighting. Finally, rPPG task-specific cues systematically inject
physiological priors through physiological statistics, environmental contextual an-
swering, and task description, leveraging cross-modal learning to integrate both
visual and textual information, enabling dynamic adaptation to challenging sce-
narios like variable illumination and subject movements. Evaluation on four
benchmark datasets, PhysLLM achieves state-of-the-art accuracy and robustness,
demonstrating superior generalization across lighting variations and motion sce-
narios.

1 Introduction
Remote photoplethysmography (rPPG) is a non-contact technique that allows for the remote mea-
surement of physiological signals such as heart rate (HR) (Yue et al., 2021; Das et al., 2023) and
blood pressure (Wu et al., 2022) by analyzing subtle color changes in the skin caused by blood flow.
Unlike traditional contact-based methods, such as electrocardiograms (ECG) and Photoplethysmo-
graph (PPG) (Murthy et al., 2015), rPPG does not require physical sensors attached to the body,
making it a more convenient and less intrusive option for continuous health monitoring. Based
on these advantages of rPPG, more and more excellent work and research have been committed to
improving its accuracy, robustness and scalability in recent years.

Traditional remote photoplethysmography (rPPG) methods (Poh et al., 2010; Madej et al., 2011;
De Haan & Jeanne, 2013; Wang et al., 2017) typically rely on signal processing techniques to isolate
rPPG signals from videos. More recent deep learning methods, including CNNs (Yu et al., 2019;
∗Equal contribution
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Figure 1: The comparison between (a) typical CNN-based rPPG model, (b) pure LLM model, and (c) our
proposed PhysLLM.

Li et al., 2023; Lu et al., 2023; Niu et al., 2019; Špetlı́k et al., 2018; Chen & McDuff, 2018; Liu
et al., 2021b) and Transformers (Yu et al., 2022; Shao et al., 2023; Qian et al., 2024; Yu et al., 2023),
have been proposed to address some of these challenges by learning more complex representations
of facial features. Fig. 1(a) shows a typical CNN-based framework where features extracted by the
encoder are directly fed into the estimator to produce the final sequence. However, these methods are
still sensitive to visual noise (e.g., motion blur, occlusions, and low resolution) and often rely on a
single video stream, which limits robustness in real-world settings. Introducing textual descriptions
provides complementary context about scene conditions—such as occlusion, motion artifacts, and
lighting changes—so the model can adapt its processing accordingly. This multi-modal design lets
the LLM combine visual cues with semantic context, improving physiological signal extraction under
challenging conditions.

Large Language Models (LLMs) offer significant advantages for enhancing rPPG methods, partic-
ularly in modeling long-term temporal dependencies (Tang et al., 2025; Jin et al., 2023). While
traditional rPPG approaches struggle with extended video sequences, LLMs excel at capturing com-
plex sequential patterns, making them promising candidates for physiological signal estimation.
Previous works like TimeLLM (Jin et al., 2023) have demonstrated the effectiveness of LLMs in
time-series applications, suggesting untapped potential for rPPG tasks. However, directly applying
LLMs to rPPG estimation presents fundamental challenges, as illustrated in Fig. 1(b). The mismatch
between LLMs’ discrete operations and rPPG features’ continuous nature leads to poor represen-
tations and high noise sensitivity. Despite LLMs’ proven capabilities in cross-modal tasks, their
text-oriented architecture requires significant adaptation for effective physiological signal analysis.

To address these limitations, we propose PhysLLM, a collaborative optimization framework that
integrates LLMs with specialized rPPG processing components. As shown in Fig. 1(c), to combine
CNN’s local spatio-temporal feature extraction with LLM’s superior long-range temporal reasoning
for more robust physiological measurements, we employ a CNN-based rPPG as the base model,
leveraging both the multi-scale features and the estimated rPPG signals to guide LLM learning.
Specifically, we introduce a Dual-Domain Stationary (DDS) Algorithm to stabilize the base model’s
rPPG output and a Vision Aggregator module to fuse multi-scale hemodynamic features. To bridge
the gap between rPPG features and LLM processing, we propose Text Prototype Guidance (TPG),
which aligns sequence and multi-scale features with LLM text prototypes. Furthermore, we introduce
task-specific cues, i.e., environmental factors, physiological knowledge, and task description, with
learnable word vectors to enhance the LLM’s understanding of the rPPG context through cross-modal
learning, integrating both visual and textual information. Therefore, PhysLLM adapts to varying
conditions such as lighting changes and motion artifacts, significantly improving the accuracy and
robustness of rPPG measurement. Overall, our contributions include:

• We propose PhysLLM, the first framework integrating LLMs into rPPG measurement to
establish interpretable connections between physiological dynamics and contextual seman-
tics. The architecture’s inherent capacity for long-sequence dependency modeling enables
superior performance in complex real-life scenarios.

• We propose a novel time-frequency Dual-Domain stationary (DDS) Algorithm to address
spectral-temporal instability through adaptive coefficient modulation with exponential decay
characteristics. DDS ensures the processed time series to maintain periodic consistency
while reducing noise interference.
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Figure 2: Framework of the PhysLLM. The architecture of PhysLLM comprises three principal data streams
that operate in concert. The leftmost stream represents the Physiological Cue-Aware Prompt Learning module,
which incorporates task-specific prior knowledge through adaptive prompt learning while generating context-
aware prompt tokens. The central and rightmost streams collectively form the Text-Vision-Sequence Embedding
Generation pipeline, which integrates our novel Dual-Domain Stationary (DDS) Algorithm and Text Prototype
Guidance (TPG) module. This integrated approach facilitates the extraction of sequence tokens from temporal
physiological data and visual tokens from facial imagery, both guided by LLM-generated text prototypes that
serve as semantic anchors for cross-modal alignment.

• We design task-specific cues to inject physiological priors through physiological statistics,
environmental context and task description, enabling dynamic adaptation to challenging
scenarios.

• We propose the Text Prototype Guidance (TPG) strategy to establish cross-modal alignment
by projecting hemodynamic features into LLM-interpretable semantic space, significantly
reducing the gap between sequential, visual, and textual modalities.

• Extensive experiments demonstrate the superiority of PhysLLM even under scenarios with
serious degradation.

2 Related Work
Remote Physiological Measurement. rPPG has advanced significantly from early signal pro-
cessing methods to deep learning-based approaches. Traditional techniques, such as blind source
separation and skin reflection-based models (Poh et al., 2010; Madej et al., 2011; De Haan & Jeanne,
2013; Wang et al., 2017), initially aimed to isolate physiological signals but struggled with real-world
variability. Later methods incorporated physiological priors to improve robustness (Zhang et al.,
2024), yet they remained sensitive to noise and illumination. With the rise of deep learning, more
recent approaches to rPPG measurement have leveraged the power of neural networks to capture
rich spatio-temporal representations. Early deep learning-based methods introduced end-to-end spa-
tiotemporal networks (Špetlı́k et al., 2018; Liu et al., 2020; Yu et al., 2019; Chen & McDuff, 2018;
Niu et al., 2019; Liu et al., 2021b; Yu et al., 2023; 2022). These models demonstrated superior per-
formance compared to traditional methods, as they were capable of capturing intricate temporal and
spatial relationships within the video data. One major limitation is their sensitivity to visual interfer-
ence, such as motion blur, occlusions, and varying lighting conditions, all of which can compromise
the quality of the extracted rPPG signal. Recent advancements in vision-language multi-modal learn-
ing (Yue et al., 2024) have shown great promise in enhancing robustness by aligning with additional
modalities for rPPG measurement.

LLMs for Time Series Tasks. Recent advancements in LLMs have demonstrated remarkable
potential in time series analysis tasks, particularly through their ability to learn temporal patterns
and perform cross-modal reasoning. Several pioneering works have explored reprogramming LLMs
for time series forecasting without architectural modifications. For instance, Time-LLM (Jin et al.,
2023) introduces a novel reprogramming framework that aligns time series embeddings with LLM
token spaces using learnable prompt tokens, achieving state-of-the-art performance across multi-
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ple domains. This approach builds upon foundational insights from Time Series Forecasting with
LLMs (Gruver et al., 2023), which systematically evaluates LLMs’ inherent temporal reasoning
capabilities and proposes specialized fine-tuning strategies to enhance their forecasting accuracy. In
healthcare applications, LLMs have shown particular promise for physiological time series inter-
pretation (Liu et al., 2023b). While existing research primarily focuses on standard physiological
signals like ECG and EEG, the application of LLMs to rPPG analysis remains underexplored. Cur-
rent approaches for rPPG-based health monitoring typically rely on specialized neural architectures,
potentially overlooking the cross-modal generalization capabilities inherent in foundation models.
Our work bridges this gap by adapting the time series reprogramming module while incorporating
rPPG-aware vision-language knowledge, enabling LLMs to interpret subtle cardiovascular patterns
from facial videos.

3 Methodology
The overall architecture of the proposed PhysLLM is designed to integrate textual, visual, and signal
information into a unified framework, enabling robust rPPG physiological estimation. As illustrated
in Fig. 2, the framework consists of two key components: Text-Vision-Sequence Embedding Gener-
ating (the right part of Fig. 2) and Physiological Cue-Aware Prompt Learning (the left part of Fig. 2).
The detailed components of the model and the training objectives are described below.

3.1 Text-Vision-Sequence Embedding Generating
While current deep learning frameworks struggle to extract reliable rPPG signals from facial videos
due to environmental interference, existing physiological priors in models like PhysNet (Yu et al.,
2019) demonstrate inherent robustness to such variations. Building on this foundation, we establish a
novel architecture with: 1) A fixed PhysNet (Yu et al., 2019) backbone preserving raw rPPG signals
and spatio-temporal features, 2) Three trainable enhancement modules (Dual-Domain Stationary
Algorithm module for stable signal tokenization, dedicated multi-scale interaction module for hierar-
chical feature extraction, Text Prototype Guidance module aligning these representations with LLM
semantic spaces) that progressively refine the physiological representations.

Dual-Domain Stationary (DDS) Algorithm. To effectively reduce the interference of noise on the
model and further enhance its robustness and prediction accuracy, we propose a novel algorithm. This
algorithm optimizes the signal processing workflow in a targeted manner, significantly improving
the quality of rPPG signals and providing a more reliable data foundation for subsequent analysis.

Specifically, let 𝑥 ∈ R𝐵×𝐿 denote the raw rPPG waveform extracted by the PhysNet backbone (Yu
et al., 2019), where batch size 𝐵 and sequence length 𝐿 inherit the output dimensions of the backbone.
We first compute the global mean 𝜇 and global standard deviation 𝜎 across the entire sequence,

The normalized output 𝑥′ is then calculated as:
𝑥′ =

𝑥 − 𝜇
𝜎 + 𝜖 , 𝜖 = 10−5. (1)

We denote similar standardization processes in a unified manner as functionH(·). To ensure global
stationarity, we proceed temporal smoothing with the following operations:

𝑧𝑡𝑖𝑚𝑒
𝑖 = 𝛼 · 𝑥′𝑖 + (1 − 𝛼) · 𝑧𝑖−1, 𝑧0 = 𝑥′0, (2)

where i denotes the current frame value, and 𝛼 is a smoothing factor. The proof of stationarity is
provided in Appendix. C. In the following text, we denote these smoothing operations collectively
asZ(·). Therefore, the above operation can be simplified as 𝑧𝑡𝑖𝑚𝑒 = Z(𝑥′).
In parallel, the module performs frequency domain decomposition using the discrete wavelet trans-
form (DWT). The DWT decomposes the input signal into approximation coefficients (𝑎𝑐) and detail
coefficients (𝑑𝑐) on multiple scales. Specifically, the results can be expressed as:

𝑥𝑎𝑐 , [𝑥𝑑𝑐,1, . . . , 𝑥𝑑𝑐,𝐽 ] = DWT(𝑥), (3)

where 𝐽 is the decomposition level (𝐽 = 3 in this implementation). After normalization, the inverse
wavelet transform (IDWT) reconstructs the smoothed frequency-domain representation 𝑧 𝑓 𝑟𝑒:

𝑧 𝑓 𝑟𝑒 = IDWT(Z(H (𝑥𝑎𝑐)), [Z(H (𝑥𝑑𝑐,1)), . . . ,Z(H(𝑥𝑑𝑐,𝐽 ))]). (4)
To combine the advantages of time-domain and frequency-domain processing, an adaptive weighting
mechanism is introduced. The final smoothed output 𝑥𝑟𝑒𝑐 is computed as:

𝑧 = (1 − 𝛽) · 𝑧𝑡𝑖𝑚𝑒 + 𝛽 · 𝑧 𝑓 𝑟𝑒, (5)

where 𝛽 ∈ [0, 1] is a learnable parameter.
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Multi-scale Interaction via Vision Aggregator (VA). We introduce the multi-scale Interaction
module to effectively integrate multi-scale features from different modalities. As shown in Fig. 3,
this module leverages a combination of cross-attention and self-attention mechanisms to capture both
inter-modal and intra-modal relationships between high-level and low-level features. By employing
learnable scaling parameters, the module ensures that the fused feature representation is adaptive
and context-aware.

Concat

Projector
Projector

Projector
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Linear 
C
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Figure 3: Architecture of the Vision Aggregator. It employs
a hierarchical attention architecture to dynamically synthesize
multi-scale feature representations.

Specifically, we extract 𝑀 layers fea-
tures from the backbone, denoted as
F = [ 𝑓1, 𝑓2, 𝑓3, ..., 𝑓𝑀 ], in which 𝑓𝑖 ∈
R𝐵×𝑇×𝐻×𝑊 . To align these features
into a common embedding space, we
employ a set of feature projection lay-
ers, 𝐹𝑖 = Projection( 𝑓𝑖 , 𝑙𝑡𝑎𝑟𝑔𝑒𝑡 ), where
𝑙𝑡𝑎𝑟𝑔𝑒𝑡 is the setting length after com-
pression.

Since the strong semantic alignment
between deep visual features and text
space, we use the deep feature 𝐹𝑀 as
queries to dynamically extract missing details from shallow features 𝑋 = Concat(𝐹1, 𝐹2, . . . , 𝐹𝑀−1).
This results in a visual feature 𝐹𝑐𝑟𝑜𝑠𝑠 ∈ 𝑅𝐵×𝑇×𝐷 with richer fine-grained features. This process can
be formulated as:

𝐹𝑐𝑟𝑜𝑠𝑠 = CrossAttention(𝐹𝑀 , 𝑋, 𝑋), (6)
where CrossAttention(·) denotes the cross-attention mechanism, Concat(·) represents the concatena-
tion operation.

To enhance the representation by capturing internal dependencies within the cross-attended feature,
we incorporate a self-attention mechanism into the feature map 𝐹𝑠𝑒𝑙 𝑓 , formulated as:

𝐹𝑠𝑒𝑙 𝑓 = SelfAttention(𝐹𝑐𝑟𝑜𝑠𝑠). (7)

To combine the outputs of the cross- and self-attention mechanisms, the final fused features are
computed as:

𝐹𝑣𝑖𝑠𝑢𝑎𝑙 = 𝐹𝑀 + 𝛾2 · (𝐹𝑐𝑟𝑜𝑠𝑠 + 𝛾1 · 𝐹𝑠𝑒𝑙 𝑓 ), (8)
where 𝛾1, 𝛾2 are the learnable vector.

Text Prototype Guidance (TPG). To fully leverage the prior knowledge embedded in rPPG
signals and visual features, we aim to enable these modalities to play a critical role in the task.
However, rPPG signals and visual features are neither directly editable nor easily describable in
natural language without missing information, which poses significant challenges for guiding LLMs
to understand temporal and visual features without resource-intensive fine-tuning. Specifically, the
non-discrete and high-dimensional nature of such data makes it difficult to transform them into
symbolic representations suitable for language models.

As shown in Fig. 2(c), to bridge this gap, we propose to reprogram the rPPG signals and visual
features with word embeddings 𝐸 ∈ R𝑉×𝐷 , where 𝑉 is the vocabulary size. Nevertheless, there is
no prior knowledge indicating which source tokens are directly relevant. Thus, simply leveraging 𝐸
will resulting large and potentially dense reprogramming space. A simple solution is to maintain a
small collection of text prototypes by linearly probing, denoted as 𝐸 ′ ∈ R𝑉

′×𝐷 , where 𝑉 ′ ≪ 𝑉 .

The text prototypes 𝐸 ′ are then used to enhance the interaction between rPPG signals, visual features,
and language model. To extract more sufficient details from the input video and signal, we devise a
block, which consists of multiple different transformer layers. Specifically, given input feature 𝑋 :

𝑋𝑠𝑒𝑙 𝑓 = SelfAttention(𝑋), (9)

𝐸
′
𝑓 𝑢𝑠𝑖𝑜𝑛 = 𝐸

′ + 𝑋𝑠𝑒𝑙 𝑓 , (10)
𝑦2 (𝐸

′
𝑓 𝑢𝑠𝑖𝑜𝑛; 𝑋) = CrossAttention(𝐸 ′𝑓 𝑢𝑠𝑖𝑜𝑛, 𝑋, 𝑋), (11)
𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐸

′
𝑓 𝑢𝑠𝑖𝑜𝑛 + 𝑦2 (𝐸

′
𝑓 𝑢𝑠𝑖𝑜𝑛; 𝑋), (12)

T𝑜𝑢𝑡 = 𝐹𝐹𝑁 (𝐸
′
2), (13)

where 𝐸 ′1 and 𝐸 ′2 are the updated versions of 𝐸 ′ . It is worth noting that the TPG module guides not
only visual features, but also sequence features, so the input feature X here has the two meanings. In
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addition, the visual feature part and the sequence feature part share the same TPG module to learn
potential associations.

For simplicity, we represent this sequence of operations as a single function 𝑇𝑃𝐺 (·), so the output
of this module can be expressed as T𝑜𝑢𝑡 = 𝑇𝑃𝐺 (𝑋).
3.2 Physiological Cue-Aware Prompt Learning
The extraction of reliable rPPG signals from facial video data presents significant challenges due
to varying lighting, subject mobility, and diverse skin tones in complex real-world scenarios. To
address these challenges through cross-modal learning, we propose a Physiological Cue-Aware
Prompt Learning framework that generates rPPG sample-specific cues for guiding adaptive token
learning.

Cue Caption
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DeepSeek  
Tokenizer

�������

DeepSeek  
Tokenizer

�����

DeepSeek  
Tokenizer

������
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{max_values_str}, {median_values_str}, the trend of 
input is {'upward' if trends[b] > 0 else 'downward'}
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with a beard, wearing a plaid shirt. 
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affecting rPPG signal quality.
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Figure 4: Introduction to the composition of cues.
(a) Extracting visual priors (e.g., lighting, facial expres-
sions, occlusions) via LLaVA and encoding them into
visual tokens. (b) Tokenizing textual descriptions of the
rPPG task to derive task-specific priors. (c) Analyzing
statistical features of rPPG signals from the backbone
network to generate statistical prior tokens. These cues
synthesize visual, semantic, and statistical priors for en-
hanced physiological signal analysis.

Cue Caption. Prompt-based adaptation en-
ables LLMs to address specialized subtasks
without requiring parameter updates, as demon-
strated by the zero-shot capabilities of architec-
tures like LLaMA (Touvron et al., 2023) and
DeepSeek (Guo et al., 2025). To eliminate
manual annotation of context-aware descriptors,
we leverage LLaVA (Liu et al., 2023a) for au-
tomated physiological cue generation through
structured prompt engineering, as shown in
Fig. 2(b). For rPPG-specific adaptation, our
prompts focus on three critical visual domains:
1) facial anatomical characteristics, 2) transient
emotional expressions, and 3) environmental il-
lumination dynamics, as exemplified by our de-
signed query templates in Fig. 4.

Formally, given an input video sequence 𝑉 ∈
R3×𝑇×𝐻×𝑊 , we extract the central frame 𝐼𝑡
and process it through LLaVA with task-
oriented prompts to obtain detail descrip-
tion, and tokenize the description, C𝑣𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑟 (𝐿𝐿𝑎𝑉𝐴(𝐼𝑡 , 𝑄)), where 𝑄 denotes
our physiological cue queries.

Furthermore, we formalize domain knowledge through task-specific primers derived from consensus
descriptions in rPPG literature. These primers are encoded into LLM-compatible tokens via the
model’s native tokenizer: C𝑡𝑎𝑠𝑘 = 𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑟 (P), (14)
where P represents the standardized task preamble.

While traditional text-based prompting strategies have demonstrated effectiveness in general vision-
language tasks, we identify critical limitations when applied to physiological signal estimation: (1)
Static visual descriptors cannot sufficiently capture temporal hemodynamic variations, and (2) Task-
agnostic queries fail to address rPPG-specific contextual dependencies. To bridge this semantic
gap, we propose statistical priors derived from pretrained rPPG models as physiological knowledge
supplements. Although ground truth signals remain unavailable during inference, the pretrained
network’s output sequences (discussed in Section 3.1) preserve valid distribution characteristics. So
the statistical cue S is derived from the pretrained model’s rPPG signal projections 𝑥enc ∈ R𝐵×𝑇 ,
where 𝐵 denotes batch size and 𝑇 the temporal dimension. For each sample 𝑏 ∈ [1, 𝐵], we compute,

S =

{
min
𝑡
(𝑥enc [𝑏, 𝑡]), max

𝑡
(𝑥enc [𝑏, 𝑡]), median(𝑥enc [𝑏, :]),

Γ(𝑥enc [𝑏, :]), sgn

(
𝑇−1∑︁
𝑡=1
(𝑥enc [𝑏, 𝑡 + 1] − 𝑥enc [𝑏, 𝑡])

)
,TopK (L(𝑥enc [𝑏, :]), 5)

} (15)

where Γ(·) calculates signal trends through first-order differencing, Γ(x) = ∑𝑇
𝑖=2(x𝑖 − x𝑖−1).

Then S will make up the symbolic representation as described in Fig. 4(c). Finally, the tokenization
process is formulated as C𝑠𝑡𝑎𝑡𝑠 = Tokenizer (S) .
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Table 1: Intra-dataset testing results on UBFC-RPPG (Bobbia et al., 2019), PURE (Stricker et al.,
2014), BUAA (Xi et al., 2020) and MMPD (Tang et al., 2023) datasets. Best results are in bold.

Method UBFC-rPPG PURE BUAA MMPD
MAE↓ RMSE↓ R↑ MAE↓ RMSE↓ R↑ MAE↓ RMSE↓ R↑ MAE↓ RMSE↓ R↑

ICA (Poh et al., 2010) 16.00 25.65 0.44 4.77 16.07 0.72 - - - 18.60 24.30 0.01
CHROM (de Haan & Jeanne, 2013) 4.06 8.83 0.89 5.77 14.93 0.81 - - - 13.66 18.76 0.08

Green (Verkruysse et al., 2008) 19.73 31.00 0.37 10.09 23.85 0.34 6.89 10.39 0.60 21.68 27.69 -0.01
POS (Wang et al., 2017) 4.08 7.72 0.92 3.67 11.82 0.88 - - - 12.36 17.71 0.18

Meta-rPPG (Lee et al., 2020) 5.97 7.42 0.57 2.52 4.63 0.98 - - - - - -
PhysNet (Yu et al., 2019) 2.95 3.67 0.97 2.10 2.60 0.99 10.89 11.70 -0.04 4.80 11.80 0.60

PhysFormer (Yu et al., 2022) 0.92 2.46 0.99 1.10 1.75 0.99 8.46 10.17 -0.06 11.99 18.41 0.18
EfficientPhys (Liu et al., 2021a) 1.41 1.81 0.99 4.75 9.39 0.99 16.09 16.80 0.14 13.47 21.32 0.21

Contrast-Phys+ (Sun & Li, 2024) 0.21 0.80 0.99 0.48 0.98 0.99 - - - - - -
RhythmFormer Zou et al. (2025) 0.50 0.78 0.99 0.27 0.47 0.99 9.19 11.93 -0.10 4.69 11.31 0.60

PhysLLM (Ours) 0.21 0.57 0.99 0.17 0.35 0.99 6.48 8.48 0.63 4.36 10.76 0.65

Adaptive Prompt Learning (APL). Conventional multimodal fusion approaches typically em-
ploy static weighting coefficients for prompt integration, suffering from two limitations: (1) fixed
combination ratios cannot adapt to learnable LLM, and (2) inability to adaptively select the key cues
across different data. As shown in Fig. 2(a), our adaptive fusion paradigm addresses these constraints
through learnable hierarchical composition. Formally, having obtained three fundamental cue cap-
tions C = {C𝑡𝑎𝑠𝑘 , C𝑣𝑖𝑠𝑖𝑜𝑛, C𝑠𝑡𝑎𝑡𝑠}, we first implement modality-specific conditioning via dedicated
transformation networks,

E𝑘 = AttentiveCompressor 𝑘 (C𝑘) , 𝑘 ∈ { task, vision, stats }, (16)

where each compressor employs temporal-contextual attention to maintain modality-specific patterns,

AttentiveCompressor𝑘 (𝑥) = Softmax

(
𝑄𝑘𝐾

𝑇
𝑘√
𝑑

)
𝑉𝑘 , (17)

with 𝑄𝑘 , 𝐾𝑘 , 𝑉𝑘 derived from 𝑥 through linear projections.

In addition, the adaptive fusion mechanism learns three independent parameter matrices:
W = [𝑊task, 𝑊vision, 𝑊stats] ∈ R3×𝐵×𝐿×𝑑 , (18)

where 𝐿 is predefined hyperparameter about target prompt sequence length, 𝑑 is the token embedding
dimension, and𝑊task,𝑊vision,𝑊stats denote learnable tokens, respectively.

The complete fusion operation is formalized as:

Tcue =
∑︁
𝑘∈Ω

W(𝑘 ) ⊙ E𝑘 ,Ω ≜ {𝑡𝑎𝑠𝑘, 𝑣𝑖𝑠𝑖𝑜𝑛, 𝑠𝑡𝑎𝑡𝑠}. (19)

3.3 Training Objectives

In Section 3.1, we obtain the stationary signal 𝑧 and the fused multi-scale visual features 𝐹𝑣𝑖𝑠𝑢𝑎𝑙
through the DDS module and multi-scale interaction, respectively. Through TPG, we can obtain the
text-guided vision token Tvision = 𝑇𝑃𝐺 (𝐹𝑣𝑖𝑠𝑢𝑎𝑙), and the text-guided signal token Tsignal = 𝑇𝑃𝐺 (𝑧).
Then, we input Tcue , Tvision , Tsignal into LLM and predict waveforms 𝑦̂. Finally, we employ the mean
square error loss function as the total loss,

L𝑀𝑆𝐸 =
1
𝑛

𝑛∑︁
𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2, (20)

where 𝑦 is the ground truth PPG signals.

4 Experiments
4.1 Datasets and Performance Metrics

We comprehensively evaluate models on four benchmark datasets (UBFC-rPPG (Bobbia et al.,
2019), PURE (Stricker et al., 2014), BUAA (Xi et al., 2020), and MMPD (Tang et al., 2023)).
Following (Sun & Li, 2022; Yu et al., 2019), we calculate mean absolute error (MAE), root mean
square error (RMSE), and Pearson’s correlation coefficient (R) between the predicted HRs versus
the ground-truth HRs as evaluation metrics. Notably, for MAE and RMSE, lower values indicate
reduced error margins, whereas for R, values approaching 1.0 signify diminished error. Among
them, both MAE and RMSE are measured in terms of bpm (beats per minute). More implementation
details can be found in Appendix. B.
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Table 2: Cross-domain generalization evaluation
with dual-source training and single-target testing.

Method P+B→M P+U→M B+U→M

MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓

Green (Verkruysse et al., 2008) 21.7 27.7 21.7 27.7 21.7 27.7
EfficientPhys (Liu et al., 2021a) 11.9 18.5 11.8 18.9 15.5 20.8

PhysFormer (Yu et al., 2022) 13.9 18.6 11.4 17.5 13.2 16.5
PhysNet (Yu et al., 2019) 13.2 16.7 11.0 17.3 13.5 17.0

RhythmFormer (Zou et al., 2025) 13.98 19.5 10.5 16.7 12.6 17.5
PhysLLM (Ours) 11.9 15.3 9.95 14.96 12.1 15.2

Table 3: Cross-domain generalization evaluation
with three-source training and single-target test-
ing.

Method Others→MMPD Others→ BUAA

MAE↓ RMSE↓ MAE↓ RMSE↓

Green (Verkruysse et al., 2008) 21.7 27.7 6.9 10.4
EfficientPhys (Liu et al., 2021a) 13.2 20.02 32.3 34.0

PhysFormer (Yu et al., 2022) 13.9 19.3 7.7 12.4
PhysNet (Yu et al., 2019) 12.8 16.3 12.8 16.4

RhythmFormer (Zou et al., 2025) 16.1 20.5 6.04 10.8
PhysLLM (Ours) 12.2 15.5 6.01 8.6

4.2 Intra-dataset Testing
We first evaluate the HR estimation on all datasets under intra-dataset setting. We compare our
method with 10 methods, including traditional methods and deep learning methods. Table 1 displays
intra-dataset testing results for UBFC-rPPG (Bobbia et al., 2019), PURE (Stricker et al., 2014),
BUAA (Xi et al., 2020) and MMPD (Tang et al., 2023).
HR Estimation on UBFC-rPPG (Bobbia et al., 2019). On UBFC-rPPG (Bobbia et al., 2019), we
follow (Luo et al., 2024) by training on the first 30 subjects and testing on the remaining 12. As
shown in Table 1, PhysLLM achieves state-of-the-art HR estimation with MAE 0.21 bpm, RMSE
0.57 bpm, and R 0.99. These results indicate stable rPPG fitting and effective long-term HR tracking.
HR Estimation on PURE (Stricker et al., 2014). Following (Luo et al., 2024), we compare
PhysLLM with 9 methods. As shown in Table 1, PhysLLM achieves the best HR performance across
all metrics, outperforming the second-best PhysFormer (Yu et al., 2022) by 0.31 bpm MAE and 0.63
bpm RMSE, demonstrating strong robustness to head-motion interference.
HR Estimation on BUAA (Xi et al., 2020). It is partitioned in sequence into training and test
sets with a ratio of 7:3. The performance of existing methods on this dataset is reimplemented by
ourselves with the rPPG toolbox (Liu et al., 2023c). The HR estimation results are shown in Table 1.
The proposed PhysLLM outperforms the existing state-of-the-art methods on MAE (6.48 bpm),
RMSE (8.48 bpm), and R (0.63) metrics for HR prediction. The results show the strong robustness
of PhysLLM against various lighting condition disturbances.
HR Estimation on MMPD (Tang et al., 2023). Following the protocol in (Zou et al., 2024),
we compared our method against existing state-of-the-art approaches, as depicted in Table 1. The
proposed PhysLLM outperforms the existing state-of-the-art methods on MAE (4.36 bpm), RMSE
(10.76 bpm), and R (0.65) metrics for HR prediction. These results demonstrate that PhysLLM
performs well under real-world conditions.
4.3 Cross-dataset Testing
We also perform cross-dataset testing to assess the generalization capability of PhysLLM. We conduct
both Two-training and One-testing protocol and Three-training and One-testing protocol. In each
case, we train on relatively simple datasets and evaluate performance on one more complex dataset.
Dual-source training and single-target testing protocol. To evaluate generalization, we train
on two datasets and test on the most challenging MMPD (Tang et al., 2023). For instance, 𝑃 +𝑈 →
𝑀 denotes training on PURE (Stricker et al., 2014) and BUAA (Xi et al., 2020) and testing on
MMPD using the full datasets. As shown in Table 2, PhysLLM remains best under these cross-
domain settings, reducing MAE/RMSE by 1.05/2.34 bpm on 𝑃 + 𝑈 → 𝑀 , demonstrating strong
generalization enabled by visual context and LLM modeling.

Table 4: Ablation results of the main components
on the UBFC-rPPG (Bobbia et al., 2019) dataset.

Method UBFC-rPPG
DDS VA TPG MAE↓ RMSE↓ R↑
✓ × × 0.36 1.12 0.98
× ✓ × 0.41 1.26 0.98
× × ✓ 0.32 1.00 0.98
✓ ✓ × 0.27 0.92 0.98
✓ × ✓ 0.34 1.05 0.99
× ✓ ✓ 0.25 0.76 0.99
✓ ✓ ✓ 0.21 0.57 0.99

Three-source training and single-target test-
ing protocol. To further evaluate whether
PhysLLM can learn domain invariance knowl-
edge without mixing domain-specific knowl-
edge, we trained on three datasets and tested
on the remaining one dataset. For example,
𝑂𝑡ℎ𝑒𝑟𝑠→ 𝑀𝑀𝑃𝐷 means training on the other
datasets (UBFC-rPPG (Bobbia et al., 2019),
PURE (Stricker et al., 2014), BUAA (Xi et al.,
2020)) and test on MMPD (Tang et al., 2023).
It is worth noting that we only tested two dif-
ficult datasets: BUAA (Xi et al., 2020) and
MMPD (Tang et al., 2023). It can be seen from the results in Table 3 that PhysLLM achieves
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Table 5: Ablation experiments of different large language models and transformer baseline. While DeepSeek
is used as the default LLM in our experiments, the proposed approach can be easily generalized to other large
language models.

Method LLM Param. UBFC PURE

MAE↓ RMSE↓ MAE↓ RMSE↓

PhysNet (Yu et al., 2019) - 2.95 3.67 2.10 2.60
PhysLLM (w. Sundial (Liu et al., 2025)) - 0.92 2.46 3.22 7.54
PhysLLM (w. DeepSeek (Guo et al., 2025)) 1.5B 0.21 0.57 0.17 0.35
PhysLLM (w. Bert (Devlin et al., 2019)) 0.11B 0.19 0.76 0.43 0.80
PhysLLM (w. GPT2 (Lagler et al., 2013)) 0.124B 0.19 0.76 0.14 0.35

the best performance in both datasets, and even outperforms the existing state-of-the-art methods on
MAE (6.0 bpm), RMSE (8.6 bpm), and R (0.63) metrics for HR prediction on 𝑂𝑡ℎ𝑒𝑟𝑠 → 𝐵𝑈𝐴𝐴.
This shows that PhysLLM will not confuse domain-specific knowledge even if trained on three
datasets, and can stably learn domain-invariant rPPG knowledge.

4.4 Ablation Study
Impact of Dual-Domain Stationary Algorithm (DDS). The role of DDS is to transform the input
signal 𝑥 into a stationary signal 𝑍 (𝑥). To validate the effectiveness of the DDS, we construct a
comparative experiment designed to remove DDS. Specifically, we directly use the rPPG signal from
the video encoder, instead of the rPPG signal smoothed by DDS. The results are shown in the sixth
row of Table 4. DDS reduces the MAE by 0.04 bpm, and the RMSE by 0.19 bpm on PURE dataset.
Impact of Vision Aggregator (VA). In this ablation study, we simply remove the Vision Aggregator
to evaluate its impact on the model. As shown in the results on UBFC-rPPG dataset, the absence of
the Vision Aggregator leads to a noticeable decrease in performance, underscoring its importance
in the model architecture. The comparison between the fifth and seventh rows in Table 4 clearly
demonstrates that the fusion of visual features is effective.
Impact of Text Prototype Guidance (TPG). To evaluate the effectiveness of text prototype guidance,
we conducted an ablation study by removing the text prototype guidance. The results on UBFC-rPPG
dataset are shown in the fourth row of Table 4. TPG brings a significant decrease in MAE (0.06
bpm) and RMSE (0.35 bpm). These results underscore the importance of TPG in facilitating the
fusion of quasi-periodic video features. Table 6: Ablation study of prompt components on

the UBFC-rPPG (Bobbia et al., 2019) dataset.

Method UBFC-rPPG
Vision Stats Task Adaptive learning MAE↓ RMSE↓
✓ × × ✓ 0.83 1.53
× ✓ × ✓ 0.71 2.26
× × ✓ ✓ 0.84 2.41
✓ ✓ × ✓ 0.73 2.29
✓ × ✓ ✓ 0.43 1.20
× ✓ ✓ ✓ 0.61 1.53
✓ ✓ ✓ × 1.31 2.10
✓ ✓ ✓ ✓ 0.21 0.57

Impact of prompt components. To evalu-
ate the contributions of different prompt com-
ponents (Vision, Statics, Task, and adaptive
learning) in PhysLLM’s cue caption and adap-
tive prompt learning, we conduct an ablation
study and report MAE/RMSE in Table 6. The
full configuration achieves the best performance
(MAE 0.21 bpm, RMSE 0.57 bpm), yielding a
76% improvement over the worst setting (MAE
1.31 bpm, RMSE 2.10 bpm) that removes adap-
tive learning, confirming its critical role. We
also observe that adding the Task component
generally improves performance, and Vision+Task outperforms Statics+Task, suggesting visual
prompts better align with rPPG-specific cues.

Ablation Study on the LLM Component. To validate the necessity of using a pre-trained LLM,
we compare three LLMs with varying sizes: DeepSeek (Guo et al., 2025), Bert (Devlin et al., 2019),
and GPT2 (Lagler et al., 2013). As shown in Table 5, all LLMs achieve competitive performance,
with DeepSeek performing best (MAE: 0.21/0.17 on UBFC/PURE). We further replace the LLM
with Sundial (Liu et al., 2025), a temporal transformer without LLM pre-training. The significant
performance drop (MAE: 3.35/4.05) demonstrates that the LLM’s pre-trained knowledge is essential
for cross-dataset generalization, not merely the transformer architecture.
4.5 Visualization and Discussion
Robustness Analysis on Skin Tones and Lighting Conditions. To evaluate robustness, we perform
stress tests on the MMPD (Tang et al., 2023) dataset by varying skin tones (Types 3–6) and lighting
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Table 7: Performance Comparison across Different Skin
Tones and Lighting Conditions on MMPD (Tang et al.,
2023) dataset (MAE/RMSE).

(a) Performance across Different Skin Tones.

Method Type 3 Type 4 Type 5 Type 6

PhysFormer (Yu et al., 2022) 6.11/11.21 5.92/10.00 5.87/13.12 6.81/11.21
RhythmFormer (Zou et al., 2025) 5.12/11.23 5.46/9.14 6.32/11.87 6.26/9.99

PhysLLM (Ours) 4.96/10.27 4.73/8.49 4.99/11.07 5.73/8.49

(b) Performance across Different Lighting Conditions.

Method LED-Low LED-High Incandescent Natural

PhysFormer (Yu et al., 2022) 6.36/11.72 5.12/9.39 5.71/12.73 6.61/11.36
RhythmFormer (Zou et al., 2025) 5.85/11.71 4.46/8.98 3.64/11.87 5.65/12.31

PhysLLM (Ours) 4.46/9.57 3.72/8.10 3.59/11.43 3.45/6.81

Table 8: Comparison of Model
Complexity

Method Params (M)MACs (G)

TS-CAN (Liu et al., 2020) 7.5 96.0

PhysNet (Yu et al., 2019) 0.77 56.1

DeepPhys (Chen & McDuff, 2018) 7.5 96.0

EfficientPhys (Liu et al., 2021a) 7.4 45.6

PhysFormer (Yu et al., 2022) 7.38 40.5

RhythmFormer (Zou et al., 2025) 4.21 28.8

Contrast-phys+ (Sun & Li, 2024) 0.85 145.7

PhysMamba (Luo et al., 2024) 0.56 47.3

PhysLLM (Ours) 97.2 424.3

conditions (LED-Low/High, Incandescent, Natural). As shown in Table 7, PhysLLM consistently
outperforms PhysFormer and RhythmFormer across all settings, especially under extreme lighting
(MAE/RMSE: 3.45/6.81 in natural light) and diverse skin tones (4.73/8.49 for Type 4). Overall,
PhysLLM remains stable under challenging variations, supporting its real-world applicability across
different populations and environments.

Model Complexity Analysis. As shown in Table 8, PhysLLM has higher computational complex-
ity (97.2M parameters, 424.3G MACs) due to the LLM backbone. While we acknowledge this
overhead, it is a necessary trade-off for achieving superior cross-dataset generalization and robust-
ness demonstrated in our experiments. Future work will explore model compression techniques
such as knowledge distillation and parameter-efficient fine-tuning to reduce costs while maintaining
performance for resource-constrained deployment.

(a)  PURE (b)  UBFC-rPPG

Figure 5: Visualization of saliency maps from PhysLLM on
PURE and UBFC-rPPG datasets.

Visualization of saliency maps. Fol-
lowing (Sun & Li, 2022), the saliency
maps of the PhysLLM are visual-
ized in Fig. 5 using samples from
UBFC-rPPG (Bobbia et al., 2019) and
PURE (Stricker et al., 2014) datasets.
The more obvious the red-green area,
the more attention it means. We se-
lected images with certain features from
the dataset to test rPPG tasks, such as
head rotation, with a noticeable beard,
darker skin tone, and wearing glasses.
From the test results, it can be seen that PhysLLM can effectively capture rPPG-related parts. For
example, the observable parts are concentrated on the cheeks and forehead, which is consistent with
the relevant prior knowledge of rPPG. At the same time, relevant parts can effectively avoid hair and
obstruction. For example, there is no prominent attention in the area where the hair appears, and
even subtle changes in the neck can be observed. This is sufficient to demonstrate the robustness and
effectiveness of PhysLLM in various scenarios.

5 Conclusion

In this paper, we propose the PhysLLM, a framework that integrates LLMs with specialized rPPG
components. The Text Prototype Guidance strategy bridges the cross-modal gap, while the Dual-
Domain Stationary Algorithm addresses signal instability. Task-specific priors enhance adaptability
in challenging scenarios. Experimental results across four datasets show PhysLLM achieves superior
accuracy and robustness, particularly under variable illumination and motion. Future work includes
improving cross-modal alignment and developing lightweight models for edge deployment.
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A Introduction to the Datasets

UBFC-rPPG (Bobbia et al., 2019) contains 42 RGB facial videos from 42 distinct subjects. Each
video is captured at 640×480 pixel resolution and 30 frames per second (fps). Recordings take
place under varied lighting conditions, including natural sunlight and indoor artificial illumination.
Ground-truth physiological signals are recorded via a CMS50E pulse oximeter at 60 Hz, ensuring
precise temporal alignment for evaluation.

PURE (Stricker et al., 2014) comprises 60 high-quality RGB videos collected from 10 subjects per-
forming six different head movement scenarios (stats, talking, translation movements, etc.). Videos
are recorded at 30 fps under consistent indoor lighting and controlled background settings, minimiz-
ing external interference. Synchronized physiological measurements are obtained using a CMS50E
oximeter sampling at 60 Hz. PURE is particularly valuable for evaluating rPPG performance during
facial movements.

BUAA (Xi et al., 2020) is designed to assess algorithmic robustness across varying illumination
intensities. The dataset features video sequences recorded under a range of controlled lighting
conditions, from low-light (below 10 lux) to normal brightness. In our experiments, we only utilize
videos captured under illumination levels ≥10 lux, as extremely dim lighting introduces significant
image degradation requiring specialized enhancement techniques beyond this study’s scope.

MMPD (Tang et al., 2023) comprises 660 videos, each lasting one minute, collected from 33
subjects with diverse skin tones and gender distributions. Each video is recorded at 30 fps with a
resolution of 320×240 pixels, under four distinct lighting conditions (bright, warm, dim, and colored
lighting). Subjects perform various daily activities, introducing intra-subject variability and further
increasing dataset complexity.

B Implementation Details

We conduct experiments on Pytorch and mainly based on the open-source toolkit rPPG-Toolbox (Liu
et al., 2023c). For data pre-processing, we crop the face region in the first frame for each video clip
and fix the region box in the following frames. Subsequently, we randomly sample a video chunk of
128 frames and resize them into 128 × 128 pixels. We use the default hyperparameters settings 𝛼 =
0.8 and 𝑙𝑡𝑎𝑟𝑔𝑒𝑡 = 32. The backbone of our PhysLLM is based on the pre-trained PhysNet (Yu et al.,
2019), where the training strategies follow the methodology outlined in the original paper. In the
intra-dataset testing and ablation study, we use the same training data for PhysNet as for PhysLLM,
ensuring consistency in the data used. For cross-domain experiments, we use the pre-trained PhysNet
model trained on the PURE dataset (Stricker et al., 2014), ensuring no test set overlap and consistent
pre-training conditions. Furthermore, we use the DeepSeek-1.5B (Guo et al., 2025) version as the
LLM. The PhysLLM is trained with Adam optimizer and the initial learning rate and weight decay
are 1e-4 and 5e-5, respectively. We train our model for 20 epochs on a NVIDIA A100 GPU with
batch size of 4.

C Mathematical Proof of Stationarity

To prove that the outputs of the BDCS algorithm are stationary, we first verify the stationarity of
the core Stationary Algorithm, then extend this proof to the time-domain and frequency-domain
outputs, and finally conclude the global stationarity of the combined output.

Stationary Algorithm Stationarity

We need to verify the three conditions for stationarity in the output of the Stationary Algorithm 𝑍 (𝑥):
𝑧𝑖 = 𝛼 · 𝑥𝑖 + (1 − 𝛼) · 𝑧𝑖−1

= 𝛼 · 𝑥𝑖 + (1 − 𝛼) · (𝛼 · 𝑥𝑖−1 + (1 − 𝛼) · 𝑧𝑖−2)
= 𝛼 · 𝑥𝑖 + 𝛼 · (1 − 𝛼) · 𝑥𝑖−1 + (1 − 𝛼)2 · 𝑧𝑖−2

=

∞∑︁
𝑘=0

𝛼(1 − 𝛼)𝑘 · 𝑥𝑖−𝑘

(21)
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Algorithm 1 DDS

Input: Time series signal 𝑥 ∈ R𝑏×𝑛, wavelet basis 𝜓, decomposition level 𝐽.
Output: Stabilized signal 𝑧 ∈ R𝑏×𝑛

Define S(𝑥𝑖) :
𝜇← 1

𝐿

∑𝐿
𝑖=1 𝑥𝑖

𝜎 ←
√︃

1
𝐿

∑𝐿
𝑖=1 (𝑥𝑖 − 𝜇)2

return 𝑥𝑖−𝜇
𝜎+𝜀

// Time Domain Decomposition
DefineZ(𝑥′

𝑖
) = 𝛼 · 𝑥′

𝑖
+ (1 − 𝛼) · 𝑧𝑖−1

𝑥′
𝑖
← S(𝑥𝑖) // Standardization

𝑧𝑡𝑖𝑚𝑒
0 ← 𝑥′0

for 𝑖 = 1 to 𝑛 do
𝑧𝑡𝑖𝑚𝑒
𝑖
←Z(𝑥′

𝑖
)

end for
// Frequency Domain Decomposition
𝑥𝑎𝑐, [𝑥𝑑𝑐,1, . . . , 𝑥𝑑𝑐,𝐽 ] ← DWT(𝑥, 𝜓, 𝐽) // Wavelet decomposition
𝑥′𝑎𝑐 ← S(𝑥𝑎𝑐), 𝑥′𝑑𝑐, 𝑗 ← S(𝑥𝑑𝑐, 𝑗 ) for 𝑗 = 1, . . . , 𝐽
𝑧𝑎𝑐 ←Z(𝑥′𝑎𝑐), 𝑧𝑑𝑐, 𝑗 ←Z(𝑥′𝑑𝑐, 𝑗 ) for 𝑗 = 1, . . . , 𝐽
𝑧 𝑓 𝑟𝑒 ← IDWT(𝑧𝑎𝑐, [𝑧𝑑𝑐,1, . . . , 𝑧𝑑𝑐,𝐽 ], 𝜓) // Inverse wavelet transform
// Adaptive Fusion
𝑧 ← (1 − 𝛽) · 𝑧𝑡𝑖𝑚𝑒 + 𝛽 · 𝑧 𝑓 𝑟𝑒
return 𝑧

where 𝑥𝑖 is a series with a mean of 0 and a variance of 1. If i ≤ k , 𝑥𝑖−𝑘 = 0

1. Constant Mean

The normalized signal 𝑥𝑖 has zero mean:

E[𝑥𝑖] = 0. (22)

The smoothed signal 𝑧𝑖 is defined as:

𝑧𝑖 =

∞∑︁
𝑘=0

𝛼(1 − 𝛼)𝑘 · 𝑥𝑖−𝑘 . (23)

Since E[𝑦(𝑡)] = 0, the mean of 𝑧𝑖 is:

E[𝑧𝑖] =
∞∑︁
𝑘=0

𝛼(1 − 𝛼)𝑘 · E[𝑥𝑖−𝑘] = 0. (24)

Thus, the mean of 𝑧𝑖 is constant and equal to zero.

2. Constant Variance

The variance of 𝑧𝑖 is given by:
Var(𝑧𝑖) = E[𝑧2

𝑖 ] − (E[𝑧𝑖])2. (25)

Since E[𝑧𝑖] = 0, we have:
Var(𝑧𝑖) = E[𝑧2

𝑖 ] . (26)

Var(𝑧𝑖) = E


( ∞∑︁
𝑘=0

𝛼(1 − 𝛼)𝑘 · 𝑥𝑖−𝑘

)2 . (27)
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Assuming 𝑥𝑖−𝑘 has unit variance (Var(𝑥𝑖−𝑘) = 1) and different time points of 𝑥𝑖−𝑘 are uncorrelated:

Var(𝑧𝑖) =
∞∑︁
𝑘=0

(
𝛼(1 − 𝛼)𝑘

)2
· Var(𝑥𝑖−𝑘). (28)

Since Var(𝑦(𝑡)) = 1, we have:

Var(𝑧𝑖) =
∞∑︁
𝑘=0

(
𝛼(1 − 𝛼)𝑘

)2
. (29)

This is a geometric series with sum:
∞∑︁
𝑘=0

(
𝛼(1 − 𝛼)𝑘

)2
= 𝛼2

∞∑︁
𝑘=0
(1 − 𝛼)2𝑘

=
𝛼2

1 − (1 − 𝛼)2

=
𝛼

2 − 𝛼 .

(30)

Thus, the variance of 𝑧𝑖 is constant.

3. Autocorrelation Depends Only on Time Lag

The autocorrelation function of 𝑧𝑖 is defined as:

𝑅𝑧 (𝜏) = E[𝑧𝑖𝑧𝑖+𝜏] . (31)

Substituting 𝑧𝑖 =
∑∞

𝑘=0 𝛼(1 − 𝛼)𝑘 · 𝑥𝑖−𝑘 and 𝑧𝑖+𝜏 =
∑∞

𝑗=0 𝛼(1 − 𝛼) 𝑗 · 𝑥𝑖+𝜏− 𝑗 :

𝑅𝑧 (𝜏) = E

[( ∞∑︁
𝑘=0

𝛼(1 − 𝛼)𝑘 · 𝑥𝑖−𝑘

)
·

©­«
∞∑︁
𝑗=0
𝛼(1 − 𝛼) 𝑗 · 𝑥𝑖+𝜏− 𝑗ª®¬

 .
(32)

Expanding the product:

𝑅𝑧 (𝜏) =
∞∑︁
𝑘=0

∞∑︁
𝑗=0
𝛼2 (1 − 𝛼)𝑘+ 𝑗 · E[𝑥𝑖−𝑘𝑥𝑡+𝜏− 𝑗 ] . (33)

Since 𝑦(𝑡) is zero-mean and uncorrelated at different time points:

E[𝑥𝑖−𝑘𝑧𝑖+𝜏− 𝑗 ] =
{
1 if 𝑖 − 𝑘 = 𝑖 + 𝜏 − 𝑗
0 otherwise.

(34)

This implies that the autocorrelation depends only on the time lag 𝜏, not on the specific time 𝑡. Thus,
𝑅𝑧 (𝜏) satisfies the condition for stationarity.

See the specific algorithm in Algorithm 1.

D Comparison between PhysLLM, CNN-LLM Hybrid, and Transformer
based method

We supplement our study with a comparative experiment between PhysLLM and alternative ap-
proaches in Fig. 6. First, we compare with a CNN-LLM Hybrid approach, which refers to utilizing
the same pretrained PhysNet encoder to extract features, which are then fed into the LLM for further
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Figure 6: Comparison between PhysLLM, CNN-LLM Hybrid, and Transformer based method. The lower the
MAE, the better the effect.

analysis. We adopt the same cross-domain evaluation strategy as in the main text, following both
the Two-training and One-testing protocol and the Three-training and One-testing protocol. The
experimental results demonstrate that our approach significantly outperforms the direct combination
method and also characterize the effective integration of our methods.

Furthermore, we investigate the effectiveness of using LLM architecture compared to a Transformer-
based approach. As shown in Fig. 6, while the Transformer-based method achieves competitive
performance, our PhysLLM still demonstrates superior results across different evaluation protocols.
This comparison validates our architectural choice of using LLM over simpler Transformer models,
as the more sophisticated LLM structure better captures the complex physiological patterns and their
relationships in the data, leading to more robust and accurate predictions in cross-domain scenarios.

E Example of Generated Vision Cue
To validate the effectiveness of the generated vision cues, we compare the prompts generated by
LLaVA-based question answering (Liu et al., 2023a) in our method with manually crafted prompts
to investigate whether they correctly capture the knowledge required for the rPPG task. As shown
in Fig. 10, we select four representative video frames, covering scenarios such as dim lighting
conditions, head movements, facial occlusions due to beards and glasses, among others. From the
prompts, it can be observed that the generated prompts effectively capture the desired details, such
as gender, potential head orientation, background color, and accessories. Moreover, the generated
prompts exhibit greater granularity; for instance, in the generated prompt of (a) in Fig. 10, they
explicitly describe differences in lighting conditions. This comparison demonstrates the rationality
and effectiveness of our question-answering approach.

Furthermore, we visualize the BVP signals obtained from PhysLLM under the guidance of both the
generated and manually crafted cues. The results indicate that prompts with finer details lead to more
stable signals, further validating the effectiveness of our designed cue-guided prompting strategy.

F Visualization of the Predicted and Ground-truth BVP and PSD

We randomly select clip samples from UBFC-rPPG (Bobbia et al., 2019) and PURE (Stricker et al.,
2014) and plot the predicted rPPG and the corresponding PSD signals in Fig. 7. The results clearly
demonstrate that PhysLLM effectively predicts the rPPG signals across different datasets and outputs
the corresponding smooth waveform.

G Additional Ablation study

Impact of the Hyperparameters. We have described all the configurations in Section 3, including
the parameter of DDS and the length of the learnable prompt. These hyperparameters are selected
based on experience. To verify that our chosen configuration for PhysLLM is suitable, we conduct
ablation studies on the parameters 𝛼 in the DDS, the length of each learnable prompt. The results
are shown in Fig. 8. Note that only one parameter is changed at one time, while the others remain
unchanged.
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Waveform PSD

(a)

(b)

Figure 7: Visual comparison of the rPPG signals (left) predicted by PhysLLM and their corresponding PSDs
(right), alongside the respective ground-truth. (a) UBFC-rPPG (Bobbia et al., 2019), (b) PURE (Stricker et al.,
2014).
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2019) dataset.
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Figure 9: Impact of different rPPG backbones.

Impact of Different rPPG Backbones.
To verify the generalization of our
framework, in addition to PhysNet (Yu
et al., 2019) as the backbone, we also
consider two other backbones, namely
PhysFormer (Yu et al., 2022) and Effi-
cientPhys (Liu et al., 2021a). As shown
in Fig. 9, the integration of PhysLLM
consistently reduces the RMSE across
all backbone architectures and datasets,
highlighting its effectiveness. Specifi-
cally, on the UBFC dataset (Fig.9(a)), PhysLLM reduces the RMSE from 3.67 bpm to 0.57 bpm
for PhysNet, from 1.81 bpm to 0.91 bpm for PhysFormer, and from 2.46 bpm to 1.26 bpm for Effi-
cientPhys. A similar trend is observed on the PURE dataset (Fig.9(b)), where PhysLLM lowers the
RMSE from 2.6 bpm to 0.35 bpm for PhysNet, from 1.1 bpm to 0.96 bpm for PhysFormer, and from
9.39 bpm to 1.34 bpm for EfficientPhys. These results clearly demonstrate that PhysLLM serves as a
robust enhancement module that generalizes well across different backbone designs and data distri-
butions. Notably, the substantial improvements on EfficientPhys, particularly on the PURE dataset,
suggest that PhysLLM can compensate for weaker backbone performance and enhance reliability in
more challenging scenarios.

H Additional Results on Respiratory Rate Prediction

As shown in Table 9, we conduct a comprehensive comparison of respiratory rate (RR) prediction
performance on three benchmark datasets: UBFC, PURE, and MMPD. The goal of this evaluation
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Table 9: Comparison of MAE and RMSE for respiratory rate estimation on the UBFC, PURE, and
MMPD datasets.

Method UBFC PURE MMPD

MAE RMSE MAE RMSE MAE RMSE

PhysNet (Yu et al., 2019) 15.82 17.84 13.78 16.46 10.30 13.70
PhysFormer (Yu et al., 2022) 6.15 9.87 11.37 14.73 9.91 13.79
EfficientPhys (Liu et al., 2021a) 9.59 13.06 8.71 12.13 11.97 14.57
RhythmFormer (Zou et al., 2025) 4.16 7.89 7.83 11.89 6.37 8.89
PhysLLM (Ours) 4.05 7.70 6.66 9.32 7.03 11.38

is to assess the generalizability and robustness of our method across diverse subject domains and
recording conditions.

Our approach consistently outperforms prior state-of-the-art methods, including PhysNet, Phys-
Former, and EfficientPhys, across all datasets. In particular, we observe a substantial reduction in
error on the UBFC dataset, where our method achieves an MAE of 4.05 and RMSE of 7.70. Similarly,
our method maintains strong performance on the PURE and MMPD datasets, outperforming others
by a large margin.

These results demonstrate the effectiveness of our model in extracting reliable respiratory signals
from facial videos and generalizing to different datasets. The improvements are attributed to our
model’s robust spatiotemporal representation and domain-invariant design, which allow it to maintain
accuracy even under varying motion, lighting, and subject conditions.
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The image features a short-haired man facing forward. He has a prominent nose and a small mouth. The facial regions show a mix of skin 
tones, with some areas appearing lighter and others darker. There are no visible artifacts, such as uneven lighting or shadows, that could 
impact the quality of the rPPG signal. The skin texture appears to be relatively smooth, and there are no noticeable vascular patterns.

The image features a short-haired man with his head turned to the left. He has a prominent nose and a slightly receding hairline. The man's 
skin appears to be relatively smooth, with no noticeable bumps or wrinkles. The lighting in the image is even, with no significant shadows or 
reflections that could affect the quality of the rPPG signal. The man's facial features and skin texture appear to be relatively uniform.

Manual prompt:    The picture is of a man with his head slightly raised. He has slightly yellow skin and has uncovered cheeks and forehead. 

The image features a man with curly hair and a beard, sitting in front of a green background. He has a prominent nose and a slightly 
furrowed brow. There are no visible artifacts, such as uneven lighting or shadows, that could negatively impact the rPPG signal quality. 
The skin texture appears to be relatively smooth, and there are no noticeable vascular patterns.

The image features a woman wearing glasses and a scarf, sitting in front of a green background. She has a prominent nose and a 
slightly pudgy face. The facial regions show a mix of skin tones, with the forehead being lighter than the cheeks and nose. The skin 
appears to be relatively smooth, with no visible vascular patterns or significant texture. 

Manual prompt:   The picture is of a man with his head slightly raised. He has slightly yellow skin and has uncovered cheeks and forehead. 

Manual prompt:   The ambient light is normal and the background is green. The man looks down. He has white skin and he has a beard 
on his chin.

Manual prompt:  The ambient light is normal and the background is green. The woman looks down. She has whiter skin and her cheek, 
forehead  is uncovered. 

(a) (b) (c) (d)

(a)

(b)

(c)

(d)

Prompt generated by LLaVA: 

Prompt generated by LLaVA: 

Prompt generated by LLaVA: 

Prompt generated by LLaVA: 

(a) (b)

(c) (d)

Figure 10: Comparison between manual prompt and prompt generated by LLaVA (Liu et al., 2023a). The top
section presents the selected video frames, the middle section compares the generated vision cues with manually
crafted prompts, and the bottom section illustrates the BVP signal predictions from PhysLLM, guided by the
two types of cues.
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