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Abstract

Non-convex sampling is a key challenge in machine learning, central to non-convex
optimization in deep learning as well as to approximate probabilistic inference.
Despite its significance, theoretically there remain some important challenges:
Existing guarantees suffer from the drawback of lacking guarantees for the last-
iterates, and little is known beyond the elementary schemes of stochastic gradient
Langevin dynamics. To address these issues, we develop a novel framework that
lifts the above issues by harnessing several tools from the theory of dynamical
systems. Our key result is that, for a large class of state-of-the-art sampling schemes,
their last-iterate convergence in Wasserstein distances can be reduced to the study
of their continuous-time counterparts, which is much better understood. Coupled
with standard assumptions of MCMC sampling, our theory immediately yields the
last-iterate Wasserstein convergence of many advanced sampling schemes such as
mirror Langevin, proximal, randomized mid-point, and Runge-Kutta methods.

1 Introduction

Many modern learning tasks involve sampling from a high-dimensional density 𝜋 ∝ 𝑒− 𝑓 , where 𝑓 is
a non-convex potential representing, for instance, the loss function of a deep neural network. To this
end, an approach that has found wide success is to discretize the continuous-time Langevin diffusion

d𝐿𝑡 = −∇ 𝑓 (𝐿𝑡 ) d𝑡 +
√

2 d𝐵𝑡 (LD)

where 𝐵𝑡 is a Brownian motion [57]. The idea behind this approach is that, since 𝜋 is the stationary
distribution of (LD), one can expect a similar behavior for discretizations of (LD). Such a framework
has inspired numerous sampling schemes with per-iteration costs as cheap as stochastic gradient
descent, which are particularly suitable for large-scale approximate probabilistic inference and
Bayesian learning [2, 54, 57]. Moreover, several works have noticed that these Langevin-based
schemes provide deep insights about minimizing 𝑓 using stochastic oracles [22, 48], which serves as
an important step toward explaining the empirical success of training deep neural networks.

The convergence of Langevin-based non-convex sampling has therefore attracted significant interest
from both practitioners and theoreticians, whose intense study has led to a plethora of new guarantees;
see related work for details. Despite such impressive progress, several challenges remain for the fully
non-convex setup:

• The convergence is typically given on the averaged iterates instead of the more natural last iterates
[4, 54]. This is especially problematic from the perspective of understanding the minimization
of 𝑓 , as in practice, the last iterates of an optimization algorithm play the most pivotal role for
downstream tasks.
∗Equal contribution.
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• An additional notable drawback of the current theory is its predominant focus on the basic Euler-
Maruyama discretization of (LD) (see, e.g., [4, 20, 54]). As a result, the convergence analysis
of more advanced sampling schemes remains largely unexplored in the fully non-convex regime
[1, 24, 25, 34, 53, 61].

§ Contributions and Approaches. To overcome the aforementioned challenges, our main contri-
bution, from a high level, can be succinctly summarized as:

Under mild assumptions, we prove that the iterates of a broad range of Langevin-based
sampling schemes converge to the continuous-time (LD) in Wasserstein distance. (★)

Combining (★) with classical results on Langevin diffusion [45] immediately yields the last-iterate
convergence in Wasserstein distances for a wide spectrum of sampling schemes, thus resolving all
the challenges mentioned above. To illustrate this point, we state a simple version of our main result.

Theorem (Informal). Suppose we discretize (LD) as

𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘+1 (∇ 𝑓 (𝑥𝑘 ) + noise + bias) +
√︁

2𝛾𝑘+1 𝜉𝑘+1

with step-sizes {𝛾𝑘 }𝑘∈ℕ and i.i.d. standard Gaussians {𝜉𝑘 }𝑘∈ℕ. Then, under an easy-to-verify
condition on the bias (see (5) in Assumption 3), {𝑥𝑘 }𝑘∈ℕ converges in Wasserstein distance to 𝜋. In
addition, these conditions are satisfied by many advanced sampling schemes.

This result is achieved via a new dynamical perspective to study Langevin-based sampling. More
specifically,

1. We introduce the Picard process, which is the sampling analogue of Picard’s method of successive
approximations for solving ODEs [17]. Contrary to most existing analyses, the Picard process
allows us to completely bypass the use of relative entropy, which is the culprit for the appearance
of averaged iterates [20].

2. Using the Picard process, we will prove that the iterates of various Langevin-based schemes
generate a so-called Wasserstein asymptotic pseudotrajectory (WAPT) for the continuous-time
(LD). The main motivation for considering WAPT is to connect Langevin-based schemes to
the dynamical system theory of Benaïm and Hirsch [7], which works for metric spaces and is
last-iterate by design, and therefore particularly suitable for our purpose.

3. Finally, under standard stability assumptions in the literature [39, 51], we show how a tandem of
our WAPT result and dynamical system theory yields the desirable convergence of various existing
schemes, as well as motivates more efficient algorithms that enjoy the same rigorous guarantees.

§ Related work. There is a vast literature on structured non-convex sampling, where one imposes
extra assumptions on the target density. Under these conditions, one can derive non-asymptotic
rates for Langevin-based schemes [13, 15, 33, 35, 36, 41, 48, 56, 60, 63]. Our work is orthogonal to
these works as we study generic non-convex sampling, an NP-hard problem whose convergence is
asymptotic at best.

Most relevant to our paper are the works [4, 8, 20, 29, 54], which study the asymptotic convergence
of Langevin-based schemes under minimal regularity assumptions on 𝑓 . Compared to their results,
our guarantees either improve upon existing ones or are incomparable; see Section 5.4 for a more
detailed comparison.

2 The Langevin-Robbins-Monro Template

We consider the following general template for sampling algorithms: Starting from an initial point,
the iterates {𝑥𝑘 }𝑘∈ℕ follow the recursion

𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘+1{𝑣(𝑥𝑘 ) + 𝑍𝑘+1} +
√︁

2𝛾𝑘+1 𝜎(𝑥𝑘 ) 𝜉𝑘+1, (LRM)

where 𝛾𝑘 ’s are step sizes, 𝑣 is a vector field, 𝑍𝑘 ’s are (random or deterministic) perturbations, 𝜎 is
the state-dependent diffusion matrix, and 𝜉𝑘 ’s are i.i.d. standard Gaussian random variables. In the
sequel, we will further decompose the perturbation as 𝑍𝑘 = 𝑈𝑘 + 𝑏𝑘 , where 𝑈𝑘 is the (zero-mean)
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noise and 𝑏𝑘 is the bias. We call this recursion the Langevin-Robbins-Monro (LRM) template, as it is
reminiscent of the Robbins-Monro template for stochastic approximation [50].

The generality of the LRM template allows us to capture many existing algorithms and suggests ways
to design new ones. For illustration purposes, we showcase instances of (LRM) with the following
examples. Other examples (SGLD and proximal) are provided in Appendix A. In the first three
examples, the vector field 𝑣 in (LRM) is −∇ 𝑓 and 𝜎 ≡ 1.
Example 1. The Randomized Mid-Point Method [24, 53] is an alternative discretization scheme to
Euler-Maruyama and has been proposed for both overdamped and underdamped Langevin diffusion.
For the overdamped case, its iterates are

𝑥𝑘+1/2 = 𝑥𝑘 − 𝛾𝑘+1𝛼𝑘+1∇̃ 𝑓 (𝑥𝑘 ) +
√︁

2𝛾𝑘+1𝛼𝑘+1 𝜉
′
𝑘+1,

𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘+1∇̃ 𝑓 (𝑥𝑘+1/2) +
√︁

2𝛾𝑘+1 𝜉𝑘+1,
(RMM)

where {𝛼𝑘 } are i.i.d. and uniformly distributed in [0, 1], 𝜉𝑘 , 𝜉 ′𝑘 are standard Gaussian random
variables with cross-variance

√
𝛼𝑘 𝐼, and ∇̃ 𝑓 is a noisy evaluation of ∇ 𝑓 . To cast (RMM) in the LRM

template, we set 𝑈𝑘+1 B ∇̃ 𝑓 (𝑥𝑘+1/2) − ∇ 𝑓 (𝑥𝑘+1/2) and 𝑏𝑘+1 B ∇ 𝑓 (𝑥𝑘+1/2) − ∇ 𝑓 (𝑥𝑘 ). �

Example 2. Inspecting the update rule of (RMM), we see that it requires two gradient oracle calls
at each iteration. Inspired by the optimistic gradient methods in optimization and online learning
[16, 47, 49], we propose to “recycle” the past gradients:

𝑥𝑘+1/2 = 𝑥𝑘 − 𝛾𝑘+1𝛼𝑘+1∇̃ 𝑓 (𝑥𝑘−1/2) +
√︁

2𝛾𝑘+1𝛼𝑘+1𝜉
′
𝑘+1,

𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘+1∇̃ 𝑓 (𝑥𝑘+1/2) +
√︁

2𝛾𝑘+1 𝜉𝑘+1,
(ORMM)

where {𝛼𝑘 }, 𝜉𝑘 , 𝜉 ′𝑘 , and ∇̃ 𝑓 are the same as in (RMM). This is again an LRM scheme with 𝑈𝑘+1 B

∇̃ 𝑓 (𝑥𝑘+1/2) − ∇ 𝑓 (𝑥𝑘+1/2) and 𝑏𝑘+1 B ∇ 𝑓 (𝑥𝑘+1/2) − ∇ 𝑓 (𝑥𝑘 ).
Notice that (ORMM) requires one gradient oracle, thereby reducing the per-iteration cost of (RMM)
by 2. To our knowledge, the scheme (ORMM) is new. �

Example 3. In addition to the simple (stochastic) Euler-Maruyama discretization in (SGLD), there
exists a class of more sophisticated discretization methods of (LD) known as higher-order integrators.
The Stochastic Runge-Kutta method [34] is an example of an order 1.5 integrator, with iterates

ℎ1 = 𝑥𝑘 +
√︁

2𝛾𝑘+1 (𝑐1𝜉𝑘+1 + 𝑐2𝜉
′
𝑘+1)

ℎ2 = 𝑥𝑘 − 𝛾𝑘+1∇̃ 𝑓 (𝑥𝑘 ) +
√︁

2𝛾𝑘+1 (𝑐3𝜉𝑘+1 + 𝑐2𝜉
′
𝑘+1),

𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘+1
2 (∇̃ 𝑓 (ℎ1) + ∇̃ 𝑓 (ℎ2)) +

√︁
2𝛾𝑘+1 𝜉𝑘+1,

where 𝜉𝑘+1 and 𝜉 ′
𝑘+1 are independent standard Gaussian random variables, and 𝑐1, 𝑐2, 𝑐3 are suitably

chosen integrator constants. This algorithm is an LRM scheme with 𝑈𝑘+1 B
1
2 (∇̃ 𝑓 (ℎ1) − ∇ 𝑓 (ℎ1)) +

1
2 (∇̃ 𝑓 (ℎ2)) − ∇ 𝑓 (ℎ2)) and 𝑏𝑘+1 B

1
2 (∇ 𝑓 (ℎ1) + ∇ 𝑓 (ℎ2)) − ∇ 𝑓 (𝑥𝑘 ).

Example 4. The Mirror Langevin algorithm [1, 25, 61], which is the sampling analogue of the
celebrated mirror descent scheme in optimization [5, 43], uses a strongly convex function 𝜙 to adapt
to a favorable local geometry. In the dual space (i.e., the image of ∇𝜙), its iterates follow

𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘+1∇ 𝑓 (∇𝜙∗ (𝑥𝑘 )) +
√︁

2𝛾𝑘+1 (∇2𝜙∗ (𝑥𝑘 )−1)1/2 𝜉𝑘+1, (ML)

where 𝜙∗ is the Fenchel dual of 𝜙 [52]. In our framework, (ML) fits into (LRM) by taking 𝑣 =

−∇ 𝑓 ◦ ∇𝜙∗ and 𝜎 = (∇2𝜙∗)−1/2. Additionally, one can also consider a stochastic version of (ML)
with noisy evaluations of ∇ 𝑓 .

3 Technique Overview: A Dynamical System Perspective

The goal of our paper is to provide last-iterate guarantees for the general LRM schemes introduced in
Section 2. There are two equivalent, commonly considered, ways of characterizing the dynamics of
the iterates of an LRM scheme. The first one is to view the iterates {𝑥𝑘 }𝑘∈ℕ as a random trajectory in
ℝ𝑑 , which is perhaps the most natural way of describing a sampling algorithm. The second way is
to view the distributions {𝜌𝑘 }𝑘∈ℕ of {𝑥𝑘 }𝑘∈ℕ as a deterministic trajectory in the Wasserstein space.
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With these two characterizations in mind, in this section, we will devise a new framework based on
the dynamical system theory and present its high-level ideas.

To understand our novelty, it is important to contrast our framework to the existing Wasserstein
viewpoint towards Langevin-based sampling algorithms. Following the seminal work of Otto
[44], one can view a sampling algorithm as the discretization of a class of well-studied dynamical
systems—gradient flows. This viewpoint suggests using Lyapunov arguments, which has become the
predominant approach in much prior work.

Despite its appealing nature, in the rest of this section, we will argue that Lyapunov analysis of
gradient flows is in fact not suited for studying generic non-convex sampling. In particular, we will
show how our new framework is motivated to overcome the several important limitations of gradient
flow analysis. Finally, we give a high-level overview of the techniques used in our paper.

§ Langevin Diffusion as Gradient Flows. We denote by 𝜌𝑡 the probability density of 𝐿𝑡 in (LD),
and consider the continuous curve 𝑡 ↦→ 𝜌𝑡 in the Wasserstein space 𝕎2. In their seminal works, Jordan
et al. [27] and Otto [44] discover that this curve is the (exact) gradient flow of the relative entropy
functional; that is, defining the functional 𝐹 : 𝜌 ↦→ 𝐷KL

(
𝜌‖𝑒− 𝑓

)
, one has 𝜕𝑡 𝜌𝑡 = − grad 𝐹 (𝜌𝑡 ),

where “grad” is the gradient in the Wasserstein sense. This gradient flow viewpoint of (LD) thus
provides a clear link between sampling in ℝ𝑑 and optimization in 𝕎2. Indeed, this suggests that the
relative entropy is a natural choice for the Lyapunov function of the discrete-time sampling algorithm,
which is a prominent approach for analyzing sampling algorithms in recent years [4, 21, 58].

Although the gradient flow viewpoint has led to a sequence of breakthroughs, it has a few important
shortcomings:

(a) The usual Lyapunov-type analysis for sampling algorithms focuses on bounding the change
in relative entropy across iterations. This is extremely challenging when one considers
more advanced sampling algorithms, as one has to understand the effect of the additive
bias and noise of the algorithm on the change of relative entropy. Crucially, this makes the
Lyapunov analysis applicable only to the simple Euler-Maruyama discretization of (LD),2 i.e.,
𝑥𝑘+1 = 𝑥𝑘 −𝛾𝑘+1∇ 𝑓 (𝑥𝑘 ) +

√︁
2𝛾𝑘+1 𝜉𝑘+1, and fails to capture more advanced and biased sampling

schemes such as Examples 1–4. Even for the simple (SGLD), the presence of stochastic
gradients significantly complicates the Lyapunov analysis and requires extra assumptions such
as convexity [21] or uniform spectral gap [48].

(b) This gradient flow-based analysis often requires an extra averaging step to decrease the relative
entropy (see, e.g., [4]). This is the main reason why many existing works provide guarantees
only on the averaged iterates (�̄�𝑘 B 1

𝑘

∑𝑘
𝑖=1 𝜌𝑖) instead of the last ones (𝜌𝑘 ).

In this paper, we overcome these limitations by introducing a new perspective, whose two ingredients
are as follows.

§ Wasserstein Asymptotic Pseudotrajectories. A notion that will play a pivotal role in our analysis
is the Wasserstein asymptotic pseudotrajectory (WAPT), which is a measure of “asymptotic closeness”
in the Wasserstein sense, originally defined by Benaïm and Hirsch [7] for metric spaces:
Definition 1 (Wasserstein asymptotic pseudotrajectory). We say the stochastic process (𝑋𝑡 )𝑡≥0 is a
Wasserstein asymptotic pseudotrajectory (WAPT) of the SDE

dΦ𝑡 = 𝑣(Φ𝑡 ) d𝑡 + 𝜎(Φ𝑡 ) d𝐵𝑡 (SDE)

if, for all 𝑇 > 0,
lim
𝑡→∞

sup
0≤𝑠≤𝑇

𝑊2 (𝑋𝑡+𝑠 ,Φ
(𝑡)
𝑠 ) = 0. (1)

Here, Φ(𝑡)
𝑠 is the solution of the SDE at time 𝑠 initialized at 𝑋𝑡 , and 𝑊2 is the 2-Wasserstein distance.

Despite the seemingly convoluted definition, WAPT can be intuitively understood as follows: Let
{𝑥𝑘 }𝑘∈ℕ be the iterates of a sampling scheme. Then, (1) simply posits that for sufficiently large

2While the Lyapunov-type analysis has been applied to elementary (i.e., unbiased) discretization schemes for
other SDEs, such as the under-damped (i.e., kinetic) Langevin dynamics [19], our primary focus in this paper
remains centered on the over-damped Langevin diffusion and similar SDEs.

4



Dynamical
Perspective

Dynamics
via WAPT

(Theorem 1)

Dissipativity
(Theorem 3)

Weak
Dissipativity
(Theorem 4)

Stability
(Eq. (10))+

Last-Iterate Convergence
in 𝕎2

(Theorem 2)

Figure 1: High-level overview of the two components of the dynamical perspective.

𝑚, one cannot distinguish between the “tail” iterates {𝑥𝑘 }𝑘≥𝑚 versus the SDE solution starting at
𝑥𝑚, up to arbitrarily small error measured in terms of the Wasserstein distance. Since we are only
interested in the asymptotic behavior of 𝑥𝑘 , these controls on the tail iterates will suffice to conclude
the last-iterate convergence.3

Importantly, from the perspective of WAPT, the Langevin diffusion (LD) (or more generally, Φ(𝑡)
𝑠 )

is simply viewed as a generic dynamical system and not as a gradient flow. In particular, relative
entropy will play no role throughout our analysis, thereby resolving issue (b).

§ Langevin-Robbins-Monro Schemes. We have seen that the LRM template in Section 2 is
capable of capturing a broad range of existing and new algorithms in a unified way. To resolve the
remaining issue (a), we will further rely on the LRM template: for proving that (LRM) generates a
WAPT of the corresponding SDE, we show that the key condition (1) in WAPT can be reduced to
checking an easy-to-verify bound on the perturbation terms 𝑍𝑘 .

To achieve this, the most important step in our proof, which distinguishes our analysis from all
existing works in non-convex sampling, is the construction of the so-called Picard process, the natural
generalization of the Picard’s successive approximation method [17] from ordinary differential
equations to stochastic differential equations. In the stochastic approximation literature, similar
techniques have been successfully applied to study optimization and games in various settings such
as on Riemannian or primal-dual spaces [26, 28, 37]. The application to sampling has also been
previously explored by Bubeck et al. [11], Chau et al. [12] in different contexts. What distinguishes
our work from the existing literature is the advantage of generalizing the Picard process to encompass
a vastly wider class of algorithms, specifically the LRM schemes. Moreover, the integration of the
Picard process with the theory of WAPT plays a pivotal role in our analysis, and both of these aspects
present original contributions.

§ Framework overview. To conclude, for proving last-iterate convergence, we proceed as follows:

1. For a given LRM scheme {𝑥𝑘 }𝑘∈ℕ, we first construct a continuous-time trajectory (𝑋𝑡 )𝑡≥0 via
interpolating the iterates (see (3)).

2. We prove that (𝑋𝑡 ) constitutes a WAPT of the SDE (see Theorem 1). This step relies heavily on
the construction of the aforementioned Picard process.

3. By invoking the dynamical system theory of Benaïm and Hirsch [7], the convergence of LRM
schemes reduces to simply checking the stability condition (Theorem 2). In the Wasserstein space,
this condition translates into boundedness of the second moments of the iterates {𝑥𝑘 }, for which
there is a plethora of approaches; we present two such methods in Section 5.

Fig. 1 depicts a high-level overview of the ingredients needed in our framework, and their correspond-
ing theorems.

4 The Dynamics of Langevin-Robbins-Monro Schemes

In this section, we view (LRM) as a noisy and biased discretization of (LD). To make this analogy
precise, let (𝐵𝑡 )𝑡≥0 be a Brownian motion defined on a filtered probability space with filtration

3Definition 1 is phrased in terms of a continuous-time stochastic process (𝑋𝑡 )𝑡≥0. The discrete iterates
{𝑥𝑘 }𝑘∈ℕ can be converted to a continuous-time process through a suitable interpolation; see (3).
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(ℱ𝑡 )𝑡≥0, and define 𝜏𝑘 =
∑𝑘

𝑛=1 𝛾𝑛 to be the effective time that has elapsed at the iteration 𝑘 . Using
the Brownian motion, we can rewrite (LRM) as

𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘+1{𝑣(𝑥𝑘 ) + 𝑍𝑘+1} + 𝜎(𝑥𝑘 ) (𝐵𝜏𝑘+1 − 𝐵𝜏𝑘 ), (2)

assuming that the filtration satisfies 𝑍𝑘 ∈ ℱ𝜏𝑘 .4 The (continuous-time) interpolation (𝑋𝑡 )𝑡≥0 of
{𝑥𝑘 }𝑘∈ℕ is then defined as the adapted process

𝑋𝑡 = 𝑥𝑘 − (𝑡 − 𝜏𝑘 ){𝑣(𝑥𝑘 ) + 𝔼[𝑍𝑘+1 |ℱ𝑡 ]} + 𝜎(𝑥𝑘 ) (𝐵𝑡 − 𝐵𝜏𝑘 ), for 𝑡 ∈ [𝜏𝑘 , 𝜏𝑘+1] . (3)

In addition, for a fixed 𝑡, consider the Brownian motion (𝐵 (𝑡)
𝑠 )𝑠≥0 where 𝐵

(𝑡)
𝑠 B 𝐵𝑡+𝑠 − 𝐵𝑡 , and

define the Langevin flow (Φ(𝑡)
𝑠 )𝑠≥0 as the (strong) solution of (SDE) initialized at 𝑋𝑡 . It is important

to note that Φ(𝑡) and 𝑋 are synchronously coupled by sharing the same Brownian motion.

4.1 Technical Assumptions and Requirements

We now introduce the basic technical assumptions and discuss their generality.
Assumption 1. The vector field 𝑣 is 𝐿-Lipschitz, and satisfies 〈𝑥, 𝑣(𝑥)〉 ≤ 𝐶𝑣 (1 + ‖𝑥‖) for some
𝐶𝑣 > 0. Moreover, 𝜎 is 𝐿-Lipschitz and is bounded in Hilbert-Schmidt norm.

Lipschitzness of 𝑣 is a standard assumption and is also required to ensure the existence of a unique
strong solution of (SDE). The second assumption on the vector field is exceedingly weak and
when 𝑣 = −∇ 𝑓 , is satisfied even for distributions without moments. The assumptions on diffusion
coefficient 𝜎 are already satisfied when 𝜎 ≡ 1, and we show that it holds for practical schemes such
as Example 4.
Assumption 2. The Robbins-Monro summability conditions hold:

∑∞
𝑘=1 𝛾𝑘 = ∞ and

∑∞
𝑘=1 𝛾

2
𝑘
< ∞.

Moreover, for some constant 𝑃 to be defined in (20), we have

𝛾𝑘+1/𝛾𝑘 + 𝑃𝛾𝑘𝛾𝑘+1 < 1 − 𝛾𝑘 , ∀𝑘. (4)

The Robbins-Monro step size conditions are standard in the non-convex sampling literature [4, 20,
29, 30]. For (4), it can be verified that condition is satisfied even for slowly-decreasing step sizes
such as 𝛾𝑘 ∝ (

√
𝑘 log 𝑘)−1, which hence is not restrictive.

Assumption 3. The noises {𝑈𝑘 }𝑘∈ℕ form a martingale difference sequence, i.e., 𝔼[𝑈𝑘+1 |𝑈𝑘 ] = 0,
and have uniformly bounded second moments. In addition, the bias terms satisfy

𝔼[‖𝑏𝑘+1‖2 |ℱ𝜏𝑘 ] = O(𝛾2
𝑘+1‖𝑣(𝑥𝑘 )‖

2 + 𝛾𝑘+1). (5)

A martingale difference sequence is more general than an i.i.d. sequence, allowing the noise to be
state-dependent. The bias condition (5) simply states that the bias shall not overpower the signal
𝑣(𝑥𝑘 ), and, as we show later, is satisfied by all our examples.

4.2 From Discrete to Continuous: LRM Schemes and WAPTs

We are now in a position to state our main theorems. Our first result below establishes a precise link
between the discrete-time (LRM) and the continuous-time (SDE).
Theorem 1. Under Assumptions 1–3, the interpolation (3) of an LRM scheme is a Wasserstein
asymptotic pseudotrajectory of (SDE).

§ Sketch of the Proof for Theorem 1. The proof of this theorem is heavily based on the notion of
the Picard process and iterate moment bounds. The complete proof can be found in Appendix C.

§ Step 1: The Picard Process. For a fixed 𝑡 > 0, recall the construction of the interpolation (3)
and the Langevin flow. Central to our analysis is the Picard process, defined as

𝑌
(𝑡)
𝑠 = 𝑋𝑡 +

∫ 𝑠

0
𝑣(𝑋𝑡+𝑢) d𝑢 +

∫ 𝑠

0
𝜎(𝑋𝑡+𝑢) d𝐵 (𝑡)

𝑢 . (6)

4One can augment the filtration of the Brownian motion by the 𝜎-algebra of 𝑍𝑘 at times {𝜏𝑘 }𝑘∈ℕ.
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The Picard process is adapted and is (synchronously) coupled with the Langevin flow and the
interpolation. We think of the Picard process as one step of the Picard iteration for successive
approximations to solve ODEs. This means, intuitively, that its trajectory should be close to the
original interpolation, as well as to that of the Langevin flow, playing the role of a “bridge”.

Fix 𝑇 > 0. For 𝑠 ∈ [0, 𝑇], we decompose the distance between the interpolation 𝑋𝑡 in (3) and the
Langevin flow as

1
2 ‖𝑋𝑡+𝑠 −Φ

(𝑡)
𝑠 ‖2 ≤ ‖𝑌 (𝑡)

𝑠 −Φ
(𝑡)
𝑠 ‖2 + ‖𝑋𝑡+𝑠 − 𝑌

(𝑡)
𝑠 ‖2. (7)

We now bound each term of the decomposition. By synchronous coupling of the processes, Lipschitz-
ness of 𝑣, and Itô isometry, Lemma 3 bounds the first term as

‖𝑌 (𝑡)
𝑠 −Φ

(𝑡)
𝑠 ‖2 ≤ 2(𝑇 + 1)𝐿2

∫ 𝑠

0
‖Φ(𝑡)

𝑢 − 𝑋𝑡+𝑢 ‖2 d𝑢. (8)

This will be suitable for later use of Grönwall’s lemma.

§ Step 2: Accumulated Noise and Bias. For the rest of the proof, we need some extra notation.
Define 𝑚(𝑡) B sup{𝑘 ≥ 0 : 𝜏𝑘 ≤ 𝑡} and the piecewise-constant process 𝑋 𝑡 B 𝑥𝑚(𝑡) . Going back to
the second term of (7), observe that

𝑋𝑡+𝑠 − 𝑌
(𝑡)
𝑠 =

∫ 𝑡+𝑠

𝑡

𝑣(𝑋𝑢) − 𝑣(𝑋𝑢) d𝑢 +
∫ 𝑠

0
𝜎(𝑋 𝑡+𝑢) − 𝜎(𝑋𝑡+𝑢) d𝐵 (𝑡)

𝑢 − Δ𝑍 (𝑡, 𝑠), (9)

where Δ𝑍 (𝑡, 𝑠) is the accumulated noise and bias from time 𝑡 to time 𝑡 + 𝑠. It is expected that
‖Δ𝑍 (𝑡, 𝑠)‖ eventually becomes negligible, since the step size becomes small. The next lemma
confirms this intuition.

Lemma 1. Suppose Assumptions 1–3 hold. Then, for any fixed 𝑇 > 0 we have

lim
𝑡→∞

sup
0≤𝑠≤𝑇

𝔼‖Δ𝑍 (𝑡, 𝑠)‖2 = 0.

§ Step 3: Gradient Moment Bounds. Based on (9) and Lemma 1, bounding the distance between
the Picard process and the interpolation essentially reduces to bounding how much the discrete
algorithm “moves” during one iteration in expectation. This, in turn, depends on how large the
moments of ‖𝑣(𝑥𝑘 )‖ grow per iteration, which is controlled by the following lemma:

Lemma 2. Let {𝑥𝑘 }𝑘∈ℕ be the iterates of (LRM) and suppose Assumptions 1–3 hold. Then, 𝔼‖𝑥𝑘 ‖2 =

O(1/𝛾𝑘+1). This in turn implies 𝔼‖𝑣(𝑥𝑘 )‖2 = O(1/𝛾𝑘+1) and 𝔼‖𝑏𝑘+1‖2 = O(𝛾𝑘+1).

Using this lemma and Lemma 1 we can obtain 𝐴𝑡 := sup0≤𝑠≤𝑇 𝔼‖𝑋𝑡+𝑠 − 𝑌
(𝑡)
𝑠 ‖2 → 0 as 𝑡 → ∞,

which shows that the Picard process gets arbitrarily close to the interpolation as 𝑡 → ∞.

§ Step 4: Concluding the Proof. Let us go back to the decomposition (7). Taking expectation and
using (8) and Grönwall’s lemma, we obtain 𝔼[‖𝑋𝑡+𝑠 −Φ

(𝑡)
𝑠 ‖2] ≤ 4 𝐴𝑡 exp(𝑇2𝐿2), Thus,

lim
𝑡→∞

sup
𝑠∈[0,𝑇 ]

𝔼
[
‖𝑋𝑡+𝑠 −Φ

(𝑡)
𝑠 ‖2

]
= 0.

As we coupled 𝑋𝑡+𝑠 and Φ
(𝑡)
𝑠 in a specific way (via synchronizing the Brownian motions), we directly

get an upper bound on the Wasserstein distance. �

5 Last-Iterate Convergence of Sampling Schemes

In this section we focus on last-iterate convergence of LRM schemes in Wasserstein space. We
first explore the interplay between the convergence of WAPTs and stability. We then show that the
existing stability results for simple Euler-Maruyama discretization of the Langevin diffusion can be
extended, with little to no extra assumptions, to the class of LRM schemes in Section 2. This in turn
readily implies the last-iterate convergence of a wide class of LRM schemes.
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5.1 From WAPTs to Convergence in 𝕎2

Since convergence of the distribution of 𝑥𝑘 to 𝜋 in Wasserstein distance implies convergence of the
second moments of 𝑥𝑘 to that of 𝜋 [3], convergence in the Wasserstein space should at least require:

sup
𝑘∈ℕ

𝔼‖𝑥𝑘 ‖2 < ∞. (10)

It turns out that, for WAPTs, the exceedingly weak necessary condition (10) is also sufficient:

Theorem 2. Let (𝑋𝑡 ) be a Wasserstein asymptotic pseudotrajectory of the Langevin diffusion (LD)
generated by an LRM scheme {𝑥𝑘 } via (3). Then 𝑊2 (𝑥𝑘 , 𝜋) → 0 if and only if (10) holds.

Proof. The proof relies on the structure of compact sets in the Wasserstein space and limit-set
theorems for dynamical systems [7]. Specifically, the closure of bounded subsets of 𝕎2 is compact
[3], so condition (10) implies that (law(𝑋𝑡 ))𝑡≥0 is pre-compact in 𝕎2. Moreover, Assumption 1
implies that the Langevin flow is globally integrable. Thus, (law(𝑋𝑡 ))𝑡≥0 is a pre-compact WAPT of
a globally integrable flow, and we can apply the limit-set theorem for metric spaces [7, Theorem 0.1]
to conclude that the limit-set of (law(𝑋𝑡 ))𝑡 is an internally chain transitive (ICT) set.

Next, we show that for the case of the Langevin flow, the only ICT set is {𝜋}, implying the desired
convergence of our theorem. To see this, define 𝑉 (·) = 𝐷KL (· | 𝜋). It can be observed that 𝑉 is a
Lyapunov function for (LD), whose value is strictly decreasing along the flow (as the time derivative
of 𝑉 along the flow is negative of the relative Fisher information, which is strictly positive for all
measures other than 𝜋). Thus, all requirements of [6, Prop. 6.4] are satisfied, showing that the only
point in the ICT set is 𝜋. This also shows the uniqueness of the stationary distribution of (LD). �

Remark. From the proof of Theorem 1, we observe that the supremum of the Wasserstein distance
between (𝑋·) [𝑡 ,𝑡+𝑇 ] and (Φ(𝑡)

· ) [0,𝑇 ] typically scales exponentially with 𝑇 , which is common for
weak approximation error in the literature, see [40]. Despite the exponential dependence on 𝑇 , the
convergence of the last iterate is assured by Theorem 2 without a need of a uniform control in 𝑇 .
This is primarily attributed to the adoption of a dynamical system viewpoint and the application of
corresponding tools, effectively harnessing the paradigm established by Benaïm and Hirsch.

Theorems 1–2 in tandem thus show that, as long as an LRM scheme satisfies Assumptions 1–3 and
the moment condition (10), the desirable last-iterate convergence in 𝕎2 is immediately attained.
Therefore, in the rest of this section, we turn our focus to establishing (10) for LRM schemes.

5.2 Bounded Moments of LRM Schemes

There is a long history of study on conditions that ensure (10) for iterative algorithms, which has
culminated in the so-called dissipativity properties. We consider two such examples below.

Assumption 4 (Dissipativity). There exist constants 𝛼 > 0 and 𝛽 ≥ 0 such that

〈𝑥, 𝑣(𝑥)〉 ≤ −𝛼‖𝑥‖2 + 𝛽, ∀𝑥 ∈ ℝ𝑑 .

Under Assumption 4, it is classical that (10) holds for the simple Euler-Maruyama discretization
of (LD) with deterministic or stochastic gradient oracles [23, 29, 30, 38, 48, 51, 54]. These studies,
however, cannot handle non-zero bias, which, as seen in Examples 1–3, is crucial for incorporating
more advanced sampling schemes.

To this end, our next result shows that for a wide class of LRM schemes, the stability (10) essentially
comes for free under Assumption 4. The proof is provided in Appendix D.

Theorem 3. Let 𝑣 be a vector field satisfying Assumptions 1 and 4 and 𝜎 be a diffusion coef-
ficient satisfying Assumption 1, and let {𝑥𝑘 } be an LRM scheme. Assume that lim𝑘→∞ 𝛾𝑘 = 0,
sup𝑘 𝔼‖𝑈𝑘 ‖2 < ∞, and the bias satisfies (5). Then, the stability condition (10) holds for {𝑥𝑘 }.

A weaker notion of dissipativity that has been studied in the literature is:

Assumption 5 (Weak dissipativity). There exist constants 𝛼 > 0, 𝜅 ∈ (0, 1], and 𝛽 ≥ 0 such that

〈𝑥, 𝑣(𝑥)〉 ≤ −𝛼‖𝑥‖1+𝜅 + 𝛽, ∀𝑥 ∈ ℝ𝑑 .

8



NOISE BIAS LAST-ITERATE

LAMBERTON AND PAGES [29], LEMAIRE [30] 7 7 7

TEH ET AL. [54] 3 7 7

BENAÏM ET AL. [8] 7 7 3

DURMUS AND MOULINES [20] 7 7 3

BALASUBRAMANIAN ET AL. [4] 7 7 7

THIS WORK 3 3 3

Table 1: Comparison to existing works on convergence of LRM schemes. All methods, except for
[4], require bounded second moments of the iterates.

When 𝜅 = 1, Assumption 5 is simply Assumption 4. As opposed to Assumption 4, which requires
quadratic growth of 𝑓 outside a compact set (when 𝑣 = −∇ 𝑓 ), Assumption 5 only entails superlinear
growth and therefore is considerably weaker.

For Euler-Maruyama discretization of (LD) with deterministic gradients, [20] prove that Assumption 5
is sufficient to guarantee bounded moments of the iterates. As for a generic LRM scheme, we consider
the following general condition on the bias terms, which will suffice to cover all our examples in
Section 2: For some constant 𝑐,

‖𝑏𝑘+1‖2 ≤ 𝑐
(
𝛾2
𝑘+1‖𝑣(𝑥𝑘 )‖

2 + 𝛾2
𝑘+1‖𝑈

′
𝑘+1‖

2 + 𝛾𝑘+1‖𝜉 ′𝑘+1‖
2 + 𝛾𝑘+1‖𝜉𝑘+1‖2) , (11)

where 𝑈 ′
𝑘+1 is an extra noise term, and 𝜉 ′

𝑘+1 is a standard Gaussian independent of the noises and 𝜉𝑘 .
The price to pay with the weaker Assumption 5, however, is that we need to assume sub-Gaussianity
of the noise. For a proof, see Appendix D.
Theorem 4. Let 𝜋 ∝ 𝑒− 𝑓 be the target distribution, where 𝑣 = −∇ 𝑓 satisfies Assumptions 1 and 5,
and let {𝑥𝑘 } be an LRM scheme. Assume that lim𝑛→∞ 𝛾𝑘 = 0, the noises𝑈𝑘 and𝑈 ′

𝑘
are sub-Gaussian,

and the bias term of {𝑥𝑘 } satisfies (11). Then, (10) holds for {𝑥𝑘 } in when (i) 𝜎 ≡ 1, or (ii) 𝑓 is
Lipschitz and the LRM follows the Mirror Langevin algorithm (Example 4).

5.3 Examples of Convergent LRM Schemes

We now illustrate the use of Theorems 1–4 on our examples in Section 2.
Proposition 1. Under Assumption 1 and noise with uniformly bounded second moments, the following
holds for Examples 1–6: (i) The bias has the form (11) and satisfies (5), (ii) As a result, under
Assumptions 2 and 3, Examples 1–6 produce iterates that generate a WAPT of (SDE). (iii) Under the
additional conditions of Theorem 3 or Theorem 4, Examples 1–6 enjoy last-iterate convergence to the
target distribution in Wasserstein distance.

5.4 Comparison to Existing Work

We now give a more detailed comparison of our results to existing literature; a summary is given in
Table 1, and additional comparison with prior works can be found in Appendix B.

§ Guarantees for LRM Schemes. Lamberton and Pages [29] and Lemaire [30] study the simple
Euler-Maruyama discretization of (LD) with deterministic gradients (i.e., 𝑈𝑘 = 𝑏𝑘 = 0) and establish
the weak convergence of the average iterates under a moment condition that is slightly weaker than
(10).5 Their analysis is further extended by [54] to incorporate stochastic gradients. Later, the
last-iterate convergence of the simple Euler-Maruyama discretization of (LD) is studied by [20], who
prove the convergence in the total variation distance under Assumption 5. Another work on a similar
setting as [20] is [8], where the convergence criterion is given in an integral probability metric (IPM)
[42] of the form 𝑑B (𝜇, 𝜈) B sup𝜑∈B |𝔼𝜇𝜑−𝔼𝜈𝜑| for a certain class of test functions B that is known
to imply weak convergence, but not convergence in total variation or Wasserstein distances.

Compared to these results, our guarantees possess the following desirable features:

5Although the condition in [29, 30] is stated in a weaker form than (10), it is typically only verified on a
special case that is equivalent to our Assumption 4, and thus implies (10). See e.g., [29, Remark 3].
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• The convergence is always on the last iterates instead of the average iterates.

• As we tolerate biased algorithms, the class of LRM schemes we consider is significantly more
general than the ones in existing work.

Finally, we note that our results are incomparable to the recent work of Balasubramanian et al. [4],
who derive the same result as in [29, 30], i.e., average-iterate, weak convergence, deterministic
Euler-Maruyama discretization. A remarkable feature of the analysis in [4] is that it does not require
any bounded moments, and, in particular, their bounds can be applied to target distributions with
unbounded variance. However, the downside of [4] is that, in the presence of𝑈𝑘 and 𝑏𝑘 , their analysis
produces a bound that does not vanish as 𝑘 → ∞; see [4, Theorem 15]. In contrast, our framework
can tolerate quite general 𝑈𝑘 and 𝑏𝑘 , gives stronger guarantees (𝑊2 vs. weak convergence; last-iterate
vs. average-iterate).

§ On Analysis Techniques. While, to our knowledge, our framework is significantly different from
previous works on sampling, we acknowledge that similar ideas of creating an auxiliary process
in-between the iterates and the continuous-time flow is not entirely new and has been touched
upon in the literature, e.g., [10, 12]. That being said, our specific approach in building the Picard
process and its development into a wider array of algorithms, i.e., Langevin-Robbins-Monro schemes,
undoubtedly plays a pivotal role in our analysis. Moreover, the integration of the Picard process with
the theory of asymptotic pseudo-trajectories offers dual benefits to our study, and we view these as
our unique contributions to this area of research.

Furthermore, the novel Picard process gives a significant advantage in all of our results. The work of
[8] also hinges on dynamical system theory-related ideas. Yet, missing the critical step of the Picard
process has seemingly resulted in much weaker findings compared to our work. This observation
is not meant as a critique; rather, it merely highlights the potency of the unique method we have
integrated into our study.

6 Concluding Remarks

In this paper, we provided a new, unified framework for analyzing a wide range of sampling schemes,
thus laying the theoretical ground for using them in practice, as well as motivating new and more
efficient sampling algorithms that enjoy rigorous guarantees. We built on the ideas from dynamical
system theory, and gave a rather complete picture of the asymptotic behavior of many first-order
sampling algorithms. In short, our results help with the following:

• Validating existing methods: Methods like mirror Langevin and randomized mid-point currently
lack even asymptotic guarantees in fully non-convex scenarios, such as sampling from neural
network-defined distributions. Our work fills this gap by offering the first rigorous justification for
these schemes, supporting practitioners in utilizing these methods confidently.

• Facilitating new algorithm design: Our work motivates novel sampling methods through a
straightforward verification of Assumptions 1–3. An illustrative instance involves the randomized
mid-point method and Runge-Kutta integrators, wherein a substantial 50% reduction in compu-
tation per iteration can be achieved without compromising convergence by simply recycling past
gradients, shown in Example 2. The balance between the benefits of saving gradient oracles and
potential drawbacks remains an open question, necessitating case-by-case practical evaluation.
Nevertheless, our theory provides a flexible algorithmic design template that extends beyond the
current literature’s scope.

While our WAPT result holds under very mild conditions, a severe limitation of our current framework
is that it only applies to Langevin-based algorithms, whereas there exist numerous practical sampling
schemes, such as Metropolis-Hastings, that are not immediately linked to (LD). We believe that this
restriction arises as an artifact of our analysis, as the WAPT framework can in principle be applied
equally well to any continuous-time dynamics. Lifting such constraint is an interesting future work.
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A Further Examples of LRM Schemes

Example 5. The classic Stochastic Gradient Langevin Dynamics [57] iterates as

𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘+1∇̃ 𝑓 (𝑥𝑘 ) +
√︁

2𝛾𝑘+1 𝜉𝑘+1, (SGLD)

where ∇̃ 𝑓 is the gradient of the negative log-likelihood of a random batch of the data. (SGLD) fits
the LRM template by setting 𝑈𝑘+1 B ∇̃ 𝑓 (𝑥𝑘 ) − ∇ 𝑓 (𝑥𝑘 ), and 𝑏𝑘+1 B 0. �

Example 6. The Proximal Langevin Algorithm [9, 46, 59] is defined via

𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘+1∇ 𝑓 (𝑥𝑘+1) +
√︁

2𝛾𝑘+1 𝜉𝑘+1. (PLA)
This algorithm is implicit, and it is assumed that one can solve (PLA) for 𝑥𝑘+1. By setting 𝑏𝑘+1 B
∇ 𝑓 (𝑥𝑘+1) − ∇ 𝑓 (𝑥𝑘 ) and 𝑈𝑘+1 B 0, we see that this algorithm also follows the LRM template. �

B Additional Related Work

Our paper studies the behavior of a wide range of Langevin-based sampling algorithms proposed in
the literature in the asymptotic setting under minimal assumptions. This allows us to give last-iterate
guarantees in Wasserstein distance. As stressed in Section 1, our goal is not to provide non-asymptotic
rates in this general setting as the problem is inherently NP-Hard. However, given more assumptions
and structures on the potential 𝑓 , there is a plethora of works which prove convergence rates for the
last iterates in Wasserstein distance. In this appendix, we provide additional backgraound for these
works and the methods used in the literature.

A powerful framework for quantifying the global discretization error of a numerical algorithm is the
mean-square analysis framework [40]. This framework furnishes a general recipe for controlling
short and long-term integration errors. For sampling, this framework has been applied to prove
convergence rates for Langevin Monte-Carlo (the Euler-Maruyama discretization of (LD)) in the
strongly-convex setting [32, 34]. Similar to our work, the convergence obtained in these works is
last-iterate and in Wasserstein distance. One of the essential ingredients in the latter work is the
contraction property of the SDE, which is ensured by the strong convexity assumption. This, in turn,
implies strong non-asymptotic convergence guarantees.

It is an interesting future direction to study the combination of the Mean-Squared analysis together
with the Picard process and its applicability to more sophisticated algorithms (such as LRM schemes
with bias and noise), as well as non-convex potentials.

As explained in Section 3, one of the main themes in proving error bounds for sampling is the
natural relation between sampling and optimization in the Wasserstein space. This point of view,
when applied to strongly-convex potentials, has produced numerous non-asymptotic guarantees;
see [14, 18] for a recent account and the references therein. Note that strong convexity is crucial
for the analysis used in the aforementioned work. Moreover, the error bounds for biased and noisy
discretizations do not decrease with the step-size or iteration count; see [18, Theorem 4, Eqn. (14)].
This means that while the bound is non-asymptotic, it does not automatically result in an asymptotic
convergence. Finally, we stress that these approaches are orthogonal to our techniques: We view a
sampling algorithm as a (noisy and biased) discretization of a dynamical system (and not necessarily
a gradient flow), and use tools from dynamical system theory to provide asymptotic convergence
results.

C Proofs for Section 4

C.1 Proof of Theorem 1

In this appendix, we bring the detailed proof of Theorem 1. Recall that we interpolate the iterates of
the LRM scheme {𝑥𝑘 } as

𝑋𝑡 = 𝑥𝑘 + (𝑡 − 𝜏𝑘 ){𝑣(𝑥𝑘 ) + 𝔼[𝑍𝑘+1 |ℱ𝑡 ]} + 𝜎(𝑥𝑘 ) (𝐵𝑡 − 𝐵𝜏𝑘 ). (3)

Moreover, for a fixed 𝑡 > 0, we considered the Brownian motion 𝐵
(𝑡)
𝑠 = 𝐵𝑡+𝑠 − 𝐵𝑡 , and constructed

two important processes: the Langevin flow defined via

dΦ(𝑡)
𝑠 = 𝑣(Φ(𝑡)

𝑠 ) d𝑠 + 𝜎(Φ(𝑡)
𝑠 ) d𝐵 (𝑡)

𝑠 , Φ
(𝑡)
0 = 𝑋𝑡 , (12)
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and the Picard process (6) constructed as

𝑌
(𝑡)
𝑠 = 𝑋𝑡 +

∫ 𝑠

0
𝑣(𝑋𝑡+𝑢) d𝑢 +

∫ 𝑠

0
𝜎(𝑋𝑡+𝑢) d𝐵 (𝑡)

𝑢 . (6)

Let us fix 𝑇 > 0, and for 𝑠 ∈ [0, 𝑇] decompose the distance between the interpolation and the
Langevin flow as

1
2 ‖𝑋𝑡+𝑠 −Φ

(𝑡)
𝑠 ‖2 ≤ ‖𝑌 (𝑡)

𝑠 −Φ
(𝑡)
𝑠 ‖2 + ‖𝑋𝑡+𝑠 − 𝑌

(𝑡)
𝑠 ‖2, (7)

where we have used ‖𝑎 + 𝑏‖2 ≤ 2‖𝑎‖2 + 2‖𝑏‖2. We now bound each term of this decomposition.
Notice that due to the synchronous coupling of the processes, the Brownian motion cancels out in the
differences.

The first term controls how close the Picard process is to the Langevin flow, and is bounded in the
following lemma.
Lemma 3. For fixed 𝑡, 𝑇 > 0 and 0 ≤ 𝑠 ≤ 𝑇 , the distance of the Picard process and the Langevin
flow is bounded as

‖𝑌 (𝑡)
𝑠 −Φ

(𝑡)
𝑠 ‖2 ≤ 2(𝑇 + 1)𝐿2

∫ 𝑠

0
‖Φ(𝑡)

𝑢 − 𝑋𝑡+𝑢 ‖2 d𝑢.

Proof. By the auxiliary Lemma 4 below, Lipschitzness of 𝑣, 𝜎, Itô isometry (see, e.g., [62]) and
𝑠 ≤ 𝑇 , we have

𝔼‖𝑌 (𝑡)
𝑠 −Φ

(𝑡)
𝑠 ‖2 = 𝔼





∫ 𝑠

0
𝑣(Φ(𝑡)

𝑢 ) − 𝑣(𝑋𝑡+𝑢) d𝑢 +
∫ 𝑠

0
𝜎(Φ(𝑡)

𝑢 ) − 𝜎(𝑋𝑡+𝑢) d𝐵 (𝑡)
𝑢





2

≤ 2𝑠
∫ 𝑠

0
𝔼




𝑣(Φ(𝑡)
𝑢 ) − 𝑣(𝑋𝑡+𝑢)




2
d𝑢 + 2𝔼

∫ 𝑠

0




𝜎(𝑋𝑡+𝑢) − 𝜎(Φ(𝑡)
𝑢 )




2

𝐹
d𝑢

≤ 2(𝑇 + 1)𝐿2
∫ 𝑠

0
𝔼‖Φ(𝑡)

𝑢 − 𝑋𝑡+𝑢 ‖2 d𝑢. �

For the rest of the proof, we need to define the continuous-time piecewise-constant processes
𝑋 (𝜏𝑘 + 𝑠) = 𝑋𝑘 , 𝛾(𝜏𝑘 + 𝑠) = 𝛾𝑘+1, 𝑍 (𝜏𝑘 + 𝑠) = 𝑍𝑘+1, and 𝑍 (𝜏𝑘 + 𝑠) = 𝔼[𝑍𝑘+1 |ℱ𝜏𝑘+𝑠], for
0 ≤ 𝑠 < 𝛾𝑘+1. Also, let 𝑚(𝑡) = sup{𝑘 ≥ 0 : 𝜏𝑘 ≤ 𝑡} so that 𝜏𝑚(𝑡) ≤ 𝑡 < 𝜏𝑚(𝑡)+1.

To bound the second term in (7), we have seen that

𝑋𝑡+𝑠 − 𝑌
(𝑡)
𝑠 =

∫ 𝑡+𝑠

𝑡

𝑣(𝑋 (𝑢)) d𝑢 −
∫ 𝑠

0
𝑣(𝑋𝑡+𝑢) d𝑢

+
∫ 𝑡+𝑠

𝑡

𝜎(𝑋 (𝑢)) d𝐵𝑢 −
∫ 𝑠

0
𝜎(𝑋𝑡+𝑢) d𝐵 (𝑡)

𝑢

+ Δ𝑍 (𝑡, 𝑠),
where Δ𝑍 (𝑡, 𝑠) plays the role of accumulated noise and bias from time 𝑡 to 𝑡 + 𝑠, and is defined as

Δ𝑍 (𝑡, 𝑠) B
𝑘−1∑︁
𝑖=𝑛

𝛾𝑖+1𝑍𝑖+1 + (𝑡 + 𝑠 − 𝜏𝑘 )𝔼[𝑍𝑘+1 |ℱ𝑡+𝑠] − (𝑡 − 𝜏𝑛)𝔼[𝑍𝑛+1 |ℱ𝑡 ], (13)

with 𝑘 = 𝑚(𝑡 + 𝑠) and 𝑛 = 𝑚(𝑡). We therefore have

𝔼‖𝑋𝑡+𝑠 − 𝑌
(𝑡)
𝑠 ‖2 ≤ 3𝔼





∫ 𝑡+𝑠

𝑡

𝑣(𝑋𝑢) − 𝑣(𝑋 (𝑢)) d𝑢




2

+ 3𝔼




∫ 𝑡+𝑠

𝑡

𝜎(𝑋𝑢) − 𝜎(𝑋 (𝑢)) d𝐵𝑢





2
+ 3𝔼‖Δ𝑍 (𝑡, 𝑠)‖2

≤ 3𝑠
∫ 𝑡+𝑠

𝑡

𝔼




𝑣(𝑋𝑢) − 𝑣(𝑋 (𝑢))



2

d𝑢

+ 3𝔼
∫ 𝑡+𝑠

𝑡




𝜎(𝑋𝑢) − 𝜎(𝑋 (𝑢))



2

𝐹
d𝑢 + 3𝔼‖Δ𝑍 (𝑡, 𝑠)‖2

≤ 3(𝑠 + 1)𝐿2
∫ 𝑡+𝑠

𝑡

𝔼‖𝑋𝑢 − 𝑋 (𝑢)‖2 d𝑢 + 3𝔼‖Δ𝑍 (𝑡, 𝑠)‖2. (14)

16



For bounding the term inside the integral, we have

𝔼‖𝑋𝑢 − 𝑋 (𝑢)‖2 = 𝔼‖(𝑢 − 𝜏𝑚(𝑢) ){𝑣(𝑋 (𝑢)) + 𝑍 (𝑢)} + 𝜎(𝑋 (𝑢)) (𝐵𝑢 − 𝐵𝜏𝑚(𝑢) )‖2

≤ 4𝛾(𝑢)2
(
𝔼‖𝑣(𝑋 (𝑢))‖2 + 𝔼‖𝑍 (𝑢)‖2

)
+ 2𝛾(𝑢) 𝔼 tr

(
𝜎(𝑋 (𝑢))>𝜎(𝑋 (𝑢))

)
.

We have used the fact that

𝔼‖𝜎(𝑋 (𝑢)) (𝐵𝑢 − 𝐵𝜏𝑚(𝑢) )‖2 = 𝔼
(
(𝐵𝑢 − 𝐵𝜏𝑚(𝑢) )>𝜎(𝑋 (𝑢))>𝜎(𝑋 (𝑢)) (𝐵𝑢 − 𝐵𝜏𝑚(𝑢) )

)
= 𝔼tr

(
𝜎(𝑋 (𝑢))>𝜎(𝑋 (𝑢)) (𝐵𝑢 − 𝐵𝜏𝑚(𝑢) ) (𝐵𝑢 − 𝐵𝜏𝑚(𝑢) )>

)
= 𝔼

[
𝔼[tr(𝜎(𝑋 (𝑢))>𝜎(𝑋 (𝑢)) (𝐵𝑢 − 𝐵𝜏𝑚(𝑢) ) (𝐵𝑢 − 𝐵𝜏𝑚(𝑢) )>) |ℱ𝜏𝑚(𝑢) ]

]
= (𝑢 − 𝜏𝑚(𝑢) )𝔼

[
tr(𝜎(𝑋 (𝑢))>𝜎(𝑋 (𝑢)))

]
Notice that since conditional expectation is a projection in 𝐿2, we have 𝔼‖𝑍 (𝑢)‖2 ≤ 𝔼‖𝑍 (𝑢)‖2.
Using this fact, along with boundedness of 𝜎(·) by 𝐶𝜎 , and Lemma 2 we get

𝔼
[
‖𝑋𝑢 − 𝑋 (𝑢)‖2

]
≤ 4𝛾(𝑢)2

(
𝔼‖𝑣(𝑋 (𝑢))‖2 + 𝔼‖𝑍 (𝑢)‖2

)
+ 2𝛾(𝑢) 𝔼 tr

(
𝜎(𝑋 (𝑢))>𝜎(𝑋 (𝑢))

)
≤ 4𝛾(𝑢)2𝔼‖𝑣(𝑋 (𝑢))‖2 + 8𝛾(𝑢)2𝜎2 + 4𝛾(𝑢)2 O(𝛾(𝑢)) + 2𝐶𝜎𝛾(𝑢) ≤ 𝐶𝛾(𝑢),

for some constant 𝐶 > 0. Plugging this estimate into (14) after taking expectation yields

𝔼
[
‖𝑋𝑡+𝑠 − 𝑌

(𝑡)
𝑠 ‖2

]
≤ 3(𝑠 + 1)𝐿2𝐶

∫ 𝑡+𝑠

𝑡

𝛾(𝑢) d𝑢 + 3𝔼‖Δ𝑍 (𝑡, 𝑠)‖2

≤ 3(𝑠 + 1)𝑠𝐿2𝐶 sup
𝑢∈[𝑡 ,𝑡+𝑠]

𝛾(𝑢) + 3𝔼‖Δ𝑍 (𝑡, 𝑠)‖2

≤ 3(𝑇 + 1)2𝐿2𝐶 sup
𝑢∈[𝑡 ,𝑡+𝑇 ]

𝛾(𝑢) + 3 sup
𝑢∈[0,𝑇 ]

𝔼‖Δ𝑍 (𝑡, 𝑢)‖2

Taking supremum over 𝑠 ∈ [0, 𝑇] and noticing that the right-hand-side is independent of 𝑠 and
𝛾𝑘 → 0, together with Lemma 1 yields

𝐴𝑡 B sup
0≤𝑠≤𝑇

𝔼
[
‖𝑋𝑡+𝑠 − 𝑌

(𝑡)
𝑠 ‖2

]
(15)

≤ 3(𝑇 + 1)2𝐿2𝐶 sup
𝑡≤𝑢≤𝑡+𝑇

𝛾(𝑢) + 3 sup
0≤𝑢≤𝑇

𝔼
[
‖Δ𝑍 (𝑡, 𝑢)‖2]

→ 0 as 𝑡 → ∞,

showing that the Picard process gets arbitrary close to the original interpolation, as 𝑡 → ∞.

Let us return to the decomposition (7). By taking expectation and using (8) and (15) we obtain

𝔼
[
‖𝑋𝑡+𝑠 −Φ

(𝑡)
𝑠 ‖2

]
≤ 2(𝑇 + 1)𝐿2

∫ 𝑠

0
𝔼
[
‖𝑋𝑡+𝑢 −Φ

(𝑡)
𝑢 ‖2

]
d𝑢 + 2𝐴𝑡

≤ 2𝐴𝑡 exp
(
𝑠(𝑇 + 1)𝐿2

)
≤ 2𝐴𝑡 exp((𝑇 + 1)2𝐿2),

where in the last line we have used the Grönwall lemma. Thus,

lim
𝑡→∞

sup
𝑠∈[0,𝑇 ]

𝔼
[
‖𝑋𝑡+𝑠 −Φ

(𝑡)
𝑠 ‖2

]
= 0.

Recall that the Wasserstein distance between 𝑋𝑡+𝑠 and Φ
(𝑡)
𝑠 is the infimum over all possible couplings

between them, having the correct marginals. As Φ(𝑡)
𝑠 has the same marginal as the Langevin diffusion

started from 𝑋𝑡 at time 𝑠, and the synchronous coupling of the interpolation and the Langevin flow
produces a specific coupling between them, we directly get

𝑊2 (𝑋𝑡+𝑠 ,Φ
(𝑡)
𝑠 ) ≤ 𝔼

[
‖𝑋𝑡+𝑠 −Φ

(𝑡)
𝑠 ‖2

] 1
2
,

which implies
lim
𝑡→∞

sup
𝑠∈[0,𝑇 ]

𝑊2 (𝑋𝑡+𝑠 ,Φ
(𝑡)
𝑠 ) = 0,

as desired. �
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C.2 Auxiliary Lemmas

Lemma 1. Suppose Assumptions 1–3 hold. Then, for any fixed 𝑇 > 0 we have

lim
𝑡→∞

sup
0≤𝑠≤𝑇

𝔼‖Δ𝑍 (𝑡, 𝑠)‖2 = 0.

Proof. Define Δ𝑏 and Δ𝑈 the same way as in (13). By Cauchy-Schwarz we have

‖Δ𝑏 (𝑡, 𝑠)‖2

≤
(
𝑘−1∑︁
𝑖=𝑛

𝛾𝑖+1‖𝑏𝑖+1‖ + (𝑡 + 𝑠 − 𝜏𝑘 )‖𝔼[𝑏𝑘+1 |ℱ𝑡+𝑠] ‖ + (𝑡 − 𝜏𝑛)‖𝔼[𝑏𝑛+1 |ℱ𝑡 ] ‖
)2

≤ (2𝛾𝑛+1 + 𝑠)
(
𝑘−1∑︁
𝑖=𝑛

𝛾𝑖+1‖𝑏𝑖+1‖2 + (𝑡 + 𝑠 − 𝜏𝑘 )‖𝔼[𝑏𝑘+1 |ℱ𝑡+𝑠] ‖2 + (𝑡 − 𝜏𝑛)‖𝔼[𝑏𝑛+1 |ℱ𝑡 ] ‖2

)
,

where the last inequality comes from
∑𝑘−1

𝑖=𝑛
𝛾𝑖+1 ≤ 𝑠, 𝑡+ 𝑠−𝜏𝑘 ≤ 𝛾𝑘+1, 𝑡−𝜏𝑛 ≤ 𝛾𝑛+1, and 𝛾𝑘+1 ≤ 𝛾𝑛+1.

Noticing that conditional expectation is a contraction in 𝐿2 and letting 𝑘 ′ = 𝑚(𝑡 + 𝑇), we get

sup
0≤𝑠≤𝑇

𝔼
[
‖Δ𝑏 (𝑡, 𝑠)‖2] ≤ (2 + 𝑇)

(
𝑘′−1∑︁
𝑖=𝑛

𝛾𝑖+1𝔼‖𝑏𝑖+1‖2 + sup
𝑛≤ 𝑗≤𝑘′+1

𝛾 𝑗+1𝔼‖𝑏 𝑗+1‖2 + 𝛾𝑛+1𝔼‖𝑏𝑛+1‖2

)
Now, invoking Lemma 2 yields

sup
0≤𝑠≤𝑇

𝔼
[
‖Δ𝑏 (𝑡, 𝑠)‖2] ≤ 𝐶 (2 + 𝑇)

(
𝑘′−1∑︁
𝑖=𝑛

𝛾2
𝑖+1 + sup

𝑛≤ 𝑗≤𝑘′+1
𝛾2
𝑗+1 + 𝛾2

𝑛+1

)
≤ 𝐶 (2 + 𝑇)

(
𝑘′−1∑︁
𝑖=𝑛

𝛾2
𝑖+1 + 2𝛾2

𝑛+1

)
≤ 𝐶 (2 + 𝑇) (𝑇 + 2𝛾𝑛+1) sup

0≤𝑠≤𝑇
𝛾(𝑡 + 𝑠).

As 𝑡 → ∞, the last quantity vanishes, since 𝛾𝑛 → 0.

For the noise we have

‖Δ𝑈 (𝑡, 𝑠)‖2 ≤ 2






𝑘−1∑︁
𝑖=𝑛

𝛾𝑖+1𝑈𝑖+1






2

+ 4‖(𝑡 + 𝑠 − 𝜏𝑘 )𝔼[𝑈𝑘+1 |ℱ𝑡+𝑠] ‖2 + 4‖(𝑡 − 𝜏𝑛)𝔼[𝑈𝑛+1 |ℱ𝑡 ] ‖2

≤ 2






𝑘−1∑︁
𝑖=𝑛

𝛾𝑖+1𝑈𝑖+1






2

+ 4𝛾2
𝑘+1‖𝑈𝑘+1‖2 + 4𝛾2

𝑛+1‖𝑈𝑛+1‖2.

Taking expectations and then sup, we get

sup
0≤𝑠≤𝑇

𝔼
[
‖Δ𝑈 (𝑡, 𝑠)‖2] ≤ 2 sup

𝑛+1≤𝑘≤𝑚(𝑡+𝑇 )
𝔼






𝑘−1∑︁
𝑖=𝑛

𝛾𝑖+1𝑈𝑖+1






2

+ 4𝛾2
𝑘+1𝜎

2 + 4𝛾2
𝑛+1𝜎

2.

Since {𝑈𝑖} is a martingale difference sequence, we have that
{∑𝑘−1

𝑖=𝑛
𝛾𝑖+1𝑈𝑖+1

}
𝑘>𝑛

is a martingale.
Thus, by the boundedness of the second moments of 𝑈𝑖 , we get

𝔼






𝑘−1∑︁
𝑖=𝑛

𝛾𝑖+1𝑈𝑖+1






2

=
𝑘−1∑︁
𝑖=𝑛

𝛾2
𝑖+1𝔼‖𝑈𝑖+1‖2 ≤ 𝜎2

𝑘−1∑︁
𝑖=𝑛

𝛾2
𝑖+1.

Hence,

lim
𝑛→∞

sup

{
𝔼‖

𝑘−1∑︁
𝑖=𝑛

𝛾𝑖+1𝑈𝑖+1‖2 : 𝑛 < 𝑘 ≤ 𝑚(𝜏𝑛 + 𝑇)
}
≤ lim

𝑛→∞
𝜎2

∞∑︁
𝑖=𝑛

𝛾2
𝑖+1 = 0.

�
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Lemma 2. Let {𝑥𝑘 }𝑘∈ℕ be the iterates of (LRM) and suppose Assumptions 1–3 hold. Then, 𝔼‖𝑥𝑘 ‖2 =

O(1/𝛾𝑘+1). This in turn implies 𝔼‖𝑣(𝑥𝑘 )‖2 = O(1/𝛾𝑘+1) and 𝔼‖𝑏𝑘+1‖2 = O(𝛾𝑘+1).

Proof. Without loss of generality, suppose 𝑣 has a stationary point at 0. We repeatedly use the fact
that 𝔼‖𝑣(𝑥𝑘 )‖2 ≤ 𝐿2𝔼‖𝑥𝑘 ‖2. Moreover, by Assumption 1 we have 〈𝑣(𝑥), 𝑥〉 ≤ 𝐶𝑣 (‖𝑥‖ + 1), and
‖𝜎(𝑥)‖2

𝐹
≤ 𝐶𝜎 .

Define 𝑎𝑘 B 𝔼‖𝑥𝑘 ‖2. We have

𝑎𝑘+1 − 𝑎𝑘 = 𝛾2
𝑘+1𝔼‖𝑣(𝑥𝑘 ) + 𝑍𝑘+1‖2 + 𝛾𝑘+1𝔼‖𝜎(𝑥𝑘 )𝜉𝑘+1‖2 + 2𝛾𝑘+1𝔼〈𝑥𝑘 , 𝑣(𝑥𝑘 ) + 𝑍𝑘+1〉

+ 2𝛾1/2
𝑘+1𝔼〈𝑥𝑘 , 𝜎(𝑥𝑘 )𝜉𝑘+1〉 + 2𝛾3/2

𝑘+1𝔼〈𝑣(𝑥𝑘 ) + 𝑍𝑘+1, 𝜎(𝑥𝑘 )𝜉𝑘+1〉

≤ 2𝐿2𝛾2
𝑘+1𝑎𝑘 + 2𝛾2

𝑘+1𝔼‖𝑍𝑘+1‖2 + 𝛾𝑘+1𝐶𝜎 + 2𝛾𝑘+1𝐶𝑣 (
√
𝑎𝑘 + 1) + 2𝛾𝑘+1

√
𝑎𝑘

√︁
𝔼‖𝑍𝑘+1‖2

+ 2𝛾3/2
𝑘+1

√︁
𝐶𝜎

√︁
𝔼‖𝑍𝑘+1‖2 (16)

By Assumption 3, there is some 𝐶𝑏 > 0 such that 𝔼‖𝑏𝑘+1‖2 ≤ 𝐶𝑏 (𝛾2
𝑘+1𝑎𝑘 + 𝛾𝑘+1), and we have

𝔼‖𝑍𝑘+1‖2 ≤ 2𝔼‖𝑏𝑘+1‖2 + 2𝔼‖𝑈𝑘+1‖2 ≤ 2𝐶𝑏 (𝛾2
𝑘+1𝑎𝑘 + 𝛾𝑘+1) + 2𝜎2. (17)

Moreover, as
√
𝑝 + 𝑞 ≤ √

𝑝 + √
𝑞, we have√︁

𝔼‖𝑍𝑘+1‖2 ≤
√︁

2𝐶𝑏 (𝛾𝑘+1
√
𝑎𝑘 +

√
𝛾𝑘+1) +

√
2𝜎. (18)

Plugging the bounds from (17) and (18) into (16) gives

𝑎𝑘+1 − 𝑎𝑘 ≤ 2𝐿2𝛾2
𝑘+1𝑎𝑘 + 4𝐶𝑏𝛾

4
𝑘+1𝑎𝑘 + 4𝐶𝑏𝛾

3
𝑘+1 + 4𝛾2

𝑘+1𝜎
2

+ 𝛾𝑘+1𝐶𝜎 + 2𝛾𝑘+1𝐶𝑣

√
𝑎𝑘 + 2𝛾𝑘+1𝐶𝑣

+ 2
√︁

2𝐶𝑏𝛾
2
𝑘+1𝑎𝑘 + 2

√︁
2𝐶𝑏𝛾

3/2
𝑘+1

√
𝑎𝑘 + 2

√
2𝜎𝛾𝑘+1

√
𝑎𝑘

+ 2
√︁

2𝐶𝑏𝐶𝜎𝛾
5/2
𝑘+1

√
𝑎𝑘 + 2

√︁
2𝐶𝑏𝐶𝜎𝛾

2
𝑘+1 + 2𝛾3/2

𝑘+1

√︁
2𝐶𝜎𝜎

C 𝑃𝛾2
𝑘+1 𝑎𝑘 +𝑄𝛾𝑘+1

√
𝑎𝑘 + 𝑅𝛾𝑘+1,

(19)

where

𝑃 = 2𝐿2 + 4𝐶𝑏𝛾
2
𝑘+1 + 2

√︁
2𝐶𝑏

𝑄 = 2𝐶𝑣 + 2
√︁

2𝐶𝑏

√
𝛾𝑘+1 + 2

√
2𝜎 + 2

√︁
2𝐶𝑏𝛾𝑘+1 + 2

√︁
2𝐶𝑏𝐶𝜎𝛾

3/2
𝑘+1

𝑅 = 4𝐶𝑏𝛾
2
𝑘+1 + 4𝛾𝑘+1𝜎

2 + 𝐶𝜎 + 2𝐶𝑣 + 2
√︁

2𝐶𝑏𝐶𝜎𝛾𝑘+1 + 2𝛾1/2
𝑘+1

√︁
2𝐶𝜎𝜎.

The exact values of 𝑃, 𝑄, and 𝑅 are irrelevant, and we only need upper bounds for them. Assuming
that 𝛾𝑘+1 < 1 for all 𝑘 , we replace the three quantities by

𝑃 = 2𝐿2 + 4𝐶𝑏 + 2
√︁

2𝐶𝑏

𝑄 = 2𝐶𝑣 + 2
√︁

2𝐶𝑏 + 2
√

2𝜎 + 2
√︁

2𝐶𝑏 + 2
√︁

2𝐶𝑏𝐶𝜎

𝑅 = 4𝐶𝑏 + 4𝜎2 + 𝐶𝜎 + 2𝐶𝑣 + 2
√︁

2𝐶𝑏𝐶𝜎 + 2
√︁

2𝐶𝜎𝜎.

(20)

Now, define ℎ𝑘 = 𝛾2
𝑘+1𝑎𝑘 . The recursion (19) in terms of ℎ𝑘 becomes

ℎ𝑘+1 ≤ ℎ𝑘 (1 + 𝑃𝛾2
𝑘+1)

𝛾2
𝑘+2

𝛾2
𝑘+1

+
√︁
ℎ𝑘𝑄𝛾2

𝑘+2 + 𝑅𝛾𝑘+1𝛾
2
𝑘+2.

We now prove that there exists some 𝑀 > 0 so that ℎ𝑘 ≤ 𝑀𝛾𝑘+1 by induction. Suppose it is the case
for 𝑘 , and we prove it for 𝑘 + 1. Using the induction hypothesis we get

ℎ𝑘+1 ≤ 𝑀𝛾𝑘+1 (1 + 𝑃𝛾2
𝑘+1)

𝛾2
𝑘+2

𝛾2
𝑘+1

+
√︁
𝑀𝛾𝑘+1𝑄𝛾2

𝑘+2 + 𝑅𝛾𝑘+1𝛾
2
𝑘+2

= 𝑀 (1 + 𝑃𝛾2
𝑘+1)

𝛾2
𝑘+2

𝛾𝑘+1
+
√
𝑀𝑄

√
𝛾𝑘+1𝛾

2
𝑘+2 + 𝑅𝛾𝑘+1𝛾

2
𝑘+2
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For the last to be less than 𝑀𝛾𝑘+2, we have to verify

𝑀 (1 + 𝑃𝛾2
𝑘+1)

𝛾𝑘+2
𝛾𝑘+1

+
√
𝑀𝑄

√
𝛾𝑘+1𝛾𝑘+2 + 𝑅𝛾𝑘+1𝛾𝑘+2 ≤ 𝑀

or equivalently,

𝑀

(
𝛾𝑘+2
𝛾𝑘+1

+ 𝑃𝛾𝑘+1𝛾𝑘+2 − 1
)
+
√
𝑀𝑄

√
𝛾𝑘+1𝛾𝑘+2 + 𝑅𝛾𝑘+1𝛾𝑘+2 ≤ 0.

This is a quadratic equation in
√
𝑀 , and for this inequality to hold, we prove that the leading coefficient

is negative, and the largest root is bounded above by some constant not depending on 𝑛.

Negativity of the leading coefficient is equivalent to
𝛾𝑘+2
𝛾𝑘+1

+ 𝑃𝛾𝑘+1𝛾𝑘+2 < 1,

which is implied by our assumption on the step size.

The larger root of the equation is(
−4𝛾2

𝑘+1𝛾
2
𝑘+2𝑃𝑅 + 𝛾𝑘+1𝛾𝑘+2 (𝛾𝑘+2𝑄

2 + 4𝑅) − 4𝑅𝛾2
𝑘+2

)1/2 + √
𝛾𝑘+1𝛾𝑘+2𝑄

2(1 − 𝛾𝑘+1𝛾𝑘+2𝑃 − 𝛾𝑘+2/𝛾𝑘+1)

<

√
𝛾𝑘+1𝛾𝑘+2𝑄 +

√
𝑅𝛾𝑘+1𝛾𝑘+2

(1 − 𝛾𝑘+1𝛾𝑘+2𝑃 − 𝛾𝑘+2/𝛾𝑘+1)

≤
√
𝛾𝑘+1𝛾𝑘+1𝑄 +

√
𝑅𝛾𝑘+1

(1 − 𝛾𝑘+1𝛾𝑘+2𝑃 − 𝛾𝑘+2/𝛾𝑘+1)
.

By our assumption on the step size that
𝛾𝑘+2
𝛾𝑘+1

+ 𝑃𝛾𝑘+1𝛾𝑘+2 < 1 − 𝛾𝑘+1,

we get that the larger root is smaller than
√
𝛾𝑘+1𝛾𝑘+1𝑄 +

√
𝑅𝛾𝑘+1

𝛾𝑘+1
=
√
𝛾𝑘+1𝑄 +

√
𝑅 < 𝑄 +

√
𝑅.

Letting 𝑀 := 𝑄 +
√
𝑅 gives the desired result.

The second argument of the lemma follows from Assumption 3 and the first result of the lemma. �

Lemma 4. For a vector valued function 𝑔 ∈ 𝐿2 (ℝ;ℝ𝑑), one has



∫ 𝑠

0
𝑔(𝑢) 𝑑𝑢





2
≤

(∫ 𝑠

0
‖𝑔(𝑢)‖ 𝑑𝑢

)2
≤ 𝑠

∫ 𝑠

0
‖𝑔(𝑢)‖2 𝑑𝑢.

D Proofs for Section 5

D.1 Proof of Theorem 3

For brevity, let us write ℱ𝑘 instead of ℱ𝜏𝑘 . Opening up ‖𝑥𝑘+1‖2 = ‖𝑥𝑘 + 𝛾𝑘+1{𝑣(𝑥𝑘 ) + 𝑍𝑘+1} +√
𝛾𝑘+1𝜎(𝑥𝑘 ) 𝜉𝑘+1‖2 and ignoring every term that is zero-mean under 𝔼[· |ℱ𝑘 ], we get

𝔼[‖𝑥𝑘+1‖2 | F𝑘 ] = 𝔼
[
‖𝑥𝑘 ‖2 + 2𝛾𝑘+1〈𝑥𝑘 , 𝑣(𝑥𝑘 ) + 𝑍𝑘+1〉

+ 𝛾2
𝑘+1‖𝑣(𝑥𝑘 ) + 𝑍𝑘+1‖2 + 𝛾𝑘+1‖𝜎(𝑥𝑘 )𝜉𝑘+1‖2 + 2𝛾

3
2
𝑘+1〈𝜎(𝑥𝑘 )𝜉𝑘+1, 𝑏𝑘+1〉

��F𝑘

]
≤ ‖𝑥𝑘 ‖2 + 2𝛾𝑘+1 (〈𝑥𝑘 , 𝑣(𝑥𝑘 )〉 + 𝐶𝜎/2) + 2𝛾2

𝑘+1‖𝑣(𝑥𝑘 )‖
2

+ 𝔼

[
2𝛾2

𝑘+1‖𝑍𝑘+1‖2 + 2𝛾𝑘+1〈𝑥𝑘 , 𝑍𝑘+1〉 + 2𝛾
3
2
𝑘+1〈𝜎(𝑥𝑘 )𝜉𝑘+1, 𝑏𝑘+1〉

��F𝑘

]
≤ ‖𝑥𝑘 ‖2 + 2𝛾𝑘+1

(
〈𝑥𝑘 , 𝑣(𝑥𝑘 )〉 + 𝐶𝜎/2 + 𝛾

1
2
𝑘+1𝐶𝜎/4

)
+ 2𝛾2

𝑘+1‖𝑣(𝑥𝑘 )‖
2 (21)

+ 𝔼
[
2𝛾2

𝑘+1‖𝑍𝑘+1‖2 |F𝑘

]
+ 𝛾

3
2
𝑘+1𝔼

[
‖𝑏𝑘+1‖2 |F𝑘

]
+ 2𝔼[𝛾𝑘+1〈𝑥𝑘 , 𝑏𝑘+1〉|F𝑘 ] .
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Recalling (5) in Assumption 3, we have for some 𝐶 > 0

𝔼‖𝑍𝑘+1‖2 ≤ 2𝜎2 + 2𝐶
(
𝛾2
𝑘+1𝔼‖𝑣(𝑥𝑘 )‖

2 + 𝛾𝑘+1

)
(22)

Without loss of generality, assume 𝛾𝑘 ≤ 1 and 𝔼‖𝑥𝑘 ‖2 ≥ 1 (so that
(
𝔼‖𝑥𝑘 ‖2)2 ≥ 𝔼‖𝑥𝑘 ‖2) for all 𝑘 .

Then, ‖𝑣(𝑥𝑘 )‖2 ≤ 𝐿2‖𝑥𝑘 ‖2, together with Assumption 4 and the Cauchy-Schwartz inequality on the
last term of (21), implies

𝔼‖𝑥𝑘+1‖2 ≤ 𝔼‖𝑥𝑘 ‖2 − 2𝛼𝛾𝑘+1𝔼‖𝑥𝑘 ‖2 + 2𝛾𝑘+1

(
𝛽 + 𝐶𝜎 + 1

2
𝛾

1
2
𝑘+1𝐶𝜎

)
+ 2𝐿2𝛾2

𝑘+1𝔼‖𝑥𝑘 ‖
2

+ 2𝛾2
𝑘+1

[
2𝜎2 + 2𝐶

(
𝐿2𝛾2

𝑘+1𝔼‖𝑥𝑘 ‖
2 + 𝛾𝑘+1

)]
+ 𝛾

3
2
𝑘+1𝐶

(
𝐿2𝛾2

𝑘+1𝔼‖𝑥𝑘 ‖
2 + 𝛾𝑘+1

)
+ 2𝛾𝑘+1

√
𝐶

√︃
𝐿2𝛾2

𝑘+1
(
𝔼‖𝑥𝑘 ‖2)2 + 𝛾𝑘+1𝔼‖𝑥𝑘 ‖2

≤ 𝔼‖𝑥𝑘 ‖2 (1 − 𝐶1𝛾𝑘+1 + 𝐶2𝛾
3
2
𝑘+1) + 𝐶3𝛾𝑘+1

for some constants 𝐶1, 𝐶2, 𝐶3 depending on 𝐿, 𝐶, 𝜎, 𝛼, 𝛽, and 𝑑. Since 𝛾𝑘 → 0, there exist �̃�, 𝛽 > 0
and 𝑘0 such that, for all 𝑘 ≥ 𝑘0,

𝔼‖𝑥𝑘+1‖2 ≤ 𝔼‖𝑥𝑘 ‖2 (1 − �̃�𝛾𝑘+1) + 𝛽𝛾𝑘+1, 1 − �̃�𝛾𝑘+1 > 0.

A simple induction yields

sup
𝑘

𝔼‖𝑥𝑘 ‖2 ≤ max
{
𝛽

�̃�
,𝔼‖𝑥𝑘0 ‖2

}
which concludes the proof. �

D.2 Proof of Theorem 4 for Constant Diffusion

Before proceeding, we need a lemma which can be distilled from [20, Proposition 8]:

Lemma 5. Suppose ∇ 𝑓 is 𝐿-Lipschitz. Fix 𝑥 ∈ ℝ𝑑 and 𝛾 > 0, let 𝑥+ = 𝑥 − 𝛾∇ 𝑓 (𝑥) +
√︁

2𝛾𝜉. Then

𝔼

[
exp

(
1
2
〈∇ 𝑓 (𝑥), 𝑥+ − 𝑥〉 + 𝐿

4
‖𝑥+ − 𝑥‖2

)]
≤ (1 − 𝛾𝐿)−𝑑/2𝑒−

𝛾

4 ‖∇ 𝑓 (𝑥) ‖2
. (23)

Let 𝑥𝑘+1 B 𝑥𝑘 − 𝛾𝑘+1∇ 𝑓 (𝑥𝑘 ) +
√︁

2𝛾𝑘+1 𝜉𝑘+1 so that 𝑥𝑘+1 − 𝑥𝑘 = 𝑥𝑘+1 − 𝑥𝑘 − 𝛾𝑘+1 (𝑈𝑘+1 + 𝑏𝑘+1).
Conditioned on 𝑥𝑘 ,𝑈𝑘+1,𝑈

′
𝑘+1, 𝜉

′
𝑘+1, and using the 𝐿-Lipschitzness of ∇ 𝑓 , we get

𝑒−
1
2 𝑓 (𝑥𝑘 )𝔼𝑒

1
2 𝑓 (𝑥𝑘+1)

≤ 𝔼 exp
(
1
2
〈∇ 𝑓 (𝑥𝑘 ), 𝑥𝑘+1 − 𝑥𝑘〉 +

𝐿

4
‖𝑥𝑘+1 − 𝑥𝑘 ‖2

)
(24)

≤ 𝔼 exp

{
1
2
〈∇ 𝑓 (𝑥𝑘 ), 𝑥𝑘+1 − 𝑥𝑘〉 −

1
2
〈∇ 𝑓 (𝑥𝑘 ), 𝛾𝑘+1𝑈𝑘+1〉 (25)

− 1
2
〈∇ 𝑓 (𝑥𝑘 ), 𝛾𝑘+1𝑏𝑘+1〉 +

𝐿

2
‖𝑥𝑘+1 − 𝑥𝑘 ‖2 + 𝐿𝛾2

𝑘+1‖𝑈𝑘+1‖2 + 𝐿𝛾2
𝑘+1‖𝑏𝑘+1‖2

}
.

(26)

Let 𝛿 ∈ (0, 1). Since

−1
2
〈∇ 𝑓 (𝑥𝑘 ), 𝛾𝑘+1𝑈𝑘+1〉 ≤ 𝛾2−𝛿

𝑘+1 ‖∇ 𝑓 (𝑥𝑘 )‖2 + 𝛾 𝛿
𝑘+1‖𝑈𝑘+1‖2,

−1
2
〈∇ 𝑓 (𝑥𝑘 ), 𝛾𝑘+1𝑏𝑘+1〉 ≤ 𝛾2

𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2 + ‖𝑏𝑘+1‖2,
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we have

𝑒−
1
2 𝑓 (𝑥𝑘 )𝔼𝑒

1
2 𝑓 (𝑥𝑘+1) (27)

≤ 𝔼 exp

{
1
2
〈∇ 𝑓 (𝑥𝑘 ), 𝑥𝑘+1 − 𝑥𝑘〉 +

𝐿

2
‖𝑥𝑘+1 − 𝑥𝑘 ‖2 (28)

+
(
𝛾2−𝛿
𝑘+1 + 𝛾2

𝑘+1

)
‖∇ 𝑓 (𝑥𝑘 )‖2 +

(
𝐿𝛾2

𝑘+1 + 𝛾 𝛿
𝑘+1

)
‖𝑈𝑘+1‖2 +

(
𝐿𝛾2

𝑘+1 + 1
)
‖𝑏𝑘+1‖2

}
. (29)

Invoking (11) an denoting 𝑐′ ,
(
𝐿𝛾2

𝑘+1 + 1
)
· 𝑐, we get

𝑒−
1
2 𝑓 (𝑥𝑘 )𝔼𝑒

1
2 𝑓 (𝑥𝑘+1) ≤ 𝑒𝐴𝑘 · 𝔼 exp

{
1
2
〈∇ 𝑓 (𝑥𝑘 ), 𝑥𝑘+1 − 𝑥𝑘〉 +

𝐿

2
‖𝑥𝑘+1 − 𝑥𝑘 ‖2 + 𝑐′ · 𝛾𝑘+1‖𝜉𝑘+1‖2

}
,

(30)

where,
𝐴𝑘 ,

(
𝛾2−𝛿
𝑘+1 + 𝛾2

𝑘+1 + 𝑐′𝛾2
𝑘+1

)
‖∇ 𝑓 (𝑥𝑘 )‖2

+
(
𝐿𝛾2

𝑘+1 + 𝛾 𝛿
𝑘+1

)
‖𝑈𝑘+1‖2

+ 𝑐′
(
𝛾2
𝑘+1‖𝑈

′
𝑘+1‖

2 + 𝛾𝑘+1‖𝜉 ′𝑘+1‖
2
)
.

(31)

Recalling that
√︁

2𝛾𝑘+1𝜉𝑘+1 = 𝑥𝑘+1 − 𝑥𝑘 + 𝛾𝑘+1∇ 𝑓 (𝑥𝑘 ), we have 𝛾𝑘+1‖𝜉𝑘+1‖2 ≤ ‖𝑥𝑘+1 − 𝑥𝑘 ‖2 +
𝛾2
𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2, and thus

𝑒−
1
2 𝑓 (𝑥𝑘 )𝔼𝑒

1
2 𝑓 (𝑥𝑘+1) ≤ 𝑒𝐴

′
𝑘 · 𝔼 exp

{
1
2
〈∇ 𝑓 (𝑥𝑘 ), 𝑥𝑘+1 − 𝑥𝑘〉 +

(
𝐿

2
+ 𝑐′

)
‖𝑥𝑘+1 − 𝑥𝑘 ‖2

}
, (32)

where 𝐴′
𝑘
= 𝐴𝑘 + 𝑐′𝛾2

𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2. Lemma 5 then implies

𝑒−
1
2 𝑓 (𝑥𝑘 )𝔼𝑒

1
2 𝑓 (𝑥𝑘+1) ≤ 𝑒𝐴

′′
𝑘 · (1 − 𝛾𝑘+1𝐿

′)− 𝑑
2 (33)

where 𝐴′′
𝑘
= 𝐴′

𝑘
− 𝛾𝑘+1

4 ‖∇ 𝑓 (𝑥𝑘 )‖2.

We now take the expectation over 𝑥𝑘 ,𝑈𝑘+1,𝑈
′
𝑘+1, 𝜉

′
𝑘+1 (in other words, we are now only conditioning

on 𝑥𝑘 ). Set 𝜖 , (1 − 𝛾𝑘+1𝐿
′)− 1

2 − 1 > 0. Since 𝑈𝑘+1,𝑈
′
𝑘+1, 𝜉

′
𝑘+1 are sub-Gaussian and since 𝛾𝑘 → 0,

for 𝑘 sufficiently large we have

𝔼𝐴′′
𝑘 ≤ (1 + 𝜖) · exp

[(
−𝛾𝑘+1

4
+ 𝛾2−𝛿

𝑘+1 + 𝛾2
𝑘+1 + 𝑐′𝛾2

𝑘+1 + 𝑐′𝛾2
𝑘+1

)
‖∇ 𝑓 (𝑥𝑘 )‖2

]
(34)

≤ (1 + 𝜖) · 𝑒−
𝛾𝑘+1

8 ‖∇ 𝑓 (𝑥𝑘 ) ‖2
. (35)

To summarize, we have shown that, conditioned on 𝑥𝑘 ,

𝑒−
1
2 𝑓 (𝑥𝑘 )𝔼𝑒

1
2 𝑓 (𝑥𝑘+1) ≤ (1 − 𝛾𝑘+1𝐿

′)− 𝑑+1
2 𝑒−

𝛾𝑘+1
8 ‖∇ 𝑓 (𝑥𝑘 ) ‖2

. (36)

A simple induction à la [20, Lemma 1 & Proposition 8] then concludes the proof. �

D.3 Proof of Theorem 4 for Mirror Langevin

Here, we bring the proof of Theorem 4 for the case of Example 4 and without noise. The proof for
the noisy case is the same as in Appendix D.2.

Define
𝑥+ = 𝑥 − 𝛾∇ 𝑓 ◦ ∇𝜙∗ (𝑥) +

√︁
2𝛾(∇2𝜙∗ (𝑥)−1)1/2𝜉,

where 𝜉 is a standard Gaussian random variable. Let 𝑈 (𝑥) = 𝑓 (∇𝜙∗ (𝑥)). For a fixed 𝑥, we have

𝔼𝑒
1
2𝑈 (𝑥+)− 1

2𝑈 (𝑥) =
1

(2𝜋)𝑑/2

∫
exp

(
1
2
𝑈 (𝑥+) − 1

2
𝑈 (𝑥) − ‖𝜉‖2

2

)
𝑑𝜉
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Notice that we have

𝜉 =
1√︁
2𝛾

(∇2𝜙∗ (𝑥))1/2 (𝑥+ − 𝑥 + 𝛾∇ 𝑓 ◦ ∇𝜙∗ (𝑥)
)

which implies

𝑑𝜉 = (
√︁

2𝛾)−𝑑
√︃

det∇2𝜙∗ (𝑥) 𝑑𝑥+

Thus, the integral, after the change of variable from 𝜉 to 𝑥+ becomes

1
𝐶

∫
exp

(
1
2
𝑈 (𝑥+) − 1

2
𝑈 (𝑥) − 1

4𝛾
‖(∇2𝜙∗ (𝑥))1/2 (𝑥+ − 𝑥 + 𝛾∇ 𝑓 ◦ ∇𝜙∗ (𝑥)

)
‖2

)
𝑑𝑥+ (37)

with 𝐶 = (4𝜋𝛾)𝑑/2
√︁

det∇2𝜙∗ (𝑥)−1. Now we use the smoothness of 𝑓 :

𝑈 (𝑥+) −𝑈 (𝑥) = 𝑓 (∇𝜙∗ (𝑥+)) − 𝑓 (∇𝜙∗ (𝑥))

≤ 〈∇2𝜙∗ (𝑥)∇ 𝑓 (∇𝜙∗ (𝑥)), 𝑥+ − 𝑥〉 + 𝐿

2
‖𝑥+ − 𝑥‖2

On the other hand, we have

‖(∇2𝜙∗ (𝑥))1/2 (𝑥+ − 𝑥 + 𝛾∇ 𝑓 ◦ ∇𝜙∗ (𝑥)
)
‖2

= ‖(∇2𝜙∗ (𝑥))1/2 (𝑥+ − 𝑥)‖2 + 𝛾2‖(∇2𝜙∗ (𝑥))1/2∇ 𝑓 (∇𝜙∗ (𝑥))‖2

+ 2𝛾〈∇2𝜙∗ (𝑥)∇ 𝑓∇𝜙∗ (𝑥), 𝑥+ − 𝑥〉

Notice that in (37), the colored terms cancel out, and what we are left with is

𝔼𝑒
1
2𝑈 (𝑥+)− 1

2𝑈 (𝑥)

≤ 1
𝐶

∫
exp

(
𝐿

4
‖𝑥+ − 𝑥‖2 − 1

4𝛾
‖(∇2𝜙∗ (𝑥))1/2 (𝑥+ − 𝑥)‖2 − 𝛾

4
‖(∇2𝜙∗ (𝑥))1/2∇ 𝑓 (∇𝜙∗ (𝑥))‖2

)
𝑑𝑥+

As, by our assumption, ∇2𝜙∗ is bounded from above and below, we get the exact form as in Lemma 5.
The rest of the proof is the same as in Appendix D.2. �

D.4 Proof of Proposition 1

In this section, we prove that Examples 1–6 satisfy our bias conditions, which, as we have seen in
Section 5, implies Proposition 1. For brevity, we write ℱ𝑘 for ℱ𝜏𝑘 .

§ Proof for Example 1. For randomized mid-point method, by replacing ∇̃ 𝑓 (𝑥𝑘 ) and ∇̃ 𝑓 (𝑥𝑘+1/2)
with ∇ 𝑓 (𝑥𝑘 ) +𝑈 ′

𝑘+1 and ∇ 𝑓 (𝑥𝑘+1/2) +𝑈𝑘+1 respectively, we have

𝑥𝑘+1/2 = 𝑥𝑘 − 𝛾𝑘+1𝛼𝑘+1{∇ 𝑓 (𝑥𝑘 ) +𝑈 ′
𝑘+1} +

√︁
2𝛾𝑘+1𝛼𝑘+1𝜉

′
𝑘+1,

𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘+1{∇ 𝑓 (𝑥𝑘+1/2) +𝑈𝑘+1} +
√︁

2𝛾𝑘+1𝜉𝑘+1,

where {𝛼𝑘 } are i.i.d. and uniformly distributed in [0, 1], {𝑈𝑘 } and {𝑈 ′
𝑘
} are noises in evaluating ∇ 𝑓

at the corresponding points, and 𝜉𝑘 , 𝜉
′
𝑘

are independent standard Gaussians.

Notice that the Lipschitzness of ∇ 𝑓 , and the fact that 𝛼𝑘 ≤ 1 implies that the bias term 𝑏𝑘+1 B
∇ 𝑓 (𝑥𝑘+1/2) − ∇ 𝑓 (𝑥𝑘 ) satisfies

𝔼[‖𝑏𝑘+1‖2 |ℱ𝑘 ] ≤ 𝐿2𝔼[‖𝑥𝑘+1/2 − 𝑥𝑘 ‖2 |ℱ𝑘 ]

≤ 𝐿2
(
𝛾2
𝑘+1𝔼[‖∇ 𝑓 (𝑥𝑘 ) +𝑈 ′

𝑘+1‖
2 |ℱ𝑘 ] + 2𝛾𝑘+1𝑑

)
≤ 2𝐿2𝛾2

𝑘+1 ‖∇ 𝑓 (𝑥𝑘 )‖2 + 2𝐿2𝛾2
𝑘+1𝜎

2 + 2𝐿2𝑑𝛾𝑘+1

= O(𝛾2
𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2 + 𝛾𝑘+1).
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§ Proof for Example 2. Recall that the new algorithm Optimistic Randomized Mid-Point Method
has the iterates

𝑥𝑘+1/2 = 𝑥𝑘 − 𝛾𝑘+1𝛼𝑘+1∇̃ 𝑓 (𝑥𝑘− 1
2
) +

√︁
2𝛾𝑘+1𝛼𝑘+1𝜉

′
𝑘+1,

𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘+1∇̃ 𝑓 (𝑥𝑘+1/2) +
√︁

2𝛾𝑘+1 𝜉𝑘+1,

where {𝛼𝑘 }, 𝜉𝑘 , 𝜉
′
𝑘
, and ∇̃ 𝑓 are the same as in (RMM), and the noise and bias are 𝑈𝑘+1 B

∇̃ 𝑓 (𝑥𝑘+1/2) − ∇ 𝑓 (𝑥𝑘+1/2) and 𝑏𝑘+1 B ∇ 𝑓 (𝑥𝑘+1/2) − ∇ 𝑓 (𝑥𝑘 ). We have

𝔼[‖𝑏𝑘+1‖2 |ℱ𝑘 ] = 𝔼[‖∇ 𝑓 (𝑥𝑘+1/2) − ∇ 𝑓 (𝑥𝑘 )‖2 |ℱ𝑘 ]
≤ 𝐿2𝔼[‖𝑥𝑘+1/2 − 𝑥𝑘 ‖2 |ℱ𝑘 ]
= 𝐿2𝔼[‖−𝛾𝑘+1𝛼𝑘+1∇̃ 𝑓 (𝑥𝑘− 1

2
) +

√︁
2𝛾𝑘+1𝛼𝑘+1𝜉

′
𝑘+1‖

2 |ℱ𝑘 ]

≤ 2𝐿2𝛾2
𝑘+1𝔼[‖∇ 𝑓 (𝑥𝑘− 1

2
)‖ |ℱ𝑘 ] + 2𝐿2𝛾2

𝑘+1𝜎
2 + 4𝐿2𝑑𝛾𝑘+1.

Similar to the proof for Example 6, notice that ‖∇ 𝑓 (𝑥𝑘− 1
2
)‖2 ≤ 2‖∇ 𝑓 (𝑥𝑘− 1

2
) − ∇ 𝑓 (𝑥𝑘 )‖2 +

2‖∇ 𝑓 (𝑥𝑘 )‖2. As 𝛾𝑘 → 0, one can assume that 2𝐿2𝛾2
𝑘+1 < 1

2 , and we get

𝔼[‖𝑏𝑘+1‖2 |ℱ𝑘 ] ≤ 4𝐿2𝛾2
𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2 + 4𝐿2𝛾2

𝑘+1𝜎
2 + 8𝐿2𝑑𝛾𝑘+1 = O(𝛾2

𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2 + 𝛾𝑘+1),
as desired. �

§ Proof for Example 3. The iterates of stochastic Runge-Kutta Langevin algorithm is as follows:

ℎ1 = 𝑥𝑘 +
√︁

2𝛾𝑘+1

[
(1/2 + 1/

√
6) 𝜉𝑘+1 + 𝜉 ′𝑘+1/

√
12

]
ℎ2 = 𝑥𝑘 − 𝛾𝑘+1{∇ 𝑓 (𝑥𝑘 ) +𝑈 ′

𝑘+1} +
√︁

2𝛾𝑘+1

[
(1/2 − 1/

√
6) 𝜉𝑘+1 + 𝜉 ′𝑘+1/

√
12

]
𝑥𝑘+1 = 𝑥𝑘 −

𝛾𝑘+1
2

(∇ 𝑓 (ℎ1) + ∇ 𝑓 (ℎ2)) + 𝛾𝑘+1𝑈𝑘+1 +
√︁

2𝛾𝑘+1 𝜉𝑘+1,

where 𝜉𝑘+1 and 𝜉 ′
𝑘+1 are independent standard Gaussian random variables independent of 𝑥𝑘 , and

𝑈𝑘+1 and 𝑈 ′
𝑘+1 are noise in the evaluation of 𝑓 .

Observe that

𝑏𝑘+1 =
1
2
(∇ 𝑓 (ℎ1) − ∇ 𝑓 (𝑥𝑘 )) +

1
2
(∇ 𝑓 (ℎ2) − ∇ 𝑓 (𝑥𝑘 )).

We have

𝔼[‖∇ 𝑓 (ℎ1) − ∇ 𝑓 (𝑥𝑘 )‖2 |ℱ𝑘 ] ≤ 2𝐿2𝑑 (1/4 + 1/6 + 1/12)𝛾𝑘+1 = O(𝛾𝑘+1),
and

𝔼[‖∇ 𝑓 (ℎ2) − ∇ 𝑓 (𝑥𝑘 )‖2 |ℱ𝑘 ] ≤ 2𝐿2
(
𝛾2
𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2 + 2𝛾2

𝑘+1𝜎
2 + 2𝑑 (1/4 − 1/6 + 1/12)𝛾𝑘+1

)
= O(𝛾2

𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2 + 𝛾𝑘+1).
We thus have

𝔼[‖𝑏𝑘+1‖2 |ℱ𝑡 ] ≤
1
2
𝔼[‖∇ 𝑓 (ℎ1) − ∇ 𝑓 (𝑥𝑘 )‖2 |ℱ𝑘 ] +

1
2
𝔼[‖∇ 𝑓 (ℎ2) − ∇ 𝑓 (𝑥𝑘 )‖2 |ℱ𝑘 ]

= O(𝛾2
𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2 + 𝛾𝑘+1),

as desired. �

§ Proof for Example 4. Suppose 𝜙 is a Legendre function [52] for ℝ𝑑 , and consider the iterates

𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘+1∇ 𝑓 (∇𝜙∗ (𝑥𝑘 )) +
√︁

2𝛾𝑘+1 (∇2𝜙∗ (𝑥𝑘 )−1)1/2 𝜉𝑘+1,

where 𝜙∗ is the Fenchel dual of 𝜙, that is, 𝜙∗ (𝑥) = sup𝑦∈ℝ𝑑 (〈𝑥, 𝑦〉 − 𝜙(𝑦)). Also recall that [52]

∇𝜙(∇𝜙∗ (𝑥)) = 𝑥, ∇2𝜙∗ (∇𝜙(𝑥))−1 = ∇2𝜙(𝑥), ∀𝑥 ∈ ℝ𝑑 .

Let 𝑣 = −∇ 𝑓 ◦ ∇𝜙∗ and 𝜎 = (∇2𝜙∗)−1/2. First, we mention what our assumptions imply on 𝑓 :
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• The Lipschitzness of 𝑣 corresponds to a similar condition in [31, A2]:

‖∇ 𝑓 (𝑥) − ∇ 𝑓 (𝑦)‖ ≤ 𝐿‖∇𝜙(𝑥) − ∇𝜙(𝑦)‖

• The Lipschitzness of 𝜎 in Frobenius norm corresponds to modified self-concordance in [31, A1]:

‖∇2𝜙(𝑥)1/2 − ∇2𝜙(𝑦)1/2‖𝐹 ≤ 𝐿‖∇𝜙(𝑥) − ∇𝜙(𝑦)‖.

• Boundedness of 𝜎 in Hilbert-Schmidt norm implies


∇2𝜙(𝑥)−1/2




𝐹
≤ 𝐶𝜎 .

• Dissipativity and weak-dissipativity of 𝑣 corresponds to the conditions below, respectively:

〈∇𝜙(𝑥),∇ 𝑓 (𝑥)〉 ≥ 𝛼‖∇𝜙(𝑥)‖2 − 𝛽, 〈∇𝜙(𝑥),∇ 𝑓 (𝑥)〉 ≥ 𝛼‖∇𝜙(𝑥)‖1+𝜅 − 𝛽.

If 𝑓 and 𝜙 satisfy the conditions above, then the mirror Langevin algorithm Example 4 fits into the
(LRM) scheme.
Remark. Note that this version of Mirror Langevin cannot handle the case where 𝑒− 𝑓 is supported
on a compact domain; in that case, the Hessian of 𝜙 has to blow up near the boundary, and will
not satisfy our boundedness assumption. The version of mirror Langevin we consider in this paper,
though, can be thought as an adaptive conditioning method for densities supported on ℝ𝑑 . This
setting has also been studied in the literature, see [55].

§ Proof for Example 6. The iterates of (PLA) follow

𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘+1∇ 𝑓 (𝑥𝑘+1) +
√︁

2𝛾𝑘+1 𝜉𝑘+1. (PLA)

We mentioned that the bias term is 𝑏𝑘+1 = ∇ 𝑓 (𝑥𝑘+1) − ∇ 𝑓 (𝑥𝑘 ). Now it remains to prove that it
satisfies the conditions (5) and (11). We have

𝔼[‖𝑏𝑘+1‖2 |ℱ𝑘 ] = 𝔼[‖∇ 𝑓 (𝑥𝑘+1) − ∇ 𝑓 (𝑥𝑘 )‖2 |ℱ𝑘 ]
≤ 𝐿2𝔼[‖𝑥𝑘+1 − 𝑥𝑘 ‖2 |ℱ𝑘 ]
= 𝐿2𝔼[‖−𝛾𝑘+1∇ 𝑓 (𝑥𝑘+1) +

√︁
2𝛾𝑘+1 𝜉𝑘+1‖2 |ℱ𝑘 ]

≤ 2𝐿2𝛾2
𝑘+1𝔼[‖∇ 𝑓 (𝑥𝑘+1)‖2 |ℱ𝑘 ] + 4𝐿2𝑑𝛾𝑘+1.

Now, notice that ‖∇ 𝑓 (𝑥𝑘+1)‖2 ≤ 2‖∇ 𝑓 (𝑥𝑘+1) − ∇ 𝑓 (𝑥𝑘 )‖2 + 2‖∇ 𝑓 (𝑥𝑘 )‖2. As 𝛾𝑘 → 0, one can
assume that 2𝐿2𝛾2

𝑘+1 < 1
2 , and we get

𝔼[‖𝑏𝑘+1‖2 |ℱ𝑘 ] ≤
1
2
𝔼[‖𝑏𝑘+1‖2 |ℱ𝑘 ] + ‖∇ 𝑓 (𝑥𝑘 )‖2 + 4𝐿2𝑑𝛾𝑘+1,

which implies

𝔼[‖𝑏𝑘+1‖2 |ℱ𝑘 ] ≤ 4𝐿2𝛾2
𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2 + 8𝐿2𝑑𝛾𝑘+1 = O(𝛾2

𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2 + 𝛾𝑘+1),

as desired. �
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