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ABSTRACT

Generative modeling has seen significant advancements in image and video synthe-
sis. However, the curse of dimensionality remains a significant obstacle, especially
for video generation, given its inherently complex and high-dimensional nature.
Many existing works rely on low-dimensional latent spaces from pretrained image
autoencoders. However, this approach overlooks temporal redundancy in videos
and often leads to temporally incoherent decoding. To address this issue, we
propose a video compression network that reduces the dimensionality of visual
data both spatially and temporally. Our model, based on a variational autoencoder,
employs causal 3D convolution to handle images and videos jointly. The key
contributions of our work include a scale-agnostic encoder for preserving video
fidelity, a novel spatio-temporal down/upsampling block for robust long-sequence
modeling, and a flow regularization loss for accurate motion decoding. Our ap-
proach outperforms competitors in video quality and compression rates across
various datasets. Experimental analyses also highlight its potential as a robust
autoencoder for video generation training. Code and models can be found here.

1 INTRODUCTION

Recently, generative modeling has taken the world by storm, showcasing remarkable advancements
in various domains such as text-to-image (Rombach et al., 2022; Chen et al., 2024; Pernias et al.,
2024; Kang et al., 2023; Nguyen et al., 2023), text-to-speech (Le et al., 2023; Wang et al., 2023;
Shen et al., 2024) and most recently, text-to-video generation (Blattmann et al., 2023c; Brooks et al.,
2024; Blattmann et al., 2023a). Following from the seminal work (Rombach et al., 2022), many
generative models (Blattmann et al., 2023c; Brooks et al., 2024; Blattmann et al., 2023a; Yu et al.,
2023c; Hu et al., 2023a) now rely on a low-dimensional latent space to achieve high-resolution
synthesis. This strategic choice stems from the need to combat the curse of dimensionality in high-
resolution synthesis. In video generation, the importance of acquiring a robust low-dimensional latent
representation is further emphasized by the complex and high-dimensional nature of video data.

Most works on video compression used in a generation context typically fall into two main categories
based on the nature of their latent space: discrete or continuous. While discrete latent spaces have
been an active area of investigation, with recent works like (Yu et al., 2024; Gupta et al., 2023)
enhancing compression and reconstruction quality, there has been comparatively less exploration of
continuous latent spaces. For example, recent video diffusion models (Blattmann et al., 2023c;a; Hu
et al., 2023a) still heavily rely on pretrained image autoencoders with added 3D convolutions for
temporal alignment, resulting in lingering temporal artifacts such as flickering in decoded videos.
This reliance on image autoencoders also means that temporal compression is often overlooked.
Consequently, the well-documented temporal redundancy of videos (Lu et al., 2019; Lin et al.,
2020; Hu et al., 2023b) is not fully exploited in continuous video autoencoders. This, in turn, has
significantly limited the ability of state-of-the-art models (Blattmann et al., 2023c;a; Hu et al., 2023a)
to effectively encode and generate longer-duration videos, until the recently introduced Sora (Brooks
et al., 2024) model. In light of this, our work introduces a video compression network in continuous
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time-space that reduces the dimensionality of visual data into a learned latent and maps the generated
latent back to pixel space with high fidelity.

Our video compression network is based on a variational autoencoder (VAE) (Kingma & Welling,
2013), where the encoder compresses the input video both spatially and temporally into a latent
representation and the decoder reconstructs the input video from this latent representation. We
explored both Transformer-based (Vaswani et al., 2017) and 3D convolution-based architectures
for a video VAE. Our experiments have shown that a fully Transformer-based video VAE tends to
introduce blocking artifacts and struggles to generalize effectively across various temporal and spatial
resolutions compared to 3D convolutions, consistent with findings in Yu et al. (2024). Therefore, we
opt for 3D convolutions interleaved with self-attention layers to design our video VAE. To seamlessly
integrate joint image and video compression within a single model, we use temporally causal 3D
convolutions and self-attention layers. In addition to introducing a continuous video VAE for high-
quality spatio-temporal compression, our main contributions lie in identifying and addressing three
key issues in video VAEs.

First, we observe that a standard video VAE with symmetric encoder-decoder architecture struggles
to maintain the fidelity of a video when it contains small and fast-moving objects, especially at higher
compression rates. This is mainly because small, fast-moving objects tend to disappear at the deeper
levels of the encoder feature pyramid. Moreover, at these levels, the significantly smaller feature
dimension compared to the input dimension makes it difficult to preserve large motion information.
To mitigate this challenge, we draw inspiration from FILM (Reda et al., 2022) and propose a weight-
shared encoder that learns to aggregate features across different scales of the input video (refer
to Fig. 2(a)). The intuition here is that large motion at finer scales (higher resolution) should be
equivalent to small motion at coarser scales (lower resolution). Thus, sharing encoder weights and
aggregating features from different depths of the feature pyramid allows us to increase the number of
pixels available to effectively encode large motion. Our experiments show that incorporating a FILM
encoder into a video VAE significantly improved the decoding of large motion.

Second, we carefully examine spatio-temporal downsampling and upsampling in video VAEs. A
commonly used approach in previous works (Rombach et al., 2022; Yu et al., 2023a) is to employ
non-learnable kernels for down/upsampling followed by a convolutional layer i.e. average pooling
for downsampling and nearest interpolation for upsampling. However, this approach suffers from
the potential loss of high-frequency spatio-temporal information, as non-learnable kernels treat all
features within the pooling (interpolation) window equally. To address the issue, MAGVIT-v2 (Yu
et al., 2024) recently proposed using learnable down/upsampling with convolutional layers. While a
video VAE trained with learnable spatio-temporal down/upsampling generally performs well, it tends
to overfit to the temporal sequence length it has been trained on, with performance notably dropping
when inference is done with different sequence lengths, thus limiting the model’s adaptability for
arbitrarily long videos. Our work introduces a robust spatio-temporal down/upsampling module that
addresses the aforementioned limitations. The module is designed as a dual-path network, effectively
leveraging both learnable and non-learnable kernels. We empirically show that the proposed video
VAE is temporally more adaptable and can encode and decode arbitrarily long videos at varying
lengths without significant performance degradation.

Third, to ensure that the encoded latent representation faithfully preserves the motion dynamics of
the input video, we propose a flow regularization loss for video VAE training. The loss is incorporated
by optimizing the mean-squared error between the optical flows of the input video frames and their
corresponding optical flows in the decoded video frames. We use a state-of-the-art model (Teed &
Deng, 2020) to compute the optical flows. Our experiments reveal that imposing flow regularization
loss not only results in the decoding of temporally smoother motion but also helps to achieve a
temporal compression rate of up to 16× without a significant loss in decoded video quality.

Building on these findings, we train a causal video VAE at various spatio-temporal compression
rates: 4× 8× 8 (256), 8× 8× 8 (512), 16× 8× 8 (1024) and 16× 16× 16 (4096). We compare
our method with several state-of-the-art approaches (Rombach et al., 2022; Blattmann et al., 2023c;
Yan et al., 2021b; Lab & etc., 2024; Zheng et al., 2024; Wang et al., 2024a) across multiple video
and image benchmarks (Pont-Tuset et al., 2017; Niklaus & Liu, 2020; Su et al., 2017; Russakovsky
et al., 2015), using a comprehensive suite of metrics. Our experimental results demonstrate that
the proposed autoencoder consistently outperforms the competing baselines, both qualitatively and
quantitatively. To showcase the effectiveness of our video VAE in generative modeling, we integrate
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Figure 1: Architecture Overview: Our causal video VAE comprises three main components: an encoder, a
middle block, and a decoder. The encoder compresses input visual data spatially and temporally, the middle
block samples from the learned distribution of encoded features to generate a latent representation, and the
decoder maps this latent representation back to pixel space. N denotes the number of down/upsampling steps.

our pretrained autoencoder into open-source video generation frameworks (Wang et al., 2024b; Zheng
et al., 2024) and train them for unconditional video generation tasks on the SkyTimelapse (Zhang
et al., 2020) and UCF-101 (Soomro, 2012) datasets.

We also perform extensive ablation studies and experimental analyses to further confirm the benefits
of the proposed autoencoder. To evaluate the robustness of the video VAE decoder against erroneous
latent predictions from generative models, we perturb the encoded latents using various corruption
schemes, such as Gaussian noise and quantization, and analyze the model’s sensitivity in Sec. B.1.1.
Additionally, we assess the video VAE’s effectiveness in reliably encoding and decoding videos of
varying lengths sampled at different intervals in Sec. B.1.2. Our results strongly affirm the model’s
potential as a robust autoencoder for training video and image generation models.

2 METHOD

We propose a video (image) compression network to reduce the dimensionality of visual data
into a learned latent space. Our network is based on a variational autoencoder (VAE) (Kingma &
Welling, 2013) architecture consisting of an encoder and decoder. Given a video clip V of size
(1 + T ) × H × W × 3, where 1 + T denotes the number of frames in the video, the encoder
compresses the input video both temporally and spatially into a latent representation v of dimension
(1 + t)× h×w × c, with a spatio-temporal compression rate of ×T

t · H
h · W

w . The decoder takes the
generated latent v as input and maps it back to a video V̂ in pixel space. We use temporally causal
3D convolutional and self-attention layers in our network design to seamlessly integrate joint image
and video compression within a single model. The overview of our method is depicted in Fig. 1.

2.1 ENCODER

The encoder network in the video VAE mainly consists of three components. These are causal
3D residual block (Causal3DResBlock), spatio-temporal downsampling block (STDownBlock) and
spatio-temporal attention block (STAttnBlock). As shown in Fig. 1, the encoder is constructed by
cascading a stack of these blocks in a top-down fashion.

Causal 3D Residual Block The Causal3DResBlock is a residual network composed of two tempo-
rally causal 3D convolution layers, along with group normalization (GN) and Swish activation layers
(see Fig. 2(b)). For a kernel size (kt, kh, hw), the padding scheme in the temporal axis of a vanilla
3D convolutional layer is to add ⌊kt−1

2 ⌋ frames before and ⌊kt

2 ⌋ after the input frames, respectively.
In comparison, a causal 3D convolution layer pads with kt − 1 frames before the input frames and
nothing after, ensuring that the output for each frame solely relies on the preceding frames (Yu et al.,
2024; Gupta et al., 2023). As a result, the first frame remains independent of the subsequent frames,
enabling our model to compress single images as well. We test three different temporal padding
schemes: zero, constant, and replication. Our experiments reveal that employing the replication
padding results in a model decoding temporally smoother videos (refer to Sec. B.3).

Spatio-Temporal Downsampling Given a feature volume x of size b× (1 + t)× h× w × c,
where b denotes batch size, the STDownBlock reduces the spatial and temporal dimensions of x by
half, i.e. b× (1 + t

2 )×
h
2 × w

2 × c. A commonly employed approach in previous works (Rombach
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Figure 2: (a) FILM Encoder: Our weight-shared encoder aggregates features from multiple scales of the
input video, enhancing its ability to handle large motion decoding. (b) Building Blocks: Design specifications
for the causal 3D residual block (Causal3DResBlock), spatio-temporal downsampling block (STDownBlock),
spatio-temporal upsampling block (STUpBlock), and spatio-temporal attention block (STAttnBlock).

et al., 2022; Yu et al., 2023a) is to do average pooling followed by a convolution layer. However, such
an approach is not optimal, particularly for higher compression rates, because average pooling treats
all features within the pooling window equally, potentially resulting in the loss of high-frequency
spatial or temporal information. Recently, MAGVIT-v2 (Yu et al., 2024) opted for using strided
convolutions instead of average pooling to leverage learned kernels. While a video VAE trained with
learnable downsampling kernels generally performs well, it often fails to be temporally agnostic,
i.e. it overfits to the specific sequence lengths it is trained with and performance notably drops when
inference is done by sampling the input video at different sequence lengths (see Table 4). This
particularly limits the adaptability of the model for long-sequence encoding and the robustness of its
latents to noise corruption.

To address these limitations, we introduce a temporally more adaptable downsampling module for
a video VAE. We design the STDownBlock as a dual-path module, leveraging both learnable and
non-learnable kernels, where the input feature is passed through a strided causal 3D convolutional
layer and a 3D average pooling layer concurrently, and the resulting outputs are combined via
summation as shown in Fig. 2(b). We experimentally observe that the proposed STDownBlock
effectively addresses the aforementioned limitations and leads to notably better performance. This
is intuitive as downsampling via average pooling mitigates the risk of the temporal receptive field
overfitting to a specific sequence length while learnable kernels facilitate downsampling by selectively
emphasizing or suppressing certain features based on their relevance.

Spatio-Temporal Attention The STAttnBlock captures spatial and temporal dependencies within
an input video using self-attention layers (Vaswani et al., 2017). Given a feature of size
b× (1 + t)× h× w × c, the spatial attention is done by reshaping the feature to b(1 + t)× hw × c
and passing it to a single self-attention layer. This is followed by causal attention in the temporal di-
mension by reshaping the input feature to bhw × (1 + t)× c as depicted in Fig. 2(b). To manage the
increasing computational complexity caused by merging spatial dimensions during spatial attention,
we apply the STAttnBlock only at the lower resolutions of the feature pyramid in the encoder.

2.2 FILM ENCODER

Reducing the dimensionality of video while maintaining its fidelity could be quite challenging
particularly when it involves small and fast-moving objects. This is mainly because small objects with
large motion disappear at the deeper levels of the encoder feature pyramid. Furthermore, there are
significantly fewer pixels at the deeper levels of the pyramid to preserve large motion information. To
overcome these challenges, we draw inspiration from FILM (Reda et al., 2022) and design our video
VAE with shared encoder weights across different scales as shown in Fig. 2(a). Given a video V0 of
size (1 + T )×H ×W × 3, we first construct an input pyramid {V0, V1, . . . , Vk} by successively
resizing the video, where Vk has a shape of (1 + T )× H

2k
× W

2k
× 3. Each clip in the input pyramid is

then fed into a weight-shared (FILM) encoder to create a set of feature pyramids (Eq. (1)):
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where d denotes the maximum depth in the feature pyramid. A scale-agnostic feature F is constructed
by channel-wise concatenating features from different depths but with the same spatial dimensions
(Eq. (2)). We use temporal average pooling to align the dimensions of the features {F d−1

1 , . . . , F 1
k }

with F d
0 before concatenation, as depicted in Fig. 2(a). By sharing the encoder weights across the

input pyramid, the key intuition here is that large motion observed at the deeper depths of V0 should
be the same as small motion at the shallower depths of Vk, thus, aggregating features from different
depths of the feature pyramid allows us to boost the number of pixels available to effectively encode
large motion (Reda et al., 2022).

2.3 MIDDLE BLOCK

The output of the FILM encoder, as defined in Eq. (2), is fed into the middle block, where the
scale-agnostic feature is projected into a latent representation with a reduced channel size. This block
is tasked with sampling from the learned distribution of the encoded latent space and generating a
latent representation v with reduced spatial and temporal dimensionality. As shown in Fig. 1, the
middle block consists of a cascade of Causal3DResBlock, STAttnBlock, and a Gaussian sampling
layer. Following previous works (Kingma & Welling, 2013; Rombach et al., 2022), we adopt an
isotropic Gaussian distribution to parameterize the encoded latent variables, from which samples are
drawn by the sampling layer.

2.4 DECODER

The decoder of our video VAE maps the generated latent back to the input visual data. The network
architecture of the decoder resembles that of the base encoder, constructed in a bottom-up manner
as shown in Fig. 1. It includes a causal 3D residual block (Causal3DResBlock), spatio-temporal
upsampling block (STUpBlock), and spatio-temporal attention block (STAttnBlock).

Spatio-Temporal Upsampling Given a feature volume x of size b× (1 + t)× h× w × c,
the STUpBlock increases the spatial and temporal dimensions of x by a factor of two,
i.e. b× (1 + 2t)× 2h× 2w × c. Similar to the downsampling block, the STUpBlock is designed as
a dual-path module, incorporating both learnable and non-learnable kernels, which are combined
through summation (see Fig. 2(b)). We use a causal transposed 3D convolutional layer for learnable
upsampling. To map 1 + t frames to 1 + 2t frames, thus enabling the joint usage of our model for
both images and videos, we discard the first frame after the upsampling process. A nearest-neighbor
interpolation in both spatial and temporal dimension is used for non-learnable upsampling.

2.5 NETWORK TRAINING

Following previous works (Rombach et al., 2022; Kingma & Welling, 2013), we train our video
VAE using the standard set of loss functions. First, we compute the reconstruction loss LR which
is calculated as the L1 loss between the input video V and the decoded video V̂ (Eq. (3)). We
also optimize the perceptual similarity LP between each input video frame and the corresponding
reconstructed frame using frame-wise LPIPS (Zhang et al., 2018) loss.

LR =

1+T∑
i=1

∣∣Vi − V̂i

∣∣ (3)

where, Vi denotes the ith frame index in the input video. To mitigate arbitrary high-variance in
the encoded latent spaces, we apply a KL regularization loss LKL by guiding the learned latent
distribution towards a standard normal (Kingma & Welling, 2013; Rombach et al., 2022).

Flow Regularization To ensure that the decoded video accurately preserves the motion dynamics
of the input video, we propose a flow regularization loss Lflow for video VAE training. We define
Lflow as the mean-squared error between the optical flows of the input video frames and their
corresponding optical flows in the decoded video frames. To compute the optical flows, we use
pretrained RAFT (Teed & Deng, 2020) model on-the-fly. We employ a bidirectional scheme, as
shown in Eq. (4), to ensure robust motion supervision. Our experiments reveal that a model trained
with flow regularization decodes temporally smoother motion compared to a model trained without it
(refer to Sec. 4). Lf also facilitates better capturing of motion at higher temporal compression rates.
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Lflow =

T∑
i=1

[∥∥fi→i+1 − f̂i→i+1

∥∥2
2
+

∥∥fi+1→i − f̂i+1→i

∥∥2
2

]
(4)

where f̂i→i+1 represents the optical flow between V̂i and V̂i+1 frames in the decoded video. The
total loss for training our video VAE is formulated as follows:

Lvae = LR + LP + αflowLflow + αKLLKL (5)

where αflow and αKL denote the weights for the flow and KL regularization losses, respectively.

GAN Training In addition to standard network training, we incorporate adversarial training, fol-
lowing prior works (Esser et al., 2021; Rombach et al., 2022; Blattmann et al., 2023c), to enhance the
quality of the decoded video. We optimize a 3D convolution-based PatchGAN discriminator (Isola
et al., 2017) to distinguish between real videos and those generated by our video VAE. Our discrimi-
nator architecture builds on Pix2Pix (Isola et al., 2017), adapting it for video data by replacing 2D
convolutional and batch normalization layers with their 3D counterparts. For further details, please
refer to the official Pix2Pix implementation here.

3 EXPERIMENT

3.1 VIDEO/IMAGE AUTOENCODING

Implementation Details We use the WebVid-2M (Bain et al., 2021) dataset for model training. For
each step, we randomly sample T + 1 consecutive frames from a video, where T ∈ {8, 16}, and
crop them to a size of 128× 128. The resulting clip with dimensions (1 + T )× 128× 128× 3 is
fed into the video VAE. The FILM encoder uses an input pyramid with k = 3. GAN training begins
after the initial 100K iterations with Lvae. The flow and KL regularization loss weights are set to
αflow = 1e− 3 and αKL = 1e− 6, respectively. We use the Adam (Kingma & Ba, 2014) optimizer
with a learning rate of 4.5e− 5. Training is conducted for 250K iterations with a batch size of 48 on
48 NVIDIA A100 (40GB) GPUs.

Baseline Methods We benchmark our approach against state-of-the-art methods for which open-
source code or models are available. These include autoencoders from VideoGPT (Yan et al., 2021b),
LDM (Rombach et al., 2022), Video LDM (Blattmann et al., 2023c), SVD (Blattmann et al., 2023b),
Open-Sora (Zheng et al., 2024), Open-Sora-Plan (Lab & etc., 2024), CV-VAE (Zhao et al., 2024),
HVDM (Kim et al., 2024a), and OmniTokenizer (Wang et al., 2024a), CogVideoX (Yang et al., 2024).
All models, including ours, encode latents with a channel size of 4 in continuous space, except for
OmniTokenizer (channel size of 8), CogVideoX (channel size of 16), and VideoGPT, which encodes
latents in discrete space. For a fair comparison, we also include baselines of our model with latent
channel sizes of 8 and 16, as shown in Table 1.

Evaluation Datasets and Metrics We evaluate our model and competing approaches on the video
autoencoding task using two representative datasets that feature medium to large degrees of mo-
tion: Xiph-2K (Niklaus & Liu, 2020) and DAVIS (Pont-Tuset et al., 2017), both at 480p resolution.
Additionally, we benchmark image autoencoding performance using the ImageNet validation set (Rus-
sakovsky et al., 2015) at 256× 256 resolution. Decoded video/image quality is assessed using PSNR,
SSIM, and LPIPS (Zhang et al., 2018), while temporal coherence between frames is assessed using an
optical flow-based temporal smoothness (TS) metric (Shen et al., 2020). We also use two video-based
metrics: reconstruction FVD (Unterthiner et al., 2019) (rFVD) and reconstruction STREAM (Kim
et al., 2024b) (rSTRavg), which focus on the spatio-temporal perceptual quality and fidelity of the
decoded videos. For STREAM, we report the average of the fidelity (STREAM-F) and temporal flow
(STREAM-T) scores. Please refer to Kim et al. (2024b) for further details.

3.1.1 VIDEO COMPRESSION

In Table 1, we comprehensively evaluate our approach and state-of-the-art methods on the video
autoencoding task. We train 8 variants of our model with different spatio-temporal compression rates
and latent channel sizes. As expected, methods that focus solely on spatial compression, such as
Video LDM (Blattmann et al., 2023c), demonstrate strong performance, particularly on videos with
large motion. However, as shown in Table 1, our model gives a highly competitive, if not superior,
performance compared to competing approaches with significantly higher dimension reduction.
For instance, VideoGPT (Yan et al., 2021a) attains an average PSNR of 30.58 dB across the two
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Table 1: Quantitative comparison on spatio-temporal video compression

Method Comp.
Rate

Ch.
Size Xiph-2K DAVIS

t× h× w |ẑ| PSNR ↑ LPIPS ↓ TS ↓ rFVD ↓ rSTRavg ↑ PSNR ↑ LPIPS ↓ TS ↓ rFVD ↓ rSTRavg ↑
LDM 1× 8× 8 4 29.72 0.136 -1.41 34.26 0.839 30.36 0.136 -0.83 41.63 0.785
Video LDM 1× 8× 8 4 30.32 0.120 -1.76 30.46 0.924 32.30 0.131 -0.81 40.10 0.889
SVD 1× 8× 8 4 30.40 0.122 -1.58 30.96 0.880 31.74 0.138 -0.77 42.24 0.818
HVDM 1× 8× 8 4 31.16 0.114 -1.36 36.55 0.827 29.63 0.170 -0.42 52.04 0.777
Ours 1× 8× 8 4 34.08 0.068 -2.04 17.26 0.982 32.49 0.118 -0.98 36.12 0.916

VideoGPT 4× 4× 4 - 31.04 0.225 -1.09 57.11 0.762 30.12 0.306 0.14 93.67 0.760
Ours 4× 4× 4 4 33.91 0.077 -1.83 19.54 0.940 32.25 0.124 -0.86 38.77 0.880

Open-Sora 4× 8× 8 4 28.20 0.162 -1.20 42.39 0.789 26.79 0.262 0.27 80.20 0.747
Open-Sora-Plan 4× 8× 8 4 29.33 0.138 -1.07 35.02 0.757 27.17 0.257 0.38 78.67 0.707
CV-VAE 4× 8× 8 4 29.31 0.164 -1.06 41.62 0.755 29.06 0.233 0.66 71.33 0.711
Ours 4× 8× 8 4 32.12 0.107 -1.53 27.16 0.868 30.31 0.159 -0.24 48.67 0.806

OmniTokenizer 4× 8× 8 8 28.61 0.153 -1.05 38.83 0.753 26.86 0.260 0.41 79.59 0.712
CogVideoX 4× 8× 8 16 32.78 0.071 -1.51 18.02 0.913 31.07 0.124 -0.50 37.96 0.852
Ours 4× 8× 8 8 33.39 0.084 -1.70 21.32 0.909 31.65 0.128 -0.54 39.18 0.855
Ours 4× 8× 8 16 34.51 0.062 -1.88 15.74 0.952 32.86 0.104 -0.86 31.84 0.892

Ours 8× 8× 8 4 31.28 0.121 -1.37 30.71 0.829 29.04 0.226 0.16 69.18 0.786
Ours 16× 8× 8 4 29.74 0.162 -0.96 41.12 0.731 27.51 0.270 0.39 82.65 0.679
Ours 16× 16× 16 4 26.91 0.250 -0.76 63.45 0.683 24.60 0.356 0.47 108.98 0.644

Input VLDM VideoGPT Open-Sora-Plan Ours
(1 ×  1 ×  1) (1 × 8 × 8) (4 × 4 × 4) (4 × 8 × 8) (8 × 8 × 8)

Figure 3: Qualitative comparison of decoded video frames between our model and competing approaches

datasets at a compression rate of 4 × 4 × 4. In comparison, our model achieves 30.16 dB at a
compression rate of 8× 8× 8. This can be attributed to the proposed spatio-temporal downsampling
and upsampling modules, which effectively leverage both learnable and non-learnable kernels to
facilitate the encoding and decoding of information at higher compression rates. Additionally, the use
of the FILM encoder mitigates the challenges of encoding large motion, contributing to the strong
performance of our video VAE on large-motion datasets (Niklaus & Liu, 2020; Pont-Tuset et al.,
2017). It can also be observed that our 16× 8× 8 model achieves performance comparable to the
best competing method at a 4× 8× 8 compression rate, Open-Sora-Plan (Lab & etc., 2024). The
proposed flow regularization loss enables faithful reconstruction of motion between decoded frames,
resulting in robust autoencoding performance at higher temporal compression, as evident in Table 1.

In Fig. 3, we qualitatively compare our model with the best-performing baselines. As shown in the
figure, our 8× 8× 8 model successfully reconstructs a small, fast-moving object (highlighted in the
green box), whereas Open-Sora-Plan fails at a 4 × 8 × 8 compression rate. It is also evident that
our approach reconstructs human faces with great fidelity, while other methods with much lower
compression rates, such as VideoGPT, struggle to preserve details (see the nose and mouth in the blue
box). As illustrated in Fig. 3, our model generally reconstructs sharper frames while maintaining the
structural details of objects that are far from the camera, compared to other methods (see the details
in the red box). Please refer to the supplemental video and the appendix for further analyses.

3.1.2 IMAGE COMPRESSION

We evaluate our approach and other baselines on the image autoencoding task, as shown in Table 2.
As can be inferred from the table, our causal video VAE demonstrates competitive image compression
performance across various metrics. Notably, our model, trained exclusively on video clips without
explicit optimization for images, performs comparably to a state-of-the-art image VAE (Rombach
et al., 2022). These results highlight the advantages of the causal formulation in our video VAE for a
joint image and video compression model.

3.2 VIDEO GENERATION

Our work has practical applications in tasks such as image/video generation, where the encoder
compresses visual data into a latent space for training generative models, and during inference, the
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Table 2: Comparison on image compression
Method ImageNet Val

t× h× w |ẑ| PSNR ↑ SSIM ↑ LPIPS ↓
LDM 1× 8× 8 4 29.06 0.684 0.137
Open-Sora 4× 8× 8 4 26.67 0.692 0.161
Open-Sora-Plan 4× 8× 8 4 27.57 0.654 0.145
OmniTokenizer 4× 8× 8 4 27.05 0.651 0.150
CV-VAE 4× 8× 8 4 27.69 0.652 0.141
Ours 4× 8× 8 4 29.02 0.697 0.088

CogVideoX 4× 8× 8 16 29.66 0.712 0.075
Ours 4× 8× 8 16 30.54 0.744 0.056

Table 3: Comparison on video generation
Method SkyTimelapse UCF-101

FVD16 ↓ FVD128 ↓ FVD16 ↓ FVD128 ↓
VideoGPT 222.7 - 2880.6 -
DIGAN 83.11 196.7 1630.2 2293.7
StyleGAN-V 79.52 197.0 1431.0 1773.4
PVDM 71.46 159.9 457.4 902.2

LDM + Open-Sora 53.38 127.5 266.8 657.6
Open-Sora 55.12 130.9 283.4 662.9
Ours + Open-Sora 49.50 119.8 248.7 572.1

decoder reconstructs the data from the generated latents (Brooks et al., 2024). To demonstrate this,
we plug in our pretrained video VAE into the diffusion-based open-source generative framework,
Open-Sora (Zheng et al., 2024), and train it for unconditional video generation.

Implementation Details We use the train-split of commonly used video synthesis benchmarks,
SkyTimelapse (Zhang et al., 2020) and UCF-101 (Soomro, 2012), for model training. Consistent with
previous works (Yu et al., 2023b; Skorokhodov et al., 2022), we resize each frame in the datasets to a
resolution of 256× 256 and sample video clips of length 1 + T , where T ∈ {16, 128}. Our video
generation experiments are conducted on 16 NVIDIA A100 (80GB) GPUs adhering to the training
configuration in Zheng et al. (2024).

Baseline Methods We compare our video VAE (4 × 8 × 8) with the autoencoders from LDM
(1 × 8 × 8) and Open-Sora (4 × 8 × 8) on the video generation task by integrating them into a
video generation model (Zheng et al., 2024). All autoencoders, including ours and the baselines, are
kept frozen during the generation experiments. Additionally, we report the results of state-of-the-
art video generation methods, including VideoGPT (Yan et al., 2021a), DIGAN (Yu et al., 2022),
StyleGAN-V (Skorokhodov et al., 2022), and PVDM (Yu et al., 2023b).

Evaluation We use the Fréchet Video Distance (FVD) (Unterthiner et al., 2018) to quantitatively
assess the quality of the generated clips. Following the evaluation protocol in previous works (Yu
et al., 2023b; Skorokhodov et al., 2022), we measure the FVD score on video clip lengths of 16 and
128 frames. For both FVD16 and FVD128, we evaluate using 2,048 real and generated video clips.

3.2.1 RESULTS

In Table 3, we present a quantitative comparison of Open-Sora (Zheng et al., 2024) (which utilizes
latents encoded by LDM (Rombach et al., 2022), Open-Sora’s video VAE, and our video VAE) and
previous video generation methods. The significant performance improvement of Open-Sora-based
generation over prior GAN-based (Yu et al., 2022; Skorokhodov et al., 2022) and autoregressive-
based (Yan et al., 2021a) approaches, as evident from the table, can be attributed to the state-of-the-art
diffusion-based architecture in Zheng et al. (2024). It can also be inferred that using our video VAE
(Ours + Open-Sora) delivers the best performance in both short and long video generation, notably
outperforming Open-Sora’s own video VAE. Additionally, our video VAE achieves better generation
results than LDM, as shown in Table 3, while being 4× more efficient in temporal compression.
These results highlight the effectiveness of our autoencoder in generative modeling.

In Fig. 4, we visualize sequence of video frames generated using our video VAE. The first three
rows illustrate generated results based on the SkyTimelapse dataset, while the last three rows show
generated results from the UCF-101 dataset. As shown in the figure, Open-Sora, powered by our
video VAE, generates realistic sky time-lapse videos with high fidelity. It can also be seen that our
method, trained solely on the challenging UCF-101 dataset, synthesizes videos of human faces with
satisfactory details and videos of human actions exhibiting spatio-temporal consistency, as depicted
in Fig. 4.

4 ABLATION STUDIES

We conduct extensive ablation studies to analyze the contributions of the different components in the
proposed video VAE, including the FILM encoder, the spatio-temporal down/upsampling blocks, the
spatio-temporal attention block, and the flow regularization loss. All experiments are conducted on a
video VAE with a spatio-temporal compression rate of 8×8×8. The results on the Xiph-2K (Niklaus
& Liu, 2020) and DAVIS (Pont-Tuset et al., 2017) datasets are summarized in Table 4.
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Figure 4: Qualitative analysis of videos generated by Open-Sora, enabled by our video VAE (Ours + Open-Sora).
The top three rows are from a model trained on SkyTimelapse, and the bottom three on UCF-101.

FILM Encoder We explore the advantages of employing a weight-shared encoder across the input
video pyramid to address the challenges associated with decoding small and fast-moving objects,
as outlined in Sec. 2.2. To accomplish this, we train our video VAE using a single (base) encoder
that takes the original resolution of the input video and compare its performance with a model that
uses a FILM encoder. As can be inferred from Table 4(a), a model with a FILM encoder consistently
outperforms a single encoder model across all metrics. Specifically, on the DAVIS dataset, which
predominantly contains large motion, using a FILM encoder improves performance by 1.81 dB on the
PSNR metric. The qualitative results in Fig. 5 further show that a video VAE with a FILM encoder
reconstructs sharper frames compared to one without it. These findings underscore the advantage of
learning scale-agnostic features through shared encoder weights, which helps mitigate the challenges
of large-motion decoding (Reda et al., 2022).

Spatio-Temporal Down/Upsampling Here, we study how different network designs for the
down/upsampling modules impact our video VAE. First, we train a model using non-learnable
kernels (followed by a convolution layer), employing average pooling for downsampling and nearest
interpolation for upsampling, in line with previous works (Rombach et al., 2022; Lab & etc., 2024).
Additionally, we train a separate model using learnable kernels (Yu et al., 2024), employing strided
convolution for downsampling and strided transposed convolution for upsampling. We compare
these baselines against our proposed approach, which integrates both learnable and non-learnable
kernels, as described in Sec. 2. The results for input videos sampled at different sequence lengths are
presented in Table 4(b). As can be inferred from the table, a model based on only learnable kernels
outperforms a model based on non-learnable kernels for a sequence length seen during training
(T = 8). However, when tested at a different sequence length (T = 32), the performance of the
model based on learnable kernels significantly drops compared to the model based on non-learnable
kernels. We observe that while spatio-temporal down/upsampling with 3D convolutions generally
performs well, the model tends to overfit to the training sequence length. This results in a notably
worse performance at different sequence lengths during inference. In comparison, non-learnable
spatio-temporal down/upsampling in a video VAE results in relatively lower performance but is more
robust across different sequence lengths, as seen in Table 4(b). Our proposed method which combines
the best of both worlds as depicted in Fig. 2(b), not only outperforms both approaches but is also
temporally more adaptable to different sequence lengths.

Flow Regularization To examine the benefit of imposing motion constraints in video VAE training,
we train our model with and without the flow regularization loss (Eq. (4)). The results are presented in
Table 4(c). As evident from the table, a model trained with flow regularization loss Lflow consistently
outperforms a model trained without it. In particular, there is a significant improvement in the
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Input w/o FILM w/ FILM Input w/o FILM w/ FILM

Figure 5: Qualitative analysis of large-motion decoding with (w/) and without (w/o) the FILM encoder

Table 4: Ablation experiments on different components of our causal video VAE
Method Xiph-2K DAVIS

PSNR ↑ SSIM ↑ LPIPS ↓ TS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ TS ↓
(a) w/o FILM encoder 30.44 0.775 0.139 -0.86 27.23 0.587 0.251 0.29

w/ FILM encoder 31.28 0.797 0.121 -1.37 29.04 0.624 0.226 0.16

(b) non-learnable kernel (T = 8) 29.98 0.728 0.156 -1.13 27.89 0.560 0.257 0.21
non-learnable kernel (T = 32) 29.60 (↓ 0.38) 0.710 0.175 -1.08 27.47 (↓ 0.42) 0.524 0.276 0.26
learnable kernel (T = 8) 30.60 0.743 0.153 -1.18 28.03 0.555 0.257 0.18
learnable kernel (T = 32) 28.98 (↓ 1.62) 0.713 0.182 -1.01 26.95 (↓ 1.08) 0.489 0.305 0.33
ours (T = 8) 31.28 0.797 0.121 -1.37 29.04 0.624 0.226 0.16
ours (T = 32) 30.85 (↓ 0.43) 0.785 0.130 -1.25 28.82 (↓ 0.22) 0.619 0.234 0.17

(c) w/o flow regularization (Lflow) 30.65 0.784 0.130 -0.68 28.26 0.607 0.236 0.58
w/ flow regularization (Lflow) 31.28 0.797 0.121 -1.37 29.04 0.624 0.226 0.16

(d) w/o STAttnBlock 30.52 0.773 0.139 -0.83 27.36 0.603 0.240 0.36
w/ STAttnBlock 31.28 0.797 0.121 -1.37 29.04 0.624 0.226 0.16

temporal smoothness of the decoded frames, as noted from the TS metric in Table 4(c). This
implies that incorporating flow regularization during training is advantageous for decoding temporally
consistent videos. Please refer to the supplemental video for qualitative examples.

Spatio-Temporal Attention Here, we analyze the importance of incorporating self-attention
layers (Vaswani et al., 2017) into our video VAE to explicitly capture spatio-temporal dependencies.
To achieve this, we train our model after removing all the attention blocks from the encoder, middle
block, and decoder parts of our network (see Fig. 1). As can be observed from Table 4(d), a model
trained without STAttnBlock already gives a competitive performance, as causal 3D convolutional
layers are strong in capturing spatio-temporal correspondences in videos (Yu et al., 2024). However,
adding spatio-temporal attention blocks in the video VAE results in a notable performance boost.

5 CONCLUSION

This work presents a causal video VAE for high-quality video compression. We make three key
contributions. First, we propose a weight-shared encoder that efficiently captures multi-scale features
from the input video. This mitigates the challenges associated with reconstructing videos with large
motions. Second, we introduce robust spatio-temporal down/upsampling blocks, overcoming the
limitations of prior methods. Third, to preserve motion dynamics during high compression, we
introduce a flow regularization loss for video VAE training. We demonstrate the effectiveness of our
model through comprehensive experiments. We also demonstrate the potential of our proposed model
as a robust autoencoder for video generation training.
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A APPENDIX

B RELATED WORKS

Video Compression Traditionally, video compression has relied on handcrafted algorithms such
as H.264 (Wiegand et al., 2003) and H.265 (Sullivan et al., 2012). These algorithms achieve
excellent compression rates but require video coding experts to meticulously design and optimize the
various components of the compression pipeline. In contrast, neural networks that can automatically
learn important features during training have emerged as strong contenders (Mentzer et al., 2022;
Djelouah et al., 2019; Rippel et al., 2021; Lin et al., 2020). Pioneering works such as DVC (Lu
et al., 2019) mimic traditional compression methods, replacing certain components within the
framework with neural networks. Following works (Agustsson et al., 2020; Lin et al., 2020; Djelouah
et al., 2019; Rippel et al., 2021) build upon this framework, introducing enhancements to various
modules. Branching away from the complex residual coding-based framework which consists of
many modules, some works (Habibian et al., 2019; Mentzer et al., 2022; Hu et al., 2023b) opt for a
simpler autoencoder-based approach. For instance, Habibian et al. (2019) uses a 3D autoencoder and
an auto-regressive prior coding model, Hu et al. (2023b) combines previous modules for compression
in feature space using an autoencoder-style network, and Mentzer et al. (2022) utilizes image
autoencoders to obtain frame-wise representations of videos, which are then quantized through a
trained Transformer (Vaswani et al., 2017). Except for a few works (Hu et al., 2023b; Mentzer et al.,
2022; Habibian et al., 2019) that perform dimension reduction, although not significantly, the primary
focus of neural compression has been on reducing bitrate rather than the dimension.

Video Compression for Generation In recent years, generative modelling (Esser et al., 2021; Yu
et al., 2024; Rombach et al., 2022; Yu et al., 2023a; Chang et al., 2022) has ushered in a new era of
neural video compression approaches, with a primary focus on achieving low-dimensional latent rep-
resentations. The emphasis on obtaining low-dimensional latents is because highly compressed latents
allow generative models to ignore imperceptible pixel variations, providing an efficient generation en-
vironment and reducing computational costs. These approaches can broadly be divided into those that
learn discrete latent representations and those that learn continuous latent representations. Discrete
neural video compression approaches mainly follow a pioneering work (van den Oord et al., 2018),
which uses a learned codebook through the k-means clustering algorithm for image compression. For
example, Yan et al. (2021b) follows a similar approach but uses 3D convolutions to properly model
spatio-temporal dynamics for effective video compression. Recently, follow-up works (Yu et al.,
2024; Mentzer et al., 2023) have focused on non-learnable and look-up free quantization schemes
instead of the k-means clustering to learn a bigger codebook for more faithful reconstructions.

On the other hand, continuous neural video compression approaches follow after the VAE (Kingma &
Welling, 2013) framework, incorporating perceptual losses and GAN training to enhance perceptual
quality, as introduced in Rombach et al. (2022) for image compression. Notably, techniques such
as Zeng et al. (2023); Qing et al. (2023); Xing et al. (2023); Jain et al. (2024); Hu et al. (2023a) utilize
a pretrained image autoencoder for independent spatial compression of video frames. However, this
approach may induce flickering artifacts (Blattmann et al., 2023c). To address this issue, Blattmann
et al. (2023c;a) fine-tune a pretrained image autoencoder with added 3D convolutions to align latents
for temporal reasoning, employing a training framework adapted for videos. Another noteworthy
approach is Yu et al. (2023c), which performs spatial compression by learning a triplane low-
dimensional representation of the video. However, these approaches neglect to exploit the well-
documented temporal redundancies in videos (Lu et al., 2019; Lin et al., 2020; Hu et al., 2023b),
resulting in larger latent dimensions. To address these limitations, our work leverages temporal
redundancies and proposes a continuous video autoencoder that performs compression in both the
spatial and temporal domains. We also empirically demonstrate the potential of our proposed model
as a robust autoencoder for video generation training.

B.1 EXPERIMENTAL ANALYSES

B.1.1 LATENT SENSITIVITY

In this analysis, we investigate the robustness of the video VAE decoder to erroneous latent predictions
from a generative model. To do so, we intentionally corrupt the encoded latents using various
corruption methods and assess the quality of the video reconstructed by the decoder. First, we use a
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Table 5: Experimental analyses on latent sensitivity and arbitrary sequence length on Adobe240 dataset

Method Spatio-Temporal
Compression Noise Quantization Sequence Length

t× h× w σ = 0 σ = 0.4 σ = 0.8 fp32 bf16 uint8 T = 8 T = 64 T = 128

LDM 1× 8× 8 28.53 27.86 26.91 28.53 28.41 15.56 28.53 28.53 28.53
Video LDM 1× 8× 8 29.51 28.30 27.02 29.51 29.49 16.50 29.51 29.16 29.04
Open-Sora-Plan 4× 8× 8 28.43 27.31 25.67 28.43 28.21 16.11 28.43 27.92 27.34
Ours 8× 8× 8 31.50 30.96 29.03 31.50 31.42 17.49 31.50 31.22 30.83
Ours (T = 64) 8× 8× 8 31.22 30.89 28.92 31.22 31.20 17.16 - - -

Input σ = 0, fp32 σ = 0.4 σ = 0.8 bf16 uint8

Figure 6: Qualitative analysis on the effect of noise corruption and quantization on encoded latents

noise corruption scheme where we add different magnitudes of Gaussian noise (of the same size as
the encoded latent) to the encoded latent i.e. v̂ = v+ σ · N (0, 1), where v denotes the encoded latent.
We experiment with 3 scales of noise: σ = 0 (clean), σ = 0.4 (medium noise) and σ = 0.8 (large
noise). As anticipated, the decoded video quality decreases in proportion to the scale of the added
Gaussian noise as shown in Table 5. However, our video decoder still performs reasonably well
even when the latents are corrupted with significant noise. A similar conclusion can be drawn from
the visualization in Fig. 6, where the overall structure of the video is well-maintained for σ = 0.8
despite the noisy output. It is also noteworthy from Table 5 that our video VAE exhibits relatively
better robustness to noise for longer input sequence lengths. For example, there is a 0.33 dB drop for
σ = 0.4 when T = 64 compared to a 0.54 dB drop when T = 8. This result further underscores the
importance of temporally agnostic video VAEs. Please refer to the supplemental video for qualitative
examples.

We also investigate the sensitivity of a video VAE to latent quantization. We achieve this by storing
the encoded latents in various data type formats: 32-bit floating point (fp32), 16-bit brain floating
point (bf16), and unsigned 8-bit integer (uint8). As demonstrated in Table 5, bf16 quantization
performs comparably to fp32 despite the reduced precision, while uint8 quantization leads to poor
decoding performance across all methods. This observation is further supported by Fig. 6, where our
model with bf16 decodes video frames indistinguishable from those generated with fp32, whereas
uint8 only preserves the edges of the frame. This failure occurs because uint8 significantly shifts the
distribution of the encoded latent, which is optimized to resemble a standard normal distribution via
KL regularization (refer to Sec. 2.5).

B.1.2 SEQUENCE LENGTH

The applicability of a video VAE hinges on its ability to robustly encode and decode arbitrarily long
videos sampled at varying lengths. In Table 5, we assess different approaches in this regard using
three different sequence lengths: T = 8, T = 64, and T = 128. As expected, methods that only
perform spatial compression (Blattmann et al., 2023c) tend to perform consistently across different
sequence lengths compared to those that perform both spatial and temporal compression (Lab &
etc., 2024). For example, Video LDM (Blattmann et al., 2023c) (1× in the temporal dimension)
shows a 0.47 dB performance drop when the sampling rate changes from T = 8 to T = 128, while
Open-Sora-Plan (Lab & etc., 2024) (4×) exhibits a larger drop of 1.09 dB under the same conditions.
In comparison, our method (8×) experiences a 0.67 dB performance drop. These results show that
our model, even with a higher compression rate, generalizes reasonably well to varying sequence
lengths.
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Figure 7: PSNR and SSIM analysis across spatio-temporal compression rates

Table 6: Effect of padding in causal 3D convolution
Method PSNR SSIM LPIPS TS

zero padding 28.77 0.619 0.232 0.27
constant padding 28.86 0.620 0.231 0.22
replication padding 29.04 0.624 0.226 0.16

B.2 VIDEO COMPRESSION COMPARISON

Here, we present visualizations of the results summarized in Table 1 of our paper. In Fig. 7, we
illustrate the PSNR and SSIM (on the y-axis) against the spatio-temporal compression rate of our
model and competing approaches on the Adobe240 (Su et al., 2017), DAVIS (Pont-Tuset et al., 2017),
and Xiph-2K (Niklaus & Liu, 2020) datasets. As evident from the plots, our model achieves highly
competitive, if not superior, performance compared to competing approaches while accomplishing
significantly higher dimension reduction.

B.3 PADDING IN CAUSAL 3D CONVOLUTION

Here, we explore the impact of various padding schemes in the causal 3D convolutional layers within
our video VAE. We conduct experiments using three different temporal padding schemes: zero,
constant, and replication. Training our 8× 8× 8 model with each padding scheme, we evaluate their
performance on the DAVIS dataset (Pont-Tuset et al., 2017). The results, outlined in Table 6, indicate
that replication padding yields the best performance. Moreover, we observe that replication padding
leads to temporally smoother videos compared to zero or constant padding.
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