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Figure 1. Method Overview: We introduce planar primitive material textures — as opposed to single attributes — within physically based
Gaussian Splatting rendering optimization. The increased representation power from spatially varying normal and material in object space
enables fidelity reconstruction of high frequency specular in highly reflective scenes. Our hardware-accelerated implementation using
texture atlases improves rendering efficiency at test time.

Abstract

Gaussian Splatting have demonstrated remarkable novel
view synthesis performance at high rendering frame rates.
Optimization-based inverse rendering within complex cap-
ture scenarios remains however a challenging problem. A
particular case is modelling complex surface light inter-
actions for highly reflective scenes, which results in intri-
cate high frequency specular radiance components. We hy-
pothesize that such challenging settings can benefit from in-
creased representation power. We hence propose a method
that tackles this issue through a geometrically and phys-
ically grounded Gaussian Splatting borne radiance field,
where normals and material properties are spatially vari-
able in the primitive’s local space. Using per-primitive
texture maps for this purpose, we also propose to harness
the GPU hardware to accelerate rendering at test time via
unified material texture atlas. Code will be available at
TextureSplat.

1. Introduction
3D reconstruction and inverse rendering from multi-view
images are pivotal problems receiving constant interest and
investigation from computer vision, graphics and machine
learning research communities, with a myriad of direct ap-
plications in key industrial domains requiring high-quality
3D modeling and visualization.

Neural Radiance Fields (NeRF) [42] revolutionized the
field by representing scenes as continuous neural implicit
functions optimized through differentiable volume render-
ing. Building on this foundation, 3D Gaussian Splatting
(3DGS) [27] reintroduced point-based graphics by replac-
ing neural networks with explicit 3D Gaussian primitives,

achieving both real-time rendering and state-of-the-art qual-
ity. These primitives are rendered through volume resam-
pling [87], with their parameters optimized via gradient
descent-based differentiable rendering. More recently, 2D
Gaussian Splatting (2DGS) [18] improved multi-view con-
sistency by using planar Gaussian primitives that better
align with surfaces.

Despite these advances, accurately representing highly
reflective surfaces remains challenging. Reflective ob-
jects exhibit complex view-dependent effects that depend
on surface normals, material properties, and environmen-
tal lighting. Recent methods such as RefGaussian [73] and
3DGS-DR [76] attempt to model these effects using per-
Gaussian material properties and physically-based render-
ing approaches. However, they often struggle with high-
frequency specular highlights and sharp reflections. We hy-
pothesize that this is due in part to the inherent resolution
limitations of using a single attribute value per primitive.

In this paper, we ask the question: How can we enhance
the representation power of Gaussian splatting for reflec-
tive scenes while maintaining computational efficiency and
leveraging hardware acceleration? Our key insight is that
the planar nature of 2D Gaussian primitives naturally de-
fines a parameterization that can be exploited for texture
mapping, enabling us to store spatially varying material
properties per primitive.

Inspired by the distinction between Gouraud shad-
ing [15] (constant per-vertex attributes) and Phong shad-
ing [53] (interpolated attributes) in traditional computer
graphics, we introduce per-primitive texture maps for ma-
terial properties in 2D Gaussian splatting. This approach
effectively decouples the geometric representation (Gaus-
sian primitives) from the appearance representation (mate-
rial textures), allowing us to model high-frequency material
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variations without increasing the number of primitives.
Our method leverages the closed-form ray-splat intersec-

tion of 2DGS to accurately map screen-space pixels to local
texture coordinates, enabling proper texture filtering. Cru-
cially, we transform tangential normal maps to world space
using the primitive’s rotation matrix, analogous to normal
mapping in traditional rendering. This enables detailed nor-
mal variations across each primitive’s surface, significantly
enhancing the rendering of specular highlights and reflec-
tions.

For efficient rendering after optimization, we pack the
primitive textures into atlases that leverage GPU hardware-
accelerated texture filtering operations. Our approach is
fully compatible with deferred shading pipelines, allowing
us to incorporate physically-based rendering models for ac-
curate light interactions.

Through experiments on standard benchmarks for re-
flective scene reconstruction, we demonstrate that our
method outperforms state-of-the-art approaches in terms of
both quantitative metrics and visual quality. Our method
achieves more accurate reflections and sharper specular
highlights while maintaining real-time rendering perfor-
mance. The benefits extend beyond reflective scenes, as our
approach improves rendering quality for standard scenes as
well.

Our contributions include:
• A per-primitive texture mapping approach for 2D Gaus-
sian splatting that enhances representation power while
maintaining computational efficiency.
• Leveraging a normal mapping technique in the context of
Gaussian Splatting that significantly improves the quality of
specular reflections.
• A hardware-accelerated implementation using texture at-
lases that enhances real-time rendering at test time.
• State-of-the-art results on benchmarks for reflective scene
reconstruction, demonstrating significant improvements in
rendering quality and accuracy.

2. Related Work

2.1. Radiance Fields for 3D Scene Representations

Neural Radiance Fields [42] (NeRFs) have been dominat-
ing the 3D shape and appearance modelling recently, based
on the astounding success of implicit representations com-
bined with differentiable volume rendering [31, 41]. They
represent scenes using view-dependent radiance and density
fields parameterized by MLPs. When density is modeled
as a function of a signed distance field, NeRF variants en-
able more accurate geometry reconstruction [21, 34, 64, 70,
74, 78]. However, multi-scale volume rendering demands
frequent MLP evaluations, limiting real-time performance.
Grid-based methods [7, 10, 11, 43, 58, 59] alleviate this
but often struggle with large, unbounded scenes even with

level-of-detail grids [38]. Implicit reconstruction has been
made more robust to noise and sparse observations, whether
from images or point clouds, through the use of generaliz-
able data priors (e.g. [6, 19, 26, 32, 46, 47, 49, 52, 79]) and
a variety of regularization strategies (e.g. [2, 8, 16, 20, 33,
45, 48–51, 72]). Gaussian splatting (3DGS) [27] emerged
lately as a strong alternative to NeRFs, offering state-of-
the-art novel view synthesis and real time rendering frame
rates. It extends the elliptical weighted average (EWA) vol-
ume resampling framework [86, 87] to inverse rendering,
modelling scenes with explicit Gaussian kernel primitives,
that can be sorted and rasterized efficiently. Recent exten-
sions of Gaussian splatting include building generalizable
models [5, 23, 39, 61], bundle-adjustment–based formula-
tions [12, 22, 75, 84], using higher-dimensional primitives
[9], spatiotemporal models [69], in addition to several meth-
ods to improve density control [28, 65, 82], anti-alising
[37, 77, 80], model compactness [30, 66] and training speed
[17, 29, 83]. The 2DGS representation [18] leverages pla-
nar 2D primitives instead of volumetric ones (3DGS), and
performs precise 2D kernel evaluation in object space as
opposed to approximative ones in screen space (3DGS),
thus leading to superior geometric modelling and multi-
view consistency.

2.2. Specular Reflection Modeling for Reflective
Scenes

Both vanilla NeRFs and 3DGS assume low-frequency view
dependency. Hence, they can struggle with highly re-
flective scenes. One strategy to improve in this depart-
ment is using shading functions that are reflection direc-
tion aware [14, 25, 40, 57, 63]. For instance, Ref-NeRF
[63] extends NeRFs with a new parameterization for view-
dependent radiance and incorporates normal vector regu-
larization. The shading function can be more physically
grounded, and this enables additional application such as
relighting and material editing. In this regard, other NeRF
and GS based methods proposed to model light interac-
tion using the explicit rendering equation with BRDF func-
tions. ENVIDR [35] Uses environment maps to capture
spatially-varying reflections in neural rendering. The next
wave of work tackled shading for Gaussian Splatting (e.g.
[13, 24, 36, 62, 73, 76, 85]). GShader [24] applies a sim-
plified shading function on each fragment. 3DGS-DR [76]
introduces deferred shading at pixel level, and stabilizes the
optimization by smoothing out normal gradients.

Building on the 2DGS representation, our baseline Ref-
Gaussian [73] decomposes the scene into geometry, mate-
rial and lighting through the split-sum approximation of the
rendering equation while incorporating an indirect light at-
tribute, enabling inter-reflections while being fast to render.
It achieves the state-of-the-art performance on the standard
reflective scene novel view synthesis benchmarks. We pro-



pose to enhance its physical material and normal represen-
tations through the use of per-primitive textures.

2.3. Texture Attributes in Gaussian Splatting

Several works [4, 55, 56, 60, 68, 71] recently introduced
the texture attribute representation for Gaussian Splatting as
well. They use it to model a view independent component
of the color. Differently, we explore this representation for
rendering material properties and normals within 2DGS en-
abled physically based rendering to reconstruct challenging
highly reflective scenes. We also propose leveraging texture
atlases to enable hardware acceleration at test-time render-
ing. Closest to our context, concurrent work [1] manages
to encode spatially varying primitive material attributes in
a single compact texture map thanks to their pre-fitted tem-
plate mesh.

3. Method
In this section, we present our approach to enhance 2D
Gaussian Splatting (2DGS) [18] for representing highly re-
flective 3D scenes. We first provide background on 2DGS,
then introduce our per-primitive texture mapping method
that enables high-frequency detail on flat Gaussian prim-
itives. Finally, we describe our hardware-accelerated im-
plementation using texture atlases and the physically-based
rendering model we use for reflective scenes.

3.1. Background: 2D Gaussian Splatting

We build upon 2D Gaussian Splatting (2DGS) [18], which
represents a scene using oriented planar disks offering im-
proved multi-view consistency compared to 3D Gaussian
Splatting [27]. Each primitive k is characterized by its posi-
tion pk, tangential vectors tuk

and tvk , and scaling factors
(suk

, svk). The primitive’s normal is defined by the cross
product nk = tuk

× tvk .
The 2D Gaussian is defined in a local tangent plane in

world space with coordinates (u, v), parameterized as:

Pk(u, v) = pk + suk
tuk

u+ svktvkv. (1)

For a point (u, v) in the local coordinate space corre-
sponding to a given pixel (x, y) (i.e. ray-splat intersection),
the 2D Gaussian value is evaluated as:

Gk(u, v) = exp

(
−u2 + v2

2

)
. (2)

Each splat has also a learnable opacity ok. The final pixel
color is computed by alpha-blending all primitives that con-
tribute to the pixel in front-to-back order:

A(x, y) =

N∑
i=1

aiαi(x, y)

i−1∏
j=1

(1− αj(x, y)) (3)

where αi(x, y) = oiGi(ui(x, y), vi(x, y)) is the effective
opacity of the i-th primitive at pixel (x, y) and ai is its
attribute (e.g., color), typically represented using spherical
harmonics for view-dependent effects.

3.2. Per-Primitive Texture Mapping

While existing Gaussian splatting methods assign a single
attribute value per primitive, we observe that the flat na-
ture of 2D Gaussians naturally defines a local parameteriza-
tion that can be leveraged for texture mapping. This enables
encoding higher-frequency spatial detail without increasing
the number of primitives, analogous to the distinction be-
tween Gouraud shading (constant per-primitive attributes)
and Phong shading (interpolated attributes) in traditional
rendering.

Rather than representing material properties with a sin-
gle value per primitive, we define them as texture maps in
the splat’s local coordinate system:

ak(x, y) = T k(uk(x, y), vk(x, y)) (4)

where T k is the texture map associated with the k-th prim-
itive, and ak represents any reconstructed attribute.

This approach provides several advantages:
Decoupling of geometry and appearance: By separating
the geometric representation (Gaussian primitives) from the
appearance details (textures), we can represent complex vi-
sual features without increasing the number of primitives.
Higher fidelity appearance: Textures can capture high-
frequency detail that would otherwise require many more
primitives to represent.
Normal mapping: Instead of using a single normal per
primitive, we can store detailed normal maps, significantly
improving the rendering of specular effects.

The 2DGS representation is particularly well-suited for
texture mapping because the ray-splat intersection already
provides exact (u, v) coordinates in the primitive’s local
space and thus, enables accurate texture filtering.

3.3. Texture Mapping Implementation

To implement our texture mapping approach, we map the
local splat coordinates (u, v) to texture coordinates (s, t)
that account for the Gaussian kernel’s support. Since the
Gaussian kernel effectively drops to zero at approximately
Sσ = 3 standard deviations, we scale the local coor-
dinates to ensure that the effective support of the Gaus-
sian ([−Sσ, Sσ] × [−Sσ, Sσ]) maps to the texture space
[0, 1]× [0, 1]:

s =
u+ Sσ

2Sσ
, t =

v + Sσ

2Sσ
. (5)



The attribute value ak(x, y) for primitive k at pixel (x, y) is
then obtained by bilinear filtering from its texture map T k:

ak(x, y) = BilinearFilter(T k, s(uk(x, y)), t(vk(x, y))).
(6)

3.4. Hardware Acceleration via Texture Atlases

To efficiently render optimized scenes at test time with per-
primitive textures, we leverage hardware-accelerated tex-
ture filtering by packing individual primitive textures into
texture atlases. This approach is inspired by methods like
Ptex [3] and seamless texture atlases [54], adapted to the
specific needs of Gaussian splatting. We provide details
about Texture Atlas construction and texture sampling in
the Supplementary Material (Section 1).

3.5. Physically-Based Deferred Rendering

Following the deferred rendering approach used in 3DGS-
DR [76] and Ref-Gaussian [73], we first splat material
attributes to screen-space buffers, then apply physically-
based shading in a separate pass.

3.5.1 Material Properties

Each 2D Gaussian is associated with texture maps for
the following material properties: Albedo λ ∈ [0, 1]3,
Metallic m ∈ [0, 1], Roughness r ∈ [0, 1], Tangent nor-
mal nt ∈ [0, 1]3 representing normal perturbations in the
tangent space. For memory efficiency, we encode tan-
gent normals using only two components (nt

x, n
t
y) and

reconstruct the third component at runtime using nt
z =√

max(0, 1− (nt
x)

2 − (nt
y)

2).

3.5.2 Normal Mapping

A key factor in our approach is the use of normal mapping
instead of a single normal per primitive. The tangent normal
map encodes normal perturbations in the primitive’s local
coordinate system. These are transformed to world space
using:

nk(x, y) = Rk · nt
k(x, y) (7)

where Rk is the primitive’s rotation matrix. This enables
detailed normal variations across the surface of each primi-
tive, critical for capturing high-frequency specular effects.

3.5.3 Attribute Splatting

We splat the material attributes to screen-space buffers us-
ing alpha-blending:

X(x, y) =

N∑
i=1

xi(x, y)αi(x, y)

i−1∏
j=1

(1− αj(x, y)), (8)

where X represents the combined screen-space buffers:

X =


Λ
M
R
N
Lind

 , xi =


λi(x, y)
mi(x, y)
ri(x, y)
ni(x, y)
lind
i (x, y).

 (9)

This deferred approach treats alpha-blending as a
smoothing filter, stabilizing the optimization of features
sampled from textures and producing more cohesive ren-
dering results compared to shading directly on the Gaus-
sians [73, 76].

3.5.4 Physically-Based Shading

With the aggregated material maps, we apply the rendering
equation to compute the outgoing radiance Lo(x, y, ωo) in
the direction ωo:

Lo(x, y, ωo) = Ld(x, y, ωo) +Ls(x, y, ωo). (10)

The diffuse term writes:

Ld(x, y, ωo) =
Λ(x, y)

π
(1−M(x, y))Ldiffuse

env (N(x, y)),

(11)
where Ldiffuse

env is the pre-integrated diffuse environment ir-
radiance. Following the split-sum approximation, we com-
pute the specular component efficiently:

Ls(x, y, ωo) ≈ BRDFLUT(N(x, y) · ωo, R(x, y))·
(V (x, y)Ldir(x, y, ωr, R(x, y)) + (1− V (x, y))Lind(x, y)) .

(12)

The first term, BRDFLUT, depends solely on the view
angle and roughness, which is precomputed and stored in
a 2D lookup texture. Ldir(x, y, ωr, R(x, y)) is the direct
environment lighting queried from a learnable environment
map in the reflection direction ωr, using roughness R(x, y)
for mipmap selection. Lind(x, y) is the blended indirect
lighting component. We follow the baseline method [73] in
modeling inter-reflections by approximating visibility with
ray tracing an extracted mesh and encoding indirect light-
ing with spherical harmonics. We follow prior work [73]
and use [44] for the PBR shading.

3.6. Training

Splat parameters pk, tuk
, tvk , suk

, svk
, ok, their material

texture maps T λ
k , T m

k , T r
k , T nt

k , per-splat indirect light-
ing SH coefficients for lind

k , and the environment maps
(Ldiffuse

env ,Lspec
env ), are optimized end-to-end using a compos-

ite loss:
L = Limg + λnLn, (13)



where Limg = (1 − λ)L1 + λLD-SSIM is the RGB recon-
struction loss with balancing weight λ = 0.2. The nor-
mal consistency loss Ln = 1 − Ñ(x, y)TN(x, y) encour-
ages alignment of the Gaussians with the surface by mini-
mizing the cosine difference between the rendered normal
N(x, y) and the surface normal Ñ(x, y) derived from ren-
dered depth. We use a single NVIDIA RTX A6000 GPU in
our experiments.

4. Experiments

Figure 2. Qualitative comparisons of novel view synthesis on syn-
thetic scenes. From top to bottom: helmet from Shiny Blender [63]
and potion from Glossy Synthetic [40]. Notice how we reconstruct
reflections with more fidelity and less distortion.

Following the baseline method [73], we evaluate our
work quantitatively and qualitatively under standard multi-
view reconstruction benchmarks of challenging reflective
scenes. We use the datasets: Shiny Blender [63] and
Glossy Synthetic [40] for novel view synthesis of reflec-
tive objects, and dataset Ref-Real [63] to account for real
world open reflective scenes. We also provide results on
the Synthetic NeRF [42] dataset to showcase our method
under non-reflective scenes and illustrate its practicality
in the supplementary material (Section 2). We compare
to state-of-the-art methods in the reflective scene setting,
including the baseline Ref-Gaussian [73], other reflective
Gaussian splatting based methods GShader [24] and 3DGS-
DR [76], 3DGS [27] and 2DGS [18] for reference, and sem-
inal NeRF based approaches such as Ref-NeRF [63] and

Figure 3. Qualitative comparisons of novel view synthesis on real
scenes [63]. From left to right: garden spheres and sedan. Notice
how we recover reflections with more fidelity.

ENVIDR [35]. We provide additional results and ablation
studies in the supplementary material.

4.1. Implementation Details

We follow a two-stage optimization for stability. We first
train for half the total number of iterations using per-splat
single attribute optimization. During the second stage, we
start optimizing the material and normal textures initialized
from the corresponding attributes from the first stage, and
we freeze the positions of the primitives. In all our evalua-
tions, we use texture resolution of 2 × 2. We use the same
hyperparameters and training strategies defined by our base-
line Ref-Gaussian [73]. We also follow the latter in replac-
ing the integrated diffuse lighting by a spherical harmon-
ics view dependent color for better fitting in the reflective
setting. We implement efficient CUDA kernels on top of
2DGS and Ref-Gaussian for forward and backward oper-
ations involving material textures and normal mapping, as
well as the texture atlases construction, packing and hard-
ware bilinear filtering at test time.

4.2. Novel View Synthesis

Table 1 shows numerical results in the standard reflec-
tive benchmark. We report Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM) [67],
and Learned Perceptual Image Patch Similarity (LPIPS)



Table 1. Per-scene image quality comparison in the reflective novel view synthesis setting.

Shiny Blender [63] Glossy Synthetic [40] Real [63]
Datasets

ball car coffee helmet teapot toaster angel bell cat horse luyu potion tbell teapot garden sedan toycar
Ref-NeRF 33.16 30.44 33.99 29.94 45.12 26.12 20.89 30.02 29.76 19.30 25.42 30.11 26.91 22.77 22.01 25.21 23.65
ENVIDR 41.02 27.81 30.57 32.71 42.62 26.03 29.02 30.88 31.04 25.99 28.03 32.11 28.64 26.77 21.47 24.61 22.92

3DGS 27.65 27.26 32.30 28.22 45.71 20.99 24.49 25.11 31.36 24.63 26.97 30.16 23.88 21.51 21.75 26.03 23.78
2DGS 25.97 26.38 32.31 27.42 44.97 20.42 26.95 24.79 30.65 25.18 26.89 29.50 23.28 21.29 22.53 26.23 23.70

GShader 30.99 27.96 32.39 28.32 45.86 26.28 25.08 28.07 31.81 26.56 27.18 30.09 24.48 23.58 21.74 24.89 23.76
3DGS-DR 33.43 30.48 34.53 31.44 47.04 26.76 29.07 30.60 32.59 26.17 28.96 32.65 29.03 25.77 21.82 26.32 23.83

Ref-Gaussian 36.07 31.32 34.2 32.3 47.15 28.28 30.55 28.57 33.04 26.76 30.1 33.39 30.1 25.97 23.09 26.23 24.74

PSNR ↑

Ours 39.27 31.72 34.82 32.97 48.27 28.4 30.85 29.16 33.51 27.08 30.48 34.03 30.77 26.42 23.34 26.45 24.95
Ref-NeRF 0.971 0.950 0.972 0.954 0.995 0.921 0.853 0.941 0.944 0.820 0.901 0.933 0.947 0.897 0.584 0.720 0.633
ENVIDR 0.997 0.943 0.962 0.987 0.995 0.922 0.934 0.954 0.965 0.925 0.931 0.960 0.947 0.957 0.561 0.707 0.549

3DGS 0.937 0.931 0.972 0.951 0.996 0.894 0.792 0.908 0.959 0.797 0.916 0.938 0.900 0.881 0.571 0.771 0.637
2DGS 0.934 0.930 0.972 0.953 0.997 0.892 0.918 0.911 0.958 0.909 0.918 0.939 0.902 0.886 0.609 0.778 0.597

GShader 0.966 0.932 0.971 0.951 0.996 0.929 0.914 0.919 0.961 0.933 0.914 0.936 0.898 0.901 0.576 0.728 0.637
3DGS-DR 0.979 0.963 0.976 0.971 0.997 0.942 0.942 0.959 0.973 0.933 0.943 0.959 0.958 0.942 0.581 0.773 0.639

Ref-Gaussian 0.985 0.966 0.976 0.971 0.997 0.952 0.956 0.943 0.975 0.942 0.953 0.966 0.947 0.942 0.628 0.766 0.679

SSIM ↑

Ours 0.992 0.969 0.977 0.975 0.998 0.954 0.958 0.947 0.977 0.946 0.956 0.97 0.97 0.947 0.631 0.772 0.688
Ref-NeRF 0.166 0.050 0.082 0.086 0.012 0.083 0.144 0.102 0.104 0.155 0.098 0.084 0.114 0.098 0.251 0.234 0.231
ENVIDR 0.020 0.046 0.083 0.036 0.009 0.081 0.067 0.054 0.049 0.065 0.059 0.072 0.069 0.041 0.263 0.387 0.345

3DGS 0.162 0.047 0.079 0.081 0.008 0.125 0.088 0.104 0.062 0.077 0.064 0.093 0.102 0.125 0.248 0.206 0.237
2DGS 0.156 0.052 0.079 0.079 0.008 0.127 0.072 0.109 0.060 0.071 0.066 0.097 0.125 0.101 0.254 0.225 0.396

GShader 0.121 0.044 0.078 0.074 0.007 0.079 0.082 0.098 0.056 0.562 0.064 0.088 0.091 0.122 0.274 0.259 0.239
3DGS-DR 0.105 0.033 0.076 0.050 0.006 0.082 0.052 0.050 0.042 0.057 0.048 0.068 0.059 0.060 0.247 0.208 0.231

Ref-Gaussian 0.089 0.031 0.078 0.048 0.006 0.067 0.040 0.067 0.037 0.049 0.043 0.061 0.070 0.059 0.266 0.258 0.257

LPIPS ↓

Ours 0.074 0.028 0.075 0.042 0.004 0.063 0.038 0.064 0.034 0.045 0.040 0.055 0.041 0.055 0.283 0.257 0.27

[81] as metrics. Our method performs favorably compared
to other methods, including baseline Ref-Gaussian, which is
also the state-of-the-art method currently under this bench-
mark to the best of our knowledge. We provide qualitative
results to accompany this table, for real scenes in Figure 3
and synthetic ones in Figure 2. Our method displays supe-
rior ability in capturing reflections on the surface with more
fidelity, while Ref-Gaussian and 3DGS-DR suffer from dis-
torted or missing reflections. We also show in the supple-
mentary material numerical (Tab. 1 in Supp. Mat.) and
qualitative (Fig. 1 in Supp. Mat.) comparisons under
non-reflective data on Nerf Synthetic Scenes [42]. In that
generic setting, we perform competitively with the state-
of-the-art. The improvement brought by our method over
the baseline Ref-Gaussian particularly, under both reflec-
tive and non-reflective scenes, is a testimony of the efficacy
and versatility of our representation.

4.3. Scene Decomposition

Figure 4 shows a comparison of the decomposition with re-
spect to our baseline. Notice that our material properties are
sharper and display less noise. Our normals replicate the
smooth sphere shape more faithfully. We provide further
comparisons in supplementary material including environ-
ment map estimation and material decomposition (Figures

3 & 2 in Supp. Mat.) showcasing the superiority of our
results.

We further evaluate our normal estimation through the
benchmark of the Shiny Blender dataset [63]. Table 2 re-
ports the mean angular error of normal maps, where we
outperform our baseline. This result validates our tangen-
tial normal representation and the use of normal mapping.
Figure 5 shows qualitative comparisons of normals, where
we recover superior geometry compared to other methods.

Figure 4. Comparison of scene decomposition between our
method and the baseline.

4.4. Hardware Acceleration Performance

While our per-primitive texture mapping approach im-
proves rendering quality for reflective scenes, a poten-
tial concern is the additional computational cost of tex-



Table 2. Normal quality evaluated by MAE◦: comparisons on the
Shiny Blender Dataset [63].

GShader NVDiffRec ENVIDR 3DGS-DR Ref-Gaussian Ours
MAE◦ ↓ 22.31 17.02 4.618 4.871 2.078 1.78

Figure 5. Qualitative comparisons of normal reconstruction by
different methods.

ture sampling. To address this, we implemented hardware-
accelerated texture filtering using texture atlases as de-
scribed in Section 3.4. In this section, we evaluate the
performance benefits of this implementation compared to
software-based bilinear filtering.

We trained our model on the Shiny Blender dataset using
different texture resolutions: 2×2, 4×4, 8×8 and 16×16. For
each model, we then rendered the scenes using both the soft-
ware implementation of bilinear filtering and our hardware-
accelerated implementation with texture atlases. We mea-
sured the rendering performance in frames per second (FPS)
and compared these values to the baseline method without
textures.

As shown in Table 3, software-based bilinear filtering in-

Table 3. Rendering performance comparison between software
bilinear filtering and hardware-accelerated texture atlas filtering
at different texture resolutions. Values represent the ratio of FPS
compared to the baseline method without textures, averaged across
the Shiny Blender dataset scenes [63].

2×2 Textures 4×4 Textures 8×8 Textures 16×16 Textures

Baseline, No Textures × 1.00 × 1.00 × 1.00 × 1.00
Software Bilinear × 0.90 × 0.86 × 0.85 × 0.79
Hardware Texture Atlas × 0.92 × 0.93 × 0.94 × 0.91

troduces some performance overhead compared to the base-
line. This overhead increases with higher texture resolu-
tions. In contrast, our hardware-accelerated implementation
with texture atlases maintains rendering performance very
close to the baseline method in comparison.

These results demonstrate that the texture atlas approach
effectively leverages GPU hardware capabilities to mini-
mize the performance impact of texture filtering. Several
factors contribute to this efficiency including the use of ded-
icated texture units that are designed specifically for tex-
ture filtering operations, and are substantially faster than
general-purpose compute.

We note that there is still room for improvement as we
do not follow any strategy for packing the texture into the
atlases, which could benefit from better locality if consider-
ing only primitives that are used for each frame or packing
textures belonging to nearby primitives next to each other.

By leveraging hardware acceleration through texture at-
lases, we can achieve the best of both worlds: the im-
proved rendering quality of per-primitive textures for reflec-
tive scenes while maintaining rendering speed comparable
to methods without textures.

4.5. Ablation Study

To evaluate the effectiveness of our per-primitive texture
mapping approach and understand the contribution of indi-
vidual components, we conducted a series of ablation stud-
ies isolating different aspects of our method.

Additional experiments can be found in Sec. 3 of the
supplementary material, notably a comparative analysis of
Texture Mapping as opposed to increasing primitive count,
and a comparative analysis of performance under reduced
primitive count (Tab. 2 & Fig. 4 in Supp. Mat.).
Impact of Normal Mapping Our previous experiments
suggested that normal mapping plays a particularly impor-
tant role in the performance improvements observed with
our method. To isolate this effect, we implemented a variant
of the baseline that uses texture mapping only for normals
while keeping other attributes (albedo, roughness, metallic)
as per-primitive constants.

The results in Table 4 confirm that normal mapping alone
accounts for a substantial portion of the performance im-
provement. This is particularly evident in the normal mean



Table 4. Ablation study: Effect of normal mapping on average
image and normal quality. We evaluate on the Shiny Blender
dataset [63].

Metric Ref-Gaussian + Normal Mapping Full Model(Ours)
PSNR ↑ 34.89 35.33 35.90
SSIM ↑ 0.974 0.975 0.978
LPIPS ↓ 0.053 0.053 0.047

Normal MAE ↓ 2.078 1.783 1.78

Table 5. Ablation study: Effect of texture resolution on storage,
average image and normal quality. We evaluate on the Shiny
Blender dataset [63].

Variants PSNR ↑ SSIM ↑ LPIPS ↓ Normal MAE ↓ Storage
Ref-Gaussian 34.88 0.974 0.053 2.078 × 1.00

2×2 Textures, Same Storage 35.66 0.976 0.048 1.823 × 1.00
2×2 Textures 35.90 0.977 0.047 1.780 × 1.20

4×4 Textures, Same Storage 35.33 0.977 0.048 1.881 × 1.00
4×4 Textures 35.94 0.978 0.047 1.830 × 1.96

angular error (MAE) metric, where normal mapping signif-
icantly reduces the error compared to the baseline.

The effectiveness of normal mapping for reflective
scenes can be attributed to the fact that reflective surfaces
often exhibit high-frequency normal variations that are dif-
ficult to capture with a single normal per primitive and that
more accurate and detailed normals lead to more precise re-
flection directions and therefore better specular highlights
which is achieved by our spatially varying normals.

While normal mapping provides significant improve-
ment, our full model with texture mapping for all material
properties achieves the best overall performance, demon-
strating that each component contributes to the final quality.

Impact of Texture Resolution and Storage The results
in Table 5 show different configurations of our method in
terms of the texture resolution, and whether we add them
on top of the baseline or reduce the primitive count so that
the total storage size is equal to the baseline. We perform
this evaluation on the Shiny Blender dataset [63]. We ex-
periment with resolutions 2×2 and 4×4 as we find that for
the type of scenes in this dataset (object at the center of the
scene and orbital views), enhancing primitives with much
higher texture resolutions does not result in a desirable stor-
age to quality tradeoff. Using higher resolutions can still be
beneficial though for other scene types where some views
are close to the object for instance.

We find that at a fixed storage budget, our method
still achieves better performance compared to the baseline
method in all metrics. This demonstrates the efficiency of
our texture-based representation and that the memory over-
head is not a fixed cost but a tunable parameter. Our frame-

work allows for adapting texture resolutions or selectively
texturing only the most critical attributes to fit different
memory budgets.

Supplementary material includes additional comparisons
to the baseline with increased primitive count as well as
the impact on performance with reduced primitive count;
These experiments show that for reflective scenes, invest-
ing the parameter budget in appearance/normal complexity
(textures) is often more effective than investing it purely in
geometric complexity (primitives).

5. Limitations and Discussion
Our method comes with some limitations that present op-
portunities for future work.

Uniform Texture Resolution In the current implementa-
tion, we assign textures of uniform resolution to all prim-
itives regardless of their size or importance in the scene.
This approach can be inefficient for large unbounded scenes
where distant primitives occupy few pixels but still receive
the same texture resolution as foreground elements.

Filtering Limitations Our implementation currently re-
lies on bilinear filtering for texture sampling. While effec-
tive for our evaluated scenes, it does not fully resolve texture
minification artifacts that might manifest in more challeng-
ing scenarios.

Despite these limitations, our experimental results
demonstrate that per-primitive texture mapping signifi-
cantly improves the visual quality of reflective scenes while
maintaining real-time rendering performance.

6. Conclusion
We presented a method that enhances 2D Gaussian Splat-
ting for reflective scenes by introducing per-primitive tex-
ture mapping. By leveraging the flat nature of 2D Gaussians
to define textures of material properties, our approach en-
ables high-frequency detail representation without increas-
ing primitive count. Our hardware-accelerated implemen-
tation using texture atlases demonstrates that classical com-
puter graphics techniques can be effectively integrated with
modern differentiable rendering approaches. The results
show that this representation significantly improves the
quality of specular reflections, particularly through detailed
normal mapping, while maintaining real-time performance.
Our work bridges the gap between explicit primitive-based
representations and high-quality material modeling, offer-
ing advantages of both approaches.
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