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ABSTRACT

Imitation learning with a privileged teacher has proven effective for learning com-
plex control behaviors from high-dimensional inputs, such as images. In this
framework, a teacher is trained with privileged task information, while a student
tries to predict the actions of the teacher with more limited observations, e.g.,
in a robot navigation task, the teacher might have access to distances to nearby
obstacles, while the student only receives visual observations of the scene. How-
ever, privileged imitation learning faces a key challenge: the student might be
unable to imitate the teacher’s behavior due to partial observability. This problem
arises because the teacher is trained without considering if the student is capable
of imitating the learned behavior. To address this teacher-student asymmetry, we
propose a framework for joint training of the teacher and student policies, encour-
aging the teacher to learn behaviors that can be imitated by the student despite
the latters’ limited access to information and its partial observability. Based on
the performance bound in imitation learning, we add (i) the approximated action
difference between teacher and student as a penalty term to the reward function of
the teacher, and (ii) a supervised teacher-student alignment step. We motivate our
method with a maze navigation task and demonstrate its effectiveness on complex
vision-based quadrotor flight and manipulation tasks.

1 INTRODUCTION

In reinforcement learning (RL), an agent learns to perform a task by interacting with its environment
and maximizing the cumulative rewards gained through these interactions. RL has been shown
to outperform human abilities in several domains (Vinyals et al., 2019; Mnih et al., 2015; Silver
et al., 2016; Kaufmann et al., 2023). However, this process requires extensive exploration, as the
agent must avoid getting trapped in local minima, often resulting in a large number of environment
interactions (Pathak et al., 2017). The number of interactions is even further increased when the
agent processes high-dimensional data as input (Ota et al., 2020). Using such observations, the
policy must learn to extract a notion of the agent’s state, a process that is computationally expensive
when optimized solely through RL. Improving the efficiency of RL training from high-dimensional
observations can unlock significant advancements in various applications, particularly for robots
interacting with the real world.

State-of-the-art (SotA) approaches often rely on imitation learning to accelerate training (Chi et al.,
2023; Luo et al., 2024; Team et al., 2024; Doshi et al., 2024). However, collecting expert demon-
strations for imitation learning can be prohibitively expensive, which has led to the development of
the teacher-student framework. In this framework, expert data is generated automatically by training
a teacher policy using RL on privileged task information, benefiting from efficient simulation and a
faster learning process. For instance, if we take the example of autonomous driving as considered
in (Chen et al., 2019), the teacher can have access to the layout of the environment, and the posi-
tions of all traffic participants as part of its observation space. In the second phase, a student policy,
processing high-dimensional observations as input, is trained by using the actions of the teacher as
a direct supervision signal. In the autonomous driving scenario, the student would attempt to infer
the teacher’s actions from visual observations. This approach eliminates the need for the student to
extensively explore the environment, which can be a very challenging process when dealing with
high-dimensional observations, such as images. By leveraging the direct supervision of the teacher,
imitation learning significantly speeds up the training process for the student.
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However, privileged imitation learning can be hindered by information asymmetry between the
teacher and student, where the student receives less informative observations and struggles to imitate
the behavior of the teacher (Nguyen et al., 2023). As a consequence of the information asymme-
try, the teacher tends to over-rely on its full observability of the environment without considering
the more limited observation space of the student. This causes the teacher to provide target actions
that the student cannot infer from its observations, since the student lacks access to the same level
of environmental information. For example, consider a mobile robot navigating an obstacle-filled
environment. In this example, an information asymmetry in the observation space could easily arise
if the teacher policy receives the relative distances to all surrounding obstacles, while the student is
limited to a forward-facing camera, requiring that obstacles be within the view of the camera.

To tackle this challenge, we propose a teacher-student knowledge distillation framework that en-
courages the teacher to learn behaviors that account for the capabilities of the student. Specifically,
the objective function of the teacher is extended by adding the upper bound of the student perfor-
mance within the imitation learning setting. This results in a reward term that penalizes the teacher
for visiting states where there is a significant action mismatch between the student and teacher. Ad-
ditionally, minimizing this upper bound leads to a second optimization term that directly supervises
the weights of the teacher network. A key feature of our approach is the dynamic prediction of
the student capabilities during the teacher-environment interactions, which eliminates the need to
directly render high-dimensional student observations. By embedding the upper bound of student
performance for imitation learning into the learning process of the teacher, we effectively account
for the teacher-student information asymmetry.

To validate our approach, we first test it in a maze setting where the teacher can choose a shortcut
that is invisible to the student. Our method successfully adjusts the behavior of the teacher to take
a sub-optimal route, accounting for the limited observability of the student. Additionally, we apply
our framework for training a robot manipulator to open a drawer while minimizing self-occlusion
in front of a camera. In this scenario, the teacher has access to the relative pose of the cabinet in
addition to the internal state of the manipulator, while the student needs to compute the position of
the drawer based on an image. Our method enables the teacher to modify its behavior to reduce
self-occlusion, leading to a camera-aware behavior. Finally, we demonstrate the effectiveness of
our method in the complex task of quadrotor flight through obstacles. The teacher, using state-
based information, learns to orient the camera forward to help the student detect obstacles. Overall,
our method leads to substantially higher student returns, reducing the gap between the teacher and
student across tasks. As a result, our approach leads to very notable improvements in the student
success rate in all considered environments.

2 BACKGROUND

The goal of Reinforcement Learning (RL) is to find a policy that optimizes the expected return, con-
sisting of the accumulated and weighted reward terms obtained by trajectories governed by the un-
derlying Markov Decision Process (MDP). The MDP is defined as a tupleM = (S,A, P,R, γ, µ0)
comprising of the state space S and the action space A. At the start of an episode, the agent is
initialized based on the initial state distribution d0 and outputs for each timestep an action at ∈ A
sampled from the agent policy π(·|s). The transition to the state st+1 follows the transition probabil-
ity P (ss+1|st, at). The performance of an agent solving the MDP can be quantified by the expected
sum of rewards discounted by γ: J(π) = Es∼µ0

[
∑∞

t=0 γ
tr(st, at) | s0 ∼ µ0, at ∼ π(·|st), st+1 ∼

P (·|st, at)]. By iteratively interacting with the environment, RL algorithms try to find the optimal
policies that maximize the expected return π∗ = argmaxπ J(π).

In contrast, imitation learning starts already with an expert policy πT , which is imitated by the
student policy πS . This expert policy is either directly accessible to the agent or is assumed to be
previously used to collect an offline dataset of expert interactions with the environment. This setting
eliminates the need for extensive exploration through environment interactions. Furthermore, a
stricter supervision signal can be employed by directly providing ground truth actions from the
expert to the student. However, if the data distribution for training the student policies does not
represent the final application distribution, the student policy learned with imitation learning will
suffer since it did not learn how to behave outside the training data distribution. In general, Xu et al.
(2020); Syed & Schapire (2010); Ross et al. (2011) established an upper bound on the difference
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between teacher performance JπT
and student performance JπS

assuming the reward function is
bounded by rmax, i.e. |r(s, a)| ≤ rmax:

J(πT )− J(πS) ≤
2
√
2rmax

(1− γ)2
√
ϵ, (1)

where ϵ represents the upper bound of the expected action difference between student and teacher
under the discounted stationary state distribution of the expert dπT

(s) = (1 − γ)
∑∞

t=0 γ
tPr(st =

s;πE):

Es∼dπT
[DKL(πT (·|s), πS(·|s))] ≤ ϵ. (2)

Imitation learning is focused on minimizing this KL-Divergence by updating the student policy πS

to predict the same action distribution as the teacher πT .

3 STUDENT-INFORMED TEACHER TRAINING

As shown in Eq. 1 and Eq. 2, the performance gap between student and teacher is upper-bounded by
the action difference between both policies. Thus, minimizing the action difference under the state
distribution of the expert also minimizes the performance gap J(πT ) − J(π). Instead of trying to
minimize the action difference by adjusting the student policy πS (Nguyen et al., 2023; Shenfeld
et al., 2023; Walsman et al., 2022), we propose to change the perspective and find a teacher policy
πT optimizing for the task reward while considering the alignment between teacher and student.
Consequently, our framework requires that the teacher and student can be jointly trained. We want
to find a teacher policy πT that maximizes the following objective

J̃(πT ) = Es∼dπT
,a∼πT (·|s)[r(s, a)]− Es∼dπT

[DKL(πT (·|s), πS(·|s))] (3)

= Es∼dπT
,a∼πT (·|s)[r(s, a)−DKL(πT (·|s), πS(·|s))] (4)

∝ Eτ∼pθ
[R(τ)−Dθ(τ)] =

∫
pθ(τ)(R(τ)−Dθ(τ))dτ. (5)

In the last step, the discounted state distribution is changed to the expectation over trajectories τ ∼
pθ, which are induced by the expert policy πT and represent the state and corresponding actions
τ = {s0, a0, s1, a1, ...}. Additionally, we define the return R(τ) =

∑
st,at∈τ γ

tr(st, at) and the
sum of discounted KL-Divergences Dθ(τ) =

∑
st∈τ γ

tDKL(πT (·|st), πS(·|st)). We use subscript
θ, to emphasize that the probability distribution over the trajectories pθ and Dθ(τ) is dependent on
the parameter of the teacher network θ. Following the classical policy gradient to obtain the optimal
policy, we take the gradient of Eq. 5 with respect to the teacher parameters θ

∇θJ̃(πT ) = ∇θ

∫
pθ(τ)(R(τ)−Dθ(τ))dτ (6)

=

∫
∇θpθ(τ)R(τ)dτ −

∫
∇θpθ(τ)Dθ(τ)dτ −

∫
pθ(τ)∇θDθ(τ)dτ (7)

=

∫
∇θpθ(τ)(R(τ)−Dθ(τ))dτ︸ ︷︷ ︸

Policy Gradient

−
∫

pθ(τ)∇θDθ(τ)dτ︸ ︷︷ ︸
KL-Div Gradient

. (8)

As can be observed, we end up with the standard policy gradient optimizing the task reward while
also considering the teacher-student misalignment for each trajectory. This first KL-Divergence Dθ

can be interpreted as a reward encouraging the teacher policy to visit states where the student and
teacher are aligned and avoid states with a large misalignment. The additional ”KL-Div Gradient”
term contains the second KL-Divergence and represents the expectation of the gradient with respect
to the teacher network over the expert states, which represents a direct supervision on the teacher
weights by enforcing the prediction of the same action distribution as the student.

4 JOINT LEARNING FRAMEWORK

Building on the formulation in Sec. 3, we propose a practical framework to tackle the teacher-student
asymmetry. Following Eq. 8, we adapt the widely-used PPO algorithm (Schulman et al., 2017) to
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Figure 1: Method Overview. Our method leverages three networks (a), which are trained in three
alternating phases: the roll-out phase (b), the policy update phase (c), and the alignment phase (d).
The grey boxes represent networks frozen during the specific phase and the dashed arrows indicate
the gradient flow. (b) In the roll-out phase, the KL-Divergence between the proxy student F̂S and
teacher FT is used as a penalty term. (c) In addition to the policy gradient, the teacher encoder
is updated by backpropagating through the KL-Divergence between the action distribution of the
teacher and the proxy student. (d) Using student observations, the proxy student is aligned to the
student FS while the student is aligned to the teacher network using consistency losses.

train the teacher to learn behaviors that can be imitated by the student. At the same time, we train the
student network to imitate the teacher based on a subset of the collected environment interactions
containing student and teacher observations. By using a subset of paired teacher and student data,
we avoid the (usually expensive) simulation of student observation for each time step the teacher
interacts with the environment. An overview of the proposed method is shown in Figure 1 a) and
in the Appendix A.2. In the following sections, we introduce the policy networks employed in our
framework (Sec. 4.1) and detail the different training phases (Sec. 4.2).

4.1 ARCHITECTURE

To implement the objective in Eq. 5 inside the teacher training, we implement two key components:
(i) a proxy student network taking as input teacher observations and (ii) a shared action decoder
network. Excluding the critic, our method consists of three different networks: the teacher network
FT , the student network FS , and the proxy student network F̂S , which all share the same action
decoder network A.

Proxy Student Network To compute the action difference used in the penalty term and to obtain the
KL-Div Gradient in Eq. 8, a forward pass through both the teacher and student networks is required
for each collected sample. However, simulating high-dimensional student observations, such as
images, is often computationally expensive, contradicting the initial goal of accelerating training.
To avoid this simulation overhead, we introduce a separate neural network F̂S . Specifically, given
the teacher observations, the proxy student F̂S tries to predict the actions of the current student
policy. This allows us to approximate the actions of the student at each expert state without
additional simulation cost. The proxy student network is trained during the alignment phase with
an L1 loss on the network activations between proxy student and student, where both student and
teacher observations are available for a subset of environment interactions.

Shared Action Decoder Rather than using separate networks to predict actions directly from obser-
vations, we introduce shared action decoding layers used by the teacher, student, and proxy student.
Each policy encodes its corresponding observations to features in a common feature space, which are
then fed to the action decoder to obtain the actions. Crucially, the action decoding layers are only
updated based on the policy gradient computed with the task reward. The shared action decoder
allows us to leverage the high-level feature correlations learned by the teacher through extensive
environment interactions without requiring student observations. As a result, both the teacher and
student learn to map their observations into a common feature space instead of developing separate
behavior policies. Furthermore, since the alignment between teacher and student is trained using a
limited subset of data, correctly simulating the true distribution of expert states can be challenging.
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In this context, the shared action decoder can help as it is trained on a broader set of expert states
rather than the smaller alignment dataset, leading to more robust learning for the student.

4.2 TRAINING PHASES

Our proposed framework consists of three alternating training phases: (i) the classical policy roll-
out, (ii) the policy update, and (iii) the alignment phase, see also Figure 1 (b)-(c). The first two
phases follow the standard on-policy training, while in the alignment phase (iii), the student FS is
aligned to the teacher FT , and the proxy student F̂S is aligned to the student FS . For both network
alignments, paired student and teacher observations are used. In the following, we provide more
details about the specific training phases.

Roll-out Phase Our proposed framework introduces a minor modification to the roll-out phase of the
standard teacher training, specifically in the reward computation. In addition to the task reward, we
also add a penalty term computed based on the action difference between the teacher and the proxy
student. This penalty encourages the teacher to only visit states in which the student can predict the
same actions as the teacher, thereby improving alignment between the student and teacher. Due to
the addition of this term to the reward, it influences the long-term effect of taking an action on the
divergence between student and teacher. Hence, it influences the exploration behavior of the teacher.
In practice, during each roll-out phase, we store a subset of expert states required in the alignment
phase. Depending on the simulation envrionment, this subset can be randomly selected states or a
fixed number of environments from which student observations are generated.

Policy Update Phase The gradient of the KL-Div term in Eq. 8 can be integrated into the policy up-
date of the teacher, during which the network weights are updated using the clipped policy gradient
of PPO. Since both the policy gradient and the KL-Divergence gradient are computed over the state
distribution of the teacher, we can use the teacher states inside the roll-out buffer to compute the
KL-Divergence between the action distributions of the teacher and the proxy student. This allows us
to update the network parameters of the teacher in a single backward pass through the combined loss
function. Note that the KL-Divergence mentioned in this phase is different to the KL-Divergence
penalty introduced at the rollout phase, and is directly integrated in the loss function to push the
representation of the teacher to be similar to the student. In contrast, the penalty term affects the
teacher’s exploration by discouraging it from visiting regions of high disagreement with the student.

In the case of a continuous action space within PPO, we can simplify the KL-Divergence further to
provide intuitive insights into the KL-Divergence gradient. In this setting, the teacher actions are
modeled as multivariate Gaussians of dimension d, with predicted mean µT , and state-independent
covariances parameters ΣT . Consequently, the KL-Divergence term in Eq. 8 simplifies to:

DKL(πT (·|st), πS(·|st)) =
1

2
[log
|ΣS |
|ΣT |

− d+Tr(Σ−1
S ΣT )

+ (µT (st)− µS(st))
⊺Σ−1

S (µT (st)− µS(st))].

(9)

The student and teacher share the same action decoder, which outputs a mean action based on the
latent state it receives. For the variance, we use a state-independent parameter that is learned together
with the action decoder based on teacher RL updates. Hence, the covariance matrix is the same for
the student and teacher, ΣT = ΣS . As a result, the KL-Divergence reduces to the mean difference
weighted by the covariance, along with an additional constant term

DKL(πT (·|st), πS(·|st)) =
1

2
[const + (µT (st)− µS(st))

⊺Σ−1
T (µT (st)− µS(st))]. (10)

By optimizing Eq. 10, the teacher network FT is aligned to the proxy student network F̂S . Intu-
itively, the loss increases when the teacher is confident in its actions (i.e. low ΣT ), but there is
still significant misalignment between the teacher and student. Consequently, the gradient update
increases the covariance, leading to greater exploration during the roll-out phase, which increases
the likelihood of the teacher discovering behaviors that are feasible for the student to learn.

Alignment Phase The alignment phase focuses on aligning the features across the encoders of the
teacher, proxy student, and student. This phase is the only one that requires paired teacher and
student observations, which are simulated from a subset of the teacher’s experiences during the roll-
out phase. We align the student encoder with the teacher encoder by computing the L1 loss between

5
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Figure 2: The goal of the agent is to navigate from the start (grey point) to the goal (green cell). The
environment consists of four types of cells: empty (white), lava (red), and path (blue). The teacher
can see all cell types while the student can not distinguish between lava and path. A teacher trained
without alignment finds its optimal path through the maze (a), which can not be imitated by the
student trained without alignment (e), Behavior Cloning (b), and DAgger (c). In contrast, a teacher
trained with alignment navigates around the maze (d), which can be easily copied by the student (f).

their corresponding features and between the activations of the frozen shared action decoder. To
prevent the collapse of the model into predicting constant outputs, gradients are only backpropagated
to the student encoder. Similarly, the proxy student is aligned with the student using the L1 loss on
the encoded features, with gradients only backpropagated to the proxy student. The parameters of
the teacher remain unaffected during this phase and are only updated during the policy update phase.

5 EXPERIMENTS

We compare our method to multiple baselines introduced below. We evaluate our student-informed
teacher training framework on three diverse tasks: maze navigation in a tabular setting, vision-based
obstacle avoidance with a quadrotor, and vision-based drawer opening using a robot arm. Finally,
we perform ablations to understand the role of different aspects of our method. For more details
about the experimental setup and training, we refer to the Appendix Section A.1.

Baselines We compare our method against multiple Imitation Learning baselines, which were
trained with the same number of rendered images and environment interactions, including teacher
training. Furthermore, all baselines use the same network architecture for the student and teacher.

• Behavior Cloning (BC) The dataset, comprising privileged state information and rendered im-
ages, is generated from the fixed number of timesteps of the teacher. The student network is then
trained by minimizing the action loss between student and teacher on the collected data.

• DAgger (Ross et al., 2011) We employ an exponentially decreasing sampling threshold (β0 =
0.98) to decide whether the actions of the teacher or student are used at each timestep. Similarly
to BC, we minimize the loss between the student and teacher actions on the collected samples.

• HLRL (Radosavovic et al., 2024) The weighting between the behaviour cloning loss and the
vision-based RL loss is epxonentially decreased (β0 = 0.9998). To achieve successful runs, a
shared action decoder was necessary.

• DHBC (Fu et al., 2022) We treat the Privilged Info Encoder as the teacher and the Adaptation
Module as the student encoder, with the Unified Policy representing the shared action decoder.
Both encoders are updated using their dual L1-loss in the feature space.

• COSIL (Nguyen et al., 2023) We adapt the method to PPO by using the L1 loss between student
and teacher in the reward. As proposed in (Nguyen et al., 2023), the RL and IL objective is
weighted with a learnable parameter, which is updated based on a target distance (0.5).

• w/o Alignment (Ours) We exclude the KL-Divergence from both the reward and the policy update
phase while keeping the paired L1-Loss on shared action decoder features. As a result, the student
does not affect the teacher.

6
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With Alignment

Without Alignment

Time

Figure 3: Vision-Based Obstacle Avoidance. On the left, the teacher trajectory rollouts of the
vision-based quadrotor obstacle avoidance tasks are visualized. Our approach results in a policy
behavior where the quadrotor adjusts the camera’s viewing direction to capture sufficient environ-
mental information for the student policy.

Implementation Details For the vision-based tasks, we use a three-layer MLP with ELU activations
for the teacher and the proxy student, which both receive privileged observations. The shared action
decoder consists of a single fully connected layer. The student processes images using a frozen
DINOv2 encoder (Oquab et al., 2023). These image features are combined with less informative
state observations and passed through an additional MLP before being forwarded to the shared
action decoder.

5.1 ENVIRONMENTS

Color Maze We first test our method on a maze navigation task in a tabular setting. The objective
of the agent is to reach the goal (green cell) from the starting point (grey point), as visualized in
Figure 2. In the center of the environment is a maze where the agent can only navigate along a
randomly generated path (blue cells), and the episode ends if the agent steps into the lava (red
cells) or reaches the target. The teacher observations include the distance to the goal, the type of
neighboring cells (empty, lava, or path), and the relative movement from the previous timestep. The
student receives the same observations, except that the cell types are classified as empty or occupied,
which maps lava and path cells to the same value, which leads to a teacher-student asymmetry. The
reward structure assigns a positive reward for reaching the target (10) and for visiting each new path
cell (0.5), while penalties are given for moving into lava (0.1) and revisiting path cells (0.5).

Vision-based Obstacle Avoidance with a Quadrotor We evaluate our approach on the complex
task of agile quadrotor control, in which a quadrotor needs to follow a constant velocity command
while avoiding obstacles. To simulate this, we design a custom environment using the realistic agile
quadrotor simulator, Flightmare (Song et al., 2021). The environment is a world box measuring
30m × 30m × 3m, within which we randomly place four static pillar obstacles, each with a radius
of 1.5m. At the start of each episode, the quadrotor’s position and viewing direction are randomly
initialized at collision-free locations. Next, we sample a velocity command for the quadrotor that
would result in a potential collision with one of the obstacles. The teacher policy receives observa-
tions composed of the quadrotor’s linear velocity, commanded linear velocity, orientation, angular
velocity, and the relative distance to each obstacle. In contrast, the vision-based student policy re-
places obstacle positions with inputs from an RGB camera with a limited field of view, as shown in
Figure 3. The reward is detailed in appendix A.1.2. During our experiments, we conduct 256 runs
with random initialization, each running for 1000 steps for all the baseline approaches.

Vision-based Manipulation We further evaluate our method on a complex vision-based manipula-
tion scenario, where a robot arm learns to open a drawer. We adapt the publicly available Omniverse
Isaac Gym Reinforcement Learning Environments for Isaac Sim repository, specifically modifying
the cabinet-opening task. In this task, a Franka robot arm is trained to open a drawer that contains
objects inside. The teacher receives observations composed of the robot’s joint positions and veloc-
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Methods Success Rate

BC 0.05 ± 0.04
DAgger 0.08 ± 0.03
HLRL 0.31 ± 0.11
DWBC 0.35 ± 0.07
w/o Align (Ours) 0.38 ± 0.11
w Align (Ours) 0.46 ± 0.04

Table 1: Obstacle Avoidance Suc-
cess Rates. The mean and stan-
dard deviation of the success rate
for vision-based quadrotor flight ob-
tained from three trainings.
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Figure 4: Obstacle Avoidance Returns. The mean returns
achieved by the student and teacher trained with and without
alignment, averaged over three training runs.

ities and the relative position between the gripper and the drawer handle. The student observations
replace relative distance information with an image. Instead of an unobstructed top view, the view-
point of the camera is selected closer to the robot arm. This camera setup is closer to real-world
platforms, such as humanoid robots, where certain arm configurations may obstruct cameras.

5.2 RESULTS

Color Maze In Figure 2, we show a single trajectory (green path) and the occupancy grid (blue
cells) for 15 evaluation environments across five training runs for each tested policy. As can be seen
in Figure 2, students trained with Behavior Cloning (BC) or DAgger fail to imitate the behavior of
the teacher due to their inability to differentiate between lava and path cells. In Figure 2 (e), we
observe a similar behavior for the student trained with a shared action decoder but without teacher
alignment. In contrast, when using our framework, with a teacher penalty for visiting states where
the student is unable to predict the same action, i.e., inside the maze, the teacher learns to avoid
the maze and navigates around to reach the target. This behavior is successfully imitated by the
student, who reaches the target in all test runs, unlike all other baselines. These results confirm that
our framework helps the teacher learn strategies that are easier for the student to imitate, such as
avoiding the maze altogether. Additionally, since the behavior of navigating around the maze leads
to sparse rewards once the goal is reached, the results demonstrate that the penalty term does not
hinder the exploration necessary to discover the optimal student solution.

Vision-based Obstacle Avoidance with a Quadrotor The results shown in Table 1 clearly show
that our approach with alignment achieves the highest success rate with 0.46 compared to 0.08
(DAgger) and 0.05 (BC). Moreover, we show that our approach surpasses another baseline approach
DWBC by 0.11 and HLRL by 0.15, emphasizing that our adaptive teacher training offers more
effective guidance to the student than the integration of RL rewards and IL with a static teacher. Ta-
ble A.1.3 highlights the perception awareness metrics, showing our approach improves the student
policy’s behavior and performance. This is due to the fact that, the teacher policy lacks “perception
awareness of obstacles,” meaning the obstacles are not fully observable during the avoidance task
from the equipped camera. As a result, the vision-based student struggles to infer the correct ac-
tions, leading to very low success rates (below 0.1), despite all teacher policies achieving over 98%
success rates. This highlights the importance of enforcing information symmetry between teacher
and student policies. The reason the success rates for the imitation baselines are not zero is that, in
some configurations, the quadrotor is initialized with a viewing angle that allows the student to de-
tect obstacles, enabling it to replicate the teacher’s policy. Figure 3 illustrates the rollout trajectories,
where we observe that the policy learned through our approach adjusts the viewing direction during
flight to align with the velocity direction. This ensures that all encountered obstacles are visible in
the camera’s field of view, allowing the student to infer the necessary actions using sufficient infor-
mation. Figure 4 shows the returns of our method with and without alignment for both the teacher
and student policies. The results clearly show that our proposed alignment is crucial for the student
to reach reward regions similar to the teacher’s despite the student’s more limited observability.

Vision-based Manipulation Table 3 reports the success rates of the student for our method (with
and without alignment) and the baselines across five training runs. Our framework with and with-
out alignment significantly outperforms students trained with DAgger and BC, with success rates of
up to 0.77 compared to 0.47 (DAgger) and 0.27 (BC). This improvement can be explained by the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Vision-Based Manipulation. On the left, the task of opening a drawer with a robotic arm
is visualized for all of the parallel environments. The two images in the center (Without Alignment)
are sample images given to the student, which show the teacher behaviors trained without our align-
ment. Our approach with alignment leads to behaviors that the student can imitate more easily, i.e.,
the robot does not block the red drawer handle, as visualized in the two images on the right.

shared task decoder, which is trained by leveraging the training samples of the teacher. Additionally,
our method outperforms DWBC, HLRL, and COSIL with a success rate improvement in the range
of 0.25-0.32, which confirms that the adaptation of the teacher provides better student supervision
than the combination between RL reward and IL with a fixed teacher. Our method with alignment
improves student success rates by 17% compared to the non-aligned framework while also consis-
tently achieving higher returns (Figure 6). These results demonstrate that our framework helps the
teacher learn better behaviors for the student. Student policies trained without alignment achieve
non-zero success rates due to the small sampling interval of the cabinet position. This allows them
to memorize behaviors without relying heavily on the images. All teachers, regardless of alignment,
reach a 100% success rate. Interestingly, the return of the teacher trained with alignment is also
constantly higher than without alignment. A possible explanation is that the teacher learns gripper
movements optimized for robustness without trying multiple times to grab the handle, which is a
difficult behavior for the student lacking relative pose information.

As can be seen in Figure 5, our method leads to several different behaviors. With alignment, the
teacher learns once to grab the handle from a top-down configuration while another teacher lowers
its first two links to make the red handle visible. In both cases, the red handle is visible right before
the gripper touches it. This shows that our alignment leads to emerging teacher behaviors that
consider the imitation difficulties of the student.

Ablations To validate our design choices, we perform multiple ablations on the manipulation envi-
ronment, reported in Table 2. Namely, we study the effect of the penalty term (w Penalty), the KL-
Divergence gradient in the policy update (w KL-Grad), and the role of the shared action decoder.
Our results indicate that the KL-Divergence gradient and the shared action decoder are crucial to
the large improvement achieved by our method. As for the alignment penalty, its absence leads to
a 14% drop in performance. Finally, we study the sensitivity to the coefficient λ1 of the alignment
penalty. Our results show clear robustness to this choice, as our method consistently achieves a high
success rate regardless of the choice. Setting λ1 = 0.025 leads to an impressive 95% success rate.

6 RELATED WORK

Imitation learning from a teacher policy has shown significant progress across various domains.
Approaches such as behavior cloning (BC) (Bain & Sammut, 1995) and DAgger (Ross et al., 2011)
typically train on a dataset of encountered states paired with expert actions. The core idea is to train
a student policy to imitate the behavior of either a reinforcement learning (RL) policy that has been
trained using state information or through expert demonstrations. In BC (Bain & Sammut, 1995), the
objective is to learn a policy that closely matches expert demonstrations through supervised learning.
DAgger (Ross et al., 2011) improves upon this by aggregating expert demonstrations with the student
policy’s experiences during training to enhance generalization beyond the original demonstrations.
Ross & Bagnell (2014) extended DAgger by taking into account not only the expert’s actions but
also the long-term consequences of the student’s policy quantified using the task cost. Ho & Ermon
(2016) propose a method for matching the state-action distribution using a generative adversarial
algorithm similar to the one used in generative adversarial networks (Goodfellow et al., 2014). Other
methods explored leveraging priviliged information in components that are only relevant for training
such as critics, reward models and dynamics models (Pinto et al., 2018; Hu et al., 2024).

One key assumption shared by these methods is that the observation information available to the
student policy must be at least as comprehensive as that available to the teacher (Osa et al., 2018;
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w Penalty /
w/o KL-Grad

w/o Penalty /
w KL-Grad

w/o shared
decoder λ1 = 0.1 λ1 = 0.075

(Default)
λ1 = 0.05 λ1 = 0.025

Success Rate 0.47 ± 0.37 0.74 ± 0.08 0.62 ± 0.27 0.81 ± 0.20 0.77 ± 0.18 0.88 ± 0.07 0.95 ± 0.03

Table 2: Ablations for Vision-Based Manipulation. The mean and standard deviation of the suc-
cess rate obtained from five trainings runs.

Methods Success Rate

BC 0.16 ± 0.15
DAgger 0.34 ± 0.31
HLRL 0.61 ± 0.22
DWBC 0.63 ± 0.18
COSIL 0.56 ± 0.21
w/o Align (Ours) 0.61 ± 0.18
w Align (Ours) 0.88 ± 0.07

Table 3: Manipulation Success Rates.
The mean and standard deviation of the
success rate for the task of opening the
drawer obtained from five trainings runs.

Figure 6: Manipulation Returns. Mean returns of
the student and teacher trained with, without alignment
and DWBC, averaged over five training runs.

Swamy et al., 2022). This assumptions falls short in many scenarios, especially when the student
operates in a partially observable setting. In such cases, the student could easily struggle to infer
the teacher’s behavior based on its own partial observability. Hence, multiple methods proposed to
augment the teacher distillation objective with a student RL objective (Weihs et al., 2021; Nguyen
et al., 2023; Shenfeld et al., 2023; Radosavovic et al., 2024). These methods introduce different
ways to balance the imitation and reinforcement learning terms, either using fixed trade-off coeffi-
cients (Nguyen et al., 2023), a fixed schedule (Radosavovic et al., 2024), or some elaborate heuris-
tic (Weihs et al., 2021; Shenfeld et al., 2023). Similarly, Walsman et al. (2022) jointly train two
separate policies besides the teacher: a follower, which learns to follow the teacher, and an explorer,
which maximizes environmental rewards using the follower’s value function for reward shaping.
Alternatively, in an off-policy setting, the agent can directly optimize the student policy with RL
using interactions collected by rolling out the teacher to facilitate exploration (Chane-Sane et al.,
2024). In contrast to these methods which focus on guiding the student exploration, we approach
the challenge of asymmetric learning by regularizing the teacher policy. A similar concept have been
explored for multi-agent self-play (Hamade et al., 2024) and student-teacher training (Warrington
et al., 2021; Fu et al., 2022). Namely, Warrington et al. (2021) propose exposing the teacher training
to student rollouts to ground the behaviors learnt by the teacher. Fu et al. (2022); He et al. (2024)
learn a unified student-teacher policy and two separate encoders which are encouraged to extract
similar features. Our approach augments the teacher loss by adding a loss that penalizes confident
actions in areas where the teacher-student discrepancy is high. Additionally, we modify the teacher’s
reward to discourage visiting states where the student struggles to infer teacher actions.

7 CONCLUSION

This paper tackles the problem of teacher-student asymmetry in imitation learning. To address this
problem, we propose a novel method that trains the teacher not only based on task objectives but also
by encouraging behaviors that the student can successfully imitate. By including the performance
bound in imitation learning in the teacher objective, we derive two key modifications to the teacher
training: a reward term penalizing states with a high teacher-student misalignment and directly
aligning the teacher to the student based on the KL-Divergence between their action distributions.
Our approach is not limited to specific IL algorithms and can seamlessly integrate with various
IL pipelines, including multi-agent IL. We illustrate our method in a tabular maze task, where it
outperforms standard imitation learning baselines that fail to reach the target. Furthermore, our
framework enhances student performance in the complex task of vision-based quadrotor obstacle
avoidance, where perception-aware flight emerges without the need for explicit reward tuning. We
also validate our method in a vision-based manipulation task, showing how the teacher learns to
open a drawer without obstructing critical visual information in the camera view of the student. We
believe that our framework extends privileged imitation learning to various modalities with large
information gaps, unlocking the potential to tackle complex real-world tasks in robotics.
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A APPENDIX

A.1 TRAINING DETAILS

A.1.1 COLOR MAZE

We implemented the color maze environment using the Gym framework (Brockman et al., 2016),
with the discrete agent trained via the PPO (Schulman et al., 2017) implementation of StableBase-
lines3 (Raffin et al., 2021) based on Pytorch (Paszke et al., 2017). The training setup involves 1,000
parallel environments, each containing a randomly generated path through the maze located at the
center of a 21x21 grid. The maze itself spans 15x15 cells, leaving a three-cell-wide empty border
around it, through which the optimal path of the student goes. The paths are generated randomly by
alternating between vertical segments of 3 to 5 cells and horizontal segments of 1 to 4 cells. Given
the large number of environments, each maze path is generated only once at the start of training and
remains fixed throughout the process to save computation time.

The action space of the agent consists of four discrete movements: one cell up, right, down, or left.
If the agent selects an action that would move it outside the grid, its position remains unchanged.
Moving into a lava cell results in immediate episode termination and a negative reward. In contrast,
reaching the target cell terminates the episode with a positive terminal reward.

The teacher training uses in total 108 environment interactions. During each roll-out phase, 250
steps are collected from each of the 1,000 parallel environments, resulting in 250,000 experiences.
In the policy update phase, the teacher network is updated using a batch containing all 250,000 col-
lected experiences. In addition to the default PPO gradients, we apply the KL-Divergence gradient
with a weighting coefficient of 0.001. The entropy coefficient for PPO is set to 0.3. During each
paired alignment step, the observations stored in the roll-out buffer are used as a single batch to
update the imitated student and student networks over 20 iterations. The networks are optimized
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using the L1 loss between corresponding features, with network weights updated via the ADAM
optimizer (Kingma & Ba, 2015).

The reward function consists of terminal rewards for either reaching the target (rsuccess) or stepping
into a lava cell (rfail). To encourage the teacher to follow the correct path through the maze, we
assign a reward when the agent moves to a path cell for the first time (rpath). To prevent the teacher
from simply cycling over already-visited path cells, we impose a penalty for revisiting the same path
cell rrevisit path. In the case of our alignment framework, an additional penalty term based on the
KL-Divergence between teacher and student actions is included in the reward function rKL.

rtot = 10rsuccess + 0.5rpath − 0.5rrevisit path − 0.1rfail–1.9rKL. (11)

A.1.2 VISION-BASED QUADROTOR FLIGHT

For the obstacle avoidance task, we build a customized RL training environment using
Flightmare and Stable-baselines3. In this task, we define the observations as oobstacle =[
R̃,vcmd,v,ω, aprev, δp1, δp2, δp3, δp4

]
, where R̃ ∈ R6 is a vector comprising the first two

columns of R, v ∈ R3 and ω ∈ R3 denote the linear and angular velocity of the drone, aprev

represents the previous action from the actor policy, and δp1, δp2 ∈ R12 represent the relative dif-
ference in position of Here, δpi represents the absolute distances of the quadrotor to all obstacles
represented in the world frame. The total reward at time t, denoted as rt, consists of several compo-
nents:

robstacle = rprog + ract + rbr + robstacle crash + rcrash, (12)

where rprog represents progress toward command velocity direction to ensure velocity following,
ract penalizes changes in actions from the previous time step, rbr discourages high body rates to
ensure stable flying behavior, rpass is a penalty for crashing to encountering obstacles, weighted by
the velocity. and rcrash is a crashing penalty when it collides to the ground or flies out of the world
box. The policy is trained using standard PPO implemented in the stable-baselines library. The
reward components are formulated as follows

rprog = 2.0
∑
i

δpi,

ract = 0.15∥at − at−1∥,
rbr = 0.05∥ωB,t∥,

robstacle crash = −10∥v∥ if robot crash to the obstacle,
rcrash = −5∥v∥ if robot crashes (ceiling, ground).

(13)

Over the course of training, the teacher collects data across 6300 epochs, with 100 parallel environ-
ments. Among these environments, 64 render images at each timestep. During the policy update
phase, we use a minibatch size of 12500.

A.1.3 VISION-BASED MANIPULATION

For the manipulation task, we use the Omniverse Isaac Gym Environments framework. Specifically,
we modify the existing Franka Cabinet Task, where a Franka arm is tasked with opening the top
drawer of a cabinet. We make several minor modifications to this setup. First, we change the
color of the cabinet to brown and the top drawer handle to red to improve visibility and highlight
when the handle is occluded. Second, we remove the knobs from the bottom doors and the handle
from the bottom drawer to eliminate alternative visual cues for locating the top handle. To increase
occlusion, we raise the Franka arm by 0.4m and rotate the cabinet (60 degrees around the z-axis),
as shown in Fig. 5. Additionally, we uniformly sample the x and y positions of the cabinet relative
to the robot arm within a grid of [-0.15m, 0.15m] × [-0.1m, 0.1m]. The initial position of the
robot arm was chosen to ensure that the default teacher consistently occludes the camera while still
maintaining enough distance between the robot arm and the drawer handle to ensure a certain degree
of exploration.

The teacher agent is trained using the RL-Games framework (Makoviichuk & Makoviychuk, 2021),
specifically with a PPO continuous agent. Over the course of training, the teacher collects data
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across 1,500 epochs, with a horizon of 16 timesteps and 4,096 parallel environments, resulting in a
total of 98,304,000 environment interactions. Among these environments, 128 render images at each
timestep, generating 3,072,000 data samples for the paired alignment phase. To manage these image
samples, we employ a rolling buffer with a size of 100,000, updating it in a FIFO (First In, First Out)
manner. During the policy update phase, we use a minibatch size of 8,192. The KL-Divergence loss
is weighted by 0.01 in the policy update. For all other PPO hyperparameters, we use the default
settings provided by the Omniverse Isaac Gym framework.

The action space of the robot arm consists of position targets to the Franka arm 9 DOFs. For the
teacher, we use the default observation set, which includes the joint positions, joint velocities, the
relative 3D distance between the gripper and the drawer handle, as well as the 3D position and
velocity of the drawer joint. In contrast, the student receives only the joint positions and angular
velocities, along with an additional image input, as shown in Fig. 5. We use the default reward
formulation, which includes components such as the distance between the gripper and the handle, the
gripper’s orientation, and the position of the gripper’s ”thumbs,” among others. For our alignment
training, the KL-Divergence is weighted by 0.05 and added to the task reward.

A.2 ALGORITHM OVERVIEW

A pseudocode description of the different training phases with the crucial steps is provided in Algo-
rithm 1.

Algorithm 1: Student-Informed Teacher Training
Input: Teacher policy πT , Student policy πS , Proxy student policy π̂S , Task environment E ,

Reward function r, KL-divergence weight λ1, λ2, Iterations N , Roll-out steps T , Policy
update steps M , Alignment steps L

Output: Trained teacher πT and student πS

Initialize: Teacher, student, proxy encoders, and shared task decoder
Buffers: Experience buffer Bexp, Alignment buffer Balign
for i← 1 to N do

// Roll-Out Phase
for t← 1 to T do

Sample action at ∼ πT (st)
Execute at in E to get rt, st+1

Update reward: r′t ← rt − λ1DKL(πT (st)∥π̂S(st))
Add (st, at, r

′
t, st+1) to Bexp

Render ostud for a subset of visited states and add to Balign
end
// Policy Update Phase
for j ← 1 to M do

Sample experiences from Bexp
Compute loss: L = Lpolicy + λ2DKL(πT ∥π̂S)
Update teacher policy πT using L

end
// Alignment Phase
for k ← 1 to L do

Sample (oT , oS) ∼ Balign
Update πS by aligning teacher and student features
Update π̂S by aligning student and proxy features

end
end

A.3 EVALUATION ON LEARNING PERCEPTION AWARENESS

To further demonstrate the effectiveness of our approach, we evaluated how the resulting policies
are essentially perception-aware. In our experiments, we argue that the vision-based student policy
in our framework can learn to fly in a manner that effectively perceives the environment using the
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onboard camera. To validate this, we used two different metrics: the Velocity Angle and Number of
Obstacles in View. The Velocity Angle measures the angle between the quadrotor’s heading (camera
viewing direction) and its velocity direction. Ideally, the quadrotor should “look at” the direction
it is flying towards. A smaller angle ensures that obstacles are perceived in time, allowing the
controller to gather sufficient information to act effectively. Additionally, we introduced another
direct metric, the Number of Obstacles in View, which quantifies how many obstacles the policy can
perceive during each rollout. As shown in A.1.3, our approach demonstrates superior performance
in terms of perception awareness compared to all baseline methods. This further underscores the
effectiveness of our approach.

Methods Velocity
Angle [deg] ↓

Num. Obstacle in
View ↑

BC 75.5 1.92
DAgger 78.6 2.42
HLRL 61.9 2.09
DWBC 46.7 2.33
w/o Align (Ours) 63.2 2.61
w Align (Ours) 32.2 3.51

16


	Introduction
	Background
	Student-Informed Teacher Training
	Joint Learning Framework
	Architecture
	Training Phases

	Experiments
	Environments
	Results

	Related Work
	Conclusion
	Appendix
	Training Details
	Color Maze
	Vision-Based Quadrotor Flight
	Vision-Based Manipulation

	Algorithm Overview
	Evaluation on Learning Perception Awareness


