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Abstract
The self-attention mechanism prevails in modern
machine learning. It has an interesting function-
ality of adaptively selecting tokens from an input
sequence by modulating the degree of attention
localization, which many researchers speculate
is the basis of the powerful model performance
but complicates the underlying mechanism of the
learning dynamics. In recent years, mainly two ar-
guments have connected attention localization to
the model performances. One is the rank collapse,
where the embedded tokens by a self-attention
block become very similar across different tokens,
leading to a less expressive network. The other is
the entropy collapse, where the attention proba-
bility approaches non-uniform and entails low en-
tropy, making the learning dynamics more likely
to be trapped in plateaus. These two failure modes
may apparently contradict each other because the
rank and entropy collapses are relevant to uni-
form and non-uniform attention, respectively. To
this end, we characterize the notion of attention
localization by the eigenspectrum of query-key
parameter matrices and reveal that a small eigen-
spectrum variance leads attention to be localized.
Interestingly, the small eigenspectrum variance
can prevent both rank and entropy collapses, lead-
ing to better model expressivity and trainability.

1. Introduction
Transformers have been widely adopted in language mod-
eling (Vaswani et al., 2017), vision tasks (Dosovitskiy
et al., 2021; Touvron et al., 2021), and speech recogni-
tion (Likhomanenko et al., 2021). A crucial building block
in transformers is the attention mechanism, dating back
to Graves (2013), which was initially designed to capture
long-range signals in sequential inputs by mixing individual
tokens but has also been leveraged to capture general struc-
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tures of input data. After the fully-attention-based language
model has appeared (Brown et al., 2020), the research com-
munity gets interested in the functionality and benefits of the
attention. To mention a few, transformers implicitly prefer
hierarchical interpretations of input sequences (Kharitonov
& Chaabouni, 2021); store relational knowledge in MLP
layers as an associative memory (Meng et al., 2022); its com-
putational graphs tend to be tree-structured (Murty et al.,
2023b); suddenly capture tree structures of inputs after long
training epochs (Murty et al., 2023a). Theoretically, training
dynamics analysis explains how to learn spatially correlated
patches by vision transformers (ViT) (Jelassi et al., 2022),
select dominant tokens (Tian et al., 2023a), store informa-
tion as an associative memory (Bietti et al., 2023), and select
max-margin tokens (Tarzanagh et al., 2023b), whereas Xie
et al. (2022) explains the in-context learning as a process of
concept learning in Bayesian inference.

Among many aspects of attention, we specifically focus on
localization—for a query token, self-attention can select a
few relevant tokens only (which we call localized attention)
or select many tokens uniformly. As attention can be re-
garded as a token mixer, it plays a pivotal role in studying
how it selects tokens to reveal the characteristics of the token
embeddings. To this end, we have the following research
questions: (Q1) When is self-attention localized or uniform?
(Q2) How does localization affect model performances?

Along this line, previous studies mainly investigated from
the model expressivity and training stability perspectives.
On the one hand, Dong et al. (2021) and Noci et al. (2022)
initiated the discussion of attention localization and theo-
retically showed that a network with self-attention layers
without skip connections exponentially loses the rank of
hidden layers; the fact indicates that the model expressivity
shall be immediately lost with more self-attention layers
being stacked. On the other hand, Zhai et al. (2023) em-
pirically found that attention entropy—averaged Shannon
entropy of an attention probability matrix—correlates with
the training stability. Specifically, a training loss curve
tends to fall into a plateau when the attention entropy is
low. Since higher entropy indicates near-uniform attention
weights, their finding apparently suggests that localized at-
tention may lead the learning dynamics to a plateau. Up
until now, these two failure modes have been discussed
independently with slightly different notions of attention
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Figure 1: Comparison of softmax S and the piecewise approxima-
tion S̃ for two-dimensional inputs.

localization, and hence, our understanding of the blessing
and curse of attention localization remains elusive.

To better comprehend, we characterize self-attention pat-
terns by attention parameter matrices to reconcile the two
collapse modes. We formulate the concept of localization by
signal propagation probability (Section 3), which describes
how likely the signal of a specific input token propagates
to the gradient of a training objective. If the signal prop-
agation probability is high for a few numbers of tokens
only, attention is regarded to be localized, and the learning
dynamics is dominated by them. We show that the local-
ization mode can be characterized by the eigenspectrum of
attention weight matrices (Section 4). Specifically, attention
is localized in the above sense when the eigenspectrum of
the query-key parameter matrix has a non-zero mean and
a small variance. Furthermore, the small eigenspectrum
variance is relevant to both the rank collapse and entropy
collapse (Section 5), and thus, we give a unified perspective
of the two notions of attention collapse. For this reason,
we argue that attention collapse and its performance can
be viewed more transparently based on the eigenspectrum
variance. Lastly, we indirectly observed the correlation of
the eigenspectrum and the model performance in the exper-
iments with the WikiText dataset (Merity et al., 2016) by
introducing a regularization scheme called LOCATER.

2. Setup
Notation. We write vectors with all zeros and ones by
0 and 1, respectively, whereas the i-th one-hot vector is
written as ei. A vector is written in bold-face like a, and its
i-th scalar element is written by non-bold ai. A matrix is
written by capital bold-face like A, and Ai denotes its i-th
column vector unless otherwise noted. The identity matrix is
denoted by I. The Hadamard product of A and A is written
by A⊙2 := A⊙A. We write the error function as erf and

use erf(−z) = −erf(z) without explicitly mentioning it.
Infinitesimal asymptotic orders o(·) are with respect to the
sequence length T unless otherwise noted.

Transformer. Let X := [x1 x2 . . . xT ] ∈ Rd×T be
an input with T tokens, defined later shortly. We suppose
that all input sequences have the same length T , and T is
occasionally taken sufficiently large. The ℓ-th (single-head)
self-attention layer is defined as

Aℓ := S

(
(Xℓ−1)⊤WQKX

ℓ−1

λ

)
, (1)

Uℓ := WVX
ℓ−1Aℓ, (2)

where WV ∈ Rd×d is the value parameters, WQK(:=
W⊤

QWK) ∈ Rd×d is the query-key parameters (with joint
parametrization), λ > 0 is temperature, commonly λ =

√
d,

and S : RT → RT is the softmax applied for each row. In
this way, each input token in Xℓ−1 (embedded by WV) is
mixed by Aℓ. Then, the transformer block (without layer
normalization (Ba et al., 2016)) is defined as

Zℓ := Uℓ +Xℓ−1,

Hℓ := WF2σ(WF1Z
ℓ),

Xℓ := Hℓ + Zℓ,

where Hℓ is a feed-forward network with parameters
WF1

,WF2
∈ Rd×d and an (element-wise) activation

σ : R → R. We omit the token embedding layer and
set X0 := X. There are two common variants of layer
normalization positions, Post-LN (Vaswani et al., 2017) and
Pre-LN (Xiong et al., 2020), which are applied token-wise
after the residual connections (Zℓ and Xℓ+1) and before
the inputs (Xℓ and Zℓ), respectively. Then, the transformer
block Xℓ is stacked L times and F(X) := XL ∈ Rd×T is
the output.

Learning task. We focus on causal language modeling,
where a model predicts the next token given contextual
tokens. Formally, given T contextual tokens X ∈ Rd×T , the
prediction target is the (T + 1)-th token y := xT+1 ∈ Rd.
With the squared loss, the objective is written as follows:

J(Θ) :=
1

2
E ∥y − F(X)T ∥2,

where Θ := (WV,WQK,WF1
,WF2

) denotes the model
parameter set, and the expectation is taken over input se-
quences (X,y). Here, our decoding procedure in con-
sideration is to simply choose the embedded last token
F(X)T ∈ RT . The parameters Θ are learned by mini-
mizing J . Note that our analysis considers optimizing the
query-key parameters jointly. Although such joint param-
eterization is less common in practice, it is convenient for
the theoretical derivation of the gradients and has been used
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in several previous studies (Jelassi et al., 2022; Tian et al.,
2023a). Interested readers may refer to a recent work reveal-
ing that the joint and separate QK-parametrization lead to
different implicit regularizations (Tarzanagh et al., 2023a).

Picewise linear approximation of softmax. In this ar-
ticle, we choose to approximate the softmax function S
by linearization. This is for the convenience of computing
Gaussian moments while keeping the attention structure as
close to the original softmax as possible in Section 4. For
an input ω ∈ RT , the softmax function is defined as

S(ω)i :=
exp(ωi)∑

j∈[T ] exp(ωj)
for all i ∈ [T ].

For linearization, the Taylor expansion of S(ω)i around the
origin

〈
γi, ω

〉
+ γi

0 is used, where

γi := ∇iS(0) =
1

T
ei − 1

T 2
1, γi

0 := S(0)i =
1

T
.

Then, we approximate S by the piecewise linear func-
tion such that S(ω)i ≈ max{0,min{1,

〈
γi,ω

〉
+ γi

0}} =〈
γ̃i,ω

〉
+ γ̃i

0, where

(γ̃i, γ̃i
0) =


(0, 0) if

〈
γi,ω

〉
+ γi

0 < 0,

(γi, γi
0) if

〈
γi,ω

〉
+ γi

0 ∈ [0, 1],

(0, 1) if
〈
γi,ω

〉
+ γi

0 > 1.

In the vector form, the piecewise approximation S(ω) ≈
S̃(ω) is given by

S̃(ω) = Γ⊤ω + γ̃0, where

{
Γ := [γ̃1 γ̃2 . . . γ̃T ],

γ̃0 = [γ̃1
0 , γ̃

2
0 , . . . , γ̃

T
0 ]

⊤.

For notational simplicity, the column vectors of Γ are ex-
ceptionally denoted by γ̃i with superscripts, for which the
α-th element is written by γ̃i

α. The difference between S

and S̃ is illustrated in Fig. 1. Note that a popular alternative
to softmax, sparsemax (Martins & Astudillo, 2016), is also
a piecewise linear function, although the functional form is
slightly different from S̃.

Remark 1. Each (γ̃i, γ̃i
0) depends on the softmax input

ω, unlike the Taylor coefficient (γi, γi
0) being independent

from ω. This point matters particularly when we take expec-
tations of terms involving (γ̃i, γ̃i

0).

Remark 2. When T is sufficiently large, the coefficient
vector γi = T−1ei + o(1). In this regime, γi

α = o(1) for
any α ∈ [T ] \ {i}, so γi behaves like a selector of the i-th
input. Hence, γi

i = γi
0 = T−1 + o(1).

3. Signal propagation probability
We analyze how much each token contributes to the learning
dynamics. To this end, we formalize how much the signal

of a specific input token xi propagates to the gradient ∇J .
Remark that this notion is slightly different from the con-
tribution of an input token xi to the model output F(X)j
analyzed by Kobayashi et al. (2023) recently.

Uniform vs. localized softmax. The piecewise linear ap-
proximation implies that the i-th input signal is propagated
to the subsequent blocks when

〈
γi,ω

〉
+ γi

0 ∈ [0, 1]; other-
wise, S̃(ω)i =

〈
γ̃i,ω

〉
+ γ̃i

0 = γ̃i
0, which hinders the input

token xi from contributing to the self-attention layer (2).
Thus, we will focus on the following quantity.

Definition 1 (Signal propagation probability). Suppose that
WQK is independent from X. For i ∈ [T ], the signal propa-
gation probability of the i-th token is defined as follows:

ρi := P
{〈

γi,ω
〉
+ γi

0 ∈ [0, 1]
}
,

where ω := X⊤WQKxT /λ and the randomness originates
solely from the input tokens X.

When only a few ρi are significantly larger than zero, we
can interpret it as localized softmax; in this case, the self-
attention (2) is dominated by a small number of tokens.
By contrast, most of the tokens contribute to self-attention
almost equally if ρi takes a similar value across different i;
this situation is interpreted as uniform softmax.

Through the lens of gradient. The signal propagation
probability naturally arises in the gradient as a quantity
characterizing how each token contributes to the gradient
of the loss function J . Since the learning dynamics of
causal language modeling is governed by the gradient flow
of J , we can benefit from deriving the gradient of J to
see how attention affects the learning dynamics. This is an
important step to analyze the learning dynamics and implicit
bias of self-attention layers, and we choose to measure the
localization and uniformity through the signal propagation
probability instead of other measures like the entropy.

To keep the derivation concise, we consider a 1-layer trans-
former (where we drop the superscripts ℓ) without layer
normalization and simplify the feed-forward net H by sup-
posing the identity activation. With the approximated soft-
max S̃, the transformer can be written as follows:

F(X)T = WF{WVXS̃(ω) + xT }
= WF{WVXΓ⊤ω +WVXγ̃0 + xT },

where WF := WF2WF1 + I and ω := X⊤WQKxT /λ.
For this architecture, the QK-gradient is computed:

∇WQK
J = λ−2 E[XΓPΓ⊤X⊤WQKxTx

⊤
T ]

+ λ−1 E[XΓPγ̃0x
⊤
T ] + λ−1 E[XΓqx⊤

T ],
(3)
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Figure 2: The theoretical plots of the signal propagation probability ρ(θ) with different ξ = tr(W)/
√

tr(W2) and η =
√

tr(W2)/λ2.
The vertical axes indicate relative token position θ = i/T (i: token index, T : number of tokens). Smaller θ close to zero and larger θ
close to one correspond to early-site and late-site tokens, respectively.

where

P := X⊤W⊤
VW

⊤
FWFWVX,

q := X⊤W⊤
VW

⊤
F (WFxT − y).

When T is sufficiently large, we can drop asymptotically
negligible terms with respect to T as detailed in Appendix B,
and the QK-gradient (3) is simplified as follows:

1

λ2

∑
i,j,α,β∈[T ]

E
[
γ̃i
αγ̃

j
β(x

⊤
i P̌xj)(x

⊤
β WQKxT )xαx

⊤
T

]
, (4)

where P̌ := W⊤
VW

⊤
FWFWV.

Now, in the gradient term (4), the summands with γ̃i
i (intro-

duced in Section 2) are asymptotically dominant over those
with γ̃i

α (with α ̸= i) because γ̃i
i = T−1 and γ̃i

α = o(T−1).
Additionally, the i-th signal propagates when γ̃i

i > 0, which
holds iff

〈
γi,ω

〉
+ γi

0 ∈ [0, 1] by definition. Therefore, we
are motivated to check the condition

〈
γi,ω

〉
+ γi

0 ∈ [0, 1]
to see whether xi contributes to the gradient (3). The signal
propagation probability ρi characterizes its strength.

Summary. In this section, we introduced the signal prop-
agation probability ρi, which characterizes how likely a
given token xi contributes to the learning dynamics. Specif-
ically, γ̃i ̸= 0 holds more likely with larger ρi, where xi

contributes to the QK-gradient (3). Subsequently, we will
analyze the quantity ρi to see the behavior of the probability
vector ρ ∈ [0, 1]T . When does the mass of ρ concentrate to
only a few tokens or scatter across most of the tokens?

4. When does attention localize?
We derive the signal propagation probability ρi based on the
following synthetic data model for the sake of clarity.

Assumption 1 (Random walk). The tokens (xt)t≥1 are
generated by the following Gaussian random walk:

x1 ∼ N (0,Σ), xt+1 ∼ N (xt,Σ).

We discuss the validity of this assumption at the end of this
section. To derive ρi, we resort to the Gaussian approxima-
tion of

〈
γi,ω

〉
+ γi

0. Define

µi := E[
〈
γi,ω

〉
+ γi

0] and vi := V[
〈
γi,ω

〉
+ γi

0].

We approximately suppose that
〈
γi,ω

〉
+ γi

0 ∼ N (µi, vi).
Then, the signal propagation probability is approximated:

ρi ≈
1

2

{
erf

(
1− µi

√
2vi

)
+ erf

(
µi

√
2vi

)}
.

To leverage this formula, we derive µi and vi.

Lemma 1. Suppose that WQK is symmetric and indepen-
dent from X, and let W := WQKΣ. Under Assumption 1,
for i ∈ [T ], the mean µi and variance vi of

〈
γi,ω

〉
+ γi

0

with the input ω := X⊤WQKxT /λ are given as follows:

µi =

(
i

T
− 1

2

)
tr(W)

λ
+ o(1),

vi =

(
2i2

T 2
+

7

12

)
tr(W2)

λ2
+ o(1).
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The proof is given in Appendix C. The symmetry of WQK

is assumed for convenience. In the case of asymmetric
WQK, we can redefine the signal propagation probability
with the symmetrized matrix (WQK +W⊤

QK)/2.

Recall that tr(W) =
∑

i∈[d] wi if we write the eigenvalues
of W by (w1, w2, . . . , wd). If W is real diagonalizable,
tr(W2) =

∑
i∈[d] w

2
i holds, and tr(W)2 ≤ d tr(W2) fol-

lows due to Jensen’s inequality. This implies that

−
√
d tr(W2) ≤ tr(W) ≤

√
d tr(W2). (5)

Moreover, µi and vi are determined by the relative token
location i/T . By continuously extending i/T to θ ∈ [0, 1],
the signal propagation probability ρi can be extended to
ρ : [0, 1] → [0, 1], defined over relative token locations:

ρ(θ) := Φ

((
θ − 1

2

)
ξ; θ

)
− Φ

((
θ − 1

2

)
ξ − 1

η
; θ

)
, (6)

where

ξ :=
tr(W)√
tr(W2)

, η :=

√
tr(W2)

λ
,

Φ(z; θ) :=
1

2
erf

(
z√

2(2θ2 + 7
12 )

)
,

and the parameter ranges are ξ ∈ [−
√
d,
√
d] (due to the

bound (5)) and η ∈ (0,∞). Here, ξ and η can be regarded
independent (when W is independent from X) because the
eigenspectrum scale tr(W2) can be modulated within the
bound (5) once the eigenspectrum of W is given.

Figure 2 numerically illustrates ρ(θ) with different ξ and η.
From these figures, we obtain a couple of observations.

• Localization. ρ(θ) concentrates on fewer tokens as η in-
creases (see |ξ| ≥ 5). By contrast, ρ(θ) behaves relatively
uniformly regardless of η for small |ξ| ≤ 1.

• Late-/middle-/early-site focus. Focus on small η such as
η = 0.001. As ξ increases to a large positive, ρ(θ) puts
positive weights for only late-site tokens, i.e., θ > 0.5.
By contrast, as ξ decreases to a negative, ρ(θ) focuses on
early-site tokens, i.e., θ < 0.5. When η increases (see
η ≥ 0.5), ρ(θ) localizes around θ = 0.5 with sufficiently
large ξ (say, |ξ| ≥ 5), which indicates middle-site focus.

• Vanishing signal. As η increases, ρ(θ) degenerates to
zero for any θ ∈ [0, 1] regardless of ξ.

How ρ behaves at the limit. Subsequently, we claim the
above observations formally, which is proven in Appendix C.

Lemma 2. ρ(θ) satisfies the following properties.

1. (Late-/middle-site) As (ξ, η) → (∞, 0) with ξη → r,

ρ(θ) →

{
1{θ≥ 1

2}
if 0 ≤ r ≤ 2

1{ 1
2≤θ≤ 1

2+
1
r }

if r > 2
.

0.0 0.2 0.4 0.6 0.8 1.0

Relative token position 

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al
 p

ro
pa

ga
tio

n 
pr

ob
. 

(
) ( , ) = (128, 0.01)

0.0 0.2 0.4 0.6 0.8 1.0

Relative token position 

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al
 p

ro
pa

ga
tio

n 
pr

ob
. 

(
) ( , ) = (512, 0.01)

Figure 3: The theoretical plots of ρ(θ). For each ξ = 128, 512,
the product value ξη = 1.28, 5.12, respectively. The latter is suffi-
ciently larger than the localization threshold r = 2 and localized.
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Figure 4: Entropy lower bound (9) by Zhai et al. (2023).

2. (Early-/middle-site) As (ξ, η) → (−∞, 0) with ξη → r,

ρ(θ) →

{
1{θ≤ 1

2}
if − 2 ≤ r < 0

1{ 1
2+

1
r≤θ≤ 1

2}
if r < −2

.

3. (Uniformity) Fix η as a finite value. As |ξ| → 0,
|ρ′(θ)| → 0 for any θ ∈ [0, 1].

4. (Vanishing signal) Fix ξ as a finite value. As η → ∞,
ρ(θ) → 0 for any θ ∈ [0, 1].

From late-/middle-/early-site focus in Lemma 2, we see in-
terestingly that ρ(θ) localizes when ξη = tr(W)/λ asymp-
totically deviates from zero significantly so that |r| ≫ 2.
At this limit, ρ(θ) concentrates on θ = 0.5, inducing the
middle-site focus. Conversely, attention becomes relatively
uniform when ξη = tr(W)/λ is kept close to zero. In
Fig. 3, we numerically illustrate this regime: ρ localizes at
the middle site when η = 0.02 (i.e., ξη = 5.12).

Let us investigate the limiting condition of (ξ, η) for lo-
calization: When is (ξ, η) close to the limit (∞, 0) while
ξη → r ≫ 2? Here, we focus on the eigenspectrum of
W by regarding its eigenvalues (wi)i∈[d] as being sampled
from a distribution with the mean tr(W) =

∑
i∈[d] wi and

scale tr(W2) =
∑

i∈[d] w
2
i (supposing that W is real diag-

onalizable). First, η → 0 indicates that the scale tr(W2)
should be close to zero. Next, ξη(= tr(W)/λ) → r ≫ 2
means that tr(W) ≫ 2λ at the limit, i.e., tr(W) should
be significantly away from zero. By combining them, we
tell that ρ localizes when the eigenspectrum concentrates
around a non-zero mean. This happens more likely when
the embedding dimension d is excessively large to make
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the eigenvalue sum tr(W) bounded away from zero while
keeping the scale tr(W2) close to zero (i.e., keeping ev-
ery eigenvalue close to zero). Thus, a larger embedding
dimension d is beneficial to drive attention to localization.

Next, from the claim of uniformity in Lemma 2, we tell that
ρ fluctuates less and less with ξ closer to zero. Hence, ρ(θ)
takes a similar value across different token positions θ in
this limit. When tr(W) → 0, ρ attains this limit.

Summary. Wrapping up this section, we obtain answers
to (Q1) posed in Section 1 under the random walk model.

A1: When does attention localize?

• ρ localizes when tr(W2) is close to zero while
| tr(W)| is significantly bounded away from zero,
i.e., W-eigenspectrum concentrates to a non-zero
mean.

• ρ is uniform when tr(W) is close to zero while
tr(W2) remains finite, i.e., W-eigenspectrum has
the zero mean and a finite variance.

• ρ degenerates to zero uniformly when tr(W2) is
sufficiently large, i.e., W-eigenspectrum has an
infinitely large variance.

Remark 3 (Validity of random walk). The analysis results
in this section largely owe to the random walk assumption
in Assumption 1. This is reminiscent of the random walk
model of word vectors proposed by Arora et al. (2016): they
suppose that a discourse vector that governs the latent topic
in a sentence evolves along a random walk, and observed
word vectors are emitted depending on their affinity to the
discourse vector. Under this model, they showed that the
PMI (pointwise mutual information) between two words
is close to their scaled inner product (Arora et al., 2016,
Theorem 2.2). Hence, the random walk model may be se-
mantically plausible in such a geometrical sense.

Their proof essentially benefits from the random walk to
claim that two discourse vectors are “independent” (Arora
et al., 2016, Eq. (2.11)), for which a sufficient tiny drift
order O(d−1/2) matters. That said, we suppose the Gaus-
sianity in addition to their random walk. We exploit this to
approximately get the closed form of ρ(θ) (6), which is a
limitation of our analysis.

5. Are different collapse regimes reconcilable?
We discuss the results of our analysis in Section 4 and the
previous arguments related to attention uniformity.

Connection to rank collapse. Dong et al. (2021) showed
that self-attention blocks Uℓ (see Eq. (2)) converges to a
rank-1 matrix z1⊤ (for some z) with L → ∞ without
skip connections or feed-forward blocks, which is called

rank collapse.1 They argued the importance of avoiding
rank collapse for better expressivity because each token
embedding in a rank-1 self-attention block degenerates to
the same. Hence, the rank collapse is related to the failure
mode attributed to the uniformity after mixing key tokens by
attention, which is slightly different from what we are con-
cerned about—how each token contributes during mixing by
attention (through the gradient, as discussed in Section 3).

Nonetheless, the uniformity of Dong et al. (2021) can be
connected to the perspective of the W-eigenspectrum. Dong
et al. (2021, Theorem 2.2) proved that the convergence rate
to a rank-1 matrix slows down when the matrix ℓ1-norm
∥WQK∥1, i.e., the ℓ1-norm of the vectorized matrix, is large.
Because we can draw the following connection between
∥WQK∥1 and | tr(W)|:

| tr(W)|√
d∥Σ∥2

≤ ∥WQK∥2 ≤ ∥WQK∥F ≤ ∥WQK∥1, (7)

where the first inequality is due to the bound (5) and the
Cauchy–Schwarz inequality, it is sufficient (but not neces-
sary!) to increase | tr(W)| under fixed tr(W2) to mitigate
the rank collapse. This is equivalent to reducing the eigen-
spectrum variance

d2V[wi] = d2(E[w2
i ]− E[wi]

2) = d tr(W2)− | tr(W)|2.
(8)

Hence, minimizing the W-eigenspectrum variance leads to
better expressivity.

Connection to entropy collapse. Zhai et al. (2023) in-
troduced a concept called entropy collapse, in which the
average Shannon entropy of the columns of the attention
matrix Aℓ (see Eq. (1)) shrinks. Intuitively speaking, low
attention entropy induces localized attention. This notion
of localization is akin to ours because the attention entropy
measures the uniformity the attention is applied to input
tokens during mixing. They empirically observed that the
training loss falls into a plateau with low attention entropy,
which causes training instability of transformers, and hence
advocate for keeping attention less peaked during training.

In Zhai et al. (2023, Theorem 3.1), the attention entropy is
asymptotically lower-bounded for large T by

ln(1 + T exp(−ν)) +
ν exp(−ν/2)

T−1 + exp(−ν)
, (9)

where ν := ∥XX⊤∥2∥WQK∥2. This lower bound is uni-
modal in ν and vanishes at ∥WQK∥2 → ∞ (see Fig. 4),
so the attention entropy tends to be higher when ∥WQK∥2
is small. If | tr(W)| is not too small, ∥WQK∥2 is lower-
bounded (see Eq. (7)) and the attention entropy may be kept

1Note that our matrix notation is different from the one used in
Dong et al. (2021) so that we chose to let each column of X store
a token, whereas they let each row of X store a token.
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Figure 5: Simulated signal propagation probability. In the top and bottom rows, the results for the isotropic and anisotropic covariances
(the details in the text) are shown, respectively. (Left) Signal propagation probability ρi computed over repeatedly sampled 300 random
walks (Assumption 1) with 40 tokens. For each line, WQK (d = 128) is sampled 10 times with the corresponding mean and scale of the
eigenvalue distribution, and the averaged ρi is denoted by the bold line. (Right) The attention entropy (Zhai et al., 2023) is computed for
WQK with different eigenvalue mean-scale pairs.

close to the peak of the lower bound (9). To mitigate the
entropy collapse, it is sufficient (but not necessary!) to de-
crease tr(W2) under fixed tr(W) (which is equivalent to
minimizing the eigenspectrum variance by Eq. (8)) because
of the bound

∥Σ−1∥F
√
tr(W2) = ∥Σ−1∥F∥W∥F

≥ ∥WQK∥F ≥ ∥WQK∥2,
(10)

where the first inequality is due to the Cauchy–Schwarz in-
equality. Hence, minimizing the W-eigenspectrum variance
helps the model to avoid the entropy collapse.

Rank collapse vs. entropy collapse. At first sight, the
two notions of collapse seem to contradict each other be-
cause avoiding the rank collapse leads to diverse token em-
beddings, whereas avoiding the entropy collapse leads to
a uniform token mixer. Indeed, the matrix ℓ1-norm (that
decreases under the rank collapse) and the spectral norm
(that increases under the entropy collapse) are equivalent
norms, and the two modes appear to be incompatible.

However, as we discussed above, this trade-off is reconcil-
able from the viewpoint of the W-eigenspectrum. Setting
the eigenspectrum mean to be bounded away from zero, we
can avoid the rank collapse owing to the bound (7). Under a
fixed eigenspectrum mean, minimizing the eigenspectrum
scale (equivalently, minimizing its variance (8)) leads to
high attention entropy due to the bound (10) and the uni-
modal shape of the entropy lower bound (9). This variance
minimization is nothing else but the condition of attention
localization. Eventually, ρ(θ) localizes and attends to spe-

cific sites of tokens, as we showed in Lemma 2. Hence,
the signal propagation probability offers us a better view of
localization. Let us summarize our second take-home.

A2: How does attention localization impact?

• Better expressivity: If | tr(W)| is maximized for a
fixed tr(W2), the convergence to the rank collapse
becomes slow.

• High attention entropy: If tr(W2) is minimized
for a fixed | tr(W)| bounded away from zero, the
attention entropy is increased.

Both of the above are attributed to minimizing the
W-eigenspectrum variance (8).

Finally, let us reiterate that the minimization of the eigen-
spectrum variance is merely a sufficient but not necessary
condition of the aforementioned better expressivity and high
attention entropy. The apparent contradiction between the
rank and entropy collapses could be reconciled by other
mechanisms in practice. The aim of this work is to elucidate
the connection between the collapse phenomena and the
eigenspectrum.

Numerical simulation. To see the relationship between
the eigenspectrum, ρ, and attention entropy, we simulated
the signal propagation probability ρi using synthesized ran-
dom walks following Assumption 1 with the isotropic Σ =
I and anisotropic Σ. To obtain an anisotropic Σ, we first
sampled R ∈ Rd×d from element-wise Unif(−2.5, 2.5)
and computed Σ = R⊤R/d. We sampled 300 sequences
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Figure 7: The signal propagation probabilities are shown at each
iteration over 50000 iterations. (Top) LOCATER with κ1 = 100
and κ2 = 1. A couple of light and dark horizontal stripes cor-
respond to the attention localization. (Bottom) No LOCATER.
Overall, the signal propagation probability is uniform at each time.

with 40 tokens, and obtained WQK by generating 128 eigen-
values (wi)i∈[d] from N (mean, scale2) and composed with
a sampled orthogonal basis matrix B, by the eigendecom-
position formula WQK = Bdiag((wi)i)B

⊤. The signal
propagation probability was averaged over 300 sequences.

Figure 5 shows the averaged ρi with different mean-scale
pairs and the corresponding attention entropy in the right-
most figure. As seen, ρi localizes with smaller scales
and larger means, which is consistent with the conclusion
in Section 4. This trend supports the validity of WQK-
eigenspectrum as a proxy to W-eigenspectrum. Moreover,
we observe that WQK-eigenspectrum with a fixed mean and
scale leads to higher attention entropy.

6. Intervening attention localization
To empirically see the impact of localization on the model
performance, we propose a method to control the degree of
attention localization. We focus on the eigenspectrum of
WQK instead of W = WQKΣ because Σ does not change
during training, and the numerical simulation showed that
WQK behaves as a reasonable proxy to W (see Section 5).

We minimize the loss function J while minimizing the eigen-
spectrum scale and maintaining the mean to a fixed level:

min
Θ

{
J(Θ)+κ1 tr(W

⊤
QKWQK)+κ2(tr(WQK)− 1)2

}
,

where κ1, κ2 > 0 are the regularization strengths. Here,
we allow WQK to be asymmetric, and the eigenspectrum
scale is represented by tr(W⊤

QKWQK). The regularization
terms can be optimized fairly easily thanks to the following
derivative formulae (for WQK = W⊤

QWK):

∇WQ
tr(W⊤

QKWQK) = 2WKW
⊤
KWQ,

∇WK
tr(W⊤

QKWQK) = 2WQW
⊤
QWK,

∇WQ
[(tr(WQK)− 1)2]=[tr(WQK)− 1] tr(WQK)WK,

∇WK
[(tr(WQK)− 1)2]=[tr(WQK)− 1] tr(WQK)WQ.

Since this whole objective drives the eigenspectrum scale
to a small value, the signal vanishing can be avoided auto-
matically. We call this regularization scheme LOCATER
(LOCalized ATtEntion Regularization).

7. Experiments
We aim to observe the correlation between the eigenspec-
trum and localization. To this end, we train transformers
with LOCATER and varying κ1, κ2, and see how the model
performances and attention foci change over time.

Setup. We used fairseq v0.12.2 (Ott et al., 2019),
which is a toolkit oriented for sequence modeling, to imple-
ment and train transformers. The basic training scheme was
inherited from fairseq-cli/train.py. The model
is a 1-layer transformer with a single-head self-attention
and Post-LN (default), and the input embedding dimen-
sion, attention embedding dimension, and feed-forward net
embedding dimension are set to 128 altogether (namely,
d = 128).2 Note that we use the standard softmax attention
in the experiments, although our theoretical analysis was
conducted with its piecewise approximation. Input data

2The experimental results with deeper transformers are shown
in Appendix D. The overall trends remain alike.
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were transformed into 64 tokens (namely, T = 64) with
batch size 64. The optimizer is Adam (Kingma & Ba, 2015)
with default parameters and no clip norm, and the weight de-
cay with 0.01 is used. The learning rate is fixed to 2.5×10−5

without any scheduling. The FP16 quantizer was applied
to reduce memory usage. All the other configs remain to
be the same as the default in fairseq-cli/train.py.
Under this config, we updated the model with 50000 iters.

Language modeling. We conducted the language model-
ing task. The dataset we used is WikiText-2 (Merity et al.,
2016), which is a collection of high-quality Wikipedia arti-
cles. We conduced the experiments with fixed scale regular-
ization strength κ1 = 100 and varying mean regularization
strength κ2 from 0, 10−3, 10−2, . . . , 100.

The results are shown in Fig. 6, in which stronger regular-
izers tend to make the eigenspectrum scale smaller. This,
in turn, maintains the attention entropy higher during the
updates entirely, and eventually, the model achieves better
perplexity. While the better model performance with higher
attention entropy has already been observed by Zhai et al.
(2023), we also showed that a smaller eigenspectrum scale
contributes to higher attention entropy. This empirically
corroborates that attention localization leads to better model
performance, probably because the attention mechanism
appropriately selects relevant tokens during training.

Figure 7 shows the signal propagation probability at each
training iteration. We compute the signal propagation proba-
bility of token i by counting the frequency of

〈
γi,ω

〉
+γi

0 ∈
[0, 1] in a given batch. LOCATER entails salient horizontal
stripes, each corresponding to attended tokens. Yet, the
stripes do not appear in “bulk” as we analyzed in Section 4
because our synthetic data model in Assumption 1 does
not perfectly align with real datasets. Nevertheless, our ex-
periments evidently contrast the localized and uniformed
attention depending on the eigenspectrum scale because no
salient stripes are observed without LOCATER.

In Figs. 6 and 7, we observe different learning phases for
the first 104 and the rest iters. Indeed, Tian et al. (2023b)
observed similar phenomena and explained that it is due to
the different convergence speeds between attention weights
corresponding to informative and non-informative tokens.
The relationship between the WQK-eigenspectrum and this
dynamics is beyond our scope and left for future work.

8. Conclusion and limitation
We revealed that attention localizes when the eigenspec-
trum of W concentrates to a non-zero mean, or equivalently,
with larger eigenspectrum mean tr(W) and smaller scale
tr(W2). Based on it, LOCATER was proposed to shrink
the scale tr(W2

QK) while maintaining the mean tr(WQK).
Interestingly, maximizing the scale is related to mitigating

both rank collapse and entropy collapse, and hence, the
two apparently contradictory failure modes can be recon-
ciled. The experiments on a real-world dataset corroborate
it, though the random walk model is not perfectly satisfied.

We recognize three limitations of this work. First, we rely
on the strong random walk model. Although the Gaussianity
may be reasonable because of usual initialization schemes of
transformer embedding layers, it is interesting to consider
an alternative model to capture token correlations better.
Second, the formal analysis is mainly restricted to 1-layer
transformers. Recent studies often consider gradient explo-
sion in the large-depth limit from the viewpoint of layer
normalization (Xiong et al., 2020; Takase et al., 2023b)
and initialization (Bachlechner et al., 2021; Takase et al.,
2023a). It must be fruitful to integrate these perspectives to
our gradient analysis through Eq. (3). Third, why attention
localization leads to better model performance still remains
elusive. Whereas localization is related to avoiding rank
collapse (and hence higher model expressivity), we need
additional effort to fully understand the mechanism.

Last but not least, let us mention concurrent work on under-
standing the attention mechanism. Geshkovski et al. (2023)
argued that a trained multi-layer self-attention network ex-
hibits a layer-wise dynamics similar to the Kuramoto model
and token embeddings converge to a few “leader” tokens
depending on the structure determined by the self-attention
parameter matrices. Li et al. (2024) proved that the learning
dynamics of a 1-layer self-attention network yields a query-
key parameter matrix capturing the token-pair frequencies.
Together with our work, it has become an interesting direc-
tion to study the implicit bias of attention through parameter
eigenspectra.

Impact Statement
Transformer architectures have prevailed in recent years,
yet the internal functionality has not been transparently un-
derstood. Our work reconciles the apparently contradictory
two collapse modes, rank collapse and entropy collapse,
with a new perspective of the parameter eigenspectrum. We
believe this result pushes forward the understanding of trans-
formers.
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A. Helper lemmas
Lemma 3. Let W ∈ Rd×d be a symmetric matrix. Fix a,µ ∈ Rd and Σ ∈ Rd×d be a covariance matrix. For
x ∼ N (m,Σ), the following moment formulae hold:

E[x⊤Wx] = tr(WΣ) +m⊤Wm (11)

E[xx⊤] = Σ+mm⊤ (12)

E[a⊤Wxx⊤Wx] = 2a⊤WΣWm+ a⊤Wm{tr(WΣ) +m⊤Wm} (13)

E[x⊤Wxx⊤Wx] = 2 tr(WΣWΣ) + tr(WΣ)2 + 4m⊤WΣWm+ 2 tr(WΣ)m⊤Wm+m⊤Wmm⊤Wm (14)

The formulae in Lemma 3 are standard and cropped from Brookes (1998).

Lemma 4. Let W ∈ Rd×d be a symmetric matrix. For i ≤ j, suppose that xi,xj follow Assumption 1. Then, the following
formulae hold:

E[x⊤
i Wxi] = (i− 1) tr(WΣ) (15)

E[x⊤
i Wxix

⊤
i Wxi] = (i2 − 2i+ 2){2 tr(WΣWΣ) + tr(WΣ)2} (16)

E[x⊤
i Wxjx

⊤
j Wxi] = (i2 + ij − 3i− j + 4) tr(WΣWΣ) + (i2 − 2i+ 2) tr(WΣ)2 (17)

E[x⊤
i Wxjx

⊤
j Wxj ] = (ij − i− j + 2){2 tr(WΣWΣ) + tr(WΣ)2} (18)

The formulae in Lemma 4 can be shown by recursively applying Lemma 3. We omit the proofs since they are elementary.

B. Omitted derivations
B.1. QK-gradient

Here, we complement the derivations of the QK-gradient terms shown in Section 3. To get Eq. (3), we compute ∇WQK
J :

∇WQKJ =
1

2
E[∇WQK∥y − F(X)T ∥2]

=
1

2
E[∇WQK{F(X)⊤TF(X)T − 2y⊤F(X)T }]

=
1

2
E[ω⊤ΓX⊤W⊤

VW
⊤
FWFWVXΓ⊤ω + 2(WVXγ̃0 + xT )

⊤W⊤
FWFWVXΓ⊤ω − 2y⊤WFWVXΓ⊤ω]

=
1

2λ2
E[x⊤

TW
⊤
QKXΓPΓ⊤X⊤WQKxT ] +

1

λ
E[(γ̃0)

⊤PΓ⊤X⊤WQKxT ] +
1

λ
E[q⊤Γ⊤X⊤WQKxT ]

=
1

λ2
E[XΓPΓ⊤X⊤WQKxTx

⊤
T ] +

1

λ
E[XΓPγ̃0x

⊤
T ] +

1

λ
E[XΓqx⊤

T ].

By expanding the first term of ∇WQK
J , we get the following:

1

λ2

∑
i,j,α,β∈[T ]

E
[
γ̃i
αγ̃

j
β(x

⊤
i P̌xj)(x

⊤
β WQKxT )xαx

⊤
T

]
, (19)

where P̌ := W⊤
VW

⊤
FWFWV. Similarly, by expanding the second and third terms of ∇WQK

J , we get the following terms,
respectively:

1

λ

∑
i,α,β∈[T ]

E
[
γ̃i
αγ̃

β
0 (x

⊤
i P̌xβ)xαx

⊤
T

]
, (20)

1

λ

∑
i,α∈[T ]

E
[
γ̃i
α{x⊤

i W
⊤
VW

⊤
F (WFxT − y)}xαx

⊤
T

]
. (21)

12
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To get Eq. (19), we expand the first term of ∇WQK
J :

E[XΓPΓ⊤X⊤WQKxTx
⊤
T ] = E[XΓX⊤W⊤

VW
⊤
FWFWVXΓ⊤X⊤WQKxTx

⊤
T ]

= E
[
{(WFWVX)(XΓ)⊤}⊤{(WFWVX)(XΓ)⊤}WQKxTx

⊤
T

]
= E

[{ ∑
i∈[T ]

(Xγ̃i)(WFWVxi)
⊤
}{ ∑

j∈[T ]

(WFWVxj)(Xγ̃j)⊤
}
WQKxTx

⊤
T

]

= E
[ ∑
i,j∈[T ]

(Xγ̃i){(WFWVxi)
⊤(WFWVxj)}(Xγ̃j)⊤WQKxTx

⊤
T

]

= E
[ ∑
α,β∈[T ]

{ ∑
i,j∈[T ]

x⊤
i P̌xj

}
γ̃i
αγ̃

j
βxαx

⊤
β WQKxTx

⊤
T

]
=

∑
i,j,α,β∈[T ]

E[γ̃i
αγ̃

j
β(x

⊤
i P̌xj)(x

⊤
β WQKxT )xαx

⊤
T ].

To get Eq. (20), we expand the second term of ∇WQK
J :

E[XΓPγ̃0x
⊤
T ] = E[XΓX⊤W⊤

VW
⊤
FWFWVXγ̃0x

⊤
T ]

= E[{(WFWVX)(XΓ)⊤}⊤{(WFWVX)(γ̃0x
⊤
T )}]

= E
[{ ∑

i∈[T ]

(Xγ̃i)(WFWVxi)
⊤
}{ ∑

β∈[T ]

(WFWVxβ)(γ̃
β
0 x

⊤
T )

}]

= E
[ ∑
i,β∈[T ]

(Xγ̃i){(WFWVxi)
⊤(WFWVxβ)}(γ̃β

0 x
⊤
T )

]

= E
[ ∑
α∈[T ]

{ ∑
i,β∈[T ]

x⊤
i P̌xβ

}
γ̃i
αγ̃

β
0 xαx

⊤
T

]
=

∑
i,α,β∈[T ]

E[γ̃i
αγ̃

β
0 (x

⊤
i P̌xβ)xαx

⊤
T ].

To get Eq. (21), we expand the third term of ∇WQKJ :

E[XΓqx⊤
T ] = E[XΓX⊤W⊤

VW
⊤
F (WFxT − y)x⊤

T ]

= E[{(WFWVX)(XΓ)⊤}⊤(WFxT − y)x⊤
T ]

= E
[{ ∑

i∈[T ]

(Xγ̃i)(WFWVxi)
⊤
}
(WFxT − y)x⊤

T

]

= E
[{ ∑

i,α∈[T ]

γ̃i
αxαx

⊤
i W

⊤
VW

⊤
F

}
(WFxT − y)x⊤

T

]
=

∑
i,α∈[T ]

E[γ̃i
α{x⊤

i W
⊤
VW

⊤
F (WFxT − y)}xαx

⊤
T ].

B.2. Order evaluation of QK-gradient

The orders of the QK-gradient terms (19), (20), and (21) are evaluated. In this subsection, we assume that the covariance
matrix in Assumption 1 is Σ = I for simplicity. The following evaluation still applies with minor modifications for a general

13
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Σ. For Eq. (19), the Cauchy–Schwarz inequality implies that

Eq. (19) =
∣∣∣∣ ∑
i,j,α,β

E[γ̃i
αγ̃

j
β(x

⊤
i P̌xj)(x

⊤
β WQKxT )xαx

⊤
T ]

∣∣∣∣2
≤
{ ∑

i,j,α,β

E[(γ̃i
αγ̃

j
β)

2]

}
︸ ︷︷ ︸

(A)

{ ∑
i,j,α,β

E[(x⊤
i P̌xj)

2]

}
︸ ︷︷ ︸

(B)

{ ∑
i,j,α,β

E[(x⊤
β WQKxT )

2]

}
︸ ︷︷ ︸

(C)

{ ∑
i,j,α,β

E[(xαx
⊤
T )

⊙2]

}
︸ ︷︷ ︸

(D)

.

For (A), we have γ̃i
α, γ̃

j
β ≤ T−1 by definition, and hence (A) = O(1). For (B), by using Eq. (17),

(B) = T 2
∑
i,j

E[x⊤
i P̌xjx

⊤
j P̌xi] = T 2

∑
i,j

{(i2 + ij − 3i− j + 4) tr(P̌2) + (i2 − 2i+ 2) tr(P̌)2} = O(T 6).

For (C), by following the same computation as Eq. (22),

(C) = T 3
∑
β

E[x⊤
β WQKxTx

⊤
TWQKxβ ]

= T 3
∑
β

{(β2 + (T − 3)β − (T − 4)) tr(W2
QK) + (β2 − 2β + 2) tr(WQK)

2} = O(T 6).

For (D), its (i, j)-element can be evaluated as follows (no matter whether i = j or not):

(D)ij = T 3
∑
α

E[x2
α,ix

2
T,j ] = T 3

∑
α

E[x2
α,i{(T − α) + x2

α,j}] = O(T 5)
∑
α

E[x2
α,i] + T 3

∑
α

E[x2
α,ix

2
α,j ] = O(T 6).

By plugging them back, we now confirmed that |Eq. (19)| = O(T 8).

The orders of Eqs. (20) and (21) can be evaluated similarly and the detailed evaluations are omitted.

|Eq. (20)|2 =

∣∣∣∣ ∑
i,α,β

E[γ̃i
αγ̃

β
0 (x

⊤
i P̌xβ)xαx

⊤
T ]

∣∣∣∣2
≤
{∑

i,α,β

E[(γ̃i
αγ̃

β
0 )

2]

}{∑
i,α,β

E[(x⊤
i P̌xβ)

2]

}{∑
i,α,β

E[(xαx
⊤
T )

⊙2]

}
= O(T ) ·O(T 4) ·O(T 5)

= O(T 10)

=⇒ |Eq. (20)| = O(T 5).

|Eq. (21)|2 =

∣∣∣∣∑
i,α

E[γ̃i
α{x⊤

i W
⊤
VW

⊤
F (WFxT − y)}xαx

⊤
T ]

∣∣∣∣2
≤
{∑

i,α

E[(γ̃i
α)

2]

}{∑
i,α

E[(x⊤
i W

⊤
VW

⊤
F (WFxT − y))2]

}{∑
i,α

E[(xαx
⊤
T )

⊙2]

}
= O(1) ·O(T 4) ·O(T 4)

= O(T 8)

=⇒ |Eq. (21)| = O(T 4).

Hence, we have |Eq. (19)| = O(T 8), |Eq. (20)| = O(T 5), and |Eq. (21)| = O(T 4), which implies that the QK-gradient (3)
is asymptotically dominated by Eq. (19).
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C. Proofs
Lemma 1. Suppose that WQK is symmetric and independent from X, and let W := WQKΣ. Under Assumption 1, for
i ∈ [T ], the mean µi and variance vi of

〈
γi,ω

〉
+ γi

0 with the input ω := X⊤WQKxT /λ are given as follows:

µi =

(
i

T
− 1

2

)
tr(W)

λ
+ o(1),

vi =

(
2i2

T 2
+

7

12

)
tr(W2)

λ2
+ o(1).

Proof. To derive the mean, we use Eq. (15).

µi =
1

λT
E[x⊤

i WQKxT ]−
1

λT 2

∑
j∈[T ]

E[x⊤
j WQKxT ] + o(1)

=
i− 1

λT
tr(W)−

∑
j∈[T ](j − 1)

λT 2
tr(W) + o(1)

=

(
i− T + 1

2

)
tr(W)

λT
+ o(1).

Note that γi
0 = o(1).

To derive the variance, we first compute E[x⊤
i WQKxTx

⊤
j WQKxT ] (for i ≤ j ≤ T ).

E[x⊤
i WQKxTx

⊤
j WQKxT ] = E[x⊤

i WQK(xTx
⊤
T )WQKxj ]

= E[x⊤
i WQK{(T − j)Σ+ xjx

⊤
j }WQKxj ]

= (T − j)E[x⊤
i WQKΣWQKxj ] + E[x⊤

i WQKxjx
⊤
j WQKxj ]

= (T − j)(i− 1) tr(W2) + (ij − i− j + 2){2 tr(W2) + tr(W)2}
= (ij + (T − 2)i− j − (T − 4)) tr(W2) + (ij − i− j + 2) tr(W)2,

(22)

where Eq. (11) is used recursively at the second identity and Eqs. (15) and (18) are used at the fourth identity. Then, the
expectation of the squared term is expanded:

E[
〈
γi,X⊤WQKxT

〉2
]

= E
[(

1

T
x⊤
i WQKxT − 1

T 2

∑
j∈[T ]

x⊤
j WQKxT

)2]

= E
[
1

T 2
x⊤
i WQKxTx

⊤
i WQKxT − 2

T 3

∑
j∈[T ]

x⊤
i WQKxTx

⊤
j WQKxT +

1

T 4

∑
j,j′∈[T ]

x⊤
j WQKxTx

⊤
j′WQKxT

]
=

1

T 2
E[x⊤

i WQKxTx
⊤
i WQKxT ]︸ ︷︷ ︸

(A)

− 1

T 3
2E[x⊤

i WQKxTx
⊤
i WQKxT ]︸ ︷︷ ︸

(B1)

− 1

T 3
2
∑
j>i

E[x⊤
i WQKxTx

⊤
j WQKxT ]︸ ︷︷ ︸

(B2)

− 1

T 3
2
∑
j<i

E[x⊤
i WQKxTx

⊤
j WQKxT ]︸ ︷︷ ︸

(B3)

+
1

T 4

∑
j∈[T ]

E[x⊤
j WQKxTx

⊤
j WQKxT ]︸ ︷︷ ︸

(C1)

+
1

T 4
2
∑
j<j′

E[x⊤
j WQKxTx

⊤
j′WQKxT ]︸ ︷︷ ︸

(C2)

.
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Each term is computed by using Eq. (22) multiple times.

(A) = (i2 + (T − 3)i− (T − 4)) tr(W2) + (i2 − 2i+ 2) tr(W)2

= (i2 + Ti) tr(W2) + i2 tr(W)2 + o(T 2),

(B1) = o(T 3),

(B2) = 2
∑
j>i

{(ij + (T − 2)i− j − (T − 4)) tr(W2) + (ij − i− j + 2) tr(W)2}

= (T 2i− 2Ti2 − i3) tr(W2) + (T 2i− i3) tr(W)2 + o(T 3),

(B3) = 2
∑
j<i

{(ij + (T − 2)j − i− (T − 4)) tr(W2) + (ij − i− j + 2) tr(W)2}

= (Ti2 + i3) tr(W2) + i3 tr(W)2 + o(T 3),

(C1) =
∑
j∈[T ]

{(j2 + (T − 3)j − (T − 4)) tr(W2) + (j2 − 2j + 2) tr(W)2}

= o(T 4),

(C2) = 2
∑
j<j′

{(jj′ + (T − 2)j − j′ − (T − 4)) tr(W2) + (jj′ − j − j′ + 2) tr(W)2}

= 2
∑
j<j′

jj′{tr(W2) + tr(W)2}+ 2
∑
j<j′

Tj tr(W2) + o(T 4)

=
∑
j∈[T ]

j(T − j)(T + j + 1){tr(W2) + tr(W)2}+ 2T
∑
j∈[T ]

(T − j)j tr(W2) + o(T 4)

=
∑
j∈[T ]

(T 2j − j3){tr(W2) + tr(W)2}+ T 4

3
tr(W2) + o(T 4)

=
7T 4

12
tr(W2) +

T 4

4
tr(W)2 + o(T 4).

By plugging them back,

E[
〈
γi,X⊤WQKxT

〉2
] =

(
7

12
+

2i2

T 2

)
tr(W2) +

(
1

4
− i

T
+

i2

T 2

)
tr(W)2 + o(1).

Hence, the variance is derived:
vi = V[

〈
γi,ω

〉
]

=
1

λ2
E[
〈
γi,X⊤WQKxT

〉2
]− (µi)2

=
1

λ2

(
7

12
+

2i2

T 2

)
tr(W2) + o(1).

Lemma 2. ρ(θ) satisfies the following properties.

1. (Late-/middle-site) As (ξ, η) → (∞, 0) with ξη → r,

ρ(θ) →

{
1{θ≥ 1

2}
if 0 ≤ r ≤ 2

1{ 1
2≤θ≤ 1

2+
1
r }

if r > 2
.

2. (Early-/middle-site) As (ξ, η) → (−∞, 0) with ξη → r,

ρ(θ) →

{
1{θ≤ 1

2}
if − 2 ≤ r < 0

1{ 1
2+

1
r≤θ≤ 1

2}
if r < −2

.
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3. (Uniformity) Fix η as a finite value. As |ξ| → 0, |ρ′(θ)| → 0 for any θ ∈ [0, 1].
4. (Vanishing signal) Fix ξ as a finite value. As η → ∞, ρ(θ) → 0 for any θ ∈ [0, 1].

Proof. To see 1: We first see that as ξ → ∞,

Φ

((
θ − 1

2

)
ξ; θ

)
→


1
2 if θ > 1

2

0 if θ = 1
2

− 1
2 if θ < 1

2

.

In addition, as ξ → ∞ and η → 0 with ξη → r ∈ [0, 2],

Φ

((
θ − 1

2

)
ξ − 1

η
; θ

)
→ 1

2
erf

 (θ − 1
2 )r − 1

η
√

2(2θ2 + 7
12 )

→ −1

2
.

By combining them, ρ(θ) → 1{θ≥ 1
2}

at the limit. If r > 2,

Φ

((
θ − 1

2

)
ξ − 1

η
; θ

)
→ 1

2
erf

 (θ − 1
2 )r − 1

η
√

2(2θ2 + 7
12 )

→


− 1

2 if θ < 1
2 + 1

r

0 if θ = 1
2 + 1

r
1
2 if θ > 1

2 + 1
r

,

and ρ(θ) → 1{ 1
2≤θ≤ 1

2+
1
r }

at the limit.

We can see 2 in the same way as 1.

To see 3: First, compute ρ′(θ) by using d
dz erf(z) =

2√
π
exp(−z2):

ρ′(θ) =
1√
π
exp

(
−
((θ − 1

2 )ξ)
2

2(2θ2 + 7
12 )

)
d

dθ

{
(θ − 1

2 )ξ√
2(2θ2 + 7

12 )

}
− 1√

π
exp

(
−
((θ − 1

2 )ξ −
1
η )

2

2(2θ2 + 7
12 )

)
d

dθ

{
(θ − 1

2 )ξ −
1
η√

2(2θ2 + 7
12 )

}

=

[
1√
π
exp

(
−
((θ − 1

2 )ξ)
2

2(2θ2 + 7
12 )

)
4θ2 − θ + 5

3

(2(2θ2 + 7
12 ))

3/2
− 1√

π
exp

(
−
((θ − 1

2 )ξ −
1
η )

2

2(2θ2 + 7
12 )

)
4θ2 − θ + 5

3 − 1
η

(2(2θ2 + 7
12 ))

3/2

]
ξ.

By noting that 0 < exp(−z2) ≤ 1,

|ρ′(θ)| ≤ |ξ|√
π

∣∣∣∣∣ 4θ2 − θ + 5
3

(2(2θ2 + 7
12 ))

3/2
−

4θ2 − θ + 5
3 − 1

η

(2(2θ2 + 7
12 ))

3/2

∣∣∣∣∣
=

|ξ|√
π

1

(2(2θ2 + 7
12 ))

3/2η

→ 0 as |ξ| → 0.

To see 4: For finite ξ,

lim
η→∞

Φ

((
θ − 1

2

)
ξ − 1

η

)
= Φ

((
θ − 1

2

)
ξ

)
,

which indicates that ρ(θ) → 0 at the limit η → ∞.

D. Additional experiments
Here, we show additional results of the language modeling task with 1-/3-/6-layer transformers with different embedding
dimensions d = 32, 128. For d = 128, the configurations remain the same except for the number of decoder layers as in
Section 7. For d = 32, we used the learning rate 0.0001 (instead of 0.000025 used for d = 128), and the other configurations
remain the same. The results are shown in Fig. 8 (d = 32, 1-layers), Fig. 9 (d = 32, 3-layers), Fig. 10 (d = 32, 6-layers),
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Figure 8: Experimental results of language modeling (WikiText-2) with d = 32 with 1-layers transformers, fixed κ1 = 100, and varying
regularization intensity κ2. With stronger κ2, the eigenspectrum scale shrinks (B), the attention entropy increases (C), and the perplexity
improves (D).
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Figure 9: Experimental results of language modeling (WikiText-2) with d = 32 with 3-layers transformers, fixed κ1 = 100, and varying
regularization intensity κ2. With stronger κ2, the eigenspectrum scale shrinks (B), the attention entropy increases (C), and the perplexity
improves (D).
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Figure 10: Experimental results of language modeling (WikiText-2) with d = 32 with 6-layers transformers, fixed κ1 = 100, and varying
regularization intensity κ2. With stronger κ2, the eigenspectrum scale shrinks (B), the attention entropy increases (C), and the perplexity
improves (D).
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Figure 11: Experimental results of language modeling (WikiText-2) with d = 128 with 3-layers transformers, fixed κ1 = 100, and
varying regularization intensity κ2. With stronger κ2, the eigenspectrum scale shrinks (B), the attention entropy increases (C), and the
perplexity improves (D).
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Figure 12: Experimental results of language modeling (WikiText-2) with d = 128 with 6-layers transformers, fixed κ1 = 100, and
varying regularization intensity κ2. With stronger κ2, the eigenspectrum scale shrinks (B), the attention entropy increases (C), and the
perplexity improves (D).

Fig. 11 (d = 128, 3-layers), and Fig. 12 (d = 128, 6-layers). Unlike the 1-layer case, we monitored the statistics of WQK

in the first layer only. The overall trends are quite similar to the case of 1-layer transformers with d = 128 as seen in Fig. 6:
As κ2 increases, the eigenspectrum scale decreases, the attention entropy increases, and eventually, the perplexity improves
(namely, decreases).
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