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Abstract

Non-monotonic reasoning is a classic paradigm
widely used in daily life and legal reasoning.
The §-N LI and LogicNMR proposed in the
existing work have only preliminary explored
the non-monotonic reasoning ability of the
pre-trained language models (LMs) in natu-
ral language. However, the performance of
large language models (LLMs) on complex
non-monotonic reasoning tasks with multiple
extensions has not yet been explored. An ex-
tension can be interpreted as a set of plausi-
ble conclusions. In this paper, we automat-
ically synthesized a non-monotonic reason-
ing dataset with multiple extensions, Multi-
LogicNMR. Then, we systematically evalu-
ated prompt-based and fine-tuned LLMs us-
ing skeptical and credulous reasoning, respec-
tively. Skeptical reasoning only believes in
common facts in all extensions, while cred-
ulous reasoning believes in facts in any one
extension. In addition, inspired by classic sym-
bolic solvers, we propose a neural-symbolic
framework, MultiLogicNMRer, to improve the
model’s non-monotonic reasoning ability. Ex-
perimental results show that the accuracy of
MultiLogicNMRer based on ChatGPT3.5 is
about 23.1% higher (46.2% — 69.3%) than
the corresponding prompt-based LLMs. The
proposed MultiLogicNMR dataset and Multi-
LogicNMRer framework are expected to pro-
mote the research of LLMs on non-monotonic
reasoning in natural language.

1 Introduction

Non-monotonic reasoning has been extensively
studied in the field of traditional artificial intelli-
gence (McCarthy, 1986; McDermott and Doyle,
1980). Reiter (1980) proposed default logic to
formalize non-monotonic reasoning. The key to
non-monotonic reasoning is to find all extensions
based on the default theory, where an extension
is a set of plausible conclusions. However, differ-
ent default rules in a default theory may lead to

Facts: Toby is not noisy. Toby is not intelligent. Toby is
not alert. Toby is important. Toby is not gorgeous.
Default Rules: If someoneA is not intelligent then he is
delicious, unless he is not drab. If someoneA is delicious
and not alert then he is huge, unless he is grieving. If
someoneA is not noisy and delicious then he is different,
unless he is dead. If someoneA is not gorgeous then he is
grieving, unless he is huge.

The number of Extensions is: 2
E1: [Toby is delicious. Toby is grieving. Toby is different.]
E2: [Toby is delicious. Toby is huge. Toby is different.]

Question Answer
| QL: Toby is delicious. Al: True
Q2: Toby is not huge. A2: Unknown
Q3: Toby is not different. A3: False

Figure 1: A simplified example of skeptical reasoning
mode in the MultiLogicNMR dataset.

multiple extensions; for example, given a default
theory, “John is a professor. John is a chair. The
professor usually teaches. The chair usually does
not teach.”. This default theory can get two ex-
tensions; in one, John is a typical professor and
so teaches; in the other, he is a typical chair and
does not teach (van Harmelen et al., 2008). In addi-
tion, skeptical and credulous reasoning are usually
used in multiple extension non-monotonic reason-
ing. Skeptical reasoning only believes in common
facts in all extensions, while credulous reasoning
believes in facts in any one extension (van Harme-
len et al., 2008). Non-monotonic reasoning also has
a wide range of application scenarios, such as daily
decision-making (Szalas, 2019) and legal reasoning
(Gordon, 1988). Recently, large language models
(LLMs) have achieved excellent performance in
many logical reasoning tasks (Parmar et al., 2024),
so exploring their logical reasoning ability in mul-
tiple extension non-monotonic reasoning has posi-
tive significance.

Researchers have proposed some non-monotonic
reasoning benchmarks and used the prompt-based
and fine-tuned LLMs to evaluate the models’



non-monotonic reasoning ability. Rudinger et al.
(2020) initially used NLI datasets to build a non-
monotonic reasoning benchmark - LI through
crowdsourcing. However, §-N LI entangled non-
monotonic reasoning with commonsense reason-
ing. Recently, Xiu et al. (2022) constructed a natu-
ral language non-monotonic reasoning benchmark
LogicNMR based on automatic synthesis, thereby
reducing the interference of commonsense knowl-
edge. However, the LogicNMR only involves non-
monotonic reasoning with a single extension. Re-
cently, Parmar et al. (2024) proposed a compre-
hensive logic reasoning benchmark, including non-
monotonic logic, LogicBench. They generated sim-
ple non-monotonic reasoning samples based on
eight default rules: Reasoning with Priorities, De-
fault Reasoning with Irrelevant Information, etc.
However, the prompt-based and fine-tuned LLMs
still showed great challenges in non-monotonic rea-
soning tasks. On the one hand, the prompt con-
tent affected the performance of the prompt-based
LLMs. On the other hand, although the fine-tuned
LLMs had better logical reasoning ability, they did
not really master non-monotonic logical reasoning.

This paper first proposes a non-monotonic rea-
soning benchmark with multiple extensions, Mul-
tiLogicNMR. Figure 1 shows a simplified sample
in skeptical reasoning mode from the MultiLogic-
NMR. The question “Toby is delicious” appears in
all extensions E1 and E2, so the answer is “True”.
However, the question “Toby is not huge” only ap-
pears in extension E2, so this answer is “Unknown”.
Based on MultiLogicNMR, we explore the non-
monotonic reasoning capabilities of open-source
and closed-source LLMs in skeptical and credu-
lous reasoning, respectively. To further evaluate the
generalization of LLMs on multiple extension non-
monotonic reasoning tasks, we also constructed
a dataset MultiLogicNMR_OOD involving more
extensions and default rules. In addition, inspired
by the symbolic solver in Algorithm 2 in the Ap-
pendix A.2, we propose a neural-symbolic frame-
work for non-monotonic reasoning with multiple
extensions, MultiLogicNMRer. The main idea of
the MultiLogicNMRer framework is based on a
symbolic solution strategy, and each module in the
framework uses prompt-based LLMs to perform
reasoning to complete different operations, thereby
computing all extensions and answering questions.

The main contributions of this paper include the
following points:

* This paper automatically synthesized a non-
monotonic reasoning dataset with multiple
extensions, MultiLogicNMR, and systemati-
cally explored the non-monotonic reasoning
capabilities of LLMs in skeptical and credu-
lous reasoning modes, respectively.

* We propose a neural-symbolic framework,
MultiL.ogicNMRer, for multiple extension
non-monotone reasoning task. MultiLogicN-
MRer can generate all the extensions to an-
swer the question.

* Experiment results show that the proposed
MultiLogicNMRer performs better than the
prompt-based LLMs and even exceeds the
fine-tuning LLMs.

2 Related Work

2.1 Preliminaries

Similar to LogicNMR (Xiu et al., 2022), we use
default logic (DL) as a formal language for Multi-
LogicNMR in this work. The default rule is of the
form: « : 1, 52,...,Bm/7y, where o, 3; and ~y
are formulas in first-order logic, « is called the pre-
requisite, 31, Bs, ..., Bm the justifications, and
the conclusion. This default rule can be interpreted
as if the prerequisite fact « is believed, and each
justifications 31, 39, ..., 8m can be consistently
believed, then « can be deduced. A default theory
T" consists of a pair of fact sets and default rule
set ' = (D, W), where D is the set of default
rules and W is the set of facts. A set of sentences
E is an extension of I' = (D, W) iff for every
sentence 7, E satisfies 7 € Eiff WU A | 7,
where A = {y|lao: /vy € D,a € E,~f ¢ E}.
So, an extension E is the set of entailments
of {W U ~}, where the v are consequents
from D. For example: the default rules D =
{prof(x) : teaches(x) [ teaches(z), chair(x) :
—teaches(z) / —teaches(x)}, fact set
w = {prof(J), chair(J)}, this de-
fault theory has two extensions FE; =
{prof(J), chair(J), teaches(J)}, Es =
{prof(J), chair(J), —teaches(J)}. Any such
extension will be interpreted as an acceptable set
of beliefs that one may hold about the incompletely
specified world W (Reiter, 1980).

2.2 Benchmarks and Approaches

Existing work has proposed some natural lan-
guage non-monotonic reasoning datasets. Recently,



Kazemi et al. (2023b) proposed a defeasible rea-
soning benchmark, BoardGameQA, which imple-
ments defeasible reasoning on conflicting knowl-
edge bases through rule-based priority. However,
the defeasibility in BoardGameQA is caused by
conflicting rules, while the non-monotonicity in
the proposed multiLogicNMR is caused by default
conditions. In addition, Antoniou and Batsakis
(2023) conducted a preliminary evaluation of the
non-monotonic reasoning capabilities of the Chat-
GPT3.5 through the prompt-based method on ten
classic examples. However, the ChatGPT3.5 still
has a big gap with symbolic solvers. In this pa-
per, the samples in MultiLogicNMR often involve
multiple non-monotonic reasoning rules and may
generate multiple extensions.

The prompt-based LLMs have been proven to
have good logical reasoning capabilities. Zero-shot
prompting directly instructs LLMs to perform a
task without giving any examples, while few-shot
prompting provides explicit examples (Brown et al.,
2020; Kojima et al., 2022). In addition, Wei et al.
(2022) proposed that the chain-of-thought prompt-
ing, including intermediate reasoning steps, can
improve the reasoning ability of LLMs on complex
tasks. Inspired by the chain-of-thought prompting,
there have also proposed prompting methods in-
volving more topological structures, such as tree
of thoughts (Yao et al., 2023), graph of thoughts
(Besta et al.), etc. The prompt-based methods do
not require updating model parameters, but their
reasoning performance is limited.

The fine-tuning method usually refers to fine-
tuning model parameters in a fully supervised man-
ner based on samples from downstream tasks. How-
ever, the model parameters of LLMs are enormous,
and fine-tuning the model requires many training
samples and computing resources. To solve these
problems, on the one hand, a large number of sam-
ples are constructed through automatic synthesis
(Wang et al., 2024; Guo and Chen, 2024); For ex-
ample, Clark et al. (2020) used the synthetic de-
ductive reasoning dataset RuleTaker to fine-tune
the pre-trained LMs, verifying that the LMs can
perform soft reasoning on natural language. On the
other hand, some parameter-efficient fine-tuning
methods are proposed, such as adapter tuning (Hu
et al., 2022) and partial parameter tuning (Zaken
et al., 2022) and so on. This paper mainly evalu-
ates the generated MultiLogicNMR benchmark by
prompting and fine-tuning LLMs.

Neural-symbolic framework have been widely

used in deductive reasoning tasks, mainly including
based on search and external solvers (Kautz, 2022).
Search-based neural-symbolic methods usually use
LMs for single-step reasoning in classical search al-
gorithms (Hong et al., 2022). For example, Kazemi
et al. (2023a) combines the capacity of LMs to
handle naturalistic text input with the backward
chaining algorithm, to solve the logical reasoning
task. Recently, Hao et al. (2023) combined LLMs
and Monte Carlo tree search (Browne et al., 2012)
to achieve logical reasoning. Although the search
algorithm can enhance the planning ability of the
LLMs, the cost of calling LLMs is very high. In
addition, The neural-symbolic solving based on
external solvers is to use external solvers to solve
the formal language translated by LLMs (Olausson
et al., 2023). For example, Pan et al. (2023) com-
bines a symbolic solver and LLMSs, providing an
effective way to achieve faithful logical reasoning.
However, The formal language translated by LLMs
is prone to grammatical errors and information loss,
while the symbolic solver requires strict and correct
formal input (Xu et al., 2024). In this paper, we
build a neural-symbolic framework MultiLogicN-
MRer for non-monotonic reasoning based on the
classic answer set programming (ASP) algorithm.

3 MultiLogicNMR Benchmark

This paper automatically synthesizes the MultiLog-
icNMR dataset' to explore the non-monotonic rea-
soning capabilities of LLMs in skeptical and cred-
ulous reasoning. The algorithm 1 in Appendix A.1
gives the process of generating the MultiLogic-
NMR dataset. The construction of the MultiLogic-
NMR mainly includes the following steps:
Generate Default Theory: The constants and
variables are called terms, and P(t1,...,t,) is
an atom if P is an n-ary predicate symbol and
t1,...,t, are terms. A literal is an atom or the
negation of an atom. We first randomly select pred-
icates from the predicate pool to generate prereq-
uisite literal, justification literal, and conclusion
literal. It is required in generating the default rule
that the « is the conjunction of at most two literals,
justifications is a set containing at most two literals
Bi, and the +y is a literal. Consistent with the predi-
cate list in LogicNLI, the predicate pool contains
unary predicates and binary predicates Tian et al.
(2021). To ensure the default theory has multiple
extensions, the literals in the prerequisite and con-
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clusion in different default rules may be the same,
and the literals in the justifications and conclusions
in different default rules may negate each other.
After generating all the default rules, we randomly
select entities from the entity pool to instantiate
the prerequisite literals that are not included in the
conclusion into facts .

Convert DL to ASP: Baral and Gelfond (1994)
pointed out that when « is a conjunction of literals,
b1, B2, - - -, Bm and v are all literals, such a default
rule can be translated into an answer set rule -y :-
a,not - fB1,...,not - By,. To ensure the correct-
ness of the answers, we convert the default rule into
an ASP and then call the ASP solver for reasoning.

Solving: To ensure the correctness of the answer
of the questions, we use the symbolic solver? to
solve. First, all the extensions of the default theory
are generated based on the symbolic solver, and to
generate the correct answer of questions based on
the extensions in the skeptical and the credulous
reasoning, respectively. Given a default theory I'
and questions (). A are all extensions. F € A rep-
resents an extension. Equation 1 shows the answer
to the question A(T', Q) in the skeptical reasoning,
and equation 2 shows the answer to the question
A(T, Q) in the credulous reasoning. The answer
for the question may be True (T), False (F), and
Unknown (M).

T,ifVe EF Q
AT, Q)={ F,ifVg E+ -Q )
M, if3pE¥F Q. 3IpE¥F -Q
T,ifIpEFQ
AT, Q) =1 F, ifIg B+ —Q )

M, Ve EF Q. E¥F -Q

Translate into Natural Language: Trans-
late the default theory into natural language ac-
cording to the template. For example, the rule
“= gorgeous(x) :- grieving(x),not huge(x).” is
translated into “If someoneA is grieving, then he is
not gorgeous, unless he is huge”.

We generated MultiLogicNMR datasets in skep-
tical and credulous reasoning modes, respectively,
and Table 6 in Appendix A.1 shows the statistics of
the MultiLogicNMR. Specifically, the training, de-
velopment, and test sets contain 5000, 500, and 500
samples, respectively, and each sample contains
three questions with different answer labels. The

Zhttps://pypi.org/project/clyngor/

number of samples on the number of extensions
E ={1,2,3,4,5} is equal. Figure 1 shows a sim-
plified example from the MultiLogicNMR dataset
in skeptical reasoning. In addition, to measure
the generalization of LLMs, we also generated the
non-monotonic reasoning dataset MultiLogicNMR-
OOD with more default rules and a more significant
number of extensions.

4 MultiLogicNMRer Framework

Inspired by the ASP symbolic solver in Appendix
A.2 (Gebser et al., 2012), we propose a neural-
symbolic framework for multiple extension non-
monotonic reasoning, MultiLogicNMRer. Figure
2 shows the framework of the MultiLogicNMRer,
which includes five modules: Grounding Module,
Upper and Lower Bound Initialization Module, Re-
duction Module, Reasoning Module, and Selection
Module. Firstly, the upper and lower bounds ini-
tialization modules are used to generate the initial
upper and lower bounds fact sets of extension based
on the instantiated default rules, and the reduced
rules are generated based on the upper and lower
bounds fact sets, respectively. Then, the upper and
lower bounds facts are updated using the conclu-
sions generated by the reduced rule. If the updated
lower bound fact set is still a subset of the upper
bound fact set, a fact is selected from the upper
bound fact set and added to the lower bound set.
Then, the reduction rules are inferred based on the
updated upper and lower bound fact sets, and the
upper and lower bound fact sets are updated again
using the generated conclusions. Finally, the pro-
cess is iterated until the upper and lower bounds
facts are consistent and an extension is found. Ap-
pendix A.5 shows the full prompts used in different
modules of the framework MultiLogicNMRer.
Grounding Module: The MultiLogicNMRer
framework implements the grounding module us-
ing prompt-based LLMs. It is mainly used to refer-
ence the resolution of rules. For example, the rule
“If someoneA is handsome and not intelligent then
he is delicious, unless he is not drab.” is instanti-
ated as “If Toby is handsome and not intelligent
then Toby is delicious ,unless Toby is not drab.”.
Upper and Lower Bound Initialization Mod-
ule: This module extracts facts from the rules
through fact extraction prompts to initial upper and
lower bound fact sets. Since the extension must
contain the original facts in the default theory, the
lower bound fact set is initialized with the original
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1: Grounding Module Initialization Module

5: Selection Module Generated Extensions

TA: Toby is handsome.
Toby is not noisy.

Rules: If Toby is
handsome and not
intelligent then Toby
is delicious, unless =1

Toby is not drab. ... FA: Toby is handsome.

Toby is not noisy.
Toby is delicious. Toby
is not drab.

TA: Toby is handsome. E1 ! Tobyishandsome. )
Toby is not noisy. i Tobyisnotnoisy. |
Toby is delicious. i Toby is delicious. |

]

FA: Toby is handsome.
Toby is not intelligent.

"

i Toby is not noisy.
i_ Toby is delicious.

Toby is not drab.

' N

TA Rule 1: If Toby is
handsome and not
intelligent then Toby is
delicious. ...

TA Rule 2: Inconsistent

Facts: Toby is handsome|
Toby is not noisy. ...
Rules: If someoneA is
handsome then he is
delicious, unless he is not
drab.

If someoneA is not noisy
then he is not drab, unless
he is delicious. ...

FA Rule: Inconsistent

TA Rules:
Toby is delicious. ...

Q1: Toby is delicious. (T)

Q2: Toby is not different. (F)

FA Rules: None ... Q3: Toby is not huge. (M)

Knowledge Base 3: Reduction Module

4: Reasoning Module Questions

Figure 2: The framework of the proposed neural-symbolic method MultiLogicNMRer.

facts. In addition, the upper bound fact set should
also include all the facts extracted from the rules.

Reduction Module: The reduction module ob-
tains the reduction rules generated by the default
rules under the upper and lower bound fact sets, re-
spectively. For a default rule « : 31, B2, . .., Bm /s
if all the justification (3; does not appear in the
lower bound set, the default rule can be reduced to
a /7. Otherwise, the rule cannot be reduced.

Reasoning Module: The reasoning module uses
reasoning prompting to require the LLMs to reason
about the reduced rules under the lower and upper
bound fact sets, respectively, thereby generating
conclusions. Then, the upper and lower-bound fact
sets are updated using the conclusions generated by
reduction rules. Specifically, the conclusions gen-
erated by the reduced rules under the upper bound
fact set should be included in the lower bound fact
set. In comparison, the upper bound fact set should
only contain the conclusions generated by the re-
duced rules in the lower bound fact set.

Selection Module: When the updated lower-
bound fact set is still a subset of the upper-bound
fact set, select a fact from the upper-bound set
to add to the lower-bound fact set, and the se-
lected fact is removed from the upper-bound fact
set. Then, the updated lower and upper bound facts
are used to reason for the reduction rules. In the se-
lection module, we use cosine similarity® to select
facts from the upper bound fact set.

*https://huggingface.co/sentence-transformers/distilbert-
base-nli-stsb-mean-tokens

S Experiments

This section first explores the non-monotonic rea-
soning capabilities of prompt-based and fine-tuning
LLMs using skeptical and credulous reasoning on
the MultiLogicNMR. Then, the proposed neural-
symbolic framework MultiLogicNMRer is evalu-
ated. In addition, we also explore the generaliza-
tion of these methods on the out-of-domain dataset
MultiLogicNMR_OOD.

5.1 Experimental Settings

We systematically evaluates the non-monotonic
reasoning capabilities of open-source LLMs
(gpt-3.5-turbo  (ChatGPT3.5) (Brown et al.,
2020), gpt-4o0 OpenAl (2023), claude-3-sonnet-
20240229* (Claude3), gemini-pro> (Gemini-pro),
DeepSeek-chat (Bi et al., 2024)) (DeepSeek) and
closed-source LLMs (Meta-LLAMA?3-8B-Instruct
(LLAMA3) (Touvron et al., 2023), gemma-7b-
it® (Gemma), Mistral-7B-Instruct_v0.2 (Mistral)
(Jiang et al., 2023)) in skeptical and credulous
reasoning, respectively. The zero-shot and few-
shot in-context learning strategies were used to
evaluate the prompt-based LLMs, and the LoRA
fine-tuning method was used to fine-tune the open-
source LL.Ms. In addition, we use the accuracy as
the evaluation metric’.

*https://www.anthropic.com/news/claude-3-family
Shttps://blog.google/technology/ai/google-gemini-ai/
®https://ai.google.dev/gemma?hl=zh-cn
"https://pypi.org/project/scikit-learn/



5.2 Experimental Results
5.2.1 Results of Prompting-based LLMs

Tables 1 show the results of LLMs based on the
zero-shot prompting on MultiLogicNMR in skep-
tical and credulous reasoning, respectively. The
zero-shot prompting is shown in Appendix A.3. Ac-
cording to the results in Table 1, the non-monotonic
reasoning capabilities of LLMs are relatively lim-
ited, among which LLAMA3 has the best perfor-
mance among open-source LLMs. The average
accuracy on all number of extensions can reach
40.4%. Among the closed-source LLMs, GPT-
40 and Claude3 perform best and are equivalent,
with the average accuracy reaching 54.5%. The re-
sults also show that closed-source LLMs still have
more advantages than open-source LLMs in non-
monotonic reasoning tasks. Secondly, the results of
models in credulous reasoning are slightly higher
than those in skeptical reasoning. This may be be-
cause credulous reasoning only needs a particular
extension to get the correct answer, while skeptical
reasoning needs to find all extensions to the correct
answer. Third, regardless of whether in skeptical
or credulous reasoning, the model’s performance
does not change much as the number of extensions
increases. This illustrates that the number of ex-
tensions is not the main challenge for LLMs in
non-monotonic reasoning tasks.

Table 1: Results of LLMs based on the zero-shot prompt-
ing on MultiLogicNMR in skeptical and credulous rea-
soning, respectively.

Model Mode Test (Accuracy (%))

Extension 12|13 |4]5 |Avg.
Gemma 37.0(38.0/129.3|32.6|31.0/33.6
Mistral 39.3|39.3|36.7|36.7|38.6|38.1
LLAMA3 Skep 40.3139.0(41.7|35.0|42.3|39.7
Gemini-pro 42.3145.0(49.6/41.6|52.3|46.2
Claude3 tical 53.4|52.3|55.0|50.3|55.0{53.5
ChatGPT3.5 41.3146.7|44.6/45.6/49.6/45.6
DeepSeek 38.0|37.0140.0/41.0/45.3(40.2
GPT-40 57.0/58.3|56.3|53.6/58.3/56.7
Gemma 32.0|35.0|36.0|38.0/36.7(35.5
Mistral 40.0/140.6|39.0/44.043.0/41.3
LLAMA3 36.7/41.6/43.0|42.3142.3141.2
Gemini-pro |Cred [44.645.6/45.6/48.3|48.0/46.5
Claude3 -ulous|53.3(49.0|57.6|56.7|58.6|55.1
ChatGPT3.5 45.3|44.3|147.3|47.3|149.8/46.8
DeepSeek 41.0/42.0(39.6/36.3|38.3|39.5
GPT-40 59.3/56.058.3/62.7|62.7|59.8

Table 2: Results of LLMs based on few-shot prompt-
ing on the MultiLogicNMR in skeptical and credulous
reasoning.

Model Mode Test (Accuracy (%))

Extension 1123|435 |Avg
Gemma 34.0(32.0/129.6|32.3|30.0/31.6
Mistral 36.3|40.6/36.0|36.0|38.0{37.4
LLAMA3 Skep 36.0|34.6/33.3|35.0/39.3|35.7
Gemini-pro 47.3148.7|47.3|145.646.0/47.0
Claude3 tical 56.3|59.3|57.6|57.4/66.7|60.7
ChatGPT3.5 39.3|36.7,33.3|30.340.6|36.1
DeepSeek 51.7|48.0/149.3|45.3|50.348.9
GPT-40 64.2|62.5|58.3|58.3/58.360.3
Gemma 31.3|32.0|31.7|34.0/33.3|32.5
Mistral 35.3|36.0|40.3]40.0/38.3(38.0
LLAMA3 33.0(35.3|36.0|37.0|33.734.9
Gemini-pro |Cred |46.7/49.3149.7|49.7|58.0|49.9
Claude3 -ulous|56.7(55.7|56.3|60.0|63.3|58.4
ChatGPT3.5 43.3140.6|39.6/42.6|41.6/41.6
DeepSeek 55.6|51.0|52.6|52.0|55.3|53.3
GPT-40 60.0/57.0/66.0/62.0/65.0(62.0

Tables 2 show the results of LLMs based on few-
shot prompting in skeptical and credulous reason-
ing, respectively. The few-shot prompting shown
in Appendix A.3 includes three samples. Com-
pared with models based on zero-shot prompting,
the results of three open-source LLMs based on the
few-shot prompting have declined. The possible
reason is that the examples in the prompts interfere
with the model’s reasoning. Among the closed-
source LLMs, gpt-4o, claude3, and Deepseek have
all improved, among which gpt-4o performed the
best, with an average accuracy of 60.3% and 60.5%
in skeptical reasoning and credulous reasoning, re-
spectively. The Claude3 model also shows close
results to gpt-4o based on few-shot prompting. Sur-
prisingly, the ChatGPT3.5 showed a similar trend
to the open-source LLMs, with a drop of nearly
7%. In general, the few-shot prompting can further
improve the non-monotonic reasoning capabilities
of LLMs with strong reasoning performance.

5.2.2 Results of Fine-tuning LLMs

To further evaluate the non-monotonic reasoning
ability of the LLMs, we use the LowRank Adap-
tation (LoRA) to fine-tune the open-source LL.Ms
based on the training set. All details of the fine-
tuning experiments are described in Appendix A.4.

Figure 3 shows the results of the fine-tuned
LLMs on MultiLogicNMR. First, the average accu-
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Figure 3: Results of fine-tuning models. The solid and
dashed lines represent the results of models in skeptical
and credulous reasoning, respectively.

racy of fine-tuned LLAMAS3, Mistral, and Gemma
models on all the number of extensions in skeptical
reasoning is 66.3%, 60.2%, and 54.7%, respec-
tively, which are all higher than the correspond-
ing prompt-based LLMs. Second, the fine-tuned
LLAMAS3 performed better than the Mistral and
Gemma. In addition, as the number of extensions
increases, the accuracy of the fine-tuned models
gradually increases. The possible reason is that
the fine-tuned models do not learn non-monotonic
reasoning but make predictions based on some cor-
relation, and the increase in the number of exten-
sions increases the correlation between context and
question, resulting in the fine-tuned models having
a greater probability of answering the question cor-
rectly. Finally, It is worth noting that the results of
the Gemma in skeptical reasoning are much lower
than those in credulous reasoning, indicating that
the model is unstable and has not mastered non-
monotonic reasoning.

5.2.3 Results of the MultiLogicNMRer

To evaluate the proposed MultiLogicNMRer, we
use closed-source LLMs (ChatGPT3.5, DeepSeek-
chat) and open-source LLMs (LLAMA3, Mistral)
as the basic model in the MultiLogicNMRer and
evaluate them on the MultiLogicNMR test set.
Table 3 shows the results of the MultiLogicNM-
Rer based on different basic models. The results
show that MultiLogicNMRer has a more significant
improvement than the corresponding prompt-based
basic model and is close to or even exceeds the

Table 3: Results of the proposed MultiLogicNMRer,
abbreviated as MLNMRer, on the MultiLogicNMR
dataset. The model in parentheses indicates the basic
model used.

Models(Ours) [Mode|  Test (Accuracy (%))

Extension 1 2 B 4 5 |Avg
%Eg{%}}s) s 70.6/69.3(72.0/67.3(72.0/70.3
(DeepSeck) -tical (75.0(72.2|74.3|75.3(77.3|74.8
1(\&111;\441‘5) 71.0(71.3(72.3{70.376.3|72.3
?ﬁiﬁiﬂ 63.355.855.6145.8/59.1/55.9
?&1;%1;%5) - 73.768.063.0[70.6/65.7/68.2
?f)liﬁ‘gf:;) ~ulous|80.0/69.3(73.3/71.0/74.0/73.5
XILNAII\/I;{AC;) 73.3(62.7/64.0/67.3165.7/66.7
?&iﬁ%ﬁr 60.8/52.8[51.7/60.053.3|55.7

results of the fine-tuning methods. For example,
when DeepSeek was the base model, the average
accuracy increased from 51.1% to 74.1%; when
LLAMAZ3 was the base model, the average accu-
racy increased from 40.5% to 69.5%. These verify
the effectiveness of the MultiLogicNMRer. In ad-
dition, the results of the MultiLogicNMRer on dif-
ferent numbers of extensions are consistent, which
illustrates the stability and reliability of MultiLog-
icNMRer on the multiple extension non-monotonic
reasoning. It is worth noting that although the re-
sults of the MultiLogicNMRer method based on
the Mistral have declined to a certain extent, they
are still higher than the prompt-based Mistral. The
possible reason for the decline is that the basic
model Mistral has poor logical reasoning capabil-
ities, which leads to poor performance of some
modules in the MultiLogicNMRer framework, thus
affecting the overall performance.

5.3 Generalization

To explore the generalization of the LLMs on
non-monotonic reasoning tasks, we evaluate the
model’s performance on the out-of-domain dataset
MultiLogicNMR_OOD. Compared with the Mul-
tiLogicNMR dataset, the MultiLogicNMR_OOD
contains more default rules and extensions. Table 6
in Appendix A.1 shows the statistical information



Table 4: Results of methods on the out-of-domain
dataset MultiLogicNMR_OOD.

Model Met Mode Test (Accuracy)
Extension |-hod 6 | 8|10]12 |16 |Avg
Gemma Skep P3P0 735,031 333.032.9
Mistral ST 33.734.636.334.333.334.5
LLAMA3 [Zero 37.035.034.740.732.736.0
Gemma__[Shot/  _ 32.331.731.031.034.332.1
Mistral o 30-331.333.034.330.031.8
LLAMA3 YOUS 36 734.082.638.635.035.4
Gemma Skep 07 15-075.070.069.671.5
Mistral i) [48.054.353.655.751.052.5
LLAMA3 |Fine 66.0064.767.063.362.664.7
Gemma Tune Cred 66.061.3/64.359.063.062.7
Mistral il 86-764.065.363.366.365.1
LLAMA3 W OUNe6.771.071.3(70.373.070.5
MLNMRer Skeplsg 765.072.369.365.366.3
(LLAMA3) ours —élcal
red |o ) 7152 7151.053.655.0153 4.
-ulous

of MultiLogicNMR_OOQOD.

Table 4 gives the results of methods on the Multi-
LogicNMR_OOD. The results of the prompt-based
LLMs are still poor, which further reveals the lim-
itations of the prompt-based LLMs. The results
of the fine-tuned LL.Ms only slightly decreased on
MultiLogicNMR_OQOD. The average accuracy of
three fine-tuned LLMs in the skeptical reasoning
on MultiLogicNMR_OQOD datasets was 62.9%, re-
spectively, indicating that increasing the number of
rules and the number of extensions will not bring
more challenges to the fine-tuned models. In addi-
tion, the result of MultiLogicNMRer in skeptical
reasoning is 66.3%, which is still higher than the
fine-tuning LLMs. Although the result of Multi-
LogicNMRer in credulous reasoning is 53.4%, it
is still higher than prompt-based LLMs. These re-
sults show that the proposed MultiLogicNMRer
framework has a certain degree of generalization.

5.4 Analysis and Case Study

To analyze the challenges of LLMs on the Mul-
tiLogicNMR, Figure 4 shows the distribution of
answers generated by the models in skeptical rea-
soning. First, the results show that the zero-shot
prompt-based ChatGPT3.5 and LLAMAS3 have the
lowest accuracy for questions with Unknown, espe-
cially ChatGPT3.5, which only answers correctly
35/500. In addition, although the fine-tuning meth-
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Figure 4: The distribution of answers generated by mod-
els in skeptical reasoning. The ZS and FT represent
zero-shot prompting and fine-tuning, respectively.

ods can further improve the model’s accuracy on
questions with True and False, it still performs
poorly on questions with Unknown. The possible
reason is that the models need to find all the exten-
sions to answer questions with Unknown correctly
in skeptical reasoning, and it is still challenging
for LLMs to find all the extensions. Moreover,
Figure 4 shows that MultiLogicNMRer based on
LLAMA3 can correctly answer 290/500 questions
with Unknown while maintaining high accuracy
for questions with other labels. These results fur-
ther illustrate that the MultiLogicNMRer has more
advantages and effectiveness than the prompting
and fine-tuning methods.

6 Conclusions

In this paper, we automatically synthesize a non-
monotonic reasoning dataset with multiple exten-
sions, MultiLogicNMR, and propose a neural-
symbolic framework, MultiLogicNMRer, for non-
monotonic logical reasoning in natural language.
MultiLogicNMR can be used to explore the non-
monotonic reasoning capabilities of LLMs. Our
work reveals that the prompt-based LL.Ms still face
significant challenges on the non-monotonic rea-
soning task, and the fine-tuned LL.Ms do not un-
derstand non-monotonic reasoning. However, the
performance of the MultiLogicNMRer can not only
close and even exceed the fine-tuned models, but
the reasoning process is also more reliable. The
proposed MultiLogicNMR(er) takes a new step
towards achieving a reliable logical reasoning ap-
proach with LLMs on non-monotonic reasoning.



7 Limitations

Although the proposed MultiLogicNMR and
neural-symbolic framework MultiLogicNMRer
can effectively explore and improve the non-
monotonic reasoning ability in LLMs, there are
some limitations. First, although the automatic
synthesis method can generate a large number of
samples according to constraints and ensure the
correctness of answer labels, the MultiLogicNMR
is translated from a formal language through a tem-
plate, which makes the generated sentences rela-
tively simple and still has a certain distance from
the real natural language sentences. In addition,
real logical reasoning scenarios often involve mas-
sive premise facts. However, the number of facts
and rules in the MultiLogicNMR is usually small,
which makes it challenging to evaluate the non-
monotonic reasoning ability of LLMs in real scenar-
ios based on MultiLogicNMR. Moreover, although
the basic model in the proposed neural-symbolic
framework MultiLogicNMRer does not need to be
fine-tuned, it is necessary to iteratively call LLMs
in multiple modules, which increases the cost of
the MultiLogicNMRer framework.
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A Appendix
A.1 MultiLogicNMR Dataset

Algorithm 1 describes the generation process of the
MultiLogicNMR dataset. Lines 2 to 9 in Algorithm
1 show how to generate the default rules in each
sample iteratively. Specifically, Lines 3, 5, and 6 in
Algorithm 1 randomly select the prerequisite literal
P, justifications literal -/, and conclusion lit-
eral " of the default rule from the predicate pool
Pp. In a default rule, we require that the prerequi-
site v is the conjunction of at most two literals r}",
Justifications is a set containing at most two liter-
als 7{"*, and the conclusion + is a literal r{°". In
addition, to be more capable of generating default
theories with multiple extensions, the literals in
the prerequisite and conclusion in different default
rules may be the same, and the justifications and
conclusions in different default rules may negate
each other. After generating all the default rules,
line 10 shows that we randomly select entities from
the entity pool Ep to instantiate the prerequisite
literals not included in the conclusion into facts W.
In addition, we generate questions () based on the
conclusion literals 77" that are not included in the
prerequisites. To generate answers to questions,
we first call the symbolic solver® to generate all
extensions of the default theory (line 12), and then
use the skeptical and credulous reasoning to rea-
son about the questions based on the extensions to
generate answers (line 13). Finally, we translate all
facts W, and default rules R, questions (), answers
A, and extensions F into natural language based
on the template (line 14).

Table 6 gives the statistical information of the
generated MultiLogicNMR dataset. Among them,
the samples in MultiLogicNMR_OOD have more
rules and involve more extensions than MultiLogic-
NMR. They are used to measure the generalization
of LLMs on extended non-monotonic reasoning
tasks.

8https://pypi.org/project/clyngor/
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Algorithm 1: MultiLogicNMR Dataset
Generation Algorithm

10

11

12

13

14

Input: Predicates Pool Pp, Entity Pool Ep,
Iterative Number 7.
Output: Facts W, Default Rules R, Questions Q,
Extensons E, Answers A.

Initialization: iter = 1,T =10, W = 9, R = &,
Q=g

while iter < T do

Generate prerequisite literal "
predicate 75" from Pp or RE™;

R%”‘E — R];)TC U r]}))’re;

Generate justifications literal 7] based on
predicate rg’“ from Pp or RZ"™.
R‘ZD’U,S — R‘;DUS U T‘;:’US;

Generate conclusion literal r;°"
rp°" from Pp or RP™.

R(‘POTL — R%DU.S U r%‘on;

Generate default Rule R; : RRW’ R
is the conjunction of at most two literals 77",
R{™® at most two literals r]“*, and

RZCOTL — TZCOTL ;

R=RUR,;,iter =iter +1;

based on

, predicate

pre, pjus
L ‘Rl

end

Generate fact literal 1/ *“* based on predicate
R{:’act c R;};’re\ (}:Don’W:WUVVvlfact :

Generate question literal R/““* based on predicate
R(IZD’U.E«S e RZI):”V‘E m RCO’!L’ Q — Q U R;]’U,ES ;

Generate default theory extensions E through
symbolic solvers’. ;

Generate answers A to questions () based on the
expansion F. ;

Convert the facts, default rules and questions into
natural language ;




A.2 Answer Set Solver

Algorithm 2 gives the symbolic solver for answer
set programming. The idea of the proposed neural-
symbolic framework MultiLogicNMRer is consis-
tent with algorithm 2. In Algorithm 2, first, the
input default theory is instantiated (line 16), and
then the upper bound set U and the lower bound set
L of the default theory are respectively calculated
(line 17). Finally, the function expand,, is called
to update the upper and lower bound fact sets to
generate the expansion (lines 1-7). Specifically, the
lower bound set should contain the conclusions of
the reduction rules under the upper bound set (line
5), while the upper bound set should only contain
the conclusions of the reduction rules under the up-
per bound set (line 6). The lower bound is returned
as an extension when the upper and lower bounds
are consistent (line 11). If the updated lower bound
set is included in the upper bound set, the exten-
sion search fails, and failure is returned (line 10);
if the updated upper bound is still a superset of the
lower bound, a random literal is selected from the
upper bound set to be added to the lower bound
set. The literal is deleted from the upper bound set.
The upper and lower bounds set will be updated
and searched again. All the upper and lower bound
set pairs are searched, and all the extensions in the
default rules are found.

It is worth noting that this symbolic solver only
applies to normal logical program rules. On the
one hand, the default rules in MultiLogicNMR gen-
erated under specific constraints can be converted
into equivalent logic programs; on the other hand,
although the proposed MultiLogicNMR dataset in-
volves classical negation —, it is impossible to in-
clude atoms and the negation of atomic in the same
extension at the same time. Hence, the symbolic
solver’s solution idea still applies to the proposed
non-monotonic reasoning benchmark MultiLogic-
NMR.
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Algorithm 2: Classic ASP solving algo-
rithm

1 expand,(L,U) ;

2 repeat ;
3 L'+ L;
4 U+~ U;

L« L'uCn(PY");
U« U nCn(PYy;
Until (L = LYor L ¢ U;
solverp(L, U) ;
(L,U) < expand,(L,U) ;
10 if L ¢ U then failure ;
1 if L = U then output L ;

wm

o e 9

12 else a < choose(U \ L) ;
13 solve,(L U {a}, U);
14 solvey(L, U \ {a} );
15 main() ;

16 P + ground(input) ;

17 init(L, U) ;
18 solvey(L, U) ;




A.3 Zero/Few-Shot Prompts
Zero-Shot Prompting in Skeptical Reasoning

Task Description: Given contexts and
question, You need to generate answer labels
for questions in a given context. The answers
to the questions are labeled “True”, “False’
and “Unknown”.

If the question can be inferred under all
reasoning paths based on the context, and the
negation of the question cannot be inferred
under all reasoning paths based on the context,
the answer label of the question is: “True”;

If the negation of the question can be inferred
under all reasoning path based on the context,
and the question cannot be inferred under
all reasoning path based on the context, the
answer label of the question is: “False”;

If the question and the negation of the
question cannot be deduced under a certain
reasoning path based on the context, the
answer label of the question is: “Unknown”.
You must generate answer labels for the
question.

The input format is: Context: “ 7. Ques-
tion:* 7.

The output format is: The answer label of

731

the question is:* ™.

’

Note that you only need to generate the
answer label for the question without giving
an explanation or justification. Please read the
context carefully and answer the questions.
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Zero-Shot Prompting in Credulous Reasoning

Task Description: Given contexts and
question, You need to generate answer labels
for questions in a given context. The answers
to the questions are labeled “True”, “False’
and “Unknown”.

If the question can be inferred under a certain
reasoning path based on the context, the
answer label of the question is: “True”;

If the negation of the question can be inferred
under a certain reasoning path based on the
context, the answer label of the question is:
“False”;

If the question and the negation of the
question both cannot be deduced under all
reasoning path based on the context, the
answer label of the question is: “Unknown”.
You must generate answer labels for the
question.

>

113 E3]

The input format is: Context:

Question: “ 7,
The output format is: The answer label of

9

the question is: “ .

Note that you only need to generate the
answer label for the question, without giving
an explanation or justification. Please read the
context carefully and answer the questions.




Few-Shot Prompting in Skeptical Reasoning

Few-Shot Prompting in Credulous Reasoning

Task Description: Given contexts and ques-
tion, You need to generate answer labels for
questions in a given context. The answers to
the questions are labeled “True”, “False” and
“Unknown”.

If the question can be inferred under all rea-
soning paths based on the context, and the
negation of the question cannot be inferred
under all reasoning paths based on the context,
the answer label of the question is: “True”;

If the negation of the question can be inferred
under all reasoning path based on the context,
and the question cannot be inferred under all
reasoning path based on the context, the an-
swer label of the question is: “False”;

If the question and the negation of the question
cannot be deduced under a certain reasoning
path based on the context, the answer label of
the question is: “Unknown”. Each context has
a question, you must generate answer labels
for each question.

The input format is: Context: “ . Ques-
tion:*“ 7.

The output format is: The answer label of
the question is:“ .

Example 1: Context: Basil is not innocent.
Basil is not wooden. Basil is discreet. Basil
is not petite. Basil is comprehensive. Basil
is nutty. Basil is historical. ... If someoneA
is historical then he is red, unless he is not
lively or he is not big. If someoneA is nutty
and steep then he is miniscule, unless he is not
weary or he is outstanding. If someoneA is not
petite then he is brave, unless he is sticky or he
is psychological. If someoneA is not wooden
and miniscule then he is psychological, unless
he is brave. ...

If the question is: Basil is red. Then the an-
swer label for the question is: “True”;

If the question is: Basil is miniscule. Then
the answer label for the question is: “Un-
known”’;

If the question is: Basil is not ashamed. Then
the answer label for the question is: “False”.
Note that you only need to generate the answer
label for the question, without giving an expla-
nation or justification. Please read the context
carefully and answer the questions.
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Task Description: Given contexts and ques-
tion, You need to generate answer labels for
questions in a given context. The answers to
the questions are labeled “True”, “False” and
“Unknown”.

If the question can be inferred under a certain
reasoning path based on the context, the an-
swer label of the question is: “True”; If the
negation of the question can be inferred under
a certain reasoning path based on the context,
the answer label of the question is: “False”; If
the question and the negation of the question
both cannot be deduced under all reasoning
path based on the context, the answer label
of the question is: “Unknown”. Each context
has three questions, You must generate answer
labels for each question.

The input format is: Context: “ . Ques-
tion:“ .

The output format is: The answer label of
question is: “ .

Example 1: Context: Cecil is acceptable. Ce-
cil is uptight. Cecil is not good tempered. Ce-
cil is not severe. Cecil is not messy. Cecil is
not self disciplined. Cecil is not logical. Cecil
is not right. Cecil is careful.... If someoneA is
not logical then he is not visible, unless he is
not harsh. If someoneA is not messy and care-
ful then he is not outstanding, unless he is not
uptight. If someoneA is uptight and not severe
then he is not successful, unless he is similar
or he is not good. If someoneA is not visible
then he is serious, unless he is not outstanding.
If someoneA is not self disciplined then he is
not fantastic, unless he is emotional or he is
serious. ...

If the question is: Cecil is good. Then the
answer label for the question is: “False”; If
the question is: Cecil is not visible. Then
the answer label for the question is: “Un-
known”; If the question is: Cecil is similar.
Then the answer label for the question is:
“True”.

Note that you only need to generate the an-
swer label for the question, without giving an
explanation or justification. Please read the
context carefully and answer the questions.




A.4 Experimental setup for fine-tuning LLMs

We use the LoRA fine-tuning method to fine-tune
the open-source LLMs (LLAMA3-8B-Instruct!”,
gemma—7b—it“, Mistral-7B-Instruct_v0.2'2), re-
spectively. The parameters of the fine-tuned model
are shown in Table 5. All fine-tuning experiments
are completed on a single NVIDIA 4090 GPU
based on the unsloth'® framework.

Table 5: Fine-tuning experimental parameters of open-
source LLMs.

Parameter Value
per_device_train_batch_size 4
gradient_accumulation_steps 4
warmup_steps 10
max_steps 100
weight_decay 0.01
optim Adamw_8bit
seed 3407

https://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct

Thttps://huggingface.co/google/gemma-7b-it
Zhttps://huggingface.co/mistralai/Mistral-7B-Instruct-
v0.2

Bhttps://github.com/unslothai/unsloth
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A.5 MultiLogicNMRer Prompts
Groundding Prompting

Task Description: Given a set of facts
and a rule, you need to instantiate the rules
based on given facts. Instantiation requires
the replacement of pronouns in rules with
individuals from the fact.

Example 1: Godwin is not sour. God-
win is short. Godwin is scared. Godwin is
wild. Godwin is expensive. Godwin is not
bad. Godwin is not straightforward. Godwin
is anxious. Godwin is not stubborn. Godwin
is not zany. Godwin laugh Connor.Godwin
esteem Connor. Godwin is not immediate.
Godwin is persistent. The rule is: If some-
oneA laugh someoneB and he is not stubborn
then he is old, unless he is not poor.

The output is: If Godwin laugh Connor and
Godwin is not stubborn then Godwin is old,
unless Godwin is not poor.

RT3k

The output format is: The output is:* ”.

Note that you need to output all instan-
tiation rules.

Fact Extraction Prompting

Task Description: Given a set of facts and a
rule, you need to extract all instantiated facts
in the rule.

Example 1: The rule is: If Godwin
laugh Connor and Godwin is not stubborn
then Godwin is old, unless Godwin is not
poor or Godwin is unhappy.

The output is: Godwin laugh Connor.
Godwin is not stubborn. Godwin is old.
Godwin is not poor. Godwin is unhappy.

The output format is:

6 9

The output is:

Note that you only need to output all
instantiated facts in the rule, do not print the
contents of the prompt, and don’t output the
same facts repeatedly.
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Split Rule Prompting

Task Description: Given a rule, The rule
format is: If A then B, unless C. The A is the
prerequisite, the B is the conclusion, and the
C is the justification. You need to output all
prerequisite, conclusions, and justifications in
this rule.

Example 1: The rule is: If Brice is
emotional then Brice is beige, unless Brice is
sufficient.

The output is: prerequisite: “Brice is
emotional.”’, conclusion:*“Brice is beige. ”,
justification: “Brice is sufficient.”.

Example 2: The rule is: If Cadman is
historical and Cadman is emotional then
Cadman is swift, unless Cadman is smart or
Cadman is happy.

The output is: prerequisite: “Cadman is
historical. Cadman is emotional.”, conclusion:
“Cadman is swift.”; justification: “Cadman is
smart. Cadman is happy. ”.

The output format is:
prerequisite: “ ”, conclusion:

@ 9

The output is:
“” justification:




Reasoning Prompting

Task Description: Given facts and a rule.
You need to reason about the rules based on
facts. The rule format is usually: If A then
B. The A is the prerequisite, the B is the
conclusion. If the prerequisite A is in the
facts, you can deduce conclusion B. If the
prerequisite A is not in the facts, then you can
not deduce the conclusion B, so your output
is: None.

Example 1: The input facts are: God-
win is not sour.Godwin is short.Godwin
is scared. Godwin is wild. Godwin is
expensive. Godwin is not bad. Godwin is not
straightforward. Godwin is anxious. Godwin
is not sour. Godwin is not zany. Godwin laugh
Connor. Godwin esteem Connor. Godwin is
immediate. Godwin is persistent. The rules
are: If Godwin is not sour and immediate then
Godwin is not lovely.

The output is: Godwin is not lovely.

Example 2: The facts are: Juliana is
not old. Juliana is not anxious. Juliana
is asleep. Juliana is giant. Juliana is not
short. Juliana is comfortable. Juliana is not
fearless. Juliana is aggressive. Juliana is not
hot. Juliana is not southern. Juliana is not
technical. Juliana is not educational. Juliana
is not octagonal. Juliana is low. Juliana is not
poor. The rule is: If someoneA is not short
and not low then Juliana is persistent.

The output is: None.

9

The output format is: The output is:

Note that you only need to output rule
conclusions that can be inferred, not facts and
reasoning processes.
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A.6 Analysis and Case Study

Figure 5 also shows the distribution of answers gen-
erated by different methods in credulous reasoning,
and a similar conclusion can be drawn as in Figure
5 in skeptical reasoning. Questions with Unknown
are still very challenging to prompt and fine-tune
methods. At the same time, the proposed neural
symbolic framework MultiLogicNMRer has signifi-
cantly improved the performance of questions with
Unknown. To further explain this phenomenon,
Figure 4 shows an example of the answer and ex-
planation generated by GPT-40 in skeptical reason-
ing. According to the experimental results, it can
be found that the model gave the correct answer to
questions 1 and 3 with True and False answers, and
GPT-40 generated a reasonable and correct reason-
ing path, respectively, which corresponds to a cer-
tain extension generated in the context. However,
the model made a wrong prediction for question
2 with the answer Unknown. First, according to
the model’s explanation, the answer generated for
this question should be False, not True. This shows
that the GPT-40 has inconsistencies in the reason-
ing process. In addition, the model explanation
only contains one extension, so it cannot correctly
implement non-monotonic reasoning.

Distribution of Answers Generated by the Model in Credulous Reasoning Mode

MM mMT MF
6001 ™™ TT  mm TF
FM FT mmm FF

102

159
200 207

207

256 91

Answer Distribution
w
o
@

128 137

1 72
40 7g

GPT3.5(Z5)

LLAMA3(ZS) LLAMA3(FT) ours(LLAMA3)

Figure 5: The distribution of answers generated by mod-
els in skeptical reasoning. The ZS represents the zero-
shot prompt-based model and FT represents the fine-
tuned model.



Table 6: Statistical information for MultiLogicNMR datasets.

#Extensions Label
Dataset Mode #Num. | #F.Avg | #R.Avg (1:1:1:1:1) (T-F:M)
Train | 5000 12 10 [1,2,3,4,5] 1:1:1
Skeptical Dev 500 12 10 [1,2,3,4,5] 1:1:1
. ) Test 500 12 10 [1,2,3,4,5] 1:1:1
MultiLogiceNMR Train | 5000 2 10 [1,2.3.4,5] IBE!
Credulous | Dev 500 12 10 [1,2,3,4,5] 1:1:1
Test 500 12 10 [1,2,3,4,5] 1:1:1
. . Skeptical Test 500 22 10 [6,8,10,12,16] 1:1:1
MultiLogieNMR_OOD == s T Test | 500 | 22 20 | [68.10.12,16] | 1:1:1

The #Num. represents the number of samples in the generated dataset, #F. Avg represents the average number of facts in the
dataset, #R. Avg represents the average number of rules in the dataset, and #Extension represents the number of extensions.

Facts: Toby is not noisy. Toby s not intelligent. Toby is handsome. Toby is not alert. Toby is honest. Toby is important. Toby is
young. Toby 1s not pessimistic. Toby scorn Benjamin. Toby 1s passionate. Toby 1s not gorgeous. Toby 1s scared.

Rules:If someoneA 1s handsome and not intelligent then he 1s delicious ,unless he is not drab.If someoneA is delicious and not
alert then he is huge,unless he is grieving or he is not nasty.If someoneA is not pessimistic and scared then he is not
foreign,unless he is not sensitive or he is not bossy.If someoneA is not noisy and delicious then he is different ,unless he is
dead If someoneA is not gorgeous and honest then he is grieving ,unless he is huge.If someoneA 1s different then he 1s not
numerous,unless he is not confused or he 1s not financial. If someoneA scom someoneB and someoneA is not grieving then he is
not financial ,unless he is not distinet or he is not proud.If someoneA is important then he is not distinet ,unless he is not
financial.If someoneA is passionate and not huge then he is not proud,unless he is not financial or he is not spotless.If someoneA
15 not numerous and young then he is pleasant ,unless he is not financial.

Question 1: Toby 1s delicious. Answer 1: True  Generate Answer 1: True

Explanation 1: Toby is handsome and not intelligent, which triggers the rule that if someoneA is handsome and not intelligent
then he is delicious unless he is not drab. Since there is no evidence in the context indicating that Toby is not drab, we conclude
that Toby is delicious.

Question 2: Toby is not huge. Answer 2: Unknown  Generate Answer 2: True

Explanation 2:Toby is handsome and not intelligent, making him delicious. Toby is delicious and not alert, with no mention of
him grieving or being nasty, so he is huge. Hence, being huge implies he cannot be not huge, so the statement Toby is not huge
is False, making the question "Toby is not huge" answered as True for the opposite.

Question 3: Toby is not different.  Answer 3: False  Generate Answer 3: False

Explanation 3: Toby is not noisy. Toby 1s handsome and not intelligent, which makes him delicious. Being delicious and not
alert makes Toby huge. Furthermore, still being delicious makes Toby different because he is not dead, thus confirming that
Toby is different. Therefore, the statement "Toby is not different” is false.

Figure 6: An example of reasoning by the GPT-40 in skeptical reasoning mode.
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