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Abstract

Non-monotonic reasoning is a classic paradigm001
widely used in daily life and legal reasoning.002
The δ-NLI and LogicNMR proposed in the003
existing work have only preliminary explored004
the non-monotonic reasoning ability of the005
pre-trained language models (LMs) in natu-006
ral language. However, the performance of007
large language models (LLMs) on complex008
non-monotonic reasoning tasks with multiple009
extensions has not yet been explored. An ex-010
tension can be interpreted as a set of plausi-011
ble conclusions. In this paper, we automat-012
ically synthesized a non-monotonic reason-013
ing dataset with multiple extensions, Multi-014
LogicNMR. Then, we systematically evalu-015
ated prompt-based and fine-tuned LLMs us-016
ing skeptical and credulous reasoning, respec-017
tively. Skeptical reasoning only believes in018
common facts in all extensions, while cred-019
ulous reasoning believes in facts in any one020
extension. In addition, inspired by classic sym-021
bolic solvers, we propose a neural-symbolic022
framework, MultiLogicNMRer, to improve the023
model’s non-monotonic reasoning ability. Ex-024
perimental results show that the accuracy of025
MultiLogicNMRer based on ChatGPT3.5 is026
about 23.1% higher (46.2% → 69.3%) than027
the corresponding prompt-based LLMs. The028
proposed MultiLogicNMR dataset and Multi-029
LogicNMRer framework are expected to pro-030
mote the research of LLMs on non-monotonic031
reasoning in natural language.032

1 Introduction033

Non-monotonic reasoning has been extensively034

studied in the field of traditional artificial intelli-035

gence (McCarthy, 1986; McDermott and Doyle,036

1980). Reiter (1980) proposed default logic to037

formalize non-monotonic reasoning. The key to038

non-monotonic reasoning is to find all extensions039

based on the default theory, where an extension040

is a set of plausible conclusions. However, differ-041

ent default rules in a default theory may lead to042

Figure 1: A simplified example of skeptical reasoning
mode in the MultiLogicNMR dataset.

multiple extensions; for example, given a default 043

theory, “John is a professor. John is a chair. The 044

professor usually teaches. The chair usually does 045

not teach.”. This default theory can get two ex- 046

tensions; in one, John is a typical professor and 047

so teaches; in the other, he is a typical chair and 048

does not teach (van Harmelen et al., 2008). In addi- 049

tion, skeptical and credulous reasoning are usually 050

used in multiple extension non-monotonic reason- 051

ing. Skeptical reasoning only believes in common 052

facts in all extensions, while credulous reasoning 053

believes in facts in any one extension (van Harme- 054

len et al., 2008). Non-monotonic reasoning also has 055

a wide range of application scenarios, such as daily 056

decision-making (Szalas, 2019) and legal reasoning 057

(Gordon, 1988). Recently, large language models 058

(LLMs) have achieved excellent performance in 059

many logical reasoning tasks (Parmar et al., 2024), 060

so exploring their logical reasoning ability in mul- 061

tiple extension non-monotonic reasoning has posi- 062

tive significance. 063

Researchers have proposed some non-monotonic 064

reasoning benchmarks and used the prompt-based 065

and fine-tuned LLMs to evaluate the models’ 066
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non-monotonic reasoning ability. Rudinger et al.067

(2020) initially used NLI datasets to build a non-068

monotonic reasoning benchmark δ-NLI through069

crowdsourcing. However, δ-NLI entangled non-070

monotonic reasoning with commonsense reason-071

ing. Recently, Xiu et al. (2022) constructed a natu-072

ral language non-monotonic reasoning benchmark073

LogicNMR based on automatic synthesis, thereby074

reducing the interference of commonsense knowl-075

edge. However, the LogicNMR only involves non-076

monotonic reasoning with a single extension. Re-077

cently, Parmar et al. (2024) proposed a compre-078

hensive logic reasoning benchmark, including non-079

monotonic logic, LogicBench. They generated sim-080

ple non-monotonic reasoning samples based on081

eight default rules: Reasoning with Priorities, De-082

fault Reasoning with Irrelevant Information, etc.083

However, the prompt-based and fine-tuned LLMs084

still showed great challenges in non-monotonic rea-085

soning tasks. On the one hand, the prompt con-086

tent affected the performance of the prompt-based087

LLMs. On the other hand, although the fine-tuned088

LLMs had better logical reasoning ability, they did089

not really master non-monotonic logical reasoning.090

This paper first proposes a non-monotonic rea-091

soning benchmark with multiple extensions, Mul-092

tiLogicNMR. Figure 1 shows a simplified sample093

in skeptical reasoning mode from the MultiLogic-094

NMR. The question “Toby is delicious” appears in095

all extensions E1 and E2, so the answer is “True”.096

However, the question “Toby is not huge” only ap-097

pears in extension E2, so this answer is “Unknown”.098

Based on MultiLogicNMR, we explore the non-099

monotonic reasoning capabilities of open-source100

and closed-source LLMs in skeptical and credu-101

lous reasoning, respectively. To further evaluate the102

generalization of LLMs on multiple extension non-103

monotonic reasoning tasks, we also constructed104

a dataset MultiLogicNMR_OOD involving more105

extensions and default rules. In addition, inspired106

by the symbolic solver in Algorithm 2 in the Ap-107

pendix A.2, we propose a neural-symbolic frame-108

work for non-monotonic reasoning with multiple109

extensions, MultiLogicNMRer. The main idea of110

the MultiLogicNMRer framework is based on a111

symbolic solution strategy, and each module in the112

framework uses prompt-based LLMs to perform113

reasoning to complete different operations, thereby114

computing all extensions and answering questions.115

The main contributions of this paper include the116

following points:117

• This paper automatically synthesized a non- 118

monotonic reasoning dataset with multiple 119

extensions, MultiLogicNMR, and systemati- 120

cally explored the non-monotonic reasoning 121

capabilities of LLMs in skeptical and credu- 122

lous reasoning modes, respectively. 123

• We propose a neural-symbolic framework, 124

MultiLogicNMRer, for multiple extension 125

non-monotone reasoning task. MultiLogicN- 126

MRer can generate all the extensions to an- 127

swer the question. 128

• Experiment results show that the proposed 129

MultiLogicNMRer performs better than the 130

prompt-based LLMs and even exceeds the 131

fine-tuning LLMs. 132

2 Related Work 133

2.1 Preliminaries 134

Similar to LogicNMR (Xiu et al., 2022), we use 135

default logic (DL) as a formal language for Multi- 136

LogicNMR in this work. The default rule is of the 137

form: α : β1, β2, . . . , βm/γ, where α, βi and γ 138

are formulas in first-order logic, α is called the pre- 139

requisite, β1, β2, . . . , βm the justifications, and γ 140

the conclusion. This default rule can be interpreted 141

as if the prerequisite fact α is believed, and each 142

justifications β1, β2, . . . , βm can be consistently 143

believed, then γ can be deduced. A default theory 144

Γ consists of a pair of fact sets and default rule 145

set Γ = ⟨D,W ⟩, where D is the set of default 146

rules and W is the set of facts. A set of sentences 147

E is an extension of Γ = ⟨D,W ⟩ iff for every 148

sentence π, E satisfies π ∈ E iff W ∪ ∆ |= π, 149

where ∆ = {γ|α : β/γ ∈ D,α ∈ E,¬β /∈ E}. 150

So, an extension E is the set of entailments 151

of {W ∪ γ}, where the γ are consequents 152

from D. For example: the default rules D = 153

{prof(x) : teaches(x) / teaches(x), chair(x) : 154

¬ teaches(x) /¬ teaches(x)}, fact set 155

W = {prof(J), chair(J)}, this de- 156

fault theory has two extensions E1 = 157

{prof(J), chair(J), teaches(J)}, E2 = 158

{prof(J), chair(J), ¬ teaches(J)}. Any such 159

extension will be interpreted as an acceptable set 160

of beliefs that one may hold about the incompletely 161

specified world W (Reiter, 1980). 162

2.2 Benchmarks and Approaches 163

Existing work has proposed some natural lan- 164

guage non-monotonic reasoning datasets. Recently, 165
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Kazemi et al. (2023b) proposed a defeasible rea-166

soning benchmark, BoardGameQA, which imple-167

ments defeasible reasoning on conflicting knowl-168

edge bases through rule-based priority. However,169

the defeasibility in BoardGameQA is caused by170

conflicting rules, while the non-monotonicity in171

the proposed multiLogicNMR is caused by default172

conditions. In addition, Antoniou and Batsakis173

(2023) conducted a preliminary evaluation of the174

non-monotonic reasoning capabilities of the Chat-175

GPT3.5 through the prompt-based method on ten176

classic examples. However, the ChatGPT3.5 still177

has a big gap with symbolic solvers. In this pa-178

per, the samples in MultiLogicNMR often involve179

multiple non-monotonic reasoning rules and may180

generate multiple extensions.181

The prompt-based LLMs have been proven to182

have good logical reasoning capabilities. Zero-shot183

prompting directly instructs LLMs to perform a184

task without giving any examples, while few-shot185

prompting provides explicit examples (Brown et al.,186

2020; Kojima et al., 2022). In addition, Wei et al.187

(2022) proposed that the chain-of-thought prompt-188

ing, including intermediate reasoning steps, can189

improve the reasoning ability of LLMs on complex190

tasks. Inspired by the chain-of-thought prompting,191

there have also proposed prompting methods in-192

volving more topological structures, such as tree193

of thoughts (Yao et al., 2023), graph of thoughts194

(Besta et al.), etc. The prompt-based methods do195

not require updating model parameters, but their196

reasoning performance is limited.197

The fine-tuning method usually refers to fine-198

tuning model parameters in a fully supervised man-199

ner based on samples from downstream tasks. How-200

ever, the model parameters of LLMs are enormous,201

and fine-tuning the model requires many training202

samples and computing resources. To solve these203

problems, on the one hand, a large number of sam-204

ples are constructed through automatic synthesis205

(Wang et al., 2024; Guo and Chen, 2024); For ex-206

ample, Clark et al. (2020) used the synthetic de-207

ductive reasoning dataset RuleTaker to fine-tune208

the pre-trained LMs, verifying that the LMs can209

perform soft reasoning on natural language. On the210

other hand, some parameter-efficient fine-tuning211

methods are proposed, such as adapter tuning (Hu212

et al., 2022) and partial parameter tuning (Zaken213

et al., 2022) and so on. This paper mainly evalu-214

ates the generated MultiLogicNMR benchmark by215

prompting and fine-tuning LLMs.216

Neural-symbolic framework have been widely217

used in deductive reasoning tasks, mainly including 218

based on search and external solvers (Kautz, 2022). 219

Search-based neural-symbolic methods usually use 220

LMs for single-step reasoning in classical search al- 221

gorithms (Hong et al., 2022). For example, Kazemi 222

et al. (2023a) combines the capacity of LMs to 223

handle naturalistic text input with the backward 224

chaining algorithm, to solve the logical reasoning 225

task. Recently, Hao et al. (2023) combined LLMs 226

and Monte Carlo tree search (Browne et al., 2012) 227

to achieve logical reasoning. Although the search 228

algorithm can enhance the planning ability of the 229

LLMs, the cost of calling LLMs is very high. In 230

addition, The neural-symbolic solving based on 231

external solvers is to use external solvers to solve 232

the formal language translated by LLMs (Olausson 233

et al., 2023). For example, Pan et al. (2023) com- 234

bines a symbolic solver and LLMs, providing an 235

effective way to achieve faithful logical reasoning. 236

However, The formal language translated by LLMs 237

is prone to grammatical errors and information loss, 238

while the symbolic solver requires strict and correct 239

formal input (Xu et al., 2024). In this paper, we 240

build a neural-symbolic framework MultiLogicN- 241

MRer for non-monotonic reasoning based on the 242

classic answer set programming (ASP) algorithm. 243

3 MultiLogicNMR Benchmark 244

This paper automatically synthesizes the MultiLog- 245

icNMR dataset1 to explore the non-monotonic rea- 246

soning capabilities of LLMs in skeptical and cred- 247

ulous reasoning. The algorithm 1 in Appendix A.1 248

gives the process of generating the MultiLogic- 249

NMR dataset. The construction of the MultiLogic- 250

NMR mainly includes the following steps: 251

Generate Default Theory: The constants and 252

variables are called terms, and P (t1, . . . , tn) is 253

an atom if P is an n-ary predicate symbol and 254

t1, . . . , tn are terms. A literal is an atom or the 255

negation of an atom. We first randomly select pred- 256

icates from the predicate pool to generate prereq- 257

uisite literal, justification literal, and conclusion 258

literal. It is required in generating the default rule 259

that the α is the conjunction of at most two literals, 260

justifications is a set containing at most two literals 261

βi, and the γ is a literal. Consistent with the predi- 262

cate list in LogicNLI, the predicate pool contains 263

unary predicates and binary predicates Tian et al. 264

(2021). To ensure the default theory has multiple 265

extensions, the literals in the prerequisite and con- 266

1URL link will be added after anonymous reviewing
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clusion in different default rules may be the same,267

and the literals in the justifications and conclusions268

in different default rules may negate each other.269

After generating all the default rules, we randomly270

select entities from the entity pool to instantiate271

the prerequisite literals that are not included in the272

conclusion into facts W .273

Convert DL to ASP: Baral and Gelfond (1994)274

pointed out that when α is a conjunction of literals,275

β1, β2, . . . , βm and γ are all literals, such a default276

rule can be translated into an answer set rule γ :-277

α, not¬β1, . . . , not¬βm. To ensure the correct-278

ness of the answers, we convert the default rule into279

an ASP and then call the ASP solver for reasoning.280

Solving: To ensure the correctness of the answer281

of the questions, we use the symbolic solver2 to282

solve. First, all the extensions of the default theory283

are generated based on the symbolic solver, and to284

generate the correct answer of questions based on285

the extensions in the skeptical and the credulous286

reasoning, respectively. Given a default theory Γ287

and questions Q. ∆ are all extensions. E ∈ ∆ rep-288

resents an extension. Equation 1 shows the answer289

to the question A(Γ, Q) in the skeptical reasoning,290

and equation 2 shows the answer to the question291

A(Γ, Q) in the credulous reasoning. The answer292

for the question may be True (T), False (F), and293

Unknown (M).294

A(Γ, Q) =


T, if ∀E E ⊢ Q

F, if ∀E E ⊢ ¬Q

M, if ∃E E ⊬ Q,∃E E ⊬ ¬Q

(1)295

A(Γ, Q) =


T, if ∃E E ⊢ Q

F, if ∃E E ⊢ ¬Q
M, if ∀E E ⊬ Q,E ⊬ ¬Q

(2)296

Translate into Natural Language: Trans-297

late the default theory into natural language ac-298

cording to the template. For example, the rule299

“¬ gorgeous(x) :- grieving(x), not huge(x).” is300

translated into “If someoneA is grieving, then he is301

not gorgeous, unless he is huge”.302

We generated MultiLogicNMR datasets in skep-303

tical and credulous reasoning modes, respectively,304

and Table 6 in Appendix A.1 shows the statistics of305

the MultiLogicNMR. Specifically, the training, de-306

velopment, and test sets contain 5000, 500, and 500307

samples, respectively, and each sample contains308

three questions with different answer labels. The309

2https://pypi.org/project/clyngor/

number of samples on the number of extensions 310

E = {1, 2, 3, 4, 5} is equal. Figure 1 shows a sim- 311

plified example from the MultiLogicNMR dataset 312

in skeptical reasoning. In addition, to measure 313

the generalization of LLMs, we also generated the 314

non-monotonic reasoning dataset MultiLogicNMR- 315

OOD with more default rules and a more significant 316

number of extensions. 317

4 MultiLogicNMRer Framework 318

Inspired by the ASP symbolic solver in Appendix 319

A.2 (Gebser et al., 2012), we propose a neural- 320

symbolic framework for multiple extension non- 321

monotonic reasoning, MultiLogicNMRer. Figure 322

2 shows the framework of the MultiLogicNMRer, 323

which includes five modules: Grounding Module, 324

Upper and Lower Bound Initialization Module, Re- 325

duction Module, Reasoning Module, and Selection 326

Module. Firstly, the upper and lower bounds ini- 327

tialization modules are used to generate the initial 328

upper and lower bounds fact sets of extension based 329

on the instantiated default rules, and the reduced 330

rules are generated based on the upper and lower 331

bounds fact sets, respectively. Then, the upper and 332

lower bounds facts are updated using the conclu- 333

sions generated by the reduced rule. If the updated 334

lower bound fact set is still a subset of the upper 335

bound fact set, a fact is selected from the upper 336

bound fact set and added to the lower bound set. 337

Then, the reduction rules are inferred based on the 338

updated upper and lower bound fact sets, and the 339

upper and lower bound fact sets are updated again 340

using the generated conclusions. Finally, the pro- 341

cess is iterated until the upper and lower bounds 342

facts are consistent and an extension is found. Ap- 343

pendix A.5 shows the full prompts used in different 344

modules of the framework MultiLogicNMRer. 345

Grounding Module: The MultiLogicNMRer 346

framework implements the grounding module us- 347

ing prompt-based LLMs. It is mainly used to refer- 348

ence the resolution of rules. For example, the rule 349

“If someoneA is handsome and not intelligent then 350

he is delicious, unless he is not drab.” is instanti- 351

ated as “If Toby is handsome and not intelligent 352

then Toby is delicious ,unless Toby is not drab.”. 353

Upper and Lower Bound Initialization Mod- 354

ule: This module extracts facts from the rules 355

through fact extraction prompts to initial upper and 356

lower bound fact sets. Since the extension must 357

contain the original facts in the default theory, the 358

lower bound fact set is initialized with the original 359
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Figure 2: The framework of the proposed neural-symbolic method MultiLogicNMRer.

facts. In addition, the upper bound fact set should360

also include all the facts extracted from the rules.361

Reduction Module: The reduction module ob-362

tains the reduction rules generated by the default363

rules under the upper and lower bound fact sets, re-364

spectively. For a default rule α : β1, β2, . . . , βm/γ,365

if all the justification βi does not appear in the366

lower bound set, the default rule can be reduced to367

α/γ. Otherwise, the rule cannot be reduced.368

Reasoning Module: The reasoning module uses369

reasoning prompting to require the LLMs to reason370

about the reduced rules under the lower and upper371

bound fact sets, respectively, thereby generating372

conclusions. Then, the upper and lower-bound fact373

sets are updated using the conclusions generated by374

reduction rules. Specifically, the conclusions gen-375

erated by the reduced rules under the upper bound376

fact set should be included in the lower bound fact377

set. In comparison, the upper bound fact set should378

only contain the conclusions generated by the re-379

duced rules in the lower bound fact set.380

Selection Module: When the updated lower-381

bound fact set is still a subset of the upper-bound382

fact set, select a fact from the upper-bound set383

to add to the lower-bound fact set, and the se-384

lected fact is removed from the upper-bound fact385

set. Then, the updated lower and upper bound facts386

are used to reason for the reduction rules. In the se-387

lection module, we use cosine similarity3 to select388

facts from the upper bound fact set.389

3https://huggingface.co/sentence-transformers/distilbert-
base-nli-stsb-mean-tokens

5 Experiments 390

This section first explores the non-monotonic rea- 391

soning capabilities of prompt-based and fine-tuning 392

LLMs using skeptical and credulous reasoning on 393

the MultiLogicNMR. Then, the proposed neural- 394

symbolic framework MultiLogicNMRer is evalu- 395

ated. In addition, we also explore the generaliza- 396

tion of these methods on the out-of-domain dataset 397

MultiLogicNMR_OOD. 398

5.1 Experimental Settings 399

We systematically evaluates the non-monotonic 400

reasoning capabilities of open-source LLMs 401

(gpt-3.5-turbo (ChatGPT3.5) (Brown et al., 402

2020), gpt-4o OpenAI (2023), claude-3-sonnet- 403

202402294 (Claude3), gemini-pro5 (Gemini-pro), 404

DeepSeek-chat (Bi et al., 2024)) (DeepSeek) and 405

closed-source LLMs (Meta-LLAMA3-8B-Instruct 406

(LLAMA3) (Touvron et al., 2023), gemma-7b- 407

it6 (Gemma), Mistral-7B-Instruct_v0.2 (Mistral) 408

(Jiang et al., 2023)) in skeptical and credulous 409

reasoning, respectively. The zero-shot and few- 410

shot in-context learning strategies were used to 411

evaluate the prompt-based LLMs, and the LoRA 412

fine-tuning method was used to fine-tune the open- 413

source LLMs. In addition, we use the accuracy as 414

the evaluation metric7. 415

4https://www.anthropic.com/news/claude-3-family
5https://blog.google/technology/ai/google-gemini-ai/
6https://ai.google.dev/gemma?hl=zh-cn
7https://pypi.org/project/scikit-learn/
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5.2 Experimental Results416

5.2.1 Results of Prompting-based LLMs417

Tables 1 show the results of LLMs based on the418

zero-shot prompting on MultiLogicNMR in skep-419

tical and credulous reasoning, respectively. The420

zero-shot prompting is shown in Appendix A.3. Ac-421

cording to the results in Table 1, the non-monotonic422

reasoning capabilities of LLMs are relatively lim-423

ited, among which LLAMA3 has the best perfor-424

mance among open-source LLMs. The average425

accuracy on all number of extensions can reach426

40.4%. Among the closed-source LLMs, GPT-427

4o and Claude3 perform best and are equivalent,428

with the average accuracy reaching 54.5%. The re-429

sults also show that closed-source LLMs still have430

more advantages than open-source LLMs in non-431

monotonic reasoning tasks. Secondly, the results of432

models in credulous reasoning are slightly higher433

than those in skeptical reasoning. This may be be-434

cause credulous reasoning only needs a particular435

extension to get the correct answer, while skeptical436

reasoning needs to find all extensions to the correct437

answer. Third, regardless of whether in skeptical438

or credulous reasoning, the model’s performance439

does not change much as the number of extensions440

increases. This illustrates that the number of ex-441

tensions is not the main challenge for LLMs in442

non-monotonic reasoning tasks.443

Table 1: Results of LLMs based on the zero-shot prompt-
ing on MultiLogicNMR in skeptical and credulous rea-
soning, respectively.

Model Mode Test (Accuracy (%))
Extension 1 2 3 4 5 Avg.
Gemma

Skep

-tical

37.0 38.0 29.3 32.6 31.0 33.6
Mistral 39.3 39.3 36.7 36.7 38.6 38.1
LLAMA3 40.3 39.0 41.7 35.0 42.3 39.7
Gemini-pro 42.3 45.0 49.6 41.6 52.3 46.2
Claude3 53.4 52.3 55.0 50.3 55.0 53.5
ChatGPT3.5 41.3 46.7 44.6 45.6 49.6 45.6
DeepSeek 38.0 37.0 40.0 41.0 45.3 40.2
GPT-4o 57.0 58.3 56.3 53.6 58.3 56.7
Gemma

Cred
-ulous

32.0 35.0 36.0 38.0 36.7 35.5
Mistral 40.0 40.6 39.0 44.0 43.0 41.3
LLAMA3 36.7 41.6 43.0 42.3 42.3 41.2
Gemini-pro 44.6 45.6 45.6 48.3 48.0 46.5
Claude3 53.3 49.0 57.6 56.7 58.6 55.1
ChatGPT3.5 45.3 44.3 47.3 47.3 49.8 46.8
DeepSeek 41.0 42.0 39.6 36.3 38.3 39.5
GPT-4o 59.3 56.0 58.3 62.7 62.7 59.8

Table 2: Results of LLMs based on few-shot prompt-
ing on the MultiLogicNMR in skeptical and credulous
reasoning.

Model Mode Test (Accuracy (%))
Extension 1 2 3 4 5 Avg.
Gemma

Skep

-tical

34.0 32.0 29.6 32.3 30.0 31.6
Mistral 36.3 40.6 36.0 36.0 38.0 37.4
LLAMA3 36.0 34.6 33.3 35.0 39.3 35.7
Gemini-pro 47.3 48.7 47.3 45.6 46.0 47.0
Claude3 56.3 59.3 57.6 57.4 66.7 60.7
ChatGPT3.5 39.3 36.7 33.3 30.3 40.6 36.1
DeepSeek 51.7 48.0 49.3 45.3 50.3 48.9
GPT-4o 64.2 62.5 58.3 58.3 58.3 60.3
Gemma

Cred
-ulous

31.3 32.0 31.7 34.0 33.3 32.5
Mistral 35.3 36.0 40.3 40.0 38.3 38.0
LLAMA3 33.0 35.3 36.0 37.0 33.7 34.9
Gemini-pro 46.7 49.3 49.7 49.7 58.0 49.9
Claude3 56.7 55.7 56.3 60.0 63.3 58.4
ChatGPT3.5 43.3 40.6 39.6 42.6 41.6 41.6
DeepSeek 55.6 51.0 52.6 52.0 55.3 53.3
GPT-4o 60.0 57.0 66.0 62.0 65.0 62.0

Tables 2 show the results of LLMs based on few- 444

shot prompting in skeptical and credulous reason- 445

ing, respectively. The few-shot prompting shown 446

in Appendix A.3 includes three samples. Com- 447

pared with models based on zero-shot prompting, 448

the results of three open-source LLMs based on the 449

few-shot prompting have declined. The possible 450

reason is that the examples in the prompts interfere 451

with the model’s reasoning. Among the closed- 452

source LLMs, gpt-4o, claude3, and Deepseek have 453

all improved, among which gpt-4o performed the 454

best, with an average accuracy of 60.3% and 60.5% 455

in skeptical reasoning and credulous reasoning, re- 456

spectively. The Claude3 model also shows close 457

results to gpt-4o based on few-shot prompting. Sur- 458

prisingly, the ChatGPT3.5 showed a similar trend 459

to the open-source LLMs, with a drop of nearly 460

7%. In general, the few-shot prompting can further 461

improve the non-monotonic reasoning capabilities 462

of LLMs with strong reasoning performance. 463

5.2.2 Results of Fine-tuning LLMs 464

To further evaluate the non-monotonic reasoning 465

ability of the LLMs, we use the LowRank Adap- 466

tation (LoRA) to fine-tune the open-source LLMs 467

based on the training set. All details of the fine- 468

tuning experiments are described in Appendix A.4. 469

Figure 3 shows the results of the fine-tuned 470

LLMs on MultiLogicNMR. First, the average accu- 471
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Figure 3: Results of fine-tuning models. The solid and
dashed lines represent the results of models in skeptical
and credulous reasoning, respectively.

racy of fine-tuned LLAMA3, Mistral, and Gemma472

models on all the number of extensions in skeptical473

reasoning is 66.3%, 60.2%, and 54.7%, respec-474

tively, which are all higher than the correspond-475

ing prompt-based LLMs. Second, the fine-tuned476

LLAMA3 performed better than the Mistral and477

Gemma. In addition, as the number of extensions478

increases, the accuracy of the fine-tuned models479

gradually increases. The possible reason is that480

the fine-tuned models do not learn non-monotonic481

reasoning but make predictions based on some cor-482

relation, and the increase in the number of exten-483

sions increases the correlation between context and484

question, resulting in the fine-tuned models having485

a greater probability of answering the question cor-486

rectly. Finally, It is worth noting that the results of487

the Gemma in skeptical reasoning are much lower488

than those in credulous reasoning, indicating that489

the model is unstable and has not mastered non-490

monotonic reasoning.491

5.2.3 Results of the MultiLogicNMRer492

To evaluate the proposed MultiLogicNMRer, we493

use closed-source LLMs (ChatGPT3.5, DeepSeek-494

chat) and open-source LLMs (LLAMA3, Mistral)495

as the basic model in the MultiLogicNMRer and496

evaluate them on the MultiLogicNMR test set.497

Table 3 shows the results of the MultiLogicNM-498

Rer based on different basic models. The results499

show that MultiLogicNMRer has a more significant500

improvement than the corresponding prompt-based501

basic model and is close to or even exceeds the502

Table 3: Results of the proposed MultiLogicNMRer,
abbreviated as MLNMRer, on the MultiLogicNMR
dataset. The model in parentheses indicates the basic
model used.

Models(Ours) Mode Test (Accuracy (%))
Extension 1 2 3 4 5 Avg.
MLNMRer
(ChatGPT3.5)

Skep
-tical

70.6 69.3 72.0 67.3 72.0 70.3

MLNMRer
(DeepSeek) 75.0 72.2 74.3 75.3 77.3 74.8

MLNMRer
(LLAMA3) 71.0 71.3 72.3 70.3 76.3 72.3

MLNMRer
(Mistral) 63.3 55.8 55.6 45.8 59.1 55.9

MLNMRer
(ChatGPT3.5)

Cred
-ulous

73.7 68.0 63.0 70.6 65.7 68.2

MLNMRer
(DeepSeek) 80.0 69.3 73.3 71.0 74.0 73.5

MLNMRer
(LLAMA3) 73.3 62.7 64.0 67.3 65.7 66.7

MLNMRer
(Mistral) 60.8 52.8 51.7 60.0 53.3 55.7

results of the fine-tuning methods. For example, 503

when DeepSeek was the base model, the average 504

accuracy increased from 51.1% to 74.1%; when 505

LLAMA3 was the base model, the average accu- 506

racy increased from 40.5% to 69.5%. These verify 507

the effectiveness of the MultiLogicNMRer. In ad- 508

dition, the results of the MultiLogicNMRer on dif- 509

ferent numbers of extensions are consistent, which 510

illustrates the stability and reliability of MultiLog- 511

icNMRer on the multiple extension non-monotonic 512

reasoning. It is worth noting that although the re- 513

sults of the MultiLogicNMRer method based on 514

the Mistral have declined to a certain extent, they 515

are still higher than the prompt-based Mistral. The 516

possible reason for the decline is that the basic 517

model Mistral has poor logical reasoning capabil- 518

ities, which leads to poor performance of some 519

modules in the MultiLogicNMRer framework, thus 520

affecting the overall performance. 521

5.3 Generalization 522

To explore the generalization of the LLMs on 523

non-monotonic reasoning tasks, we evaluate the 524

model’s performance on the out-of-domain dataset 525

MultiLogicNMR_OOD. Compared with the Mul- 526

tiLogicNMR dataset, the MultiLogicNMR_OOD 527

contains more default rules and extensions. Table 6 528

in Appendix A.1 shows the statistical information 529
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Table 4: Results of methods on the out-of-domain
dataset MultiLogicNMR_OOD.

Model Met
-hod

Mode
Test (Accuracy)

Extension 6 8 10 12 16 Avg
Gemma

Zero
Shot

Skep
-tical

34.330.735.031.333.032.9
Mistral 33.734.636.334.333.334.5
LLAMA3 37.035.034.740.732.736.0
Gemma

Cred
-ulous

32.331.731.031.034.332.1
Mistral 30.331.333.034.330.031.8
LLAMA3 36.734.032.638.635.035.4
Gemma

Fine
Tune

Skep
-tical

67.775.075.070.069.671.5
Mistral 48.054.353.655.751.052.5
LLAMA3 66.064.767.063.362.664.7
Gemma

Cred
-ulous

66.061.364.359.063.062.7
Mistral 66.764.065.363.366.365.1
LLAMA3 66.771.071.370.373.070.5

MLNMRer
(LLAMA3)

ours
Skep
-tical

59.765.072.369.365.366.3

Cred
-ulous

54.752.751.053.655.053.4

of MultiLogicNMR_OOD.530

Table 4 gives the results of methods on the Multi-531

LogicNMR_OOD. The results of the prompt-based532

LLMs are still poor, which further reveals the lim-533

itations of the prompt-based LLMs. The results534

of the fine-tuned LLMs only slightly decreased on535

MultiLogicNMR_OOD. The average accuracy of536

three fine-tuned LLMs in the skeptical reasoning537

on MultiLogicNMR_OOD datasets was 62.9%, re-538

spectively, indicating that increasing the number of539

rules and the number of extensions will not bring540

more challenges to the fine-tuned models. In addi-541

tion, the result of MultiLogicNMRer in skeptical542

reasoning is 66.3%, which is still higher than the543

fine-tuning LLMs. Although the result of Multi-544

LogicNMRer in credulous reasoning is 53.4%, it545

is still higher than prompt-based LLMs. These re-546

sults show that the proposed MultiLogicNMRer547

framework has a certain degree of generalization.548

5.4 Analysis and Case Study549

To analyze the challenges of LLMs on the Mul-550

tiLogicNMR, Figure 4 shows the distribution of551

answers generated by the models in skeptical rea-552

soning. First, the results show that the zero-shot553

prompt-based ChatGPT3.5 and LLAMA3 have the554

lowest accuracy for questions with Unknown, espe-555

cially ChatGPT3.5, which only answers correctly556

35/500. In addition, although the fine-tuning meth-557

Figure 4: The distribution of answers generated by mod-
els in skeptical reasoning. The ZS and FT represent
zero-shot prompting and fine-tuning, respectively.

ods can further improve the model’s accuracy on 558

questions with True and False, it still performs 559

poorly on questions with Unknown. The possible 560

reason is that the models need to find all the exten- 561

sions to answer questions with Unknown correctly 562

in skeptical reasoning, and it is still challenging 563

for LLMs to find all the extensions. Moreover, 564

Figure 4 shows that MultiLogicNMRer based on 565

LLAMA3 can correctly answer 290/500 questions 566

with Unknown while maintaining high accuracy 567

for questions with other labels. These results fur- 568

ther illustrate that the MultiLogicNMRer has more 569

advantages and effectiveness than the prompting 570

and fine-tuning methods. 571

6 Conclusions 572

In this paper, we automatically synthesize a non- 573

monotonic reasoning dataset with multiple exten- 574

sions, MultiLogicNMR, and propose a neural- 575

symbolic framework, MultiLogicNMRer, for non- 576

monotonic logical reasoning in natural language. 577

MultiLogicNMR can be used to explore the non- 578

monotonic reasoning capabilities of LLMs. Our 579

work reveals that the prompt-based LLMs still face 580

significant challenges on the non-monotonic rea- 581

soning task, and the fine-tuned LLMs do not un- 582

derstand non-monotonic reasoning. However, the 583

performance of the MultiLogicNMRer can not only 584

close and even exceed the fine-tuned models, but 585

the reasoning process is also more reliable. The 586

proposed MultiLogicNMR(er) takes a new step 587

towards achieving a reliable logical reasoning ap- 588

proach with LLMs on non-monotonic reasoning. 589
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7 Limitations590

Although the proposed MultiLogicNMR and591

neural-symbolic framework MultiLogicNMRer592

can effectively explore and improve the non-593

monotonic reasoning ability in LLMs, there are594

some limitations. First, although the automatic595

synthesis method can generate a large number of596

samples according to constraints and ensure the597

correctness of answer labels, the MultiLogicNMR598

is translated from a formal language through a tem-599

plate, which makes the generated sentences rela-600

tively simple and still has a certain distance from601

the real natural language sentences. In addition,602

real logical reasoning scenarios often involve mas-603

sive premise facts. However, the number of facts604

and rules in the MultiLogicNMR is usually small,605

which makes it challenging to evaluate the non-606

monotonic reasoning ability of LLMs in real scenar-607

ios based on MultiLogicNMR. Moreover, although608

the basic model in the proposed neural-symbolic609

framework MultiLogicNMRer does not need to be610

fine-tuned, it is necessary to iteratively call LLMs611

in multiple modules, which increases the cost of612

the MultiLogicNMRer framework.613
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A Appendix785

A.1 MultiLogicNMR Dataset786

Algorithm 1 describes the generation process of the787

MultiLogicNMR dataset. Lines 2 to 9 in Algorithm788

1 show how to generate the default rules in each789

sample iteratively. Specifically, Lines 3, 5, and 6 in790

Algorithm 1 randomly select the prerequisite literal791

rprel , justifications literal rjusl , and conclusion lit-792

eral rconl of the default rule from the predicate pool793

PP . In a default rule, we require that the prerequi-794

site α is the conjunction of at most two literals rprel ,795

justifications is a set containing at most two liter-796

als rjusl , and the conclusion γ is a literal rconl . In797

addition, to be more capable of generating default798

theories with multiple extensions, the literals in799

the prerequisite and conclusion in different default800

rules may be the same, and the justifications and801

conclusions in different default rules may negate802

each other. After generating all the default rules,803

line 10 shows that we randomly select entities from804

the entity pool EP to instantiate the prerequisite805

literals not included in the conclusion into facts W .806

In addition, we generate questions Q based on the807

conclusion literals rconl that are not included in the808

prerequisites. To generate answers to questions,809

we first call the symbolic solver8 to generate all810

extensions of the default theory (line 12), and then811

use the skeptical and credulous reasoning to rea-812

son about the questions based on the extensions to813

generate answers (line 13). Finally, we translate all814

facts W , and default rules R, questions Q, answers815

A, and extensions E into natural language based816

on the template (line 14).817

Table 6 gives the statistical information of the818

generated MultiLogicNMR dataset. Among them,819

the samples in MultiLogicNMR_OOD have more820

rules and involve more extensions than MultiLogic-821

NMR. They are used to measure the generalization822

of LLMs on extended non-monotonic reasoning823

tasks.824

8https://pypi.org/project/clyngor/

Algorithm 1: MultiLogicNMR Dataset
Generation Algorithm

Input: Predicates Pool PP , Entity Pool EP ,
Iterative Number T .

Output: Facts W , Default Rules R, Questions Q,
Extensons E, Answers A.

1 Initialization: iter = 1, T = 10, W = ∅, R = ∅,
Q = ∅;

2 while iter ≤ T do
3 Generate prerequisite literal rprel based on

predicate rprep from PP or Rcon
P ;

4 Rpre
P = Rpre

P ∪ rpreP ;
5 Generate justifications literal rjusl based on

predicate rjusp from PP or Rcon
P .

Rjus
P = Rjus

P ∪ rjusP ;
6 Generate conclusion literal rconl , predicate

rconp from PP or Rcon
P .

Rcon
P = Rjus

P ∪ rconP ;

7 Generate default Rule Ri :
R

pre
l

:R
jus
l

Rcon
l

, Rpre
l

is the conjunction of at most two literals rprel ,
Rjus

l at most two literals rjusl , and
Rcon

l = rconl ;
8 R = R ∪Ri, iter = iter + 1 ;
9 end

10 Generate fact literal W fact
l based on predicate

Rfact
P ∈ Rpre

P \Rcon
P , W = W ∪W fact

l ;
11 Generate question literal Rques

l based on predicate
Rques

P ∈ Rpre
P ∩Rcon

P , Q = Q ∪Rques
l ;

12 Generate default theory extensions E through
symbolic solvers9. ;

13 Generate answers A to questions Q based on the
expansion E. ;

14 Convert the facts, default rules and questions into
natural language ;

11



A.2 Answer Set Solver825

Algorithm 2 gives the symbolic solver for answer826

set programming. The idea of the proposed neural-827

symbolic framework MultiLogicNMRer is consis-828

tent with algorithm 2. In Algorithm 2, first, the829

input default theory is instantiated (line 16), and830

then the upper bound set U and the lower bound set831

L of the default theory are respectively calculated832

(line 17). Finally, the function expandp is called833

to update the upper and lower bound fact sets to834

generate the expansion (lines 1-7). Specifically, the835

lower bound set should contain the conclusions of836

the reduction rules under the upper bound set (line837

5), while the upper bound set should only contain838

the conclusions of the reduction rules under the up-839

per bound set (line 6). The lower bound is returned840

as an extension when the upper and lower bounds841

are consistent (line 11). If the updated lower bound842

set is included in the upper bound set, the exten-843

sion search fails, and failure is returned (line 10);844

if the updated upper bound is still a superset of the845

lower bound, a random literal is selected from the846

upper bound set to be added to the lower bound847

set. The literal is deleted from the upper bound set.848

The upper and lower bounds set will be updated849

and searched again. All the upper and lower bound850

set pairs are searched, and all the extensions in the851

default rules are found.852

It is worth noting that this symbolic solver only853

applies to normal logical program rules. On the854

one hand, the default rules in MultiLogicNMR gen-855

erated under specific constraints can be converted856

into equivalent logic programs; on the other hand,857

although the proposed MultiLogicNMR dataset in-858

volves classical negation ¬, it is impossible to in-859

clude atoms and the negation of atomic in the same860

extension at the same time. Hence, the symbolic861

solver’s solution idea still applies to the proposed862

non-monotonic reasoning benchmark MultiLogic-863

NMR.864

Algorithm 2: Classic ASP solving algo-
rithm
1 expandp(L,U) ;
2 repeat ;
3 L′ ← L ;
4 U ′ ← U ;
5 L← L′ ∪ Cn(PU ′

) ;
6 U ← U ′ ∩ Cn(PL′

) ;
7 Until (L = L′) or L ⊈ U ;
8 solverp(L, U) ;
9 (L,U)← expandp(L,U) ;

10 if L ⊈ U then failure ;
11 if L = U then output L ;
12 else a← choose(U \ L) ;
13 solvep(L ∪ {a}, U );
14 solvep(L, U \ {a} );
15 main() ;
16 P ← ground(input) ;
17 init(L, U) ;
18 solvep(L, U) ;
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A.3 Zero/Few-Shot Prompts865

Zero-Shot Prompting in Skeptical Reasoning866

Task Description: Given contexts and
question, You need to generate answer labels
for questions in a given context. The answers
to the questions are labeled “True”, “False”
and “Unknown”.
If the question can be inferred under all
reasoning paths based on the context, and the
negation of the question cannot be inferred
under all reasoning paths based on the context,
the answer label of the question is: “True”;
If the negation of the question can be inferred
under all reasoning path based on the context,
and the question cannot be inferred under
all reasoning path based on the context, the
answer label of the question is: “False”;
If the question and the negation of the
question cannot be deduced under a certain
reasoning path based on the context, the
answer label of the question is: “Unknown”.
You must generate answer labels for the
question.
The input format is: Context: “ ”. Ques-
tion:“ ”.
The output format is: The answer label of
the question is:“ ”.

Note that you only need to generate the
answer label for the question without giving
an explanation or justification. Please read the
context carefully and answer the questions.

Zero-Shot Prompting in Credulous Reasoning 867

Task Description: Given contexts and
question, You need to generate answer labels
for questions in a given context. The answers
to the questions are labeled “True”, “False”
and “Unknown”.
If the question can be inferred under a certain
reasoning path based on the context, the
answer label of the question is: “True”;
If the negation of the question can be inferred
under a certain reasoning path based on the
context, the answer label of the question is:
“False”;
If the question and the negation of the
question both cannot be deduced under all
reasoning path based on the context, the
answer label of the question is: “Unknown”.
You must generate answer labels for the
question.

The input format is: Context: “ ”.
Question: “ ”.
The output format is: The answer label of
the question is: “ ”.

Note that you only need to generate the
answer label for the question, without giving
an explanation or justification. Please read the
context carefully and answer the questions.
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Few-Shot Prompting in Skeptical Reasoning868

Task Description: Given contexts and ques-
tion, You need to generate answer labels for
questions in a given context. The answers to
the questions are labeled “True”, “False” and
“Unknown”.
If the question can be inferred under all rea-
soning paths based on the context, and the
negation of the question cannot be inferred
under all reasoning paths based on the context,
the answer label of the question is: “True”;
If the negation of the question can be inferred
under all reasoning path based on the context,
and the question cannot be inferred under all
reasoning path based on the context, the an-
swer label of the question is: “False”;
If the question and the negation of the question
cannot be deduced under a certain reasoning
path based on the context, the answer label of
the question is: “Unknown”. Each context has
a question, you must generate answer labels
for each question.
The input format is: Context: “ ”. Ques-
tion:“ ”.
The output format is: The answer label of
the question is:“ ”.
Example 1: Context: Basil is not innocent.
Basil is not wooden. Basil is discreet. Basil
is not petite. Basil is comprehensive. Basil
is nutty. Basil is historical. ... If someoneA
is historical then he is red, unless he is not
lively or he is not big. If someoneA is nutty
and steep then he is miniscule, unless he is not
weary or he is outstanding. If someoneA is not
petite then he is brave, unless he is sticky or he
is psychological. If someoneA is not wooden
and miniscule then he is psychological, unless
he is brave. ...
If the question is: Basil is red. Then the an-
swer label for the question is: “True”;
If the question is: Basil is miniscule. Then
the answer label for the question is: “Un-
known”;
If the question is: Basil is not ashamed. Then
the answer label for the question is: “False”.
Note that you only need to generate the answer
label for the question, without giving an expla-
nation or justification. Please read the context
carefully and answer the questions.

Few-Shot Prompting in Credulous Reasoning 869

Task Description: Given contexts and ques-
tion, You need to generate answer labels for
questions in a given context. The answers to
the questions are labeled “True”, “False” and
“Unknown”.
If the question can be inferred under a certain
reasoning path based on the context, the an-
swer label of the question is: “True”; If the
negation of the question can be inferred under
a certain reasoning path based on the context,
the answer label of the question is: “False”; If
the question and the negation of the question
both cannot be deduced under all reasoning
path based on the context, the answer label
of the question is: “Unknown”. Each context
has three questions, You must generate answer
labels for each question.
The input format is: Context: “ ”. Ques-
tion:“ ”.
The output format is: The answer label of
question is: “ ”.
Example 1: Context: Cecil is acceptable. Ce-
cil is uptight. Cecil is not good tempered. Ce-
cil is not severe. Cecil is not messy. Cecil is
not self disciplined. Cecil is not logical. Cecil
is not right. Cecil is careful.... If someoneA is
not logical then he is not visible, unless he is
not harsh. If someoneA is not messy and care-
ful then he is not outstanding, unless he is not
uptight. If someoneA is uptight and not severe
then he is not successful, unless he is similar
or he is not good. If someoneA is not visible
then he is serious, unless he is not outstanding.
If someoneA is not self disciplined then he is
not fantastic, unless he is emotional or he is
serious. ...
If the question is: Cecil is good. Then the
answer label for the question is: “False”; If
the question is: Cecil is not visible. Then
the answer label for the question is: “Un-
known”; If the question is: Cecil is similar.
Then the answer label for the question is:
“True”.
Note that you only need to generate the an-
swer label for the question, without giving an
explanation or justification. Please read the
context carefully and answer the questions.
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A.4 Experimental setup for fine-tuning LLMs870

We use the LoRA fine-tuning method to fine-tune871

the open-source LLMs (LLAMA3-8B-Instruct10,872

gemma-7b-it11, Mistral-7B-Instruct_v0.212), re-873

spectively. The parameters of the fine-tuned model874

are shown in Table 5. All fine-tuning experiments875

are completed on a single NVIDIA 4090 GPU876

based on the unsloth13 framework.877

Table 5: Fine-tuning experimental parameters of open-
source LLMs.

Parameter Value
per_device_train_batch_size 4
gradient_accumulation_steps 4
warmup_steps 10
max_steps 100
weight_decay 0.01
optim Adamw_8bit
seed 3407

10https://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct

11https://huggingface.co/google/gemma-7b-it
12https://huggingface.co/mistralai/Mistral-7B-Instruct-

v0.2
13https://github.com/unslothai/unsloth
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A.5 MultiLogicNMRer Prompts878

Groundding Prompting879

Task Description: Given a set of facts
and a rule, you need to instantiate the rules
based on given facts. Instantiation requires
the replacement of pronouns in rules with
individuals from the fact.

Example 1: Godwin is not sour. God-
win is short. Godwin is scared. Godwin is
wild. Godwin is expensive. Godwin is not
bad. Godwin is not straightforward. Godwin
is anxious. Godwin is not stubborn. Godwin
is not zany. Godwin laugh Connor.Godwin
esteem Connor. Godwin is not immediate.
Godwin is persistent. The rule is: If some-
oneA laugh someoneB and he is not stubborn
then he is old, unless he is not poor.
The output is: If Godwin laugh Connor and
Godwin is not stubborn then Godwin is old,
unless Godwin is not poor.

The output format is: The output is:“ ”.

Note that you need to output all instan-
tiation rules.

Fact Extraction Prompting880

Task Description: Given a set of facts and a
rule, you need to extract all instantiated facts
in the rule.

Example 1: The rule is: If Godwin
laugh Connor and Godwin is not stubborn
then Godwin is old, unless Godwin is not
poor or Godwin is unhappy.
The output is: Godwin laugh Connor.
Godwin is not stubborn. Godwin is old.
Godwin is not poor. Godwin is unhappy.

The output format is: The output is:
“ ”.

Note that you only need to output all
instantiated facts in the rule, do not print the
contents of the prompt, and don’t output the
same facts repeatedly.

Split Rule Prompting 881

Task Description: Given a rule, The rule
format is: If A then B, unless C. The A is the
prerequisite, the B is the conclusion, and the
C is the justification. You need to output all
prerequisite, conclusions, and justifications in
this rule.

Example 1: The rule is: If Brice is
emotional then Brice is beige, unless Brice is
sufficient.
The output is: prerequisite: “Brice is
emotional.”, conclusion:“Brice is beige. ”,
justification: “Brice is sufficient.”.

Example 2: The rule is: If Cadman is
historical and Cadman is emotional then
Cadman is swift, unless Cadman is smart or
Cadman is happy.
The output is: prerequisite: “Cadman is
historical. Cadman is emotional.”, conclusion:
“Cadman is swift.”; justification: “Cadman is
smart. Cadman is happy. ”.

The output format is: The output is:
prerequisite: “ ”, conclusion:“ ”, justification:
“ ”.
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Reasoning Prompting882

Task Description: Given facts and a rule.
You need to reason about the rules based on
facts. The rule format is usually: If A then
B. The A is the prerequisite, the B is the
conclusion. If the prerequisite A is in the
facts, you can deduce conclusion B. If the
prerequisite A is not in the facts, then you can
not deduce the conclusion B, so your output
is: None.

Example 1: The input facts are: God-
win is not sour.Godwin is short.Godwin
is scared. Godwin is wild. Godwin is
expensive. Godwin is not bad. Godwin is not
straightforward. Godwin is anxious. Godwin
is not sour. Godwin is not zany. Godwin laugh
Connor. Godwin esteem Connor. Godwin is
immediate. Godwin is persistent. The rules
are: If Godwin is not sour and immediate then
Godwin is not lovely.
The output is: Godwin is not lovely.

Example 2: The facts are: Juliana is
not old. Juliana is not anxious. Juliana
is asleep. Juliana is giant. Juliana is not
short. Juliana is comfortable. Juliana is not
fearless. Juliana is aggressive. Juliana is not
hot. Juliana is not southern. Juliana is not
technical. Juliana is not educational. Juliana
is not octagonal. Juliana is low. Juliana is not
poor. The rule is: If someoneA is not short
and not low then Juliana is persistent.
The output is: None.

The output format is: The output is:“ ”.

Note that you only need to output rule
conclusions that can be inferred, not facts and
reasoning processes.

A.6 Analysis and Case Study 883

Figure 5 also shows the distribution of answers gen- 884

erated by different methods in credulous reasoning, 885

and a similar conclusion can be drawn as in Figure 886

5 in skeptical reasoning. Questions with Unknown 887

are still very challenging to prompt and fine-tune 888

methods. At the same time, the proposed neural 889

symbolic framework MultiLogicNMRer has signifi- 890

cantly improved the performance of questions with 891

Unknown. To further explain this phenomenon, 892

Figure 4 shows an example of the answer and ex- 893

planation generated by GPT-4o in skeptical reason- 894

ing. According to the experimental results, it can 895

be found that the model gave the correct answer to 896

questions 1 and 3 with True and False answers, and 897

GPT-4o generated a reasonable and correct reason- 898

ing path, respectively, which corresponds to a cer- 899

tain extension generated in the context. However, 900

the model made a wrong prediction for question 901

2 with the answer Unknown. First, according to 902

the model’s explanation, the answer generated for 903

this question should be False, not True. This shows 904

that the GPT-4o has inconsistencies in the reason- 905

ing process. In addition, the model explanation 906

only contains one extension, so it cannot correctly 907

implement non-monotonic reasoning. 908

Figure 5: The distribution of answers generated by mod-
els in skeptical reasoning. The ZS represents the zero-
shot prompt-based model and FT represents the fine-
tuned model.
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Table 6: Statistical information for MultiLogicNMR datasets.

Dataset Mode #Num. #F.Avg #R.Avg
#Extensions
(1:1:1:1:1)

Label
(T:F:M)

MultiLogicNMR

Skeptical
Train 5000 12 10 [1,2,3,4,5] 1:1:1
Dev 500 12 10 [1,2,3,4,5] 1:1:1
Test 500 12 10 [1,2,3,4,5] 1:1:1

Credulous
Train 5000 12 10 [1,2,3,4,5] 1:1:1
Dev 500 12 10 [1,2,3,4,5] 1:1:1
Test 500 12 10 [1,2,3,4,5] 1:1:1

MultiLogicNMR_OOD
Skeptical Test 500 22 10 [6,8,10,12,16] 1:1:1
Credulous Test 500 22 20 [6,8,10,12,16] 1:1:1

The #Num. represents the number of samples in the generated dataset, #F. Avg represents the average number of facts in the
dataset, #R. Avg represents the average number of rules in the dataset, and #Extension represents the number of extensions.

Figure 6: An example of reasoning by the GPT-4o in skeptical reasoning mode.
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