
Received February 18, 2022, accepted March 1, 2022. Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2022.3159335

A Toolkit for Data-Driven Discovery of Governing
Equations in High-Noise Regimes
CHARLES B. DELAHUNT 1,2, (Member, IEEE), AND J. NATHAN KUTZ 1, (Senior Member, IEEE)
1Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
2Global Health Labs, Bellevue, WA 98007, USA

Corresponding author: Charles B. Delahunt (delahunt@uw.edu)

The work of J. Nathan Kutz was supported in part by the National Science Foundation AI Institute in Dynamic Systems under Grant
2112085, and in part by the Air Force Office of Scientific Research under Grant FA9550-19-1-0011.

ABSTRACT We consider the data-driven discovery of governing equations from time-series data in the
limit of high noise. The algorithms developed describe an extensive toolkit of methods for circumventing
the deleterious effects of noise in the context of the sparse identification of nonlinear dynamics (SINDy)
framework.We offer two primary contributions, both focused on noisy data acquired from a system ẋ = f (x).
First, we propose, for use in high-noise settings, an extensive toolkit of critically enabling extensions for the
SINDy regression method, to progressively cull functionals from an over-complete library and yield a set
of sparse equations that regress to the derivate ẋ. This toolkit includes: (regression step) weight timepoints
based on estimated noise, use ensembles to estimate coefficients, and regress using FFTs; (culling step)
leverage linear dependence of functionals, and restore and protect culled functionals based on Figures
of Merit (FoMs). In a novel Assessment step, we define FoMs that compare model predictions to the
original time-series (i.e., x(t) rather than ẋ(t)). These innovations can extract sparse governing equations
and coefficients from high-noise time-series data (e.g., 300% added noise). For example, it discovers the
correct sparse libraries in the Lorenz system, with median coefficient estimate errors equal to 1%−3% (for
50% noise), 6%−8% (for 100% noise), and 23%−25% (for 300% noise). The enabling modules in the
toolkit are combined into a single method, but the individual modules can be tactically applied in other
equation discovery methods (SINDy or not) to improve results on high-noise data. Second, we propose
a technique, applicable to any model discovery method based on ẋ = f (x), to assess the accuracy of a
discoveredmodel in the context of non-unique solutions due to noisy data. Currently, this non-uniqueness can
obscure a discovered model’s accuracy and thus a discovery method’s effectiveness. We describe a technique
that uses linear dependencies among functionals to transform a discovered model into an equivalent form
that is closest to the true model, enabling more accurate assessment of a discovered model’s correctness.

INDEX TERMS Data-driven discovery, noise mitigation, SINDy.

I. INTRODUCTION
The derivation of governing equations for physical systems
has dominated the physical and engineering sciences for cen-
turies. Indeed, it is the dominant paradigm for the modeling
and characterization of physical processes, engendering rapid
and diverse technological developments in every application
area of the sciences. Since the mid 20th century, governing
equations have become even more influential due to the rise
of computers and scientific computing. Scientific computing

The associate editor coordinating the review of this manuscript and

approving it for publication was Brian Ng .

allows one to emulate diverse and complex systems that
are high-dimensional, multi-scale and potentially stochas-
tic in nature. In modern times, the rapid evolution of
sensor technologies and data-acquisition software/hardware,
broadly defined, has opened new fields of exploration where
governing equations are difficult to generate and/or produce.
Biology and neuroscience, for instance, easily come to mind
as application areas where first-principle derivations are
difficult to achieve, yet data is now becoming abundant and
of exceptional quality. Measured coarse-grained macroscopic
behavior is also often difficult to derive or characterize
from knownmicroscopic descriptions. The ability to discover

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 1

https://orcid.org/0000-0003-4860-8069
https://orcid.org/0000-0002-6004-2275
https://orcid.org/0000-0002-8316-4996


C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

governing equations directly from time-series data is thus
of paramount importance in many modern scientific and
engineering settings. Confounding the discovery process
is the ubiquity of noisy experimental data. The scope of
this work is centered around the data-driven discovery
of a system’s governing equations given highly noisy
experimental data.

Time-series measurements for which the signal-to-noise
ratio is low represents significant challenges for any analysis
of the underlying signal. While the techniques described
here can apply to various discovery or signal processing
methods, we consider in particular the Sparse Identification
of Nonlinear Dynamics (SINDy) algorithm [1], [2]. SINDy
is a regression method that leverages time-series data to
discover the governing equations of a system of differential
equations (or partial differential equations [3], [4])

ẋ = f (x), (1)

with state x ∈ Rn and smooth dynamics f (x) : Rn → Rn.
SINDy assumes that the governing equation of each variable
xj is a linear combination of a small number of terms, i.e.,

ẋj =
∑
fi∈L

ξijfi(x) (2)

where fi(x) are candidate functionals in library L and the
ξij, representing their weights or loadings, are assumed to
be mostly zero. Indeed, only a few non-zero terms ξij are
assumed to be relevant in discovering the parsimonious
dynamical model (Eqn. 1). The basic SINDy method starts
with a pre-defined, overcomplete library of functionals F =
{fi(x)} (e.g., polynomials up to some degree), and assumes
ẋ(t) = 4F(x(t)) for a coefficient matrix 4. It then culls
coefficients until 4 is sparse. Then for a given variable
xj the non-zero entries in the jth row of 4 correspond to
the non-zero {ξij} in (Eqn. 2). The original formulation of
SINDy estimated and culled functionals using Sequentially
Thresholded Least Squares (STLSQ) [1], [5], as a tractable
alternative to `1 regression. Other culling methods have been
developed. In particular [6] used a robust method termed SR3
(sparse relaxed regularized regression) to extract the sparse,
non-zero coefficients of the dynamical model.

Since its introduction, SINDy has been applied to a
wide range of systems, including reduced-order models
of fluid dynamics [7]–[14] and plasma dynamics [15],
[16], turbulence closures [17]–[19], nonlinear optics [20],
numerical integration schemes [21], discrepancy model-
ing [22], [23], boundary value problems [24], multiscale
dynamics [25], identifying dynamics on Poincare maps [26],
[27], tensor formulations [28], and systems with stochastic
dynamics [29], [30]. It can also be used to jointly discovery
coordinates and dynamics simultaneously [31], [32]. The
integral formulation of SINDy [33] has also proven to be
powerful, enabling the identification of governing equations
in a weak form that averages over control volumes; this
approach has recently been used to discover a hierarchy
of fluid and plasma models [34]–[37]. The open source

software package, PySINDy,1 has been developed in Python
to integrate the various extensions of SINDy [38], [39]. For
actuated systems, SINDy has been generalized to include
inputs and control [40], and these models are highly effective
for model predictive control [41]. It is also possible to extend
the SINDy algorithm to identify dynamics with rational
function nonlinearities [42], [43], integral terms [33], and
based on highly corrupt and incomplete data [6], [44]. SINDy
was also recently extended to incorporate information criteria
for objective model selection [45], and to identify models
with hidden variables using delay coordinates [46]. The
diversity of methods and applications highlight the broad
reach and flexibility of the underlying regression architecture
(Eqn. 2). The high-noise methods introduced here can help
with all these formulations since noise severely limits the
usefulness of SINDy in such a parameter regime.

A. CHALLENGES OF SINDy
This paper seeks to address common challenges for the
SINDy method and its variants. These include:

1) SINDy’s regressions fit the derivatives ẋ, not the
original time-series x. Given noisy data, this has (at
least) two effects: First, the solutions are not unique
(as noted in [33]), especially given an overcomplete
starting library. There can exist several plausible sparse
libraries, and for a fixed sparse library a range of
coefficients, each of which fit the derivatives well but
give different estimates x̂(t) when evolved in time.
Thus, fitting the derivatives is not a sufficient method
to find a sparse model which reproduces the original
time-series.

2) What level of sparsity to enforce is not known,
so the output of the SINDy algorithm is often
too dense or too sparse and hyper-parameter tuning
is required. A standard solution is to do multiple
regressions, sweeping the sparsity parameter λ, then
choose between the resulting models by some method,
e.g., (i) expert assessment of models on a Pareto
front [42]; (ii) finding the knee where error (vs x(t))
stabilizes [33]; or (iii) examining error of the fit to ẋ via
cross-validation [29] or on a holdout trajectory [43].

3) The progressive culling of functionals from the library
is greedy, so if a vital functional is culled early the
method cannot recover (observed for SINDy by [29],
and for Lasso by [47]).

4) Library functionals are culled based on their coef-
ficients’ magnitudes. This penalizes functionals with
large-valued fi(t). For example, if a time-series x(t)
hovers around the value 10, then the functional x2(t)
can have a coefficient ξ2 that is 10× smaller than
the coefficient ξ1 of x(t) while exerting the same
effect in the regression, since ξ2x2(t) ≈ ξ1x(t).
Since functionals with small coefficients are culled
first, x2(t) will be culled despite having equal impact

1https://github.com/dynamicslab/pysindy

2 VOLUME 10, 2022



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

in Eqn. 2. A gaussian prior can be imposed on the
coefficients [48], [49], but this may be a poor match
for natural systems, whose coefficients can have a wide
range of magnitudes. Library functional time-series
f (t) can be normalized to unit variance [50], but this
risks imposing an opposite bias on coefficient size,
where x2(t) has equal footing with x(t), even though its
actual coefficient would be 10× smaller, and in noisy
conditions more volatile.

5) Noisy data is especially problematic because both
the regression target ẋ and the library functionals’
time-series fi(t) are estimated from this data. Existing
approaches to handling noise are discussed in the next
section.

B. DEALING WITH HIGH NOISE IN THE SINDy CONTEXT
High noise is the central challenge addressed in this paper.
Noisy data disrupt SINDy primarily by compromising
derivative estimates and by distorting estimates of library
functional values fi(x(t)). The original SINDy formula-
tion [1] handled 12% gaussian noise (σnoise/σdata = 0.12)
in the Lorenz system using total variation regularization of
derivative estimates, with some error in the final estimated
coefficients 4. However, given higher noise levels the
method fails because the estimated derivatives become too
noisy. The special case of partial corruption (i.e., some
timepoints contain noise, whereas others are noise-free)
has also been considered [6], [44]. By trimming outliers,
Champion et al. [6] handled 10% of datapoints corrupted
with heavy noise (spreading to 30% of derivative values
corrupted) in the Lorenz system. The theoretical bounds of
the least median of squares method [51]) suggests that higher
levels of corruption might be addressable with this approach.
Tran et al. [44] recovered correct equations and coefficients
for the Lorenz system given up to 72% of points corrupted,
subject to (i) low levels of noise; (ii) sufficiently long time-
series; and (iii) a corruption pattern alternating long clean
segments with corrupted segments. Lejarza and Baldea [52]
handled 7% added noise in the Lorenz system by culling
functionals based on consistency of their coefficient estimates
(instead of their magnitude as in SINDy), and by optimizing
a fit to x rather than ẋ, though with an Euler step-forward
constraint approximating the derivative (for more detail,
see V-A2).

Rudy et al. [53] assumes exact knowledge of the governing
sparse library but not its coefficients, and then includes a
loss term measuring whether the current model satisfies the
implied dynamics. This method identified correct coefficients
for the Lorenz system given roughly 120% noise (including
a non-zero mean case), suggesting that it might serve as
an effective second stage in a chain where the first stage
identifies the correct sparse library but not the correct
coefficients.

Noise in partial differential equations (PDEs) is espe-
cially challenging for SINDy, because noise amplifies with
each (spatial) derivative calculation [3], [34]. Rudy et al. [3]

found that even low noise resulted in much decreased
coefficient estimates (e.g., magnitude roughly halved) of dis-
covered sparse library functionals. Ahnert and Abel [54] note
that a simple moving average of noisy data always reduces
estimates of extrema, which would reduce the functional
coefficients ξij in Eqn. 2. Schaeffer and McCalla [33] address
noise via integration, so that the sparse regression involves not
the noisy ẋ and f (t)s but rather their much cleaner integrated
versions. This weak formulation has high potential value for
PDEs, where noise amplifies with each partial derivative but
can be effectively mitigated by integration. It handled 3%
noise in the Lorenz system, but this result may understate
the value of this method for PDEs. Reinbold et al. [34]
also applies integration, via multiplication by a smooth
kernel along with integration by parts, to reduce effects
of noise. This method handled 5% noise in a reaction-
diffusion equation, and usually recovered the correct sparse
library elements (with coefficient errors) even at 10%
noise.

C. A TOOLKIT FOR NOISY DATA
This paper considers the case of added white noise equivalent
to 50% to 300% gaussian noise, affecting all data points.
See Fig. 1 for examples. The experiments here are restricted
to systems that can be described by polynomial libraries,
including Lorenz, harmonic oscillators, and the Hopf Normal
form (as in [1]). Systems of PDEs, rational functions,
or control, are potential targets for this toolkit but have
not yet been addressed. We apply an engineering lens
to SINDy to address the exigencies of noisy data, and
describe a toolkit of novel, practically-based techniques,
including:

In the Regression step, we weight timepoints based on
estimated noise, use ensembles to estimate coefficients,
and regress using the Fast Fourier Transforms (FFTs)
of the derivatives and library functionals. In the Culling
step we rescale coefficients, leverage linear dependence of
functionals, and restore and protect culled functionals based
on Figures of Merit (FoMs). In a novel Assessment step we
define FoMs that compare model predictions to the original
time-series (i.e., to x(t) rather than ẋ(t)).

We emphasize that the individual techniques can operate
separately, and are intended to be incorporated tactically into
other frameworks, including but not restricted to SINDy. Here
we present the toolkit combined into a single architecture, and
it can be used as such; but it is really several independent
modules strung together to produce an effective overall
architecture for model discovery in the high noise limit.
As with SINDy, we wish to discover a sparse set of governing
equations by fitting functionals to the derivatives of the
system. We start with an overcomplete library of functionals,
and progressively cull functionals with small magnitude
coefficients via STLSQ, until we achieve a sparse library
of functionals that accurately model the system dynamics.
The several differences from existing SINDy programs are
described in our methods.

VOLUME 10, 2022 3



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

FIGURE 1. The noisy data regime. Lorenz time-series (from top, x(t), y (t), z(t)) with added white noise. Blue lines are true, clean
trajectories. The effective added noise levels, σnoise/σdata, are (a) ≈100% and (b) ≈300 %. The toolkit described here discovers the correct
functionals for each variable, with median coefficient estimate errors equal to 6% to 8% (for 100% noise); and 23% to 25% (for 300%
noise). See Results for details.

D. CONTRIBUTIONS OF THIS PAPER
We offer twomain contributions, both applicable to discovery
methods generally, not just to SINDy. First, we describe a
toolkit of techniques that enable accurate discovery of sparse
governing equations in very high-noise settings (50 - 300%
added noise). The various modules and ideas in the toolkit
can be separately inserted as needed into other discovery
frameworks to improve their performance in high-noise
regimes. Second, we address the problem of non-uniqueness
of solutions found from high-noise data. A discovered model
can appear to have incorrect functionals and/or coefficients,
though it is in fact equivalent (transforming by linear
dependencies) to a form that is close to the ‘‘true’’ model [55].
However, no method currently exists (to our knowledge)
to do this. We propose an automated technique to linearly
transform a discovered model into an equivalent (linearly
dependent) form, subject to the constraints of the input
data. This technique has two uses: First, to list alternative
viable forms of a discovered model as an aid to domain
experts; and second, to evaluate whether a discovered model
is accurate when the true system equations are known (i.e.,
oracle assessment of a discovery method’s accuracy on a test
case).

E. ROLE OF DOMAIN EXPERTISE
While this toolkit can be run ‘‘plug and play’’, we view it (and
data-driven discovery methods in general) primarily as an aid
to domain experts, to allow them to identify promising sets
of discovered governing equations. Domain expertise plays
a central role in SINDy (and other) methods, for example to
choose coordinate systems and initial functional libraries [1],
[56], [57], although [55] automates this to some extent; or to
choose the best among several generated models [33], [42].
We posit that the need for domain expertise is inevitable
and is not to be avoided or even minimized (except perhaps
in control use-cases). For example, apparently automated
methods of choosing a ‘‘best model’’ (e.g., AIC), while
principled, necessarily assume some error function. This
error function may be highly task-dependent, with generic
error functions unsuitable for a given domain. Besides expert
choice of coordinate systems and initial libraries, we call
on the user to select an optimal model (out of a sequence
of models) based on examination of FoM plots, train and
validation trajectory predictions, and possibly properties
of the functionals. While any user can interpret the FoM
plots, domain expertise presumably leads to more informed
choices.

4 VOLUME 10, 2022



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

F. EVALUATION OF RESULTS
Clear, universal metrics of success are perhaps not possible
in the context of discovery of governing equations from
noisy data. First, solutions in noisy settings are non-unique
(cf section I-A), and require special assessment methods,
which we introduce and describe below. Second, different
use-cases have diverse needs. At least three desiderata,
of increasing difficulty, are used in the literature:

1) We wish to identify the correct sparse library, i.e., the
non-zero functionals in the governing equations. Noise
complicates this task because linear dependencies
between the functionals in an over-complete library,
i.e., fk (t) ≈

∑
i6=k βifi(t) for most t , mean that multiple

sets of functionals can represent the system within a
noise-induced margin of error (we use βis for these
intra-library dependencies to distinguish them from the
sparse dynamical models of Eqn. 2).

2) We wish to accurately estimate the coefficients of the
functionals. The presence of noise complicates this
in various ways: (i) Regressions on different subsets
of points will yield different coefficients, even for
the same set of functionals, as noise distorts the
trajectory x(t) and the derivatives ẋ(t) being fitted.
(ii) Any smoothing used to de-noise the data tends to
add artifacts and also reduce the sharper transitions
(e.g., remove peaks in time-series) which reduces
derivatives’ apparent magnitudes.

3) We wish to accurately predict trajectories in different
parts of the state space. In non-linear or chaotic
systems, small differences in model coefficients may
yield predicted trajectories ẋ(t) which diverge from
clean ground-truth even while they live on the same
attractor and exhibit the same qualitative behaviors
(e.g., attractors, cycles, magnitudes, dominant frequen-
cies, state-space histograms).

We emphasize that solutions are not unique for noisy
systems, due to over-complete libraries and quasi-linear
dependence of functionals within the noise envelope. Let
the ‘‘true’’ functionals and coefficients be those given for a
known test system. Various true functionals can be absent
from the discovered model but still lie within the linear span
of the discovered (perhaps non-true) functionals. Also, the
true functionals may themselves have linear dependencies,
so that their coefficients can vary noticeably with only slight
effect on trajectory behavior. Thus, a discovered solution
for the system can appear quite wrong for several reasons:
It may contain non-true functionals; lack some of the true
functionals; or contain true functionals but with non-true
coefficients.

However, it may in fact be an accurate solution: First,
it may produce correct trajectories, either qualitatively
or quantitatively (item 3). Second, it may have a linear
transformation equivalent that is close in form to the true
system in various ways: (i) a discovered non-true functional
may be in the linear span of the true functionals and can thus
be substituted out (item 1); (ii) a missing true functional may

be in the linear span of the discovered functionals and can be
substituted in (item 1); and (iii) the true functionals may have
internal linear dependencies that allow their coefficients to be
transformed tomore closelymatch the true form (item 2). The
technique in section II-G finds an equivalent model within
the linear span of the discovered model that is closest to the
true solution (in oracle settings, where this is known), which
improves the accuracy of items (1) and (2) above.

We also note that different use-cases require different
definitions of success. For a domain expert seeking to use
experimental data to gain insight into a system under study,
items (1) and partially (2) might suffice. To simulate systems
for experimental study, items (2) and partially (3) matter. For
prediction and control, item (3) is important. In this paper
we report quantitative results for (1) and (2), and qualitative
results for (3). Re item (3), we found that in high-noise
chaotic systems the predicted trajectories of discovered
models, even with accurate sparse libraries and coefficients,
tended to fall off of (and onto) the true trajectories, while
maintaining very similar qualitative behavior.

II. METHODS
This section describes the high-noise toolkit, as follows: We
first briefly walk through how the framework processes a
dataset, listing the several modules. We then describe in
detail the individual modules, grouped according to context.
Miscellaneous other modules are described in the Appendix,
because they either (i) gave benefit but require an existing
SINDy method (e.g., the pySINDy Python package [38]);
or (ii) showed no clear benefit.

A full Python codebase for the toolkit, with detailed
commenting, can be found at [58]. The toolkit is also in
process of being added to the updated pySINDy package [39].

A. TOOLKIT WALK-THROUGH
The toolkit has three main stages, each with multiple steps:
(1) Preparation; (2) Iterations; (3) Final tasks. A schematic
is shown in Fig. 2. In the list below, standard SINDy
steps are marked with (∗∗), other steps reference the
relevant subsection. Given time-series of state variables xj(t),
j ∈ {1 . . . n}, the procedure works as follows:

1) PREPARATION
Done for each variable xj separately.
1) Smooth each xj with a Hamming filter (or other

method) (II-B)
2) Define a library of functionals {fi}, possibly different

for each xj (∗∗)
3) Calculate each ẋj (e.g.via Runge-Kutta) and each fi,

using the smoothed xjs (∗∗)
4) Calculate base weights for the timepoints (for regres-

sions) (II-C1)
5) Calculate Fast Fourier Transform (FFT) of each ẋj (for

regressions) (II-C3)
6) Calculate median values of each fi (for rescaling

coefficients during culling) (II-E3)

VOLUME 10, 2022 5



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

FIGURE 2. Schematic of procedure, organized as in Methods. Red font shows outputs from modules.
Asterisks (*) show important parameters or User Input. The condition given to end Iterations assumes there
are no noise variables (see Section II-F1).

7) Calculate histograms and FFT power spectra for each
xj (for Figures of Merit).

2) ITERATIONS:
Each iteration includes three key stages: (i) Regression,
(ii) Figures of Merit, and (iii) Culling. Some steps of
Regression are done for each variable xj separately. Figures
of Merit, Culling, and some steps of Regression are done
on the full model (all variables together). Below, ‘‘active
functionals’’ correspond to {i, j} pairs where ξij 6= 0 (so if
ξi1, ξi2 6= 0, then fi for x1 and fi for x2 are distinct active
functionals).

a: REGRESSION
1) Choose b subsets of timepoints for regression (e.g.,

b = 15) (II-C4). For each subset S:
2) For each xj: Weight the timepoints during regres-

sions. Use the timepoint weights based on estimated
noise during regressions (II-C1)

3) For each xj:Remove timepoints with too-large ratios
of active fi values from each S, since these can
destablize the regression onto ẋj (II-C2)

4) For each xj:Regress onto FFTs.Use a target consisting
of both ẋj(t) and the FFT of ẋ(t) for linear regression to
find coefficients ξij. Regression onto xj(t) is standard
(∗∗); regression onto FFTs is not (II-C3)

5) For each xj:Combine the ξij estimates. For each active
fi, there are b estimates for its coefficient ξij, one from
each subset S. Set the estimate of ξij equal to their
median (II-C4)

b: FIGURES-OF-MERIT (FoMs)
We calculate FoMs at each iteration, to help assess which
model in the progressively-sparser sequence yields the
best estimated time-series x̂j (distinct from the fit to
derivatives ẋj).

6) Evolve the current model { ˆ̇xj =
∑

i ξijfi,∀j} over train
and validation trajectories (II-D1).

7) Calculate FoMs, based on the evolutions (II-D2)
8) Restoration. A drop in certain key FoMs may signal

that the most recent cull degraded the model. This
triggers restoration of the culled functional, as follows:
(i) restore the culled functional to the active library;

6 VOLUME 10, 2022



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

(ii) add a flag to protect it from culling for the next few
iterations.

c: CULL A FUNCTIONAL
‘‘Culling a functional’’ fi for xj means removing it from the
active library of xj, i.e., set ξij = 0. This stage operates on all
active functionals combined, i.e., on the matrix 4.

9) Rescale the model coefficients ξij according to the
magnitude of their associated functionals fi. The
rescaled coefficients are only used to decide which
functional(s) to cull (II-E3)

10) For each xj: To cull, first use linear dependence
among the active functionals (i.e., those fi with ξij 6=
0). Run leave-one-out `2 linear regression on the
time-series of active fi to get R2 values. If some {fi} are
dependent (i.e., R2 values above some threshold, e.g.,
0.95), cull the one with the lowest rescaled ξij, then skip
the rest of culling for this iteration (II-E2). If there are
no linear dependence culls:

11) Exclude some functionals from culling. Active func-
tionals (i.e., with non-zero ξij) can be excluded from
culling for two reasons: (i) If they are protected due to
recent restoration (II-E5); (ii) We optionally impose a
balance constraint on the active functional counts of
each variable xj, so that functionals are not lopsidedly
culled from only one variable. Exclude all ξ∗j for any
variable xj whose active functional count is low enough
to violate the balance constraint. (II-E4)

12) Use rescaled {ξij} to cull functionals, one per itera-
tion (II-E3), (II-E1)

13) Save results of this iteration to file.
Repeat iterations until all functionals are removed for some
variable xj, i.e., some row of the coefficient matrix4 is zeroed
out. Then:

3) FINAL STEPS
1) (Optional) Restart iterations on the remaining vari-

ables, with new libraries, if noise variables are sus-
pected (II-F1)

2) Choose the likely best model for each training
trajectory by consulting the FoM sequences (and
possibly the text culling history) (II-F2)

3) Create a new library by taking the union of the active
xj libraries of each training trajectory’s best model, i.e.,
L = {fi : ξij 6= 0 for some j} (II-F3)

4) Repeat the full procedure starting with this new
library

5) Print new FoM mosaics, and choose an optimal
model(s) (II-F2)

6) Assess non-uniqueness of solutions: For each xj,
check (i) if certain functionals in the final sparse
library are optional; and (ii) if there are alternative
candidate functionals in the span of the final sparse
library. (II-F4)

7) Run the chosen optimal model(s) on test trajectories
(∗∗)

8) End of program.

The next several subsections describe the various modules
in more detail. We suppose we have multiple trajectories of a
dynamical system for training. If we have only one trajectory,
the Figures ofMerit based on validation trajectories cannot be
used, but all other methods hold.

B. SMOOTHING
We smooth the noisy trajectory with a Low Pass filter (e.g.,
Hamming window). De-noising always requires parameter
choices, and introduces artifacts. In this case the parameter is
Hamming window length, and the artifacts are squiggles due
to noisy points within the window that distort the estimated
trajectory (see Fig. 3). These squiggles derail the fitting of
standard SINDy models by distorting ẋj and fi estimates.
With our toolkit, by contrast, the squiggles introduced by
smoothing are rendered relatively harmless for three reasons:
(i) FoMs are relative to properties of the time-series xj (not
the derivatives ẋj), and sparse models yield better FoMs
due to their generalizing ability (II-D2); (ii) Weighting
timepoints according to their estimated noise reduces the
impact of large squiggles (II-C1); (iii) Regressing on the FFT
coefficients of the derivatives tends to neutralize the artifacts,
since the high frequency coefficients introduced by the
squiggles have low magnitude and are thus sacrificed during
`2 optimization (II-C3). The particular Hamming window
length is not critical as long as it is not much too big.

We note that other noise reduction methods could be used
(in addition or instead) at this point, as long as they yielded
continuous time-series xj(t), to accommodate different noise
types. Uniform noise responds well to the Hamming filter,
and the corruption scenarios in [6], [44], which contain
both clean and noisy timepoints, are arguably easier tasks
than full gaussian noise. Impulse or shot noise would,
we expect, respond to a two-step approach (median filter
followed by a linear filter) or to the methods in [6]. Periodic
noise would respond to Fourier domain filtering. However,
asymmetrically-distributed noise types with non-zero mean
(e.g., Rayleigh, Gamma), or even non-centered gaussian,
cause linear filters (such as Hamming windows) to introduce
bias and would require other treatments.

C. REGRESSION (ESTIMATING COEFFICIENTS OF ACTIVE
FUNCTIONALS)
Standard SINDy uses linear regression on the derivatives ẋj
of the system to estimate coefficients ξij of the function-
als fi. Our toolkit offers several modifications to this basic
program.

1) WEIGHTING TIMEPOINTS FOR THE TARGET VECTOR y
All timepoints are weighted according to the z-scores of
their time-series values xj(t), as estimated from local noise
envelopes, in order to downweight regression targets that
are based on very noisy point estimates. Each variable xj
has a different vector of timepoint weights. Weights wtj are
assigned to timepoint t for xj as follows:

VOLUME 10, 2022 7



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

FIGURE 3. Squiggle artifacts introduced by low pass smoothing. Lorenz
trajectory with 150 - 200% added noise. Green line= true clean trajectory,
gray dots = noisy data, black line = smoothed trajectory. Applying a
low-pass filter (e.g., convolving with a Hamming window) creates
squiggle artifacts in the smoothed trajectory. These tend to derail
standard SINDy methods but their effect is mitigated by other modules in
the toolkit (using FoMs, weighting timepoints, and regressing on FFTs).

1) Short windows of the time-series xj(t − n) . . . xj(t + n)
are affine-transformed to have mean 0 (method: fit a
line, then rotate and translate the points such that the
line maps to the x-axis)

2) The transformed values define a distribution
3) Interim weights winterim are defined as the inverses

of the Mahalanobis distances (i.e., z-scores) of the
transformed values, so that high z-scores correspond to
low weights

4) Log-scale the timepoint weights, w = ln(winterim + 1)
5) The weight wt for timepoint t is a combination of the

weights wsj of the timepoints s used to generate ẋj(t)
(e.g., the four timepoints {t − 2, t − 1, t + 1, t + 2} in
a Runge-Kutta approximation)

This timepoint weighting has (we believe) the effect of
favoring regression targets ẋj(t) that depend on timepoints
with low noise, which coincide with the sections of the
smoothed trajectory with less squiggle.

2) IGNORE TIMEPOINTS WITH EXTREME POINT VALUES
A second form of timepoint weighting (in fact exclusion),
overlaid on the wj above at each iteration, is based on the
notion that sometimes the ratio between the values of library
functionals is so great that a regression will be unstable. For
example, suppose one functional f1(t) ≈ 10±2, and a second
functional f2(t) ≈ 10sin(t). Most of the time the ratio f1

f2
is not

extreme, but it blows up at f2’s zero crossings. A regression
using timepoints near these zero crossings will likely result
in much different, and more volatile, regression coefficients
than a regression that uses only timepoints with reasonably
bounded f1

f2
. For this exclusion method, the ratios of an xj’s

active (i.e., not yet culled) functionals are calculated, and any
timepoints with maximum ratios above some threshold (e.g.,
30, exact value not relevant) are removed (wtj = 0) from the

regression target of that xj. This method serves to exclude the
most pathological regions from the regression.

3) REGRESS ON THE FFT OF ẋ AS WELL AS ON ẋ
SINDy typically uses estimates of ẋj as a regression target.
To these targets we add the coefficients associated with
the derivatives’ FFT. If we regress on the complex FFT
coefficients, this is in theory equivalent to regressing on
ẋj itself. Alternatively, we can transgress mathematical
correctness and use just the real part of the coefficients, the
coefficient magnitudes, or the coefficients of the FFT power
spectrum (this latter is in fact our default). Though none of
these are strictly correct, they all serve to focus the regression
on matching a characteristic of the derivatives distinct from
the derivative values themselves.

In particular, the smoothed trajectory contains (i) lower
frequencies associated with the trajectory’s true behavior;
and (ii) higher frequency artifacts (squiggles) created by
the moving window filter. We suspect that regression on
the FFT power spectrum coefficients knocks out the high
frequency artifacts because `2 optimization minimizes its
loss by preferentially failing on small-magnitude coefficients
in order to match large-magnitude coefficients. This pushes
the regression to ignore the artifacts, reducing their harmful
effect.

4) DO MULTIPLE FITS ON SUBSETS OF TIMEPOINTS
(BOOSTING)
Especially in a noisy setting, the coefficient ξij for fi from
regression on an ẋj target vector is only a single draw from
a distribution of possible coefficient values. In a greedy
setting like STLSQ, an aberrant ξij can have catastrophic
effects downstream if it leads to the cull of an important
functional. It also can cause inaccurate evolutions of train
and validation trajectories, and thus inaccurate FoMs. Thus,
at each regression we wish to estimate the distribution of
possible ξijs and choose the most representative option. [48]
developed a (computationally expensive) Bayesian method to
estimate the distribution of each ξij. Herewe apply the simpler
and cheaper method of boosting.We draw b (e.g., 15) random
subsets S (alternatively, sequential sections) of timepoints
and fit a model to each S. This yields a set of b ξijs for each
functional fi (and xj), from which to choose a suitable ξij
(we take the median). This method effectively controls the
risk of aberrant ξs at low cost. This is ensembling at a local
level (per iteration). In concurrent, independent work, [59]
examines a variety of ensembling techniques for mitigating
noise, applied to data and libraries at the model level.

D. FIGURES-OF-MERIT BASED ON MODEL EVOLUTIONS
Standard SINDy judges a model based solely according to
how well it fits ẋ, i.e., each ẋj. However, a good fit to ẋj is
usually a given and does not distinguish good models from
bad. Thus we wish to judge models according to whether
their evolved time-series matches the given xjs. To do this,
we generate Figures of Merit (FoMs), which are various

8 VOLUME 10, 2022



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

statistics that compare the predicted x̂j(t) to the smoothed
trajectories xj(t). If we have multiple training trajectories xk ,
we create multiple models, where model mk is trained on xk

(its home trajectory) and the other trajectories xh6=k act as
validation trajectories. To generate FoMs for mk , we evolve
it on both its home and validation trajectories.

1) EVOLVE THE CURRENT MODEL
At each iteration, we use an ODE solver that takes
initial conditions (e.g., Python Scipy’s solve_ivp or odeint
methods [60]) to generate a prediction x̂(t) for the home
and for each validation trajectory. Initial conditions for
the evolution are found via weighted averaging of a
small neighborhood of points around the nominal start-
ing point, with more trustworthy points weighted heavier
(cf section II-C1). This matters in chaotic systems where
small changes in initial condition can strongly affect the
evolution.

We note that these evolutions are the most computationally
costly step of the toolkit, especially if a particular model has
points of stiffness, or if we are tracking model stability (since
we need to domultiple evolutions to see if these diverge). This
cost can be mitigated in three ways: (i) By parallelization,
since the different train-validation splits can run in parallel,
and evolutions of a particular model at each iteration can also
run in parallel; (ii) By doing only one evolution, if stability of
a model is not in doubt; (iii) By skipping evolutions in early
iterations when active libraries are still large and FoMs tend
to be uninformative.

2) FIGURE-OF-MERIT HISTORIES
For each training trajectory xk , iterative culling of functionals
gives a sequence of progressively sparser models mk . FoMs
are recorded for each model in the sequence. These FoMs are
then plotted vs iteration number as shown in Fig. 4, allowing
the user to select which among the models best matches
the desired time-series behavior. Pan et al. [61] employ a
similar manual examination of an FoM followed by refitting,
to downselect from a library of eigenvectors in the context of
Koopman operators. This method (do one complete STLSQ
run and record the models at each step) is similar to how
Lasso is done, and is an alternative to sweeping the sparsity
parameter λ with multiple complete SINDy runs. The model
at each iteration is also printed to text file for later inspection.

Examples of FoMs include:
1) Whether multiple evolutions match each other. This

assesses stability of the model.
2) Fraction of evolved trajectory within upper and lower

bounds (of the smoothed trajectory). This detects
egregious blow-ups.

3) Fraction of evolved trajectory within an envelope
about the smoothed trajectory. This is a valuable, finer
measure of whether the evolved trajectory tracks the
true.

4) Relative error of the std dev of evolved trajectory v(t)
vs smoothed trajectory x(t), σ (v)−σ (x)

σ (x) . This comparison

of std devs is a valuable measure, with good models
having relative error close to 0 in all variables.

5) FFT power spectrum correlation between evolved and
smoothed trajectories.

6) Histogram correlation between evolved and smoothed
trajectories.

Two FoMs (‘‘fraction in-bounds’’ and ‘‘evolution correla-
tion’’) readily detect big failures, i.e., exploding trajectories
and unstable models. ‘‘Relative error of std dev’’, ‘‘fraction
in-envelope’’ and ‘‘histogram correlation’’ detect cases when
a reasonably accurate model starts going moderately off-
track. FoMs about derivative estimates are not useful, because
even bad models can match the derivatives well. As is usual
in machine learning, strong FoMs on validation trajectories
often indicate a good model (see Fig. 4).

E. CULLING FUNCTIONALS
STLSQ involves culling functionals with the lowest non-zero
coefficients in the estimate ˆ̇xj = 6ξijfi where the active (i.e.,
not yet culled) functionals for xj are those with non-zero
ξij. The toolkit offers several modifications to this sequential
culling:

1) CULL ONE FUNCTIONAL PER ITERATION
We wish to capture the importance of a given functional’s
loss in the FoM sequences. To tie individual functionals to
the FoMs, we cull just one functional (from all variables
combined) per iteration. We continue culling until one
variable loses all its functionals (with an optional restart,
see II-F1). A faster alternative, but with less granularity
in terms of FoMs, would be to cull multiple functionals
per iteration. A workable compromise is to cull multiple
functionals during early iterations, then to reduce to one
functional per iteration later as the active libraries get
sparser.

2) CULL VIA LINEAR DEPENDENCE OF FUNCTIONALS
Various functionals in a library may be de facto (i.e., given
the noise level) linearly dependent, with an ‘‘incorrect’’
functional in the span of a ‘‘correct’’ functional. For example,
in Lorenz, ẋ = ξ1x + ξ2y, but xz and yz are in the span of
x and y (see Fig. 5). In this case, the coefficients chosen by
`2 regression are but one choice amongmany, and other linear
combinations of functionals are effectively equivalent.

We address this as follows: Each iteration, we check
the linear dependence of the active functionals (for each
variable separately), calculating R2 values for leave-one-out
`2 fits. If some functionals show linear dependence via high
R2 values (above some threshold e.g., 0.95), we cull the one
with the lowest rescaled (cf II-E3) coefficient. That is, we cull
based on coefficient magnitude (as usual), but we restrict that
iteration’s culling candidates to just those functionals that are
linearly dependent. This method handles large initial libraries
well, reliably culling excess functionals.

VOLUME 10, 2022 9



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

FIGURE 4. Figures of Merit for train and validation trajectories. Harmonic cubic oscillator; true model has 2 functionals
per variable. Plots show useful FoMs, and how validation trajectory FoMs add information. Yellow highlighted blocks mark
iterations where validation FoMs improve while training FoMs drop or hold steady. Dotted lines show ideal values. (a) The
number of functionals for x and y in the model, as sparsity increases through iterations. (b) (rows 2–5) FoMs for the
home (training) trajectory. (c) (rows 2–5) FoMs for the two validation trajectories (one trajectory as squares, one as
triangles). Row 2: Fraction of the evolved trajectories ‘‘in envelope’’. Note the trade-off in ’’in envelope’’ FoM between home
trajectory and validation trajectories after iteration 12: training accuracy decreases, but validation accuracy increases. Row
3: Relative error of std dev of evolved trajectory (0 is ideal). Note that the home accuracies are consistently good whereas
validation accuracies vary substantially by iteration. Rows 4 and 5: Correlation to histograms of evolution values (row 4)
and FFT power (row 5). In both cases, home accuracies are generally high, whereas validation accuracies vary by iteration.
In row 4, home accuracy drops after iteration 14 whereas validation accuracy remains high. In rows 4 and 5 of the
validation (right-hand) column, some models show good fit to one trajectory (triangles) but not the other (squares).

3) RESCALE THE FUNCTIONAL COEFFICIENTS ACCORDING
TO MAGNITUDE OF FUNCTIONAL VALUES
Library functionals often have radically different value
ranges, which can strongly bias culling based on coefficient
magnitude. For example, suppose x(t) is generally around 10.
Then x ≈ 10, x2 ≈ 100, etc. This translates directly into
much smaller coefficients ξ for some functionals, which
increases the likelihood they will be culled by thresholding,
regardless of whether they are part of the ‘‘true’’ governing
equation. To mitigate this bias, we cull coefficients not based
on their regression coefficients ξ , but on rescaled versions
viξ such that the contribution of each viξifi term is (very

roughly) equal. We approximate this ideal for a particular xj
as follows: For each active functional we calculate a median
value over the fitted timepoints (=med(fi)), then normalize
by some percentile of all active functionals’ medians to get
rescaling factors v:
vi =

med(fi)
M where M = mth percentile of {med(fi)} over

all active fi. Extreme values of vi (< 0.1 or> 10) are clipped.
For choice of m, see II-H.
The parameter m determines which active functional is

considered ‘‘standard’’, i.e., has v = 1. Then viξi > ξi if
med(fi) > M (relatively high values of fi lead to relatively
low values of ξi, which vi offsets). Similarly, viξi < ξi if

10 VOLUME 10, 2022



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

FIGURE 5. Linear dependence of functionals. Lorenz system. For each subplot: x-axis = time, y-axis = functional value.
Black = functional to be fitted (values using smoothed data), red = linear fit by basis functionals, green = noise envelope
(2 std dev). (a, b) Given a discovered sparse set of governing equation functionals, we can test whether other (culled)
functionals are in their linear span, relative to the noise envelopes. If yes, they are potential candidates for the ‘‘true’’
governing equations even though they were culled. In Lorenz’s ẋ , xz and yz appear to be within the span of the discovered
set {x and y } (R2 ≈ 0.97 ), so they are plausible‘‘true’’ functionals, perhaps instead of x or y . (c, d) We can also test via
leave-one-out whether any of the discovered active functionals are redundant. In Lorenz’s ẋ , the selected functionals x and
y have relatively poor leave-one-out fits (R2 = 0.81), indicating they are both essential (linearly independent).

med(fi) < M (relatively low values of fi lead to relatively
high values of ξi, which vi offsets).
The vi depend on which fi are active (ξij 6= 0), so they

differ for each xj and also change as functionals are culled.
This rescaling method replaces the ‘‘do-nothing’’ default that
benefits small-valued functionals with a deliberate choice that
balances large- and small-valued functionals by increasing
(for culling purposes only) the coefficients of large-valued
functionals. This rescaling does not guarantee that the correct
functionals will be preferred; rather, it allows the user to
tune this aspect of culling based on domain expertise and the
chosen library.

4) CONSTRAIN THE IMBALANCE IN COEFFICIENTS PER
VARIABLE
STLSQ, if applied to the full system (ie all variables ẋj)
removes the functional with smallest coefficient, regardless
of which variable that functional acts on. This can lead to
imbalances, where one variable retains a dense library of

active functionals while another variable becomes overly
sparse, since the complexity in the overall system is incor-
rectly captured by one variable’s library. A domain expert
might have educated guesses about the relative symmetry of
a system. We encode this as a constraint on the maximum
allowed difference in library sizes between variables (e.g., 3).
If in a particular iteration one variable has many fewer active
functionals, those functionals are ignored by the culling.
In this case some other variable loses a functional, bringing
the total counts into closer balance.

5) RESTORE AND PROTECT CULLED FUNCTIONALS IF FoMs
DROP
A basic problem with greedy algorithms such as STLSQ
is that a ‘‘true’’ functional may get culled early and is
then permanently lost, which hurts the performance of
downstream models.

Because we collect FoMs at each iteration, we have imme-
diate notice if culling a particular functional degrades model

VOLUME 10, 2022 11



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

performance. Sufficient degradation (e.g., 50% reduction in
some FoM for some variable) triggers (i) restoration of the
culled functional, and (ii) protection of that functional from
culling for the next few iterations. This allows time for other
functionals to be culled instead, which changes the landscape
of coefficient values. If the restored functional’s coefficient
increases, it gets preserved going forward; whereas if its
coefficient remains low, it gets culled later. See Fig. 6 for an
example of restoration.

F. FINAL STEPS
1) RESTART PROCESS ON REMAINING VARIABLES
The culling iterations continue until all functionals have
been removed for one variable. The procedure can optionally
restart the STLSQ iterations on the remaining variables. The
new iterations use the original full library of functionals,
minus any functionals containing the removed variable. This
is an effective way to detect and remove pure noise variables
whose ẋ = constant (modulo noise effects). It is an irrelevant
step if all the original variables were salient.

2) CHOOSE BEST MODELS
By consulting an FoM mosaic, one can select an optimal
model that performs well on both train and validation
trajectories, and is sufficiently sparse. In addition, the FoM
sequences give clues as to whether a potentially relevant
functional was incorrectly dropped early, since this often
causes a drop in FoMs in the iteration when it was culled.
Validation FoMs give insight into generalizability. The text
print-out of model coefficients at each iteration can be
matched with the FoM mosaics to glean insights into which
functionals may be most important. Also, selected models
can be evolved over train and validation trajectories, to allow
visual inspection of their predictions.

3) COMBINE BEST MODELS
If there are multiple training trajectories, each trajectory
produces a sequence of models and an FoM mosaic, and thus
a different optimal model. These models often have different
sparse libraries due to differences in training trajectories.
In this case, the active functionals of the various models
can be combined (a union of sparse libraries), and the
full procedure restarted on all trajectories with this new
initial library (which is much smaller). Note that the union
of libraries respects the differences between variables: For
example, if some model has ξi1 6= 0, but all models have
ξi2 = 0, then in the union library fi is included for x1 but
not for x2. Functionals suspected of having been incorrectly
dropped (based on a drop in FoMs at some iteration) can also
be reinstated at this point.

This method usually improves the discovered models
substantially. It combines the positive findings of each
training trajectory to create a concentrated starting library of
highly-likely candidate functionals. It also mitigates greedy

culls of ‘‘true’’ functionals, since the loss is reversed if the
functional was preserved by another trajectory.

4) FIND ALTERNATE ACCEPTABLE LIBRARY FUNCTIONALS
As mentioned, a set of functionals may be effectively linearly
dependent, fk (t) ≈ 6i6=kβifi(t), if the approximation is well
within the noise envelope of the data. Thus there may be
multiple plausible sparse models for a system. Given a final
model, we do two types of checks for linear dependence
(examples are from the Lorenz systemwith 150 - 200% added
noise):

1) We apply linear regression to each culled functional’s
time-series, using the retained functionals’ time-series
as features. The goodness of fit, e.g., shown by
R2 values, indicates whether the culled functional
might be a viable alternative to the chosen functionals
for defining governing equations. Examples:
(i) ẋ = βxx+βyy; but xz ≈ β1x+β2y (R2 = 0.97) and
yz ≈ β3x + β4y (R2 = 0.96) (see Fig. 5 row 1). So xz
and yz are potentially viable substitutes for x.
(ii) ẏ = βxx + βyy + βxzxz. But yz ≈ β1x + β2y +
β3xz (R2 = 0.99), so yz is a viable substitute for one of
the ‘‘true’’ functionals.

2) We apply ‘‘leave-one-out’’ linear regression to the set
of retained functionals, fitting each functional’s time-
series using the time-series of the other functionals.
This gives clues as to whether the retained functionals
are all necessary. Examples:
(i) ẋ = ξxx+ξyy, and neither can be well approximated
by the other (R2 ≈ 0.81, see Fig. 5 row 2). So they are
both essential.
(ii) ẏ = ξxx + ξyy + ξxzxz. However, x or xz might
be redundant: x ≈ β1y + β2xz (R2 = 0.98) and xz ≈
β3y+β4x (R2 = 0.97). But y is not in the span of x and
xz (R2 ≈ 0.89), so it is not redundant. ‘‘Leave-one-out’’
in-span behavior is not necessarily symmetric.

This method acknowledges that solutions may not be
unique given high-noise data. The output is a list of possible
alternative functionals that are in the linear span (in the
sense described above) of the discovered functionals. This
list of alternatives enables domain experts to identify other
functionals potentially viable for use in governing equations,
rather than being constrained to just a single discovered
model.

G. ASSESSMENT OF DISCOVERED MODELS USING
LINEAR DEPENDENCIES
In the previous section, linear dependence was used to
help domain experts identify alternate candidate functionals.
In this section, our sole purpose is to assess whether a
discovered model has an equivalent form that is close to a
known set of governing equations, to determine whether the
discovery method works (oracle assessment). This problem
and technique are not specific to SINDy, but apply to
data-driven equation discovery in general given noisy data.

12 VOLUME 10, 2022



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

FIGURE 6. Restoring culled functionals. Large degradation of the ‘‘in-envelope’’ FoM due to culling a functional triggers
restoration of the culled functional. In the 3-D linear harmonic oscillator, the ‘‘true’’ functionals for ẋ and ẏ are x and y .
At iteration 21 x was culled from the active functionals for ẋ (a), causing degradation of the ‘‘in-envelope’’ FoM (b). This
triggered restoration of x at iteration 22 and temporarily placed it under protection from culling. The two incorrect
functionals were subsequently culled from ẋ leaving only x and y . At iteration 29, x was again culled from ẋ , degrading the
‘‘in-envelope’’ FoM and triggering restoration. Similarly, at iteration 31 y was culled from ẏ causing degradation, triggering
its restoration.

Our ability to assess whether a discovered model
matches the original ‘‘true’’ model is complicated by the
non-uniqueness of solutions in noisy regimes: There may be
multiple sparse coefficient matrices 4 such that ẋ = 4F
accurately reproduces dynamics of the system. We describe
construction of a non-degenerate linear transform that
converts the discovered model coefficients 4̂ to a new,
equivalent form 4̂′ which as closely as possible matches the
‘‘true’’ 4, while maintaining the same dynamical behavior.
Our goal is to accurately assess errors in discovered sparse
functional libraries and in estimated coefficients. For this
purpose we assume oracle knowledge of the ‘‘true’’ model.
The method is as follows:

1) Take as features the time-series of the ‘‘true’’ model’s
library L over a set of timepoints T . For each xj,
do linear fits of each functional g(t) in the discovered
model, g(t) = 6i∈Lβifi(t) + ε(t) (where ε(t) is the
fitting error), and record the R2 value of the fit (cf
section II-F4).

2) Based on a pre-set R2 threshold (e.g., 0.95) that
indicates a sufficiently close fit, see if any g are in
the span of the true functionals. This threshold partly
depends on the size of the noise envelopes.

3) If a discovered g is in the span of L, use the linear
relationship to substitute g out of the discovered model,
replacing it with true functionals. After this step, the
transformed sparse library overlaps the ‘‘true’’ sparse
library as closely as the R2 threshold allows.

4) Using leave-one-out linear fits, calculate the linear
dependencies within the transformed library.

5) If there are linear dependencies with sufficiently high
R2 values, apply iterative substitutions to shrink the
largest error in the modified vs ‘‘true’’ coefficients

|
ξ̂ij−ξij
ξij
|. After these iterations, the discovered model

has a form whose coefficients match the ‘‘true’’ model
as closely as the R2 threshold allows, in the sense
of having smallest maximum error. A side effect of
minimizing errors of true functionals is to minimize the
coefficients of surplus functionals.

6) Evolve the transformed model, to confirm that trajec-
tories are unchanged (or improved).

Examples: Fig. 7 showsmissing ‘‘true’’ functionals that are
linear combinations of discovered functionals. Fig. 5 shows
linear dependencies as used in step 3 above. Fig. 8 shows
linear dependencies as used in step 5 above. Results of oracle
transformation are evident in Tables 1 to 4, and Tables 7 and 8.

H. HYPERPARAMETER CHOICES
The toolkit appears to have many tunable parameters, but
most of them are effective over large ranges and can be left
as-is. Below we list the hyperparameters with the most effect
on outcomes. However, in the experiments described here
only one hyperparameter (‘‘polynomialLibraryDegree’’) was
tuned per system, and one hyperparameter (‘‘hammingWin-
dowLengthForData’’) was changed for one system. The rest
of the parameter values were shared by all systems. Full
details can be found in the codebase [58].

polynomialLibraryDegree
When choosing a polynomial library (I-C), too small a degree
might miss crucial functionals while too large a degree has
several ill effects: It increases run-time because there aremore
functionals to cull (though culling by linear dependence early
on mitigates this considerably); it increases the likelihood of
a spurious functional displacing a ‘‘true’’ functional in the
sparse solutions; and it can cause the ODE solver to hang.

hammingWindowLengthForData
This controls the amount of low pass filtering applied to the
raw noisy data to create the smoothed time-series that the
toolkit works on (II-B). Too large a window risks removing
important high frequency information. Too small a window
risks creating time-series that are too convoluted. However,
the squiggles created by a small window length are more
easily mitigated than too much smoothing, so this parameter
can be set lower, to err on the side of less filtering. The
window size also depends heavily on the data set’s sampling

VOLUME 10, 2022 13



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

FIGURE 7. Culled ‘‘true’’ functionals are often in the linear span of discovered models. From the discovered model for
one of the training trajectories, Lorenz with 220 - 300% added noise. (a) The discovered sparse library for ẋ was {x, xz, yz}.
The ‘‘true’’ functional y was culled, but was in the span of the discovered functionals (R2 ≈ 0.98). (b) Similarly, the
discovered model for ż was {x , x2, y2}. The true functional xy was culled, but was in the span of the discovered functionals
(R2 ≈ 0.97).

FIGURE 8. Linear dependence of functionals, Hopf Normal 2-D. For each subplot x-axis = time, y-axis = functional value.
Black = functional to be fitted (values using smoothed data), red = linear fit by basis functionals, green = noise envelope
(2 std dev). Each plot shows the linear dependence of a left-out functional ((a) y , (b) xy ) on the other ‘‘true’’ functionals of
ẏ , in the form of a linear regression with R2 > 0.95. An extreme example is shown on the left:
y = 0.02x + 4.34y3 + 4.54x2y H⇒ 0 = −y + 0.02x + 4.34y3 + 4.54x2y with R2 = 0.99. These equalities can be substituted
in to find a version of the discovered model that is closest in form to the ‘‘true’’ model.

rate. It can be somewhat optimized by inspecting plots of
smoothed data.

BalancedCullNumber
This determines how similar the numbers of functionals per
variable in the sparse models will be (II-E4). If some level
of symmetry is known, this is a powerful prior. Even when
no particular symmetry is known, a moderate value like ‘‘3’’
(i.e., the functional counts of any two variables will differ
by at most 3) prevents situations where all the system’s
complexity gets lopsidedly encoded into one variable with
many terms.

percentileOfImputedValuesForWeights
Weighting coefficients based on functional magnitude
(II-E3) basically defines a ‘‘central’’ value, and weights func-
tionals proportionally while clipping the extremes (>10×
ratio). A low parameter value (e.g., 10) shifts preference

towards smaller-valued functionals, which typically means
that lower-degree monomials get weighted more heavily than
by a larger parameter value. This offsets the combinatorially
larger number of high-degree functionals in a polynomial
library. The effect of this parameter decreases substantially as
the libraries get smaller; its main effect is in the initial culling
stage.

numEvolutionsForFom
Evolving models multiple (e.g., 3) times detects unstable
models, with more evolutions doing this more reliably
(II-D1). However, these evolutions carry by far the largest
cost in the toolkit. So if stability is not an issue, one evolution
is best.

restoreBasedOnFoMsFlag AND fomChangesDict
The user must decide whether to restore functionals based on
drops in FoMs (II-E5), and if so which FoMs should trigger
restoration. The most salient FoMs are listed in (II-D2).

14 VOLUME 10, 2022



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

III. RESULTS
We give results for several dynamical systems with added
noise: Lorenz, linear and cubic harmonic oscillators, linear
3-D, and the Hopf Normal form (2-D). Background on these
systems can be found in [1]. The toolkit performs well on
all these systems at varying levels of noise. Results for the
Lorenz system are given in this section. Results for the
other systems are in the Appendix. The Lorenz system (here)
and Hopf system (Appendix) clearly show the importance
of the linear dependence method (cf II-G) when assessing
discovered models.

The toolkit requires various hyperparameters but none
of them are brittle, and a wide range of values work well
(perhaps because there are so many relatively ‘‘easy’’ gains
to be had). The Lorenz system was our test-bed, which
perhaps partially explains the higher levels of noise handled
for Lorenz. The other systems were handled using the same
hyperparameters used for Lorenz, with no additional tuning
except as follows: (i) Hamming window length for the
harmonic cubic oscillator was 300 instead of 200; and (ii) we
varied the degree of the initial polynomial library.

A. ADDED NOISE
In these experiments, white noise was added as follows:
Each variable xj(t) of a trajectory was transformed by FFT
to give complex frequency coefficients. Noise drawn from
a complex gaussian distribution N (0, σ ) was added to each
coefficient. An inverse Fourier transform gave a complex-
valued trajectory, of which the real part was retained. Noise
level (%) was defined as 100 × σnoise/σx where σnoise was
standard deviation of the noise-added trajectory minus the
clean trajectory, and σx was standard deviation of the original
clean trajectory.

B. THE LORENZ SYSTEM
We consider the canonical Lorenz system, a 3-dimensional
chaotic ‘‘butterfly’’-shaped attractor with two lobes, shown
previously in Fig. 1 (time-series view) and also below in Fig. 9
(3-D view). White noise was added at levels equivalent to
50%, 100%, 200%, and 300%, and results for typical runs
are reported.

The true system has ODEs:

ẋ = −10x + 10y (3)

ẏ = 28x−y−xz (4)

ż = −2.67z+ xy (5)

We used three training trajectories with initial conditions
[−8, 8, 27], [5, −7, 29], and [−2, 7, 21]; and two
holdout (test) trajectories with initial conditions [8, 7,
15] and [−6, 12, 25]. The initial conditions of the first
training trajectory are from [1]; all others were selected
at random. The training trajectories were 10 seconds long
with 0.002 second timestep. The initial functional libraries
consisted of all polynomials up to degree 4 (almost all the

degree 4 polynomials were rapidly eliminated by culling
based on linear dependence, cf section II-E2).

Themethod typically recovers the correct sparse functional
libraries (or, in some cases, linearly dependent equivalent
libraries). However, as noise increases the coefficient esti-
mates become less accurate, which leads to worse prediction
on holdout trajectories. If the coefficient error becomes large
enough, the qualitative behavior of predicted trajectories
changes.

For results at all noise levels, the discovered and ‘‘closest
to true’’ models (three models, one per training trajectory)
are listed along with coefficient errors. The key is as follows:
Column 2 gives the raw discovered equations. Column 3 gives
the ‘‘closest to true’’ equations, after transformation using
linear dependencies with R2 ≥ 0.95. Columns 4 and
5 give the absolute coefficient errors for each true functional,
|(ξ̂ − ξ )/ξ | as percentage (or ‘‘inf’’ if the functional is
missing).

In the true library of ẏ, the y functional is linearly dependent
on the x and xz functionals, so it could be substituted in,
as seen in the transformed (‘‘closest to true’’) versions of ẏ.
In ẋ, some incorrect functionals were in the span of the true
library (cf Fig. 7), allowing substitution in some cases. The
true library of ż had no relevant linear dependencies, so no
coefficient transforms were possible.

Which discovered model would give the best test set
evolutions was in all cases fully predictable based on quality
of training and especially validation set predictions.

1) 50% ADDED NOISE
Typical discovered models and coefficient errors for 50%
added noise are given in Table 1. In general, correct
functionals (an exception is given below) were selected, with
very low coefficient error. In all models, the raw ẋ and ż
equations had ‘‘correct’’ functionals. All models missed the y
functional in the ẏ estimate. However, evolutions of validation
and test trajectories were still very accurate, which highlights
the subjective nature of assessing ‘‘correctness’’ in the model
discovery context. Test set predicted evolutions of the best
model (determined on train-validation results) are shown in
Fig. 9 (left column).

2) 100% ADDED NOISE
Typical discovered models and coefficient errors for 100%
added noise are given in Table 2. Raw models 0, 1 gave
simple figure-8 trajectories, whereas raw model 2 gave
more qualitatitively accurate trajectories. In all cases, the
transformed models gave improved, qualititatively realistic
trajectories and discovered models contained the correct
functionals: The raw ẋ equations used xz (‘‘wrong’’) instead
of x, but linear dependencies gave equivalent forms with the
‘‘true’’ functionals x and y. The raw ẏ, ż equations contained
the true functionals. Test set predicted evolutions of the best
model (based on train-validation results) are qualitatively
correct, as shown in 9 (center column).

VOLUME 10, 2022 15



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

FIGURE 9. Test set evolutions for 50%, 100%, and 200% training data noise. Evolutions on two test trajectories of
models trained on Lorenz system data with added noise (cf Fig. 1). Evolutions are from the model with the best train
and validation trajectory predictions. Grey dots: original test data. Purple lines: Evolved trajectory. Evolved trajectories
are good at lower noise, and deteriorate somewhat as noise increases, though overall trend and qualitatively correct
behavior is maintained. At 300% noise (not shown), the predicted test trajectories degenerate into simple figure-8s (i.e.,
one loop per lobe, rather than multiple loops in a lobe before switching). (a) Noise level 50%. (b) Noise level 100%. (c)
Noise level 200%. Top row: Test trajectory 0. Bottom row: Test trajectory 1.

TABLE 1. Lorenz 50% noise: Discovered (raw) and equivalent models, and absolute coefficient errors for each true functional, |(ξ̂ − ξ )/ξ | as percentage
(‘‘inf’’ indicates a missed true functional). ‘‘Raw’’ errors are for the discovered equation, ‘‘closest’’ errors are for the transformed equation (cf section II-G).

Transforming using R2 threshold = 0.85 (vs 0.95) gave
models with (a) lower errors in coefficient estimates (median
errors= 9, 6, and 4%); (b) trajectories that were improved vs
raw but were not quite as good aswhen using a 0.95 threshold.
These results highlight that care is required choosing
an R2 threshold. We propose two criteria: Substituted-in
functionals should have close linear fits (by discovered
functionals) that are well within the noise envelope; and
equivalent models should have similar evolutions on train-
validation trajectories.

3) 200% ADDED NOISE
Added noise was 205% to 220%. Typical discovered models
and coefficient errors for 200% added noise are given in
Table 3. In all cases, the raw equations had the ‘‘true’’

functionals. Model 2 had the best train-validation trajectories,
the lowest errors, and also the best test trajectories (shown
in 9, right column). Despite apparently small differences
in coefficients (relative to Model 2), Model 0 had poor
train-validation trajectories, highlighting how variations in
quantitative error do not necessarily reflect changes in
behavioral error.

4) 300% ADDED NOISE
Typical discovered models and coefficient errors for 300%
added noise are given in Table 4. In each discovered
model, ẋ contains the linearly dependent term xz (R2 ≈
0.97). Substituting it out during assessment left the ‘‘true’’
functionals x and y. Constant terms (e.g., in model 2’s ẏ, ż)
could not be substituted out. All the discovered models

16 VOLUME 10, 2022



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

TABLE 2. Lorenz 100% noise: Discovered (raw) and equivalent models, and absolute coefficient errors for each true functional, |(ξ̂ − ξ )/ξ | as percentage
(‘‘inf’’ indicates a missed true functional). ‘‘Raw’’ errors are for the discovered equation, ‘‘closest’’ errors are for the transformed equation (cf section II-G)
using R2 threshold 0.95.

TABLE 3. Lorenz 200% noise: Discovered (raw) and equivalent models, and absolute coefficient errors for each true functional, |(ξ̂ − ξ )/ξ | as percentage
(‘‘inf’’ indicates a missed true functional). ‘‘Raw’’ errors are for the discovered equation, ‘‘closest’’ errors are for the transformed equation (cf section II-G).

contained the correct sparse libraries (Table 4), but they had
degenerate trajectories consisting of simple figure-8s. So in
terms of finding coefficients accurate enough to generate
qualitatively correct Lorenz trajectories, the toolkit hits a
failure point somewhere between 220% and 300% noise.

IV. DISCUSSION
We have presented a toolkit of methods to address noisy data,
for data-driven discovery of governing equations. Though
the toolkit is presented within the context of the SINDy
method, many of its modules can be deployed in other,
non-SINDy, architectures. In addition, although the various
modules are strung together and presented here as a single
architecture, they are intended to be deployed separately.
Most of the modules are independent, e.g., regress on
multiple sets of timepoints; weight coefficients for culling;
ignore timepoints with large functional value differences;
cull via linear dependence; and use FFTs as regression
targets. Two of the modules have dependencies: Smoothing
introduces artifacts that require mitigation by weighting
timepoints and by regressing on FFTs; and restoring culled
functionals requires generation of FoMs to provide triggering
conditions.

The toolkit modules focus on (i) mitigating the effects
of noise in various ways (e.g., removing timepoints from
regressions; regressing over multiple sets of timepoints);
and (ii) using models’ predicted trajectories to assess model
correctness (via FoMs and validation sets). The second item
addresses the fact that many models can closely match a

system’s target derivatives while still generating poor time-
series predictions. Thus optimization and model selection
based solely on matching derivatives is insufficient.

A. USING LINEAR DEPENDENCE TO HANDLE
NON-UNIQUENESS
In a second main contribution, we propose a method for cal-
culating and assessing linear dependencies between library
functionals, in order to address the inevitable non-uniqueness
of models given noisy data and over-complete libraries. This
method has two goals: First, it helps domain experts identify
other valid candidate functionals beyond those found in the
sparse discovered equations. Second, it enables identification
of equivalent transformations of a discovered model, in order
to accurately assess whether a discovered model that appears
to be wrong has in fact an equivalent form that closely
matches the ‘‘true’’ model. This is important when assessing
any data-driven discovery method.

B. LIMITATIONS
The need to evolve models at each step, in order to generate
FoMs, introduces a risk is that the solvers can hang, upsetting
completion of the algorithm. This is more likely with large
libraries of high order polynomials. One partial solution is
to avoid evolutions when functionals are culled by linear
dependence, since these culls tend to happen early, a time
when the solvers also tend to hang. Another partial solution
is to set time limits on the solvers, to allow them to exit. Both
solutions have the drawbacks that (i) we lose visibility into the

VOLUME 10, 2022 17



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

FIGURE 10. High noise (220 - 300%) Lorenz, predictions of training and test trajectories. (a) Training
trajectory: Green = true clean trajectory; Grey dots = with 220 - 300% added noise ((cf Fig. 1); Black =
smoothed trajectory with artifacts. Red = predictions (correct behavior, i.e., multiple loops per lobe visit);
Purples = predictions as validation, by other models (incorrect behavior, i.e., simple figure-8s). (b) Model
predictions on the two test trajectories (correct behavior). Grey = true trajectory, Red = predicted.

TABLE 4. Lorenz 300% noise: Discovered and equivalent models, and absolute coefficient errors for each true functional, |(ξ̂ − ξ )/ξ | as percentage (‘‘inf’’
indicates a missed true functional, ‘‘∗’’ an extra incorrect functional). ‘‘Closest’’ errors are for the transformed equation (cf section II-G).

effects (via FoMs) of culling certains functionals, and (ii) we
lose the ‘‘restore’’ option (section II-E5) for iterations lacking
FoMs.

Another limitation is the relatively slow runtime (a few
minutes on a laptop, versus seconds for vanilla SINDy).
However, vanilla SINDy fails given even small amounts
of noise, so the slower runtime can be viewed as a cost
of handling high noise. The slower runtime is due to two
things: (i) the serial evolutions of trajectories for FoMs;
and (ii) the one-at-a-time culling method. The first problem
can be mitigated somewhat by parallelizing training on
different trajectories; by parallelizing evolutions of multiple
trajectories by the same model (used to assess stability); and
by skipping evolutions in the early culling iterations, when
the models are too dense anyway. The second problem can be

addressed by culling more than one functional per iteration,
which however coarsens the view offered by the FoMs since a
deterioration from one iteration to the next cannot be ascribed
to exactly one culled functional. The runtime means that
the FoM-related components of the toolkit, in their current
form, would not work for certain use-cases (e.g., applications
requiring real-time model discovery).

Finally, the work here has not yet been applied to
PDEs, rational functions, or control use-cases. However,
the methods presented are eligible for porting to these
use cases. There is nothing limiting or constraining the
mathematical architecture for applications in spatio-temporal
systems governed by PDEs. Indeed, the toolkit offers valuable
extensions and improvements to the diversity of methods
developed for PDE discovery. An example might be using

18 VOLUME 10, 2022



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

this toolkit to generate an initial system estimate from high-
noise data, to be followed by the coefficient refining methods
in [53].

V. CONCLUSION
This work addresses two central challenges in data-driven
discovery of governing equations: high signal noise, and
assessment of a discovery method given non-unique solu-
tions. First, the toolkit offers several independently deploy-
able modules that mitigate high noise, especially in the
context of a sparse solution assumption (e.g, SINDy). It thus
offers solutions to the widespread and difficult problem of
noisy data. Second, the toolkit has modules that leverage
linear dependence of functionals’ time-series to enable
principled transformations of a discovered solution to other
equivalent solutions. This allows more accurate assessment
of a discovery method’s effectiveness, by showing whether
an apparently incorrect discovered solution is in fact close
to the ‘‘true’’ solution. It also generates a range of possible
equivalent solutions, giving domain experts broader insight
into possible sets of governing equations beyond a single
discovered solution.

APPENDIX
The Appendix has two main parts.

First, we briefly list of (i) some additional techniques
usable with SINDy (e.g., with the pySINDy package [38]),
and (ii) some ideas that did not yield clear benefit.

Second, we give results for several other dynamical sys-
tems: 3-D linear, linear harmonic oscillator, cubic harmonic
oscillator, and the Hopf normal form (2-D). All are described
in [1]. In general the toolkit gives good results on the 3-D
linear and harmonic oscillator systems, and fair results on the
Hopf system.

A. ADDITIONAL METHODS
1) METHODS FOR USE WITH TRADITIONAL SINDy

1) Use different initial libraries for each variable: Current
SINDy methods, e.g., [38], use the same initial
functional library for each variable. However, there
is often reason to assign different libraries to each
variable: (i) domain expertise might include or exclude
certain functionals for certain variables; (ii) a first run
of SINDywith a weak sparsity parameter might cull the
libraries (differently for each variable), preparing for a
second run with a tighter sparsity parameter.

2) Incrementally cull functional libraries via iterative
applications of SINDy: SINDy can be run iteratively,
with progressively tighter sparsity parameters, culling
a few functionals each time. The value of this
approach is that each new iteration does its regression
with a smaller, higher-probability library. Nuisance
functionals can be rejected early before the definitive
regression (with high sparsity parameter) is run. This
method appeared to improve SINDy models given
some noise, though at lower noise levels than tolerated
by the toolkit described here.

3) Smooth SINDy’s derivative estimates then feed them
back into SINDy: Because noisy (especially non-
continuous) derivative estimates cause such trouble, the
following method tends to improve SINDy predictions
by improving the derivative estimates: (i) Smooth the
initial derivative estimates; (ii) fit a SINDy model;
(iii) extract the derivatives generated by the sparse
SINDy model; (iv) smooth them; (v) refit the SINDy
model, feeding in the smoothed derivatives as the ẋ
argin. A possible reason this works is: the sparsifying
effect of SINDy can remove noise from derivative
estimates by simplifying their functional form; thus the
SINDymodel’s derivative estimates can be cleaner than
the original estimates based on the noisy data.

2) METHODS THAT HAD DOUBTFUL OR NO BENEFITS
1) Clipping, splining or shrinking noisy data points: These

methods of reducing noise were not effective, mainly
(we believe) because they did not return continuous
derivative estimates. A low-pass filter performed better.

2) Culling functionals based on the (un)reliability of
their coefficient estimates: Regressing several times
over different sets of timepoints yields a distri-
bution of coefficient estimates for each functional
(cf section II-C4). The reliability of the estimates can
be measured by, for example, σ/µ (std dev/mean).
Suppose that true functionals might have consistent
estimates (since they have a true role) whereas spurious
functionals have noisy coefficient estimates (since
they are spurious): Then functionals with unreli-
able estimates can be preferentially culled. However,
experiments indicate that the coefficients of true and
spurious functionals are entwined. If one functional’s
coefficient values swing wildly, it can cause swings
in other functionals’ coefficients. We note that [52],
in independent work, applied this method successfully
in a lower noise setting (e.g., 7% added noise in
Lorenz).

3) Regress on the outcomes of short trajectories rather
than on derivatives: Instead of regressing on deriva-
tives, regression can be on short predictions, e.g.,
over 100 timesteps. This tends to reward models that
have a longer time horizon than models regressing on,
for example, Runge-Kutta derivative estimates. In our
experiments, sometimes this alternative regression
target worked better and sometimes not, with no clear
pattern. In a lower noise setting, [52] successfully
optimizes against an Euler 1-step prediction (i.e., a very
short trajectory).

4) Ridge or Lasso regression (vs ordinary `2) did not
improve results, and often gave worse results. Lasso
introduces confusion because it also enforces sparsity.

B. RESULTS FOR OTHER SYSTEMS
1) LINEAR 3-DIMENSIONAL SYSTEM
We consider a three-dimensional linear system, with added
white noise equivalent to 50% (see Fig. 11). Runs used

VOLUME 10, 2022 19



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

FIGURE 11. Linear 3-D system validation trajectories. (a) Training trajectory with 50% noise (grey dots), clean (green), and
smoothed (black). (b) Time-series of x (y is similar but with phase shift). (c) Time-series of z . Black lines are smoothed
trajectories. Grey dots are trajectories with added noise. Fuschia lines are typical predicted validation trajectories.

TABLE 5. Linear 3-dimensional model, 50% noise: Discovered models and coefficient errors for runs using an initial library of polynomials up to degree
2 and up to degree 3. Columns 2 and 4 gives the raw discovered equations for each library. Column 3 and 5 give the absolute coefficient errors for each
true functional, |(ξ̂ − ξ )/ξ | as percentage (‘‘inf’’ indicates a missed true functional, ‘‘∗’’ an extra incorrect functional).

FIGURE 12. Linear 3-D system test trajectories, effects of initial library.
Typical predictions for the two Test trajectories by models trained on data
with 50% noise. The two trajectories have different initial conditions
(evident in the axes scales). Grey lines are true, fuchsia lines are
predictions. (a, b) Using a 2nd order polynomial library gave accurate
predictions for both trajectories. (c) Using a 3rd order polynomial library
gave predictions with some degeneration for test trajectory 1 (compare to
(b)) and still accurate for test trajectory 0 (not shown, similar to (a)).

libraries of either≤ 2nd or≤ 3rd degree polynomials. Results
for typical runs are reported.

The true system has ODEs:

ẋ = −0.1x − 2y (6)

ẏ = 2x − 0.1y (7)

ż = −0.3z (8)

We used three training trajectories with initial conditions
[2, 0, 1], [4,−1, 2], and [3, 3, 3]; and two holdout trajectories
with initial conditions [3, 1, 1] and [9, 1, 3]. The initial
conditions of the first training trajectory are from [1]; all
others were selected at random. Trajectories were 24 seconds
long with 0.002 second timestep.

At 50% noise, discovered models were very accurate
(correct libraries; median coefficient errors 1 to 8%; accurate
predicted trajectories) when the initial library contained
degree 2 polynomials (Table 5 columns 1 and 2). When
the initial library included degree 3 polynomials, cubic
terms displaced the true minor terms in ẋ, while ẏ and
ż estimates remained accurate (Table 5 columns 3 and
4). In all cases, the discovered models made highly
accurate predictions for train and validation trajectories
(see Fig. 11). Predictions of one test trajectory deterio-
rated somewhat given the 3rd degree library models (see
Fig. 12C).
At 70% added noise (initial library ≤ 3rd degree polyno-

mials) the following changes occurred: (i) the displacement
of minor functionals increased; (ii) train and validation
trajectory predictions remained accurate; (iii) test trajectory

20 VOLUME 10, 2022



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

FIGURE 13. Harmonic linear oscillator, 70% and 100% noise. (a) Time-series in x-y plane, with 100% noise (grey dots),
clean (green), and smoothed with squiggle artifacts (black). (b) Typical validation trajectory (x shown, y is similar but with
phase shift) given 70% noise during training. (c) The same, but given 100% noise during training. Grey dots are trajectories
with added noise. Black lines are smoothed trajectories. Fuschia lines are the trajectories as predicted by discovered
models. Note the less-accurate prediction in the highly damped region given 100% training noise (subplot C).

TABLE 6. Harmonic linear oscillator, 70 to 100% noise: Discovered models and coefficient errors for 70% and 100% noise. Columns 2 and 4 gives the raw
discovered equations for 70% noise and 100% noise. Column 3 and 5 give the absolute coefficient errors for each true functional, |(ξ̂ − ξ )/ξ | as
percentage (‘‘inf’’ indicates a missed true functional, ‘‘∗’’ an extra incorrect functional). At 70% noise, Model 1 (which had y3 instead of y ) had clearly
inferior validation trajectories, allowing easy identification of Models 0 and 2 as correct.

FIGURE 14. Harmonic linear oscillator, test trajectories. (a, b) Typical
predictions for Test trajectories 0 and 1, training data with 70% noise.
Grey lines are true, fuchsia lines are predictions. (c) Prediction of Test
trajectory 1 (as in (b)), training data with 100% noise, showing some
degeneration. Test trajectory 0 predictions were highly accurate given
training data with 100% noise (very similar to (a)).

predictions deteriorated. The discovered major functionals of
ẋ and ẏ, as well as all of ż, remained accurate.

2) LINEAR HARMONIC OSCILLATOR
We consider a two-dimensional harmonic linear oscil-
lator with added white noise equivalent to 70% and

100% (see Fig. 13). Results for typical runs are
reported.

The true system has ODEs:

ẋ = −0.1x + 2y (9)

ẏ = −2x − 0.1 y (10)

Three training trajectories had initial conditions [2, 0],
[4, 1], and [7, 1]; and two holdout trajectories had initial
conditions [3, 2] and [6, 3]. The initial conditions of the first
training trajectory were from [1]; all others were selected at
random. Trajectories were 28 seconds long with 0.002 second
timestep. The initial functional libraries were all polynomials
with degree ≤ 3. Linear dependencies between terms were
weak, so the discovered models had no transformed versions.

At 70% noise, the method typically recovered the correct
sparse functional libraries and accurate coefficients (Table 6),
and gave accurate predictions for all trajectories (train,
validation, and test).

VOLUME 10, 2022 21



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

FIGURE 15. Harmonic cubic oscillator, 70% noise. (a) Time-series in x-y plane, noisy (grey dots), clean (green) and smoothed with
squiggle artifacts (black). (b) Typical x time-series, with prediction of training trajectory. (c) x time-series, with prediction of validation
trajectory. Grey dots are trajectories with added noise. Black lines are smoothed trajectories. Fuschia lines are the trajectories as
predicted by discovered models.

FIGURE 16. Harmonic cubic oscillator Test trajectories. Predicted test
trajectories using a typical discovered model trained on data with 70%
noise. Grey dots are test trajectories (subsampled). Fuschia lines are the
predicted trajectories.

At 100% noise, the discovered models lost the x term in
ẋ, keeping instead xy2. All other functionals were correct,
with accurate coefficients (Table 6), and predicted trajectories
(train, validation, and test) were also accurate.

3) HARMONIC CUBIC OSCILLATOR
We consider a two-dimensional harmonic cubic oscillator
with added white noise equivalent to 70% (see Fig. 15).
Results for typical runs are reported.

The true system has ODEs:

ẋ = −0.1 x3 + 2 y3 (11)

ẏ = −2x3 − 0.1 y3 (12)

We used three training trajectories with initial conditions
[2, 0], [4, 1], and [7, 1]; and two holdout trajectories with
initial conditions [3, 2] and [6, 3]. The initial conditions of the
first training trajectory are from [1]; all others were selected at
random. Trajectories were 28 seconds long with 0.002 second

timestep. The initial functional library was all polynomials
with degree ≤ 5.

At 70% noise, the method typically recovered the correct
sparse functional libraries and accurate coefficients for ẏ, but
missed the minority term x3 in ẋ, keeping instead various
5th order terms which had strong linear dependencies (R2 ≈
0.88 to 0.92). See Table 7. The train, validation, and test
trajectories were largely accurate (see Figs 15 and 16).

At 100% noise, some models yielded correct functional
libraries but results were overall unreliable, as many models
included 5th order terms.

4) HOPF NORMAL 2D
We consider a two-dimensional Hopf Normal form (using the
identity z = x2 + y2), as described in [1] with added white
noise equivalent to 70%. Results for typical runs are reported.

The true system has ODEs:

ẋ = 0.2 x + y− x(x2 + y2) = 0.2x + y− x3 − xy2 (13)

ẏ = x + 0.2 y− y(x2 + y2) = x + 0.2y− x2y− y3 (14)

We used three training trajectories with initial conditions
[1, 0.75], [0.9, −0.1], and [0.25, 1]; and two holdout
trajectories with initial conditions [0.1, −0.75], [0.5, −0.5].
The initial conditions of the first training trajectory are
from [1]; all others were selected at random. Trajectories
were 16 seconds long with 0.002 second timestep. The initial
functional library was all polynomials with degree ≤ 5. The
discovered models have two salient features.

First, the toolkit discovered apparently incorrect libraries
that were equivalent (via strong linear dependencies) to
highly accurate libraries. Examples of relevant linear depen-
dencies are shown in Fig. 8. The equivalent models had

22 VOLUME 10, 2022



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

TABLE 7. Harmonic cubic oscillator, 70% noise: Discovered and equivalent models, and absolute coefficient errors for each true functional, |(ξ̂ − ξ )/ξ | as
percentage (‘‘inf’’ indicates a missed true functional, ‘‘∗’’ an extra incorrect functional). ‘‘Raw’’ errors are for the discovered equation, ‘‘closest’’ errors are
for the transformed equation (cf section II-G).

FIGURE 17. Hopf Normal form, 2-D, 70% noise, training set. (a)Time-series in x-y plane, noisy (grey dots), clean (green) and smoothed
with squiggle artifacts (black). (b, c) Typical x time-series, with predictions for two validation trajectories. Grey dots are trajectories with
added noise. Black lines are smoothed trajectories. Fuschia lines are the trajectories as predicted by discovered models.

FIGURE 18. Hopf Normal form, 2-D, test set predictions. Predicted test
trajectories using a typical discovered model trained on data with 70%
noise. Grey dots are test trajectories. Fuschia lines are the predicted
trajectories. The trajectories are qualitatively correct, but suffer from a
phase offset.

highly similar evolved trajectory behavior, correct functional
libraries, and often very accurate coefficient estimates
(median 8% error for ẏ, though median 78% error for ẋ).
Coefficient errors for discovered and closest (via linear
dependence) models are given in Table 8. The equivalence
of an apparently almost entirely wrong discovered model

and a linear transformation very close to the ‘‘true’’
model highlights the importance of the linear dependence
assessment method (II-G).

Second, the trajectories evolved by the best models
(as judged on validation trajectory FoMs and evolutions)
matched the true trajectories (train, validation, and test)
well though not perfectly (see Figs 17, 18). This disconnect
between correct equation form and correct predictive ability
highlights the distinction between the goals of inference
(identifying correct functional libraries), and prediction
(producing models that behave correctly).

5) HOPF NORMAL 3D
The three-dimensional version of the Hopf Normal form
(described in [1]) gave the toolkit considerable trouble. This
system includes both a transient portion and a steady-state on
an attractor where z= constant. At only 20% added noise the
models discovered by the toolkit were somewhat poor: They
only partially captured correct functionals, with spurious
functionals and inaccurate coefficients; they had strong

VOLUME 10, 2022 23



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

TABLE 8. Hopf Normal form, 2-D version, 70% noise: Discovered models and their coefficient errors are given in the top half of the table; closest
equivalent models (cf section II-G) and their errors are given in the bottom half. The table gives absolute coefficient errors for each true functional,
|(ξ̂ − ξ )/ξ | as percentage (‘‘inf’’ indicates a missed true functional, ‘‘∗’’ an extra incorrect functional). ‘‘Raw’’ errors are for the discovered equations,
‘‘closest’’ errors are for the transformed equations.

training trajectory predictions but poor validation trajectory
predictions; and they failed to predict test trajectories.

REFERENCES
[1] S. L. Brunton, J. L. Proctor, and J. N. Kutz, ‘‘Discovering governing

equations from data by sparse identification of nonlinear dynamical
systems,’’ Proc. Nat. Acad. Sci. USA, vol. 113, no. 15, pp. 3932–3937,
2015.

[2] S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering:
Machine Learning, Dynamical Systems, and Control. Cambridge, U.K.:
Cambridge Univ. Press, 2019.

[3] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, ‘‘Data-driven
discovery of partial differential equations,’’ Sci. Adv., vol. 3, no. 4,
Apr. 2017, Art. no. e1602614.

[4] H. Schaeffer, ‘‘Learning partial differential equations via data discovery
and sparse optimization,’’ Proc. Roy. Soc. A, Math., Phys. Eng. Sci.,
vol. 473, no. 2197, Jan. 2017, Art. no. 20160446.

[5] L. Zhang and H. Schaeffer, ‘‘On the convergence of the SINDy algorithm,’’
Multiscale Model. Simul., vol. 17, no. 3, pp. 948–972, Jan. 2019.

[6] K. Champion, P. Zheng, A. Y. Aravkin, S. L. Brunton, and J. N. Kutz,
‘‘A unified sparse optimization framework to learn parsimonious physics-
informed models from data,’’ IEEE Access, vol. 8, pp. 169259–169271,
2020.

[7] J.-C. Loiseau and S. L. Brunton, ‘‘Constrained sparseGalerkin regression,’’
J. Fluid Mech., vol. 838, pp. 42–67, Mar. 2018.

[8] J.-C. Loiseau, B. R. Noack, and S. L. Brunton, ‘‘Sparse reduced-order
modeling: Sensor-based dynamics to full-state estimation,’’ J. FluidMech.,
vol. 844, pp. 459–490, 2018.

[9] J.-C. Loiseau, ‘‘Data-driven modeling of the chaotic thermal convection
in an annular thermosyphon,’’ Theor. Comput. Fluid Dyn., vol. 34, no. 4,
pp. 339–365, Aug. 2020.

[10] Y. Guan, S. L. Brunton, and I. Novosselov, ‘‘Sparse nonlinear models of
chaotic electroconvection,’’ Roy. Soc. Open Sci., vol. 8, no. 8, Aug. 2021,
Art. no. 202367.

[11] N. Deng, B. R. Noack, M. Morzyński, and L. R. Pastur, ‘‘Galerkin force
model for transient and post-transient dynamics of the fluidic pinball,’’
J. Fluid Mech., vol. 918, pp. 1–36, Jul. 2021.

[12] J. L. Callaham, G. Rigas, J.-C. Loiseau, and S. L. Brunton, ‘‘An empirical
mean-field model of symmetry-breaking in a turbulent wake,’’ 2021,
arXiv:2105.13990.

[13] J. L. Callaham, S. L. Brunton, and J.-C. Loiseau, ‘‘On the role of nonlinear
correlations in reduced-order modeling,’’ 2021, arXiv:2106.02409.

[14] J. Zhang and W. Ma, ‘‘Data-driven discovery of governing equations for
fluid dynamics based on molecular simulation,’’ J. Fluid Mech., vol. 892,
pp. 1–18, Jun. 2020.

[15] M. Dam, M. Brøns, J. J. Rasmussen, V. Naulin, and J. S. Hesthaven,
‘‘Sparse identification of a predator-prey system from simulation data
of a convection model,’’ Phys. Plasmas, vol. 24, no. 2, Feb. 2017,
Art. no. 022310.

[16] A. A. Kaptanoglu, K. D. Morgan, C. J. Hansen, and S. L. Brunton,
‘‘Physics-constrained, low-dimensional models for magnetohydrodynam-
ics: First-principles and data-driven approaches,’’ Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 104, no. 1, Jul. 2021,
Art. no. 015206.

[17] S. Beetham and J. Capecelatro, ‘‘Formulating turbulence closures using
sparse regression with embedded form invariance,’’ Phys. Rev. Fluids,
vol. 5, no. 8, Aug. 2020, Art. no. 084611.

[18] S. Beetham, R. O. Fox, and J. Capecelatro, ‘‘Sparse identification of
multiphase turbulence closures for coupled fluid–particle flows,’’ J. Fluid
Mech., vol. 914, pp. 1–23, May 2021.

[19] M. Schmelzer, R. P. Dwight, and P. Cinnella, ‘‘Discovery of algebraic
Reynolds-stress models using sparse symbolic regression,’’ Flow, Turbu-
lence Combustion, vol. 104, nos. 2–3, pp. 579–603, Mar. 2020.

[20] M. Sorokina, S. Sygletos, and S. Turitsyn, ‘‘Sparse identification for
nonlinear optical communication systems: SINO method,’’ Opt. Exp.,
vol. 24, no. 26, pp. 30433–30443, Dec. 2016.

[21] S. Thaler, L. Paehler, andN.A.Adams, ‘‘Sparse identification of truncation
errors,’’ J. Comput. Phys., vol. 397, Nov. 2019, Art. no. 108851.

[22] K. Kaheman, E. Kaiser, B. Strom, J. N. Kutz, and S. L. Brunton, ‘‘Learning
discrepancy models from experimental data,’’ 2019, arXiv:1909.08574.

[23] B. M. de Silva, D. M. Higdon, S. L. Brunton, and J. N. Kutz,
‘‘Discovery of physics from data: Universal laws and discrepancies,’’ 2019,
arXiv:1906.07906.

[24] D. E. Shea, S. L. Brunton, and J. N. Kutz, ‘‘SINDy-BVP: Sparse
identification of nonlinear dynamics for boundary value problems,’’ Phys.
Rev. Res., vol. 3, no. 2, Jun. 2021, Art. no. 023255.

[25] K. P. Champion, S. L. Brunton, and J. N. Kutz, ‘‘Discovery of nonlinear
multiscale systems: Sampling strategies and embeddings,’’ SIAM J. Appl.
Dyn. Syst., vol. 18, no. 1, pp. 312–333, Jan. 2019.

[26] J. J. Bramburger and J. N. Kutz, ‘‘Poincaré maps for multiscale physics
discovery and nonlinear floquet theory,’’ Phys. D, Nonlinear Phenomena,
vol. 408, Jul. 2020, Art. no. 132479.

[27] J. J. Bramburger, J. N. Kutz, and S. L. Brunton, ‘‘Data-driven stabilization
of periodic orbits,’’ IEEE Access, vol. 9, pp. 43504–43521, 2021.

24 VOLUME 10, 2022



C. B. Delahunt, J. N. Kutz: Toolkit for Data-Driven Discovery of Governing Equations in High-Noise Regimes

[28] P. Gelß, S. Klus, J. Eisert, and C. Schütte, ‘‘Multidimensional approxima-
tion of nonlinear dynamical systems,’’ J. Comput. Nonlinear Dyn., vol. 14,
no. 6, Jun. 2019.

[29] L. Boninsegna, F. Nüske, and C. Clementi, ‘‘Sparse learning of stochastic
dynamical equations,’’ J. Chem. Phys., vol. 148, no. 24, Jun. 2018,
Art. no. 241723.

[30] J. L. Callaham, J.-C. Loiseau, G. Rigas, and S. L. Brunton, ‘‘Nonlinear
stochastic modelling with Langevin regression,’’ Proc. Roy. Soc. A, Math.,
Phys. Eng. Sci., vol. 477, no. 2250, Jun. 2021, Art. no. 20210092.

[31] K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton, ‘‘Data-driven
discovery of coordinates and governing equations,’’ Proc. Nat. Acad. Sci.
USA, vol. 116, no. 45, pp. 22445–22451, Nov. 2019.

[32] M. Kalia, S. L. Brunton, H. G. E. Meijer, C. Brune, and J. N. Kutz,
‘‘Learning normal form autoencoders for data-driven discovery
of universal,parameter-dependent governing equations,’’ 2021,
arXiv:2106.05102.

[33] H. Schaeffer and S. G. McCalla, ‘‘Sparse model selection via integral
terms,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.,
vol. 96, no. 2, Aug. 2017, Art. no. 023302.

[34] P. A. K. Reinbold, D. R. Gurevich, and R. O. Grigoriev, ‘‘Using noisy or
incomplete data to discover models of spatiotemporal dynamics,’’ Phys.
Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 101, no. 1,
Jan. 2020, Art. no. 010203.

[35] D. R. Gurevich, P. A. K. Reinbold, and R. O. Grigoriev, ‘‘Robust and
optimal sparse regression for nonlinear PDE models,’’ Chaos, Interdiscipl.
J. Nonlinear Sci., vol. 29, no. 10, Oct. 2019, Art. no. 103113.

[36] E. P. Alves and F. Fiuza, ‘‘Data-driven discovery of reduced plasma physics
models from fully-kinetic simulations,’’ 2020, arXiv:2011.01927.

[37] P. A. K. Reinbold, L. M. Kageorge, M. F. Schatz, and R. O. Grigoriev,
‘‘Robust learning from noisy, incomplete, high-dimensional experimental
data via physically constrained symbolic regression,’’ Nature Commun.,
vol. 12, no. 1, pp. 1–8, Dec. 2021.

[38] B. de Silva, K. Champion, M. Quade, J.-C. Loiseau, J. Kutz, and
S. Brunton, ‘‘PySINDy: A Python package for the sparse identification of
nonlinear dynamical systems from data,’’ J. Open Source Softw., vol. 5,
no. 49, p. 2104, May 2020.

[39] A. Kaptanoglu, B. de Silva, U. Fasel, K. Kaheman, A. Goldschmidt,
J. Callaham, C. Delahunt, Z. Nicolaou, K. Champion, J.-C. Loiseau,
J. Kutz, and S. Brunton, ‘‘PySINDy: A comprehensive Python package for
robust sparse system identification,’’ J. Open Source Softw., vol. 7, no. 69,
p. 3994, Jan. 2022, doi: 10.21105/joss.03994.

[40] S. L. Brunton, J. L. Proctor, and J. N. Kutz, ‘‘Sparse identification of
nonlinear dynamics with control (SINDYc),’’ IFAC Nolcos, vol. 49, no. 18,
pp. 710–715, 2016.

[41] E. Kaiser, J. N. Kutz, and S. L. Brunton, ‘‘Sparse identification of nonlinear
dynamics for model predictive control in the low-data limit,’’ 2017,
arXiv:1711.05501.

[42] N. M. Mangan, S. L. Brunton, J. L. Proctor, and J. N. Kutz, ‘‘Inferring
biological networks by sparse identification of nonlinear dynamics,’’
IEEE Trans. Mol., Biol. Multi-Scale Commun., vol. 2, no. 1, pp. 52–63,
Jun. 2016.

[43] K. Kaheman, J. N. Kutz, and S. L. Brunton, ‘‘SINDy-PI: A robust algo-
rithm for parallel implicit sparse identification of nonlinear dynamics,’’
Proc. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 476, no. 2242, Oct. 2020,
Art. no. 20200279.

[44] G. Tran and R. Ward, ‘‘Exact recovery of chaotic systems from highly
corrupted data,’’ 2016, arXiv:1607.01067.

[45] N. M. Mangan, J. N. Kutz, S. L. Brunton, and J. L. Proctor, ‘‘Model
selection for dynamical systems via sparse regression and information
criteria,’’ Proc. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 473, no. 2204,
2017, Art. no. 20170009.

[46] S. L. Brunton, B. W. Brunton, J. L. Proctor, E. Kaiser, and J. N. Kutz,
‘‘Chaos as an intermittently forced linear system,’’Nature Commun., vol. 8,
no. 1, pp. 1–9, Dec. 2017.

[47] W. Su, M. Bogdan, and E. Candes, ‘‘False discoveries occur early on the
lasso path,’’ 2015, arXiv:1511.01957.

[48] S. M. Hirsh, D. A. Barajas-Solano, and J. N. Kutz, ‘‘Sparsifying
priors for Bayesian uncertainty quantification in model discovery,’’ 2021,
arXiv:2107.02107.

[49] S. Zhang and G. Lin, ‘‘Robust data-driven discovery of governing physical
laws with error bars,’’ Proc. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 474,
Sep. 2018, Art. no. 20180305.

[50] M. Quade, M. Abel, J. Nathan Kutz, and S. L. Brunton, ‘‘Sparse
identification of nonlinear dynamics for rapid model recovery,’’ Chaos,
Interdiscipl. J. Nonlinear Sci., vol. 28, no. 6, Jun. 2018, Art. no. 063116.

[51] P. J. Rousseeuw, ‘‘Least median of squares regression,’’ J. Amer. Statist.
Assoc., vol. 79, no. 388, pp. 871–880, 1984.

[52] F. Lejarza andM. Baldea, ‘‘DySMHO: Data-driven discovery of governing
equations for dynamical systems via moving horizon optimization,’’ 2021,
arXiv:2108.00069.

[53] S. H. Rudy, S. L. Brunton, and J. N. Kutz, ‘‘Smoothing and parameter
estimation by soft-adherence to governing equations,’’ J. Comput. Phys.,
vol. 398, Dec. 2019, Art. no. 108860.

[54] K. Ahnert and M. Abel, ‘‘Numerical differentiation of experimental data:
Local versus global methods,’’ Comput. Phys. Commun., vol. 177, no. 10,
pp. 764–774, Nov. 2007.

[55] K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton, ‘‘Data-driven
discovery of coordinates and governing equations,’’ Proc. Nat. Acad. Sci.
USA, vol. 116, no. 45, pp. 22445–22451, Nov. 2019.

[56] B. C. Daniels and I. Nemenman, ‘‘Automated adaptive inference of
phenomenological dynamical models,’’ Nature Commun., vol. 6, no. 1,
pp. 1–8, Nov. 2015.

[57] E. Kaiser, J. N. Kutz, and S. L. Brunton, ‘‘Sparse identification of
nonlinear dynamics for model predictive control in the low-data limit,’’
Proc. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 474, no. 2219, Nov. 2018,
Art. no. 20180335.

[58] C. B. Delahunt and J. N. Kutz. (2021). Codebase for High Noise
SINDy Toolkit. [Online]. Available: github.com/charlesDelahunt/
sindyToolkitForHighNoise

[59] U. Fasel, J. N. Kutz, B.W. Brunton, and S. L. Brunton, ‘‘Ensemble-SINDy:
Robust sparse model discovery in the low-data, high-noise limit, with
active learning and control,’’ 2021, arXiv:2111.10992.

[60] P. Virtanen et al., ‘‘Scipy 1.0: Fundamental algorithms for scientific
computing in Python,’’ Nature Methods, vol. 17, pp. 261–272, Mar. 2020.

[61] S. Pan, N. Arnold-Medabalimi, and K. Duraisamy, ‘‘Sparsity-promoting
algorithms for the discovery of informative Koopman-invariant sub-
spaces,’’ J. Fluid Mech., vol. 917, pp. 1–49, Jun. 2021.

CHARLES B. DELAHUNT (Member, IEEE)
received the Ph.D. degree in electrical engineering,
in 2018, and recently finished a Postdoctoral
Researcher with the Department of Applied Math-
ematics, University of Washington, Seattle, WA,
USA, with work focused on machine learning.
He is currently a senior research scientist at
Global Health Labs, Bellevue,WA,USA, applying
machine learning to health care challenges in low-
and middle-income countries.

J. NATHAN KUTZ (Senior Member, IEEE)
received the B.S. degrees in physics and mathe-
matics from the University ofWashington, Seattle,
WA, USA, and the Ph.D. degree in applied math-
ematics from Northwestern University, Evanston,
IL, USA, in 1994. At the University of Washing-
ton, he is currently a Professor of applied math-
ematics and electrical engineering; an Adjunct
Professor of physics and mechanical engineering,
and electrical engineering; a Senior Data Science

Fellow with the eScience Institute; and the Director of the NSF AI Institute
for Dynamic Systems.

VOLUME 10, 2022 25

http://dx.doi.org/10.21105/joss.03994

