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ABSTRACT
Multi-modal learning with both text and images benefits mul-
tiple applications, such as attribute extraction for e-commerce
products. In this paper, we propose Cross-Modality Attention
Contrastive Language-Image Pre-training (CMA-CLIP), a
new multi-modal architecture to jointly learn the fine-grained
inter-modality relationship. It fuses CLIP with a sequence-
wise attention module and a modality-wise attention module.
The network uses CLIP to bridge the inter-modality gap at
the global level, and uses the sequence-wise attention mod-
ule to capture the fine-grained alignment between text and
images. Besides, it leverages a modality-wise attention mod-
ule to learn the relevance of each modality to downstream
tasks, making the network robust against irrelevant modal-
ities. CMA-CLIP outperforms the state-of-the-art method
on Fashion-Gen by 5.5% in accuracy, achieves competitive
performance on Food101 and performance on par with the
state-of-the-art method on MM-IMDb. We also demonstrate
CMA-CLIP’s robustness against irrelevant modalities on an
Amazon dataset for the task of product attribute extraction.

Index Terms— Multimodal, attention, NLP, computer vi-
sion

1 Introduction
Modern Web systems such as e-commerce and social media
contain rich contents expressed in text and images. Leverag-
ing information from both modalities can improve the perfor-
mance of downstream tasks, such as classification and rec-
ommendation. Existing multi-modal learning methods can
be classified into two main categories: one-stream methods
[1, 2, 3, 4, 5] and two-stream methods [6, 7, 8, 9, 10, 11,
12, 13, 14]. One-stream methods directly feed the features
of different modalities into a Transformer [15], while two-
stream methods process the text and images using separate
single-modality networks, such as Transformer [15] and vi-
sion transformer (ViT) [16]. A common challenge shared be-
tween both methods is the inter-modality gap, i.e., different
modalities need different levels of processing due to their in-
herent complexity. To bridge this gap, research from both
categories of methods have been focusing on pretraining the
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network with different datasets and tasks. For example, VL-
BERT [2] pretrains the network on the Conceptual Captions
dataset [17] for the task of Masked Language Modeling with
Visual Clues and Masked RoI Classification with Linguistic
Clues where certain text tokens and image patches are ran-
domly masked, and the network is pretrained to reconstruct
the masked components. However, these pretraining tasks
typically involve complex settings. For example, in Masked
RoI Classification with Linguistic Clues, the object categories
of the masked image patches are required for the pretraining.
In comparison, new multi-modal architectures to handle the
inter-modality gap have been rarely explored.

Several two-stream architectures [11, 12, 13, 14] have
been developed to explicitly bridge the inter-modality gap.
For example, CLIP [12] trains a text encoder and an image
encoder using contrastive learning, so that the text and image
features from the same pair are as close as possible. Although
such methods can align text and images at a global level, they
do not incorporate the fine-grained relationship between text
tokens and image patches, which is critical for downstream
tasks such as fine-grained classification. Another challenge
which is rarely explored is that, the text or image modality
could be irrelevant to the downstream tasks. For example, for
a product being sold on an e-commerce website, a product
title “short-sleeve men’s casual t-shirt” is irrelevant to the
downstream task of extracting color attribute. In such case,
naively leveraging both modalities will jeopardize the model
performance, as the irrelevant modality provides nothing but
noise.

To tackle the aforementioned challenges, in this paper we
propose CMA-CLIP, a new multi-modal architecture which
fuses both one-stream and two-stream methods. It lever-
ages the pretrained CLIP, a two-stream method, to close the
inter-modality gap at the global level. Subsequently, we add
a sequence-wise attention module, which is a transformer
as used in most one-stream methods, to capture the fine-
grained relationship between text tokens and image patches.
Moreover, we propose a modality-wise attention module to
learn the relevance of each modality to the downstream tasks,
which significantly improves the network’s robustness to ir-
relevant modalities. The major contributions of our works are
as follows:



• We fuse the CLIP and the sequence-wise attention
module to help the network close inter-modality gap,
while enabling the network to capture the fine-grained
correlation between text tokens and image patches.

• We design a new modality-wise attention module to
improve the network’s robustness against irrelevant
modalities.

• We develop task-specific modality-wise attentions and
multi-layer perceptron (MLP) heads that enable the net-
work to perform multi-task classification.

2 Proposed framework
The architecture of CMA-CLIP is depicted in Figure 1. Given
a text-image pair, CLIP first converts them into a sequence
of text embeddings and a sequence of image embeddings that
are aligned globally. Subsequently, the sequence-wise atten-
tion module, a stack of transformer blocks, updates the two
sequences of embeddings by incorporating the fine-grained
correlation between text tokens and image patches. Then
the resulting text embedding T ′

[CLS] and image embedding
I ′[CLS] are weighed by the modality-wise attention mod-
ule based on their relevance to the downstream tasks. The
weighted sum between T ′

[CLS] and I ′[CLS] is used for the
classification through an MLP. At last, adding task-specific
modality-wise attentions and MLPs enables CMA-CLIP to
perform multiple-task classification.

Fig. 1: The architecture of CMA-CLIP.

2.1 Contrastive Language-Image Pretraining
CLIP consists of a text encoder and an image encoder. In
this work, we use Transformer [15] as the text encoder and
ViT [16] as the image encoder. For each text-image pair, the
text encoder projects the text into a sequence of text embed-
dings T1, ..., Tn corresponding to different text tokens, and a
text embedding T[CLS] of an artificial token appended at the
end to represent the whole text. Similarly, the image encoder
projects the image into a sequence of image embeddings I1,
..., Im corresponding to different image patches, and an image
embedding I[CLS] of an artificial patch prepended at the be-
ginning to represent the whole image. CLIP is trained to max-
imize the cosine similarity between T[CLS] and I[CLS] from

the paired text and image, and minimize the cosine similar-
ity of the unpaired ones using WebImageText (WIT) Dataset,
which contains 400 million text-image pairs collected from
the Web.

2.2 Sequence-wise attention
CLIP is able to train the text and image encoders, so that the
corresponding embeddings T[CLS] and I[CLS] are aligned at
the global level. However, the fine-grained correlations be-
tween text tokens and image patches are not learned. Such
information is critical for certain downstream tasks, where
only a subset of text tokens and image patches are informa-
tive, such as classifying the sleeve type of a t-shirt product
on e-commerce websites. To address this limitation, we add
a sequence-wise attention module. It takes the concatenated
sequence of text and image embeddings {T[CLS], T1, ..., Tn,
I[CLS], I1, ..., Im} from CLIP as input. The sequence-wise at-
tention module is a stack of transformer blockers as in BERT
[18]. We omit the details of BERT in this section. At the
end, the T ′

[CLS] and I ′[CLS] generated by the sequence-wise
attention module are considered as the updated text and im-
age embeddings which incorporate the fine-grained correla-
tion between text tokens and image patches.

2.3 Modality-wise attention
A common challenge in practice is that, the text or image in-
puts could be irrelevant to downstream tasks. For example,
for a product being sold on e-commerce websites, a product
title “short-sleeve men’s casual t-shirt” is completely irrele-
vant to the downstream task of extracting color attribute. In
order to dampen the impact of irrelevant modality, we pro-
pose a modality-wise attention module to learn the relevance
of each modality, so that we can scale the text and image em-
bedding by their relevance before aggregating them for clas-
sification. Specifically, we use a learnable parameter vector
w to project T ′

[CLS] and I ′[CLS] into two scalars to reflect their
relevance as eT = wTT ′

[CLS] and eI = wT I ′[CLS].
Subsequently, we aggregate T ′

[CLS] and I ′[CLS] as λT ′
[CLS]+

(1 − λ)I ′[CLS], where λ is the normalized relevance of the

text embedding as λ = exp(eT )
exp(eT )+exp(eI)

.
For any classification task, an MLP head is added on top

of the aggregated feature. For multitask classification, we add
task-specific modality-wise attention and MLP for each task
separately. This is because the relevance of modality is de-
pendent on the task.

3 Experiments

3.1 Dataset
We compare CMA-CLIP with state-of-the-art multi-modal
learning methods on three public datesets, Fashion-Gen [19],
Food101 [20] and MM-IMDb [21]. We also demonstrate



CMA-CLIP’s robustness again irrelevant modalities on APA
(Amazon Product Attribute), a dataset collected from Ama-
zon.com for the task of product attribute extraction. Due to
legal concern, we cannot provide reference to this dataset.

3.1.1 Fashion-Gen

This dataset contains 293,008 fashion images. Each image is
paired with a text describing the image. It contains 121 sub-
categories, such as ”SHORT DRESSES” and ”LEATHER
JACKETS”. We use the same data as used in [22] for training
and testing. The number of training data is 260,480, and the
number of testing data is 32,528.

3.1.2 Food101

This dataset contains 101 food categories. The goal is to clas-
sify each text-image pair to a food category. We download the
preprocessed images and texts from the Kaggle competition1.
In the processed data, 67,971 images are in the training set,
and 22,715 images are in the testing set. During training, we
randomly split 80% of the data in the training set for training
and the rest 20% data for validation.

3.1.3 MM-IMDb

We use MM-IMDb to test CMA-CLIP’s performance on
multi-label classification. This dataset consists of the movie
plots and the corresponding movie posters for 25,888 movies.
The goal is to classify each movie into one or more of the
23 genres such as ”Action” and ”Horror”. We assign 15,510
movies in training data, 2,599 movies in validation data, and
7,779 movies in test data.

3.1.4 APA

The text-image pairs in the above-mentioned three pub-
lic datasets are all relevant to their corresponding tasks.
Therefore, we cannot demonstrate CMA-CLIP’s effective-
ness against irrelevant modalities. To address this limitation,
we collect the product title-image pairs for 6 million dress
products from Amazon.com. The objective is to classify two
product attributes, color and pattern. Color has 17 classes
such as black and white, and pattern has 12 classes such
as graphic and plain. We crawl the catalog system to fetch
the labels of color and pattern attributes for those 6 million
products. In addition, we manually annotate the color and
pattern attributes for another 600 image-title pairs as the vali-
dation and test set, which are used for hyper-parameter tuning
and performance evaluation respectively. Due to the limited
auditing resource, we only annotate 600 products.

3.2 Implementation

3.2.1 Experiment settings

Same as CLIP, the text encoder of CMA-CLIP is a 12-layer
512-width Transformer with eight heads used in [15], and

1https://www.kaggle.com/gianmarco96/upmcfood101

the image encoder of CMA-CLIP is a 12-layer 768-width
ViT-B/32 [16] with twelve attention heads. The sequence-
wise attention transformer is a 12-layer 512-width model with
eight attention heads. In all the experiments, we use an AWS
p3.16xlarge instance with 8 GPUs for model training. The
batch size is set to 1024, weight decay of Adam is set to 1e−4,
and the learning rate is set to 1e− 5.

3.2.2 Training strategy

We use the pre-trained weights of CLIP as the initial weights
of the text and image encoders in CMA-CLIP. We randomly
initialize the weights in the sequence-wise attention module,
modality-wise attention module, and MLP. As CMA-CLIP
contains a mixture of pre-trained weights and randomly ini-
tialized weights, instead of training the model end-to-end
which may cause under- or over-fitting of certain modules,
we adopt a multi-stage training strategy:

• Warm-up stage: In this stage, the weights of the text
and image encoders are frozen. We train the sequence-
wise attention, the modality-wise attention and the
MLPs.

• End-to-end training stage: In this stage, we unfreeze
the weights of the text and image encoders, and train all
the components together.

• Tuning stage: This stage is only required for multi-task
training. In this stage, we only train the modality-wise
attentions and MLPs.

For Fashion-Gen, Food101 and MM-IMDb, the warm-up
stage is trained for 100 epochs and the end-to-end training
stage is trained for 300 epochs. Since these datasets only in-
volve single-task classification, the tuning stage is not needed.
At the end of each training stage, the model checkpoint with
the lowest validation loss is used as the starting weights for
the next stage. For APA, all three stages are trained for 20
epochs due to earlier convergence. The training time for all 3
public datasets is approximately 1 day and the training time
for the APA dataset is approximately 3 days. Our code will
be available on GitHub soon.

3.3 Results

3.3.1 Fashion-Gen

On the Fashion-Gen dataset, we compare CMA-CLIP with
multiple SOTA methods, including FashionBERT [23], Im-
ageBERT [24], OSCAR [4], and KaleidoBERT [22]. Re-
sults are included in Table 1. CMA-CLIP achieves the high-
est accuracy of 93.6%, which improves over KaleidoBERT,
the current SOTA method, by 5.5%. KaleidoBERT is pre-
trained on tasks including Aligned Masked Language Mod-
eling, Image and Text Matching, and Aligned Kaleido Patch



Method Accuracy
FashionBERT 85.3
ImageBERT 80.1

OSCAR 84.2
KaleidoBERT 88.1
CMA-CLIP 93.6

Table 1: Accuracy (%)
on Fashion-Gen

Method Accuraccy
ViT [12] 81.8

BERT [25] 87.2
CLIP [12] 88.8

MMBT 92.1
CMA-CLIP 93.1

Table 2: Accuracy (%)
on Food101

Modeling using the Fashion-Gen dataset. Then the network
is fine-tuned for the Fashion-Gen classification. In compari-
son, CMA-CLIP does not require any specific pretraining on
Fashion-Gen. The superior performance of CMA-CLIP indi-
cates the strength of the fusion between one-stream and two-
stream methods.

3.3.2 Food101

On the Food101 dateset, we compare CMA-CLIP with two
single-modality baseline methods including BERT [18] and
ViT [16], two multi-modality baseline methods including
MMBT [25] and CLIP using a linear probe [12] with same
ViT-B/32. Results are included in Table 2. CMA-CLIP
achieves the best accuracy of 93.1%, which improves 1% over
the a strong baseline method MMBT. MMBT is a one-stream
method that uses a transformer to capture the fine-grained
correlations between text tokens and image patches. The
superior performance of CMA-CLIP indicates the strength of
the fusion between one-stream and two-stream methods.

3.3.3 MM-IMDb

On the MM-IMDb dateset, we compare CMA-CLIP with
MMBT [25], the current SOTA multi-modal method. Since
this is a multi-label classification problem, we compare the
performance in terms of micro F1 and macro F1. As shown
in Table 3 (the performance of MMBT is different from what
is reported in [25] because we retrain MMBT by excluding
movies that belong to some minority genres that are out of
the 23 genres for a fair comparison with CMA-CLIP), CMA-
CLIP has better micro-F1 but worse macro-F1. Overall,
CMA-CLIP’s performance is on par with MMBT.

Method Micro-F1 Macro-F1
MMBT 63.7 55.5

CMA-CLIP 65.3 52.7

Table 3: Micro and Macro F1 (%) on the MM-IMDb.

4 Ablation study
To demonstrate CMA-CLIP’s robustness against irrelevant
modality, we first test the performance of CMA-CLIP with
and without the modality-wise attention (MWA) by extracting
color and pattern attributes using the APA dataset. After re-
moving MWA, the recall at 90% precision drops from 61.1%

to 60.0% for color attribute, and from 76.3% to 67.9% for pat-
tern attribute. We further remove the sequence-wise attention
(SWA). The recall at 90% precision further drops from 60.0%
to 57.3% for color attribute, and from 67.9% to 60.3% for
pattern attribute. The impact on the pattern attribute is larger
because the percentage of titles with no pattern information
is 75%, higher than 33% for the color attribute. In Table 4 we
randomly pick some product title-image examples that CMA-
CLIP can produce correct classification whereas CMA-CLIP
without MWA cannot. We can observe from these examples
that, the product titles do not contain any tokens related to the
attributes. Furthermore, after we insert the attribute related
keywords to the titles, CMA-CLIP with and without MWA
can both produce correct classification. This proves MWA’s
ability to filter out irrelevant modality.

Attribute Image Title Label
Prediction
w/ & w/o
MWA

Color
Portland
T-Shirt
Dress

Black Black &
Blue

Pattern
Women’s
Mini Dun-
garee

Plain Plain &
Graphic

Table 4: Examples where CMA-CLIP is able to produce
the correct attribute classification while CMA-CLIP w/o the
modality-wise attention cannot.

5 Conclusion

In this paper, we propose CMA-CLIP, a new multi-modal ar-
chitecture. It fuses the pretrained CLIP and the sequence-wise
attention, which helps the network close inter-modality gap,
while enabling the network to capture the fine-grained corre-
lation between text tokens and image patches. We propose
the modality-wise attention, which learns relevance of each
modality to dampen the impact from the irrelevant one for
downstream tasks. We add task specific modality-wise atten-
tions and MLPs so that we can leverage a unified network
for multi-task classification. We evaluate our method on the
Fashion-Gen, Food101 and MM-IMDb datasets. It surpasses
the SOTA method on the Fashion-Gen dataset by 5.5% in
accuracy, achieves competitive performance on the Food101
dataset and performance on par with the SOTA on the MM-
IMDb dataset. We also demonstrate CMA-CLIP’s robustness
against irrelevant modality using the APA dataset.

6 References

[1] L. H. Li, M. Yatskar, D. Yin, C.-J. Hsieh, and K.-W.
Chang, “Visualbert: A simple and performant baseline



for vision and language,” arXiv, vol. abs/1908.03557,
2019.

[2] W. Su, X. Zhu, Y. Cao, B. Li, L. Lu, F. Wei, and J. Dai,
“Vl-bert: Pre-training of generic visual-linguistic repre-
sentations,” in ICLR, 2020.

[3] Y.-C. Chen, L. Li, L. Yu, A. El Kholy, F. Ahmed, Z. Gan,
Y. Cheng, and J. Liu, “Uniter: Universal image-text
representation learning,” in ECCV, 2020.

[4] X. Li, X. Yin, C. Li, P. Zhang, X. Hu, L. Zhang,
L. Wang, H. Hu, L. Dong, F. Wei, et al., “Os-
car: Object-semantics aligned pre-training for vision-
language tasks,” in ECCV, 2020.

[5] Z. Huang, Z. Zeng, B. Liu, D. Fu, and J. Fu, “Pixel-bert:
Aligning image pixels with text by deep multi-modal
transformers,” ArXiv, vol. abs/2004.00849, 2020.

[6] J. Lu, D. Batra, D. Parikh, and S. Lee, “Vilbert: Pre-
training task-agnostic visiolinguistic representations for
vision-and-language tasks,” in NeurIPS, 2019.

[7] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond,
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