
Published at the LMRL workshop, ICLR 2025

SOAPI: SIAMESE-GUIDED GENERATION OF OFF-
TARGET-AVOIDING PROTEIN INTERACTIONS

Sophia Vincoff,1 Oscar Davis,2 Alexander Tong,3,4 Joey Bose,2 Pranam Chatterjee1,5,†
1Department of Biomedical Engineering, Duke University, Durham, NC
2University of Oxford, Oxford, England
3Mila – Quebec AI Institute, Montréal, Canada
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ABSTRACT

Therapeutics that modulate pathogenic proteins while avoiding off-target inter-
actions are essential for effective drug design. However, designing binders that
selectively engage a target protein while minimizing interactions with structurally
or functionally similar proteins remains a major challenge. To address this, we in-
troduce a Siamese-guided strategy for the generation of Off target-Avoiding Protein
Interactions, termed SOAPI. SOAPI leverages a Siamese protein language model
with an adaptive Log-Sum-Exp Decoy Loss to enforce specificity by embedding
fusion-specific binders close to their target while maintaining separation from off-
targets. These optimized embeddings then guide a diffusion protein language model
(DPLM), which generates binders using soft-value-based decoding (SVDD) and Se-
quential Monte Carlo resampling to iteratively refine candidates. In silico validation
demonstrates strong target affinity and significant off-target avoidance, highlighting
SOAPI’s potential for generating precise and selective protein interactions.

1 INTRODUCTION

Selective modulation of pathogenic proteins is essential for drug design (Nada et al., 2024).
Nonspecific drugs risk reduced efficacy due to off-target interference or, worse, disruption of cellular
homeostasis (Garon et al., 2017). This challenge spans small molecules, PROTACs, and biologics.
Since exhaustive in vitro screening is impractical, computational methods for predicting drug-target
(DTIs) and protein-protein interactions (PPIs) are crucial. Structure-based methods like molecular
docking can model stable proteins but are too slow for high-throughput analysis and ineffective for
intrinsically disordered proteins (IDPs) (Chen et al., 2023b). To address this, state-of-the-art DTI
(Singh et al., 2023; McNutt et al., 2024; Gao et al., 2024), PPI (Sledzieski et al., 2021; Singh et al.,
2022), and peptide-protein predictors (Bhat et al., 2025; Tang et al., 2024) use contrastive learning
to infer interactions directly from protein sequences and molecular representations.

More than 80% of protein targets lack structured binding pockets, making them “undruggable” by
small molecules (Xie et al., 2023). Antibodies and peptides offer alternatives, but their efficacy
depends on precise off-target avoidance (Chen et al., 2023b). Fusion oncoproteins, key drivers
of pediatric and adult cancers, exemplify this challenge (Vincoff et al., 2025). These chimeric
proteins, formed by chromosomal translocations, share high sequence homology with their wild-type
counterparts, complicating selective targeting (Vincoff et al., 2025).

Recent protein language models (pLMs) have enabled peptide binder design for disordered targets
(Bhat et al., 2025; Brixi et al., 2023; Chen et al., 2023a). However, existing approaches lack an
explicit off-target exclusion mechanism. Most one-to-one PPI predictors select negatives randomly
rather than based on experimental evidence (Bhat et al., 2025), and no existing models account for
two off-targets simultaneously.
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To address this, we introduce a Siamese-guided framework that integrates an adaptive Log-Sum-Exp
Decoy Loss to enforce specificity in binder design. The Siamese model structures an embedding
space where target-specific binders cluster near their target while maximizing separation from
homologous off-targets. These embeddings guide a diffusion protein language model (DPLM)
with soft-value-based decoding (SVDD) and Sequential Monte Carlo (SMC) resampling for
iterative refinement (Wang et al., 2024), ensuring high-affinity binders while filtering out off-target
interactions. In silico validation with AlphaFold-Multimer (Evans et al., 2021) confirms strong target
engagement, improved interface quality, and minimal off-target binding. By combining the Siamese
model’s discriminative power with DPLM’s generative flexibility, SOAPI provides a principled
solution for designing highly selective protein interactions.

2 METHODS

Data curation and handling. All data curation, splitting, and clustering details can be found in
the Supplementary Methods.

SOAPI architecture. SOAPI is a Siamese Neural Network that encodes four protein sequences—a
binder, target, and two off-targets—into a shared latent space using pLM embeddings. Each sequence
passes through the 33-layer ESM-2-650M encoder, with the final two layers unfrozen for training.
A positional multi-head attention (MHA) module (n heads = 10) with rotary positional embeddings
(RoPE) (Su et al., 2024) enhances encoding of relative positional information across varying
sequence lengths. Skip connections retain key embedding features, while two SiLU-activated linear
layers model complex nonlinear relationships. Finally, attention pooling computes a weighted sum
of token embeddings, producing fixed-length sequence representations. The architecture is presented
in Figure 1.

Loss function. To handle two off-targets, we propose an Adaptive Log-Sum-Exp Decoy Loss
(eq. (1)), where β controls the sharpness of the approximation, α > 0 is the margin, and regularization
term ϵ = 1e − 8 prevents the logarithm from becoming too small. This formulation provides a
differentiable loss that considers both off-target distances. Euclidean distances between proteins
are represented by dist(b, t) (binder and target), dist(b, ot1) (binder and off-target 1), and dist(b, ot2)
(binder and off-target 2)

L =
∑
b

max(0, dist(b, t)− 1

β
log(eβ·dist(b,ot1) + eβ·dist(b,ot2) + ϵ) + α) (1)

Implementation details. SOAPI was implemented using PyTorch Lightning (Falcon, 2019) and
trained on 4xA100 NVIDIA GPUs with an effective batch size of 128. The learning rate was initially
set to 1e-4 and modulated using a cosine annealing scheduler with 200 warmup steps. Full model
hyperparameters can be found in Table A2. The model was trained until training loss and validation
loss had stabilized for at least three epochs, resulting in 10 total training epochs.

Embedding separation visualization. At the conclusion of each epoch, the entire training set was
passed through the model and SOAPI embeddings (x ∈ R1280) were stored. For each quadruplet
datum, the distance d =

√∑
(xi − yi)2 was calculated between the embeddings of the binder

and target, binder and off-target 1, and binder and off-target 2. The resulting measurements
dist(b, t), dist(b, ot1), and dist(b, ot2) were visualized every three epochs throughout training using
matplotlib v3.8.2.

Binder recovery screen. A binder recovery test was performed by screening 50,000 candidate
binders through SOAPI for each target in the test set. The random package in Python was
used to generate 50,000 random combinations of the 20 natural amino acids, with minimum and
maximum lengths corresponding to the shortest and longest binders in the test set (56 and 856
amino acids), respectively. SOAPI was tasked to rank the true binder among the top N for all
N ∈ {1, 10, 100, 500, 5000, 25000}. Rankings were based on an adapted version of the loss function
(Equation (2)), where rank increased as D decreased:

D = dist(b, t)− 1

β
log(eβ·dist(b,ot1) + eβ·dist(b,ot2) + ϵ) + α (2)

Results for each threshold are plotted in Figure 3.
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Figure 1: SOAPI model architecture. A Siamese Protein Module, the core unit of the quadruplet
network. ESM-2-650M encodes sequences into [B,1280] embeddings, refined via positional attention
(10 heads) with rotary embeddings, skip-connected linear layers, and attention pooling. B Full SOAPI
pipeline. Binder, target, and off-target sequences pass through the Siamese module with shared
weights. Euclidean distances between embeddings define a loss that pulls the binder toward the target
while pushing it away from off-targets.

Masked discrete diffusion. SOAPI employs a masked discrete diffusion model (MDM) (Sahoo
et al., 2024; Shi et al., 2024; Gat et al., 2024; Zhao et al., 2024) to iteratively refine protein binder
sequences. The forward process corrupts a sequence x0 by progressively masking tokens with
transition probability:

pt(xt|x0) =

n∏
i=1

Cat(xi
t;αtδ(x

i
0) + (1− αt)δ(m)), (3)

where αt is a noise schedule and m is a masked token. The reverse process reconstructs the sequence
by sampling:

pt(x
i
t−1|xi

t, x
i
0) ∝ αt−1δ(x

i
0) + (1− αt−1)δ(m). (4)

The model is trained using a weighted cross-entropy loss:

L = −Ext∼pt

n∑
i=1

xi
0 logµθ(x

i
t, t). (5)

Siamese-guided sampling. Binder sequences are generated using a diffusion protein language
model (DPLM) (Wang et al., 2024), guided by the Siamese model’s specificity loss. Soft-value-based
decoding (SVDD) (Li et al., 2024) assigns resampling weights:

wt = exp
(
Lt − L̂t−1

)
, (6)

steering diffusion toward high-specificity binders via Sequential Monte Carlo (SMC) resampling.

A full description of MDMs and sampling can be found in the Appendix.

Binder generation. For binder generation, we use SVDD (Li et al., 2024), which performs particle
filtering using Sequential Monte Carlo (SMC) (Doucet et al., 2001) on intermediate trajectories at
inference using a soft-value function. For binder generation using SVDD, we use the difference
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in loss under the pre-trained Siamese model as the soft-value function. In essence, this soft-value
function captures how close a proposed binder is to a target protein and simultaneously how far
it is from the two off-targets. Using this, we steer an unconditional DPLM protein language
model (Wang et al., 2024) to produce generated protein sequences with higher binding efficacy by
up-weighting promising (according to the soft-value) intermediate trajectories by performing SMC,
which resamples points using the soft-value function. Precisely, the soft-value function we use is
the difference in the SOAPI loss before and after the denoising step of the DPLM protein model:

w
⟨m⟩
t−1 = exp

(
L⟨m⟩
t − L̂⟨m⟩

t−1

)
, m ∈ [M ], (7)

following the notation in Li et al. (2024). Here L⟨m⟩
t is the loss of the m-th sample at step t, and

L̂⟨m⟩
t−1 is the loss following the denoising step at time t − 1 (the next step in the reverse process),

while M is the total number of particles.

3 RESULTS

SOAPI effectively learned to distinguish binders from off-targets, embedding true binders closer to
their targets while maintaining separation from non-interacting proteins in its latent space (Figure 2).
The model achieved consistently low loss across training, validation, and test sets, with no signs
of overfitting (Table A1). Visualization of SOAPI’s learned representations across training epochs
further confirmed a progressive improvement in the embedding space, with a clear separation
between binder-target pairs and off-target interactions (Figure 2). This structured organization of
latent space ensures that SOAPI-generated binders maintain high specificity.

To assess SOAPI’s ability to rank binders based on target specificity, we evaluated its performance
against 50,000 randomly generated candidates. In the top-1 ranking test, SOAPI correctly identified
the true binder for 19.2% of targets, with performance improving to 24.0% in the top-10 and reaching
56.8% in the top-25% evaluation (Figure 3).

Figure 2: Embedding separation throughout model training. Euclidean distances between SOAPI
embeddings of the proteins in each training quadruplet: dist(b, t) (binder and target), dist(b, ot1)
(binder and off-target 1), and dist(b, ot2) (binder and off-target 2). The inner box of each violin plot
indicates the median (white) and inter-quartile range, representing the middle 50% of distances (grey
box). Distances are plotted every three epochs throughout training, starting at the end of epoch 1.

We report our results for binder generation using SVDD in Table 1. Due to computational constraints,
only a small subset of generated binders was evaluated, as each requires in silico co-folding to assess
structural compatibility and binding specificity.
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Figure 3: SOAPI ranks true binders against 50,000 randomly generated candidates. SOAPI
produced a specificity-based ranking of 50,000 randomly generated binders and one true binder to
125 targets from the test set. Relative distance metrics D were calculated using Equation (2). Any
target where SOAPI ranked the true binder among the top-N or top-N% was considered a hit. Top-1,
top-10, top-100, top-1%, top-10%, and top-25% evaluations were conducted.

Relative interface pTM scores from AlphaFold-Multimer show that designed binders preferentially
engage their target over off-targets, confirming effective specificity enforcement. The corresponding
sequences for each target are listed in Table A3, demonstrating a range of high-specificity binders
designed using our approach.

Target Target pLDDT (↑) Relative ipTM 1 (↑) Relative ipTM 2 (↑)
APTX::ARL5B 83.09 0.43 0.21
DAP3::TIPRL 86.80 0.11 0.14
VBP1::BRCC3 71.72 0.34 0.14
VBP1::BRCC3 71.72 0.21 0.21

Table 1: Results on conditional binder generation. The relative ipTMs are the differences in ipTMs
between the target and the off-targets 1 and 2, respectively.

4 DISCUSSION

SOAPI introduces a principled framework for generating protein binders with high specificity while
minimizing off-target interactions. By integrating a Siamese protein language model with an adaptive
Log-Sum-Exp Decoy Loss, we enforce specificity constraints that separate target-specific binders
from homologous off-targets. This guided embedding space is then leveraged by DPLM with
SVDD to iteratively refine binder candidates. Our results demonstrate strong target engagement and
significant off-target avoidance in in silico validation.

Future work will expand SOAPI’s benchmarking with more extensive in silico analysis and in vitro
validation against diverse targets, including fusion oncoproteins. To enhance fusion oncoprotein
selectivity, we will incorporate FusOn-pLM embeddings (Vincoff et al., 2025), which capture fusion-
specific sequence and structural properties. Additionally, we will evaluate alternative sampling
strategies, such as Path Planning (P2) (Peng et al., 2025), to improve the efficiency and precision of
masked discrete diffusion in binder generation. These advancements will further establish SOAPI as
a robust tool for engineering highly selective therapeutics.
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A APPENDIX

A.1 PRELIMINARIES

A.1.1 MASKED DISCRETE DIFFUSION MODELS

We now outline the model class known as masked discrete diffusion models (MDMs) (Sahoo et al.,
2024; Shi et al., 2024; Gat et al., 2024; Zhao et al., 2024) which operates on a vocabulary of X =
{1, . . . , d−1} and an additional masked token m. The forward masking process is designed to take a
clean sequence x0 of size n at time t = 0 to a sequence of fully masked tokens p1 = [δ(m)]n at time
t = 1. Formally, this forward process can be written analytically given a transition kernel pt(xi

t|xi
0):

pt(xt|x0) =

n∏
i=1

pt(x
i
t|xi

0) =

n∏
i=1

Cat(xi
t;αtδ(x

i
0) + (1− αt)δ(m)), (8)

where we used a superscript xi to denote the i-th index of a sequence of length n, while the subscript
t denotes a discretrized timestep t ∈ [0, 1]. Furthermore, αt is an invertible reparameterization of
time such that α0 = 1 and α1 = 0 and can be understood as the noise schedule. Indeed, once a token
is masked in the forward process it remains masked for the remainder of the process—i.e. until t = 1.

The reverse process associated with the masked forward process iteratively denoises a sample such that
at t = 0 all tokens in the sequence are unmasked. The reverse transition probability pt(x

i
t−1|xi

t, x
i
0)

conditioned on xi
0 and xi

t is given by the following expression which is the Bayesian posterior:

pt(x
i
t−1|xi

t, x
i
0) =

{
Cat(xi

t−1; δ(x
i
t)) xi

t ̸= m

Cat
(
xi
t−1;

(1−αt−1)δ(m)+(αt−1−αt)δ(x
i
0)

1−αt

)
xi
t = m.

(9)

In an analogous manner to the forward process, once a token transitions out of the masked state for
a time t > 0 it remains in this state for the remainder of the trajectory. The reverse process suggests a
parametrization for an MDM that predicts the mean of this denoising posterior inEquation (9). More
precisely, µθ : Xn × R→ (∆d)n, which predicts the clean sample at t = 0 by denoising a noisy xi

t,

qt,θ(x
i
t−1|xi

t, µθ(x
i
t, t)) =

{
Cat(xi

t−1; δ(x
i
t)) xi

t ̸= m

Cat
(
xi
t−1;

(1−αt−1)δ(m)+(αt−1−αt)µθ(x
i
t,t)

1−αt

)
xi
t = m.

(10)

Using this mean-parametrization we can form a simple objective for learning that forms a valid
evidence lower bound on the log marginal of the clean data distribution log p(x0). Specifically, for
discrete diffusion models, this operationally amounts to a weighted cross-entropy loss:

log p(x0) ≥ −
∫ 1

0

dαt

dt
· 1

1− αt
Ext∼pt(xt|x0)

[
n∑

i=1

(xi
0)

T logµθ(x
i
t, t)

]
dt. (11)

We will use Equation (11) as an objective to pre-train MDMs before controlling them at inference,
e.g. classifier-based guidance, with task-specific information.
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A.2 SUPPLEMENTARY METHODS

Data collection. Each sample in the training data is a protein quadruplet consisting of a binder,
target, off-target 1, and off-target 2. Positive protein-protein interactions (PPIs) were collected
from BioGRID (October 2022) (Oughtred et al., 2021), IntAct (October 2022) (Del Toro et al.,
2022), and PPIRef (January 2025) (Bushuiev et al., 2023). Negative interactions were collected
from Negatome2.0 (Blohm et al., 2014), a manually curated database of proteins with experimental
evidence indicating the absence of direct interaction. Positive PPIs were filtered by cleaning (e.g.
dropping sequences with non-natural amino acids), swapping targets and binders to double the
dataset size, removing duplicate homomer interactions, applying a length limit of 1022 amino acids
for both target and binder sequences, and only retaining rows where one partner is included in the
Negatome. The Negatome was filtered by removing any listed target and off-target pairs that are
included as binder and target pairs in the PPI database. This produced a dataset of 245,587 positive
PPIs and 7,198 negative interactions.

Quadruplet selection. The training, validation, and testing datasets were designed to (1) enhance gen-
eralizability by including diverse binders, targets, and off-targets, (2) prevent rigid role assignments by
allowing any sequence to act in any interaction context, and (3) maximize difficulty to improve learn-
ing. Quadruplet selection was formulated as a linear programming problem using length-averaged
ESM-2-650M (Lin et al., 2023) embeddings. With PuLP v2.9.0, quadruplets were optimized
for difficulty while minimizing role repetition (Supplementary Algorithm 1). Difficulty increased
with higher cosine similarity between target and off-target embeddings, ensuring the Siamese model
learned to distinguish subtle differences. Euclidean distance was used in the loss function, but cosine
similarity was preferred for selection due to its bounded range (-1 to 1). Selecting closely related
targets and off-targets better reflects SOAPI’s real-world applications, such as designing binders that
avoid wild-type protein interactions. To ensure the model learned relationships rather than predefined
roles, four constraints were imposed: (1) each binder appears at most ten times, (2) each target-off-
target grouping appears only once, (3) each target appears once per binder, and (4) each off-target
appears once per binder. Constraint 1 was pre-enforced by subsampling positive PPIs, and Constraint
2 required a tiebreaker term (λ = 0.001) based on Euclidean binder-target distance. A total of 1,352
quadruplets were selected, consisting of 565 unique binders, 1,054 targets, and 969 off-targets.

Clustering and splitting. Quadruplets were clustered on binder sequence using MMSeqs2 easy
clustering module (Steinegger & Söding, 2017) with a minimum sequence identity of 30% and
a coverage threshold of 70%. The resulting clusters were randomly split at 80-10-10 ratio using
sklearn v1.2.0 into a training set (1,111 quadruplets, 82.2%), validation set (116 quadruplets,
8.6%), and test set (125 quadruplets, 9.2%). The distribution of roles (binder, target, off-target)
played by each sequence in the full dataset and individual splits can be found in Figure A1.
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A.3 SUPPLEMENTARY TABLES

Table A1: SOAPI loss on training data.
Split Size Loss

Train 1111 0.04
Validation 116 1.43
Test 125 1.57

Table A2: SOAPI Model Architecture and Training Hyperparameters
Hyperparameter Value
Model Architecture
ESM Model Base ESM2 t33 650M UR50D
Embedding Dimension 1280
ESM Unfrozen Layers 2
Linear Layers 2
Positional Attention Head: n heads 10

Adaptive Log-Sum Decoy Loss
α 5
β 0.5
ϵ 1e-8

Training
Max Sequence Length 1022
Batch Size / Device 16
Effective Batch Size 128
Dataloader num workers 30
Learning Rate (LR) 1e-4
LR Scheduler: Warmup Steps 200
LR Scheduler: Total Steps 9000
LR Scheduler: Min/Max LR Ratio 0.1
Gradient Clipping 0.5

Target Proposed sequence
APTX::ARL5B FNLKNKVLITGSRGIGKGIAELAKEGVNLIARTLE

KKEKSKVLKDVTDLINIFEKAKQFNNKIDILVNNAA
DAP3::TIPRL MAASPSHLSSSSSLLHLSPRRLGPATAAEAATAL

RFRPRNVPLTPFRPSRRSSLSPASPSSAPPPQTT
VBP1::BRCC3 MGCQFNPTPQRTALWLCGTDPPLPPLPPLQL

PGAVAAVAADSVYVREVQLGRGPGLLEGEAQ
VBP1::BRCC3 YLDQRRQGAQEAGSESVLKKCWTAERLNAP

ASRRAAQSVGGDVPRVVAAGMSLLCLLHW

Table A3: Best generated sequences for the conditional generation experiment.
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A.4 SUPPLEMENTARY FIGURES

Figure A1: Training Data Protein Roles. Distribution of roles (binder, target, off-target) played by
proteins in the quadruplets comprising the A full training dataset (1,352 quadruplets), B train split
(1,111 quadruplets), C validation split (116 quadruplets), and D test spit (125 quadruplets).
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Algorithm 1 Quadruplet Selection via Linear Programming
1: Input: Set of positive and negative PPIs Ppos and Pneg, cosine similarity matrix of target t and

off-target ot embeddings C, Euclidean distance matrix of binder b and target t embeddings E,
small weighting factor λ, and constraints: mgroup (max occurrences of a specific (t, ot1, ot2)
group), mb (max binder occurrences), mtpb (max repeats of same target per binder), motpb (max
repeats of same off-target per binder).

2: Output: Q∗, optimal quadruplets (b, t, ot1, ot2) satisfying the constraints.
3: P ∗

pos ← RandomSample(Ppos,mb)
4: Q← (b, t, ot1, ot2)∀(b, ot1, ot2) ∈ Pneg, (b, t) ∈ P ∗

pos
5: for each quadruplet (b, t, ot1, ot2) do
6: d(b, t)← Eb,t

7: s(t, ot1)← Ct,ot1
8: s(t, ot2)← Ct,ot2
9: Compute adjusted similarity:

S(b, t, ot1, ot2) =
s(t, ot1) + s(t, ot2)

2
+ λ · d(b, t).

10: end for
11: Define decision variables x(b, t, ot1, ot2) ∈ {0, 1} for all candidate quadruplets.
12: Maximize: ∑

(b,t,ot1,ot2)

x(b, t, ot1, ot2) · S(b, t, ot1, ot2).

13: Subject to:
•
∑

(ot1,ot2)
x(b, t, ot1, ot2) ≤ mtpb ∀b, t.

•
∑

t,ot2
x(b, t, ot1, ot2) +

∑
t,ot1

x(b, t, ot2, ot1) ≤ motpb ∀b, ot.
•
∑

b x(b, t, ot1, ot2) + x(b, t, ot2, ot1) ≤ mgroup ∀t, ot1, ot2.
14: Solve the linear programming problem.
15: Extract and return Q∗, selected quadruplets where x(b, t, ot1, ot2) = 1.
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