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ABSTRACT

We present Virtual Community, a social world simulation platform designed to
support embodied AI research, featuring large-scale community scenarios de-
rived from the real world. Virtual Community introduces two key features to
enrich the virtual social world with generative AI: scalable 3D Scene creation,
which supports the generation of expansive outdoor and indoor environments at
any location and scale, addressing the lack of a large-scale, interactive, open-
world scene for embodied AI research; and embodied agents with grounded
characters and social relationship networks, the first to simulate socially con-
nected agents at a community level, that also have scene-grounded characters.
We design two novel challenges to showcase that Virtual Community provides
testbeds to evaluate the social reasoning and planning capabilities of embodied
agents in open-world scenarios: Route Planning and Election Campaign. The
Route Planning task examines the agent’s ability to reason about time, location,
and tools in the community to plan fast and economical commutes in daily life.
The Election Campaign task evaluates an agent’s ability to explore and connect
with other agents as a new member of the community. . We evaluate sev-
eral baseline agents on these challenges and demonstrate the performance gap
of current methods in addressing embodied social challenges within open-world
scenarios, which our simulator is designed to unlock. We plan to open-source
this simulation and hope Virtual Community can accelerate the development in
this direction. We encourage the readers to view the demo of our simulation at
https://sites.google.com/view/virtual-community-iclr.

1 INTRODUCTION

In recent years, we have witnessed tremendous progress in developing intelligent embodied agents,
driven by advancements in embodied AI simulators (Savva et al., 2019; Puig et al., 2023b; Kolve
et al., 2017; Li et al., 2021; Xiang et al., 2020b; Makoviychuk et al., 2021; Puig et al., 2018; Gan
et al., 2021; Cheng et al., 2024). However, existing simulators face significant challenges in ground-
ing realistic social interactions in 3D open-world environments. Most simulators focus on simulating
a limited number of agents without incorporating social relationships (Szot et al., 2021; Gan et al.,
2022), and are restricted to small-scale scene regions (Puig et al., 2018; 2020; 2023a;b; Zhang et al.,
2023; 2024). In contrast, real-world social scenarios typically involve large communities of agents
with diverse personalities and complex social networks spread over expansive areas. This limita-
tion significantly restricts the study of complex and diverse social interactions between agents in
simulated environments.

To address this challenge, it is crucial to enable the simulators to support the following key aspects.
First, it should offer large-scale 3D environments, including complex and diverse indoor and outdoor
scenes, capable of accommodating expansive agent communities and supporting tasks that span
vast spatial regions. Current approaches for this aspect can be divided into manual design (Wang
et al., 2024; Gan et al., 2021), which provide rich interactions but are inherently limited in number
and diversity, and 3D reconstruction methods (Savva et al., 2019), which create visually realistic
and diverse environments but often result in noisy scenes with limited interactivity in open-world
settings.
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Name: Brian Carter
Role: Dance Instructor
Heading to: Fitness Center

Chatting:
Jack Ma & Joe Anderson

Waiting: Bus
Destination: West 30 
Street

Name: Sophie Carlsen
Role: College Student
Heading to: WholeFood
Market

Vehicle: Bus
Next Stop: West 
35th Street

Chatting

Cyber Security Corp.

Culinary Explorers Club

New York University

Collaborating

Name: Leonard Park
Age: 23
Innate: Self-direction, Security
Bio: I am a cybersecurity expert 
at Tech Innovators. My hobby is 
soccer. 
Group:
• Name: Tech Innovators
• Place: Tech Innovators NYC
Living: Leonard Park’s room at 
Justin Management

Name: Elizabeth Mensah
Age: 35
Innate: Stimulation, Hedonism 
Bio: I am a professor at CUNY. 
My hobby is cooking.
Group:
• Name: Culinary Explorers
• Place: The Gastronomy Guild
Living: Elizabeth Mensah's 
room at Bernstein Real Estate

Figure 1: Virtual Community features embodied agent communities within open-world scenes.
We provide a pipeline for automatically generating scenes and agent communities from real-world
geospatial data. The agents are simulated in the Genesis physics engine as humanoid avatars, en-
abling them to engage in diverse social interactions within the community.

Second, the simulator must support a large number of interconnected 3D agents, each engaged in
their own daily activities while maintaining social relationships with others, allowing for meaningful
social interactions. However, existing multi-agent embodied AI simulators often lack the capacity
to model complex social networks, limiting the study of rich social interactions. Additionally, they
do not automatically align agent profiles, memories, and activities with the scene context, reducing
the overall realism of the agent communities.

In this paper, we present Virtual Community, a generative social world for embodied intelligence re-
search. Virtual Community addresses these challenges by integrating large-scale real-world geospa-
tial data with generative models to produce interactive, scalable open-world scenes and socially
grounded agent communities as shown in Figure 1. The platform is advanced in two aspects:

Scalable 3D Virtual Scenes from Real-World Scenarios Virtual Community enables the fully
automatic generation of 3D background scenes with several key features: (1) scalable indoor and
outdoor scenes with customizable sizes and amounts, (2) automatic annotations of locations and
objects within the scenes, and (3) a wide variety of interactive objects based on real-world locations.
Virtual Community creates these scenes by combining generative models with real-world geospatial
data, ensuring scalability in both data volume and scene size. Being built from geospatial data, these
scenes can be seamlessly integrated with real-world tools including search engines and maps.

Embodied Agents with Grounded Characters and Social Relationship Networks Virtual
Community leverages open-world knowledge from foundation models to endow agents with rich,
contextually grounded characters. The simulator further incorporates social relationship networks,
connecting these agents into cohesive communities and enabling complex social interactions within
the 3D environment. To support this, Virtual Community provides tens of human avatar skins inte-
grated with SMPL-X skeletons, covering a diverse range of appearances, including celebrity like-
nesses, to ensure visual variety within human society. These avatars can perform over 15 distinct
motions, such as walking, picking and placing objects, and operating vehicles, providing a broad
spectrum of embodied behaviors.

Virtual Community uses Genesis1, a generative physics simulator as the engine, which supports
the simulation of a diverse range of materials and a vast range of robotic tasks while being fully

1https://github.com/Genesis-Embodied-AI/Genesis
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differentiable. Genesis also comes with a real-time OpenGL-based renderer and a path tracing
renderer implemented using Luisa compute (Zheng et al., 2022).

Virtual Community enables a variety of new possibilities in embodied AI research. The scalable
scene generation and auto-annotation open a new challenge of open-world reasoning and planning,
which we created a Route Planning challenge as a first step in this direction. The challenge involves
the agent navigating from one geographic location to another, making decisions on transportation
methods and on-road navigation. The generative embodied agent community provides the opportu-
nity to study the social intelligence of embodied agents in complex and diverse social tasks in the
open world. We propose the Election Campaign, which challenges agents to quickly familiarize
themselves with other community members and persuade them to vote for the agent, testing their
exploration and social communication skills.

Our simulator is novel in its ability to support long-duration and large-region tasks within real-
world-based embodied AI simulators, marking a significant advancement in the field. By addressing
the limitations of existing methods in data volume scaling, temporal scaling, and spatial scaling, we
hope that our framework paves the way for training embodied general intelligence in environments
that closely resemble the complexity and richness of the real world.

Table 1: Comparison of related simulation platforms
Work Real-

world
Set-
ting

Social
Net-

works

Multi-
agent

Physics Humanoid
Ac-
tion

Scalable
Scene
Size

Num
Out-
door

Num
In-

door

AI2-THOR ✗ ✗ ✓ ✓ ✗ ✗ 0 120
VirtualHome ✗ ✗ ✓ ✓ ✓ ✗ 0 8
Habitat 3 ✗ ✗ ✓ ✓ ✓ ✗ 0 59
iGibson ✗ ✗ ✓ ✓ ✓ ✗ 0 15
ThreeDWorld ✗ ✗ ✓ ✓ ✓ ✗ 4 ∞
Minecraft ✗ ✗ ✓ ✗ ✗ ✗ ∞ ∞
Carla ✗ ✗ ✓ ✓ ✓ ✗ 12 ✗
Wayve ✗ ✗ ✗ ✗ ✓ ✗ ∞ ✗
GPUtopia ✗ ✗ ✓ ✓ ✓ ✗ 1 100K+
Virtual Community (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ∞ ∞

2 RELATED WORKS

2.1 EMBODIED AI SIMULATION

Recently, embodied AI has seen significant advancements through the development of simulation
platforms. Most existing simulators primarily focus on household tasks within indoor environ-
ments (Beattie et al., 2016; Savva et al., 2019; Yi et al., 2018; Das et al., 2018; Xiang et al., 2020a;
Shen et al., 2021; Szot et al., 2021; Li et al., 2021; Puig et al., 2018; Kolve et al., 2017; Yan et al.,
2018), while some have extended support to outdoor scenes (Gan et al., 2021; Wang et al., 2024;
Dosovitskiy et al., 2017; Kendall et al., 2018). However, these platforms lack diverse and scalable
outdoor environments that can accommodate a larger number of agents and support more complex
tasks. In contrast, this paper introduces a simulation platform featuring open-world environments
with indoor and scalable outdoor scenes, enabling broader agent activities and more intricate task
scenarios.

2.2 EMBODIED SOCIAL INTELLIGENCE

Current research on Embodied Social Intelligence is often limited to small agent populations in con-
strained household scenarios (Puig et al., 2020; Zhang et al., 2023; Stone et al., 2022) or simplified
to 2D or grid worlds (Carroll et al., 2019; Suarez et al., 2019), hindering model development in the
open world. Specifically, Park et al. (2023) demonstrates the robust simulation of human-like agents
within a symbolic community, ignoring the 3D perception and realistic physics in the open world.
Wang et al. (2023c) studies human-like simulation guided by system 1 processing with basic needs.

3
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Predominant approaches, such as multi-agent reinforcement learning (MARL) and other planning
models, face several limitations when applied to open-world settings. MARL, for instance, often
struggles with scalability due to the exponential growth of state and action spaces as the number of
agents increases (Wen et al., 2022). This makes it difficult to learn effective policies in complex,
dynamic environments. Additionally, MARL approaches typically require extensive training data
and computational resources, which may not be feasible in real-world applications. Other planning
models, while potentially more efficient, often lack the adaptability required to handle the unpre-
dictable nature of open-world interactions. They may rely on predefined rules or assumptions that
do not hold in all scenarios, leading to suboptimal performance and limited generalization to new
contexts (Puig et al., 2020).

2.3 FOUNDATION AND GENERATIVE MODELS FOR EMBODIED AI

With the recent advance of foundation models (Bubeck et al., 2023; Liu et al., 2023; Driess et al.,
2023; Blattmann et al., 2023), numerous works have explored how they can help build powerful
embodied agents (Wang et al., 2023b; Xi et al., 2023; Sumers et al., 2023; Wang et al., 2023d; Ahn
et al., 2022; Sharma et al., 2021; Wang et al., 2023a; Park et al., 2023; Hong et al., 2024; Black
et al., 2024), and scenes for simulation (Höllein et al., 2023; Schult et al., 2023; Deitke et al., 2022;
Fu et al., 2021; Yang et al., 2024; Feng et al., 2024; Tang et al., 2023; Paschalidou et al., 2021).
Robogen (Auerbach et al., 2014) leverages foundation models to automatically generate diversified
tasks, scenes, and training supervision, thereby scaling up robotic skill learning with minimal human
supervision. Different from them, this work aims to use a generative pipeline to create open world
scenes and agent communities instead of constraint indoor scenes and tasks.

3 SCALABLE 3D SCENE GENERATION

The existing 3D geospatial datasets2 provide extensive data in terms of quantity and diversity. How-
ever, they are not directly suitable for embodied AI research because of several limitations. First,
these geospatial data often contain noise, including pedestrians, vehicles, and other transient objects
that can disrupt simulations. Second, visual quality is inadequate for ground-level agent perspec-
tives because these environments are typically reconstructed from aerial imagery, leading to less
detailed textures and geometries at street level. To bridge this gap, we perform comprehensive mesh
cleaning and enhancement in both geometry and texture to make the scenes suitable for embodied
AI simulations.

To overcome these challenges, we propose a pipeline to transform 3D geospatial data into
simulation-ready scenes for embodied AI. This pipeline consists of four main steps: mesh sim-
plification, texture refinement, object placement, and automatic annotation. We list some qualitative
example in Figure 4 and Figure 3

3.1 MESH CONSTRUCTION AND SIMPLIFICATION FOR SCENES

Since 3D geospatial data like Google 3D tiles are reconstructed from images using photometric
methods, they often include noisy surfaces, excessive transient objects like moving cars and people,
and unreliable mesh topology. These deficiencies make them inefficient and unsuitable for embodied
AI simulations. To address this, we decompose the scene into the terrain, buildings, and decorative
roofs and perform different operations to reconstruct each part of the scene.

The terrain is built procedurally using sparse reference elevation points and bilinear interpolation.
We then derive simple and topologically sound mesh using information provided by the Open-
StreetMap (OSM) service. The building mesh is then modified to better fit the Google 3D tiles
geometry and to align with the terrain elevation. By aligning the mesh geometries with OSM primi-
tives, we eliminate unnecessary details and artifacts, such as distorted surfaces and irregular shapes
caused by aerial reconstruction errors. This geometric simplification not only reduces noise but also
decreases the total number of primitives in the scene, leading to more efficient physical simulations
and improved rendering performance.

2https://www.google.com/maps/
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Texture
Refine

Geometry
Simplify

Character 
Initial Info

● Name
● Age
● Skin
…

Chad Thompson
Groups: ["Berlin
Foodies Club"]
Living: Palais 

Elon Musk
Values: Power
Cash: 1000$
Lifestyle: Innovative

Lionel Messi
Occupation: 
Soccer Player
Living: The Kendall Hotel

Rough Mesh

Location
(Lat,Lng)

Object
Place

Map

Indoor
Generate

Million Dollar Corner
    …

Elon Musk
Current: 
Hotel Hugo
Heading to: None
Task: Working

Kate Novak
Heading to: The 
Science Building
Task: Go to class

Chad Thompson
Heading to: Hotel 
Hugo
Task: Meet with 
Elon Musk

John Smith
Heading to: 
Sushi Noz
Task: Buy lunch 
for Kate Novak

(A) Scene

(B) Agent

(C) Community

Kate Novak
Cash: 50$
Student
Living: McCormick
Groups: ["Campus"]

Characters

Relations

…

Bounding Box: …
Place_1: "Sushi Noz"
     Coarse_type: "Food"
     Fine_type: "Japanese 
Restaurant"
     Indoor_scene: …
Place_2: "The City Hotel"
…

Herald Towers

Fine-tuned Scene
Bus Line 33

Placed Trees & Poles

Figure 2: Framework of the Virtual Community Generation Pipeline. This pipeline generates
scenes and corresponding agents from real-world geospatial data. The scene generation compo-
nent (A) refines rough 3D data by using generative models to enhance textures and geospatial data
to simplify geometry. It also utilizes generative methods to create interactive objects and detailed
indoor scenes. The agent generation component (B) leverages LLMs to generate agent characters
and social relationship networks based on scene descriptions, resulting in a socially grounded com-
munity of embodied agents (C).

3.2 ENHANCED TEXTURE QUALITY FOR REALISTIC SIMULATION

To improve the visual quality of 3D geospatial data, we employ advanced image processing tech-
niques. First, we use an inpainting method based on Stable Diffusion (Rombach et al., 2022) to
remove noise and repair missing or damaged areas in textures. This process corrects inconsisten-
cies and eliminates artifacts from the reconstruction phase, resulting in smooth and realistic surface
appearances. Once the texture integrity is restored, we enhance finer details using street view im-
ages and super-resolution tools. While some approaches directly use street view images for 3D
reconstruction (Pang & Biljecki, 2022; Gao et al., 2024), these methods often struggle with limited
coverage and density. Instead, we blend street view images with existing textures on scene primitives
to improve visual richness. For super-resolution, we use GigaPixel 3 to increase texture resolution
and sharpen finer details. This two-step enhancement significantly increases the visual fidelity of
the textures, making them more suitable for ground-level rendering. These high-quality textures
create a more immersive environment for agents, improving the realism and overall effectiveness of
embodied AI training.

3.3 IMPROVING INTERACTIVITY BY OBJECTS RETRIEVAL AND REPLACEMENT

To enhance the interactivity of the scenes, we use generative methods to populate the environment
with interactive objects, such as bikes and tent. We use annotations in OpenStreetMap (OSM)
dataset to determine the type and location of generated objects to match the real-world context.
The OSM annotations are used as input for the One-2-3-45 Liu et al. (2024) generative framework,
which outputs the corresponding 3D meshes of corresponding objects. These generative objects are
assigned physical properties that allow them to interact seamlessly with agents in the simulation. By
aligning object generation with real-world geospatial data, this approach ensures that the scenes are
functionally rich and physically interactive, enabling agents to engage in meaningful interactions
that mirror real-world environments.

3https://www.topazlabs.com/gigapixel-ai
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Figure 3: Large-scale scene rendered from the generated city scenes in North America and Europe.
Our method is capable of generating high-quality scenes with an area of square miles. Objects are
dynamically loaded in the simulator and are therefore not rendered in this figure.

3.4 AUTOMATIC ANNOTATION OF SCENES WITH GEOSPATIAL DATA

To facilitate alignment with real-world locations and provide semantic context, we automatically an-
notate the scenes using geospatial data. We integrate metadata from sources such as OpenStreetMap
and other GIS databases to label buildings, roads, and other landmarks within the environment. This
annotation enables agents to access location-specific information and supports tasks that require
an understanding of the spatial context, such as navigation and location-based decision-making.
The enriched semantic information enhances the potential for more sophisticated and context-aware
agent behaviors within the simulation.

Bus Transit Annotation We search for the bus stops in the scene using Google Places API and then
annotate the routes between any two adjacent bus stops using Google Directions API. We use depth-
first search (DFS) on the graph of routes to find the route in the scene that maximizes the number
of bus stops. Then, we decode polyline from the route to extract the dense waypoints which follow
rounds of optimization to ensure the distance between waypoints is roughly equal and contains
turning points. We also generate the bus schedule by estimating the travel time between bus stops
using the distance and speed of the bus.

Shared Bicycle Transit Annotation We search for the shared bicycle stations in the scene using the
OpenStreetMap API.

4 COMMUNITY OF EMBODIED AGENTS WITH GROUNDED CHARACTERS
AND SOCIAL RELATIONSHIP NETWORKS

Given diverse generated scenes with real-world geospatial data mapping, we introduce a generative
pipeline to populate the scenes with communities of agents with grounded characters and social
relationship networks in section 4.1. Then we discuss how we design the embodiment for the agents
and simulation details in section 4.2.

6
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Figure 4: Close-up view of the generated scenes. The resulting scene has clean geometry and
realistic texture, which is essential for physical simulation and sim-to-real transfer learning. Objects
are dynamically loaded in the simulator and are therefore not rendered in this figure.

4.1 GROUNDED CHARACTERS AND SOCIAL RELATIONSHIP NETWORK GENERATION

We utilize the open-world knowledge of the Large Language Model (LLM) to generate agent char-
acter profiles and personalities grounded in the scene. The input to the LLM is structured into two
parts to create characters grounded in a specific scene. The first part contains scene-related infor-
mation, such as the scene name and details about various places, including their names, types, and
functionalities. The second part includes details on the agents’ appearances to ensure consistency
between their visual attributes and generated profiles, which are annotated with the name and age.
With both parts provided, the LLM generates agent profiles along with their social relationships.
The profiles consist of basic attributes such as names, ages, occupations, personalities, and hobbies,
which influence each agent’s daily decision-making. Social relationships are structured as groups,
each containing a subset of agents along with a text description and a designated place for group
activities, connecting these agents into a cohesive community, and allowing rich and complex social
interactions grounded in the 3D environment.

Grounding Validator We implemented a grounding validator to check if the generated character
profiles are accurately grounded to the scene by checking if all related places generated exist in the
scene. If the validation fails, LLM will be prompted again with the feedback from the validator and
try to fix the mismatch. Empirically, we find that 1-2 rounds of prompting is enough to pass the
grounding validator.

An example character with social relationship networks generated is shown in Figure 5 (a).

4.2 HUMAN AVATARS EMBODIMENTS

Human Avatars Skin Creation We obtained 12 avatar skin models of different genders, profes-
sions, and appearances from the Mixamo4 website for integration into the Virtual Community. Each
skin model of characters includes 71 skeletal joints and can be adapted to animation sequences in
SMPL-X and FBX formats. To reduce the computational load during animation playback in the
Virtual Community, we further optimized the skin models by applying Blender’s Decimate Modifier
tool, reducing the number of vertices in the 3D skin mesh by 90%.

In addition to the standard skin meshes provided by Mixamo, we use the Avatar SDK5 to generate
high-fidelity human skin meshes from real-world images, allowing us to represent diverse individ-
uals, including celebrities, in our Virtual Community. For each character, we first obtain a high-
quality portrait image from the internet. This image is processed using the Avatar SDK API, which
produces a 3D mesh with detailed skin textures. To further enhance realism, we adjust the avatar’s
clothing, height, and body shape, creating a more lifelike and personalized appearance.

4https://www.mixamo.com/
5https://avatarsdk.com

7

https://www.mixamo.com/
https://avatarsdk.com


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Brian Carter
Dance Instructor at Arthur Bodie 
Dance and Fitness Studio

Age: 35
Values: stimulation, hedonism
Hobby: dancing
Group(s): CrossFit Warriors
Living: EŌS NoMad Apartments
Cash: $600
Lifestyle: I go to bed around 11pm, 
wake up around 7am, eat dinner 
around 8pm.

Daily Schedule
00:00:00 - 07:00:00
Sleep in Brian Carter's room
07:00:00 - 08:00:00
Morning Routine in Brian Carter's room
08:00:00 - 08:30:00
Commute
08:30:00 - 11:30:00
Dance Instruction in Arthur Bodie Dance and Fitness Studio
11:30:00 - 12:00:00
Commute
12:00:00 - 13:00:00
Lunch Break in Friedman's Herald Square
13:00:00 - 13:30:00
Commute
13:30:00 - 15:00:00
CrossFit Training in CrossFit NYC
……

Figure 5: An example of (a) generated character and (b) daily schedule.

Human Avatars Motion Control We combine SMPL-X human skeletons with created avatar skins
to model human avatars in Virtual Community. The motions of these avatars are parameterized by
SMPL-X pose vectors J ∈ R162 along with global translation and rotation vectors T,R ∈ R3. Based
on these pose representations, a skin mesh for each avatar is calculated using forward kinematics.

Our motion model for humanoid avatars supports over 15 distinct motions, such as walking, picking
objects, and entering various vehicles. We use motion clips from Mixamo and adjust these clips to
our humanoid avatar models with appropriate animating speeds. For walking, we loop the walking
motion clip until the avatar reaches the given distance. For object-related motions, the interacting
object will be kinematically attached or detached to or from the avatars’ hands depending on the
action type. Similarly, the humanoid avatar will be kinematically attached or detached to or from
the given vehicle for vehicle-related motions. We also incorporate physics constraints into our avatar
motion model, where collision detection is performed between avatars and other scene entities, and
the motion process is terminated when a potential collision is detected. To handle different terrain
altitudes within community scenes, we preprocess a height field for each scene and kinematically
adjust the height of our humanoid avatars according to their current locations.

4.3 DAILY SCHEDULE GENERATION

Given the scene-grounded characters and social relationship networks, we prompt the foundation
models to generate the daily schedule for each agent, using a similar design to Park et al. (2023).
Differently, we generate the daily schedule in a structured manner directly with each activity repre-
sented with a start time, an ending time, an activity description, and the corresponding activity place,
and consider the required commute time between adjacent activities that are happening in different
places explicitly, due to the actual cost of navigating in an expansive 3D environment. An example
daily schedule generated is shown in Figure 5 (b).

5 OPEN WORLD AND SOCIAL CHALLENGES IN VIRTUAL COMMUNITY

We introduce and study two tasks in Virtual Community: Route Planning and Election Campaign-
ing. The tasks cover agents planning ability in a community context and social intelligence to
interact with other agents.

As the foundation for both tasks, agents in the community follow a default daily plan and routine
(introduced in Section 4.3) if no specific tasks are assigned. During each episode, one or two agents
are randomly selected and assigned one task. When an agent is given a task, it suspends its daily
plan and focuses on completing the assigned social task in the community.

8
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5.1 ROUTE PLANNING: USE TRANSPORTATIONS IN COMMUNITY

Task Definition To live a daily life in a human society, an embodied agent needs first to be able to
plan its route from one place to another in the community. To study this basic ability of embodied
agents, we introduce the Route Planning task. In this task, an agent needs to commute from place to
place 5 - 7 times a day given the schedule. The agent can utilize available transit options, including
buses with fixed routes and rental bikes along the roads. The bus is only available at the bus stop
and the agent can only take a bus when the bus arrives. The bikes are available at given bike stations
along the roads, and the agent also needs to return the bike to any bike station before the task finishes.

At each simulation step, agents are provided with an observation of RGB-D images with the corre-
sponding camera matrix, current poses, daily schedules, and transit information in the community.
The action space for these avatars includes move forward, turn left, turn right, enter/exit bus, and
enter/exit bike. The movement and turning actions can be set with a variable amount. When an
agent is within a specified distance threshold of another agent, it can perform a communication
action, enabling text-based interaction with agents within that range.

Baselines We compare three baseline agents in the Route Planning task:

•Rule-based Agent The rule-based agent always chooses to walk directly toward the target location.

•MCTS agent This agent is based on Monte Carlo Tree Search (MCTS) and simulates various
decisions, such as choosing to take a bus. For each action, the agent estimates its associated cost and
uses Monte Carlo sampling to iteratively update the expected reward for each decision path. The
agent ultimately selects the action sequence that maximizes the cumulative reward.

•LLM agent This agent converts all the task information into a prompt and queries the Large Lan-
gauge Model (we use GPT-4o here) to generate a commute plan directly, which may include multiple
steps such as walking to a bus stop, taking the bus to a specific stop, and then walk to the final des-
tination.

All agents use the same low-level point-based navigation algorithm, which reconstructs the point
cloud based on RGB-D images from the ego-centric observation at each step and converts the point
cloud into a volume grid representation with a resolution of 0.1m. Subsequently, a 2D occurrence
map is established with a resolution of 0.5m based on this representation and an A* algorithm is
used to search for the shortest path efficiently.

Metrics We evaluate the agents on two different scenes with 19 diverse personal schedules, making
106 commutes in total. Agents are expected to commute efficiently, so we use the following metrics
for this task

• Arrival Rate: Percentage of in-time arrivals at the target location within the given time.

• Time: Average time in seconds taken on the road to reach the destination.

Table 2: Experiment results of Route Planning task.

Methods Route planning
Arrival Rate↑ Time↓

Rule 0.97 668.5
MCTS 0.91 698.7
LLM (GPT-4o) 0.89 963.0

Results As shown in Table 2, both search-based agent MCTS and LLM-based agent fail to make
effective use of the available public transit options, resulting in even more time spent on commuting
and a lower arrival rate compared to the naive rule agent baseline. This is due to the complexity of
predicting whether the agent could catch a bus given partially built maps of the scene. We observe
that the LLM agent tends to leverage public transits more but without a good estimation of the time
needed to get to the transit station based on uncertainty on the navigation, it costs significantly more
time in commuting.
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Figure 6: Election Campaign Task Results. We study LLM-driven agent behavior in the election
campaign task. Different candidate agents exhibit distinct strategies.

5.2 ELECTION CAMPAIGN: FIND AND PERSUADE OTHERS

Task Definition In this task, two agents in the community are designated as candidates. The can-
didates need to navigate through the community, find potential voters, and persuade them to vote
through direct communication. The election concludes at the end of the day, and the winner is
determined by the percentage of votes each candidate receives. Due to pre-existing social relation-
ships, some voters may have initial preferences for certain candidates at the beginning of the task,
so candidates must devise strategies to influence and shift voter opinions throughout the election
process.

Baselines We use an LLM-based agent as the baseline for this task. The agent’s behavior is deter-
mined through iterative prompting of the LLM to identify which voter the candidate should visit
next. After selecting the target voter, the candidate navigates to their location and delivers a cam-
paign speech, also generated via LLM prompts. This process is repeated until the simulation ends.
At the conclusion of the campaign, an election is held, during which each agent is prompted to
decide which candidate they will vote for.

Results As shown in Figure 6, Trump began his campaign from the top right corner of the map,
visiting Chad Thompson, Brian Carter, and Joe Anderson in succession. His target audience mainly
consisted of achievement-oriented young men. In contrast, Harris started her actions from the top
left corner of the map, visiting Megan Carter, Zara Williams, and Emily Johnson in succession. Her
target audience is primarily focused on young women. Both chose targets that aligned with their
campaign strategies.

6 CONCLUSION

We introduce Virtual Community, a generative social world for Embodied AI, featuring scalable
scene generation and a community of embodied agents with grounded characters and social rela-
tionship networks. Virtual Community generation pipeline leverages rich real geospatial data and
open-world knowledge data of advanced generative models and creates infinite scenes and grounded
social agent communities. As an initial exploration of this simulator, we introduce two novel open-
world and social challenges, Route Planning and Election Campaign, which are developed and
tested using various baseline methods. These experiments highlight the difficulty of the challenges
enabled by our new virtual social world. We hope Virtual Community can help advance the Embod-
ied AI research towards building embodied generalist intelligence that can handle the difficulty of
the real world and coexist with the human community.
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