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ABSTRACT

To date, various neural methods have been proposed to address the causal effect
estimation based on observational data, where the counterfactual prediction com-
monly assumes the same distribution and availability of variables at both training
and inference (i.e., runtime) stages. In reality, covariate shift commonly happens,
and the accessibility of variables is usually impaired due mainly to privacy and
ethical concerns. We term the co-occurrence of domain shift and inaccessible
variables runtime domain corruption, which seriously challenges the generaliz-
ability of the trained counterfactual predictor on top of the existence of confound-
edness and selection bias. To counteract runtime domain corruption, we subsume
counterfactual prediction under the notion of domain adaptation. Specifically, we
upper-bound the error w.r.t. the target domain (i.e., runtime covariates) by the
sum of source domain error and inter-domain distribution distance. In addition,
we build an adversarially unified variational causal effect model, named VEGAN,
with a novel two-stage adversarial domain adaptation to implicitly reduce the dis-
tribution disparity between treated and control groups first, and between training
and inference domains afterwards. We demonstrate that VEGAN outperforms
other state-of-the-art baselines on individual-level treatment effect estimation in
the presence of runtime domain corruption on benchmark datasets.

1 INTRODUCTION

In predictive analytics, causal inference is increasingly important in guiding decision-making in
high-stake domains, such as healthcare (Glass et al., 2013), education (Cordero et al., 2018), e-
commerce (Phang et al., 2019), etc. Normally, randomized control trial (RCT) is the gold standard
for estimating the causal effect. Given that implementing RCTs is costly, time-consuming, and
sometimes ethically intractable, various applications alternatively turn to use the passively collected
observational data to perform causal inference in a data-driven fashion (Johansson et al., 2016; Yao
et al., 2021). Denoting input variables as x, treatment as t, outcome as y, the observational dataset
with N samples {(xi, ti, yi)}Ni=1 commonly does not satisfy the RCT standard due to unmeasured
confounders and selection bias, which correspond to the two prominent challenges below.

Challenge 1: The untestable unconfoundedness assumption assumes no unobserved confounders.
However, such an assumption cannot be satisfied in many cases, rendering the causal effect estima-
tion erroneous (Rosenbaum, 2002; Caliendo & Kopeinig, 2008).

Challenge 2: The imbalanced covariate distribution between the treated group and the control
group makes the treatment assignment t not random and subject to selection bias, which further
weakens the effectiveness of causal inference.

A healthcare example to explain these two challenges is that, if only the rich can afford drug A while
the poor have to use the cheaper alternative drug B, then people’s financial status could be a hidden
confounder if unmeasured. Consequently, it confounds the treatment assignment, and the effective-
ness of drug A and drug B cannot be validly compared based on the rich and the poor groups due to
the skewed distribution of variables. To date, by addressing either of the two challenges or both, sev-
eral neural approaches (Shalit et al., 2017; Louizos et al., 2017; Shi et al., 2019) are made available
for causal effect estimation with observational data. Notably, the majority of such counterfactual
predictions ignore the domain shift situation, and also bear an assumption that all input variables
used for training are also accessible during the inference stage (i.e., runtime). However, real-world
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applications commonly see that the medical diagnostic models are learned with high-quality open
benchmarks, but in the deployment stage, covariate shift could happen, also not all end-users are
able to provide the same set of attributes due to accessibility issues (e.g., high-cost medical checks),
privacy constraints (e.g., historical treatments), and ethical concerns (e.g., gender and race). We
specifically define this challenge as the runtime domain corruption as follows.

Challenge 3: We define each variable vector x = [x1, x2, ..., xd] ∈ Rd as a concatenation of multi-
hot-coded categorical features and non-zero numerical features. During training, all d entries xs,
∀s ≤ d, are available and assigned corresponding values. Then, during inference, runtime domain
corruption occurs when the covariate distribution shifts, and vector x contains an arbitrary number
of unavailable variables which are set to xs′ = 0, s′ ≤ d.

Domain Shift vs. Runtime Domain Corruption. Runtime domain corruption can be interpreted
as one step above the well-defined domain/covariate shift, where the runtime not only witnesses
changed covariate distribution but also missing values. Note that Challenge 3 specifies the input
vector x only contains non-zero values for known attributes, which can be conveniently achieved
via common preprocessing steps like rescaling, exponential, and normalization. In short, in our def-
inition, domain shift happens when covariate distribution shifts, while domain corruption is caused
by the co-occurrence of domain shift and missing values. Compared with conventional domain
shift, runtime domain corruption more aggressively challenges the generalizability of the trained
counterfactual prediction model, because variables deemed important in training might no longer be
present during inference, and the domain-invariant patterns are unable to be mapped to those miss-
ing variables. Furthermore, a high corruption rate of runtime variables can make the counterfactual
predictor learned on full training data incur large generalization errors, and rendering data imputa-
tion impractical. Though one can consider discarding the unavailable attributes in the training set, it
may lead to an underfitting issue and also it is impractical as the missing attributes can differ among
individuals (e.g., users may choose to withhold different personal information).

The Use of Zero-Padding. Specifically, we do not discard inaccessible variables during runtime,
which will cause dimensionality reduction. Instead, we pad zeros to entries that correspond to
missing variables such that the dimensionality is kept unchanged. Also, zero-padding is a more
feasible solution in real applications, as each runtime instance x may have an arbitrary number and
combination of attributes missing, rendering it impractical to train a specific latent feature extractor
for each case. In contrast, zero-padding is a more flexible and scalable approach for learning domain-
invariant latent representations with a shared feature extractor, where all unknown values of variables
are padded with zeros will be filtered out during projection.

This work focuses on causal inference using the Neyman-Rubin potential outcome framework (Ney-
man, 1923; Rubin, 2005) under the runtime domain corruption circumstance. In this work, we aim
to learn a robust, causal, and domain-invariant latent representation z of variable x, for which the
latent distributions across various domains are well-balanced to counter the aforementioned three
challenges simultaneously. Our main contributions are:

• We identify an important yet largely understudied setting in causal inference, namely run-
time domain corruption where each unit tends to have an incomplete set of covariates during
inference besides the potentially shifted covariates. In our paper, we propose an investiga-
tion of runtime domain corruption, confoundedness, and selection bias in a unified view.

• We derive the upper bound of the generalization error by extending the in-sample causal
inference to the corrupted out-of-sample scenario. To efficiently optimize the multi-
ple Kullback-Leibler (KL) divergence terms, we propose a two-stage domain adaptation
scheme, namely the Variational autoEncoder Generative Adversarial Network (VEGAN)
for unifying multiple inter-domain distances.

• We compare VEGAN to state-of-the-art baselines for performing predictions on both in-
sample covariates and out-of-sample, corrupted runtime covariates. The empirical results
demonstrate our model’s stronger robustness to runtime domain corruption.

2 RELATED WORK

We relate our work to the representation learning branch in causal inference, which is overlapped
with the domain adaptation field due to its unique counterfactual nature. With the strong represen-
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tation learning ability of deep learning (Bengio et al., 2013; LeCun et al., 2015), new works are
proliferating by leveraging the deep learning framework to learn the latent representation on top of
the observed covariates. The TARNet (Shalit et al., 2017) builds a shared feature extractor followed
by a two-headed neural network to model the outcome for each type of treatment separately. It also
incorporates the integral probability metric (IPM), e.g., Wasserstein distance (Vallender, 1974) or
maximum mean discrepancy (MMD) (Gretton et al., 2012), to minimize the distance of the learned
latent covariate distribution between treated and control groups to mitigate the selection bias. Fol-
lowing that, a variational autoencoder (VAE) framed CEVAE model (Louizos et al., 2017) empha-
sizes handling the confounding problem by building robust latent representation, and its performance
is stated to be more robust than many previous methods, and dragonnet (Shi et al., 2019) leverages
the neural net-enhanced propensity estimation and the innovative targeted regularization for causal
effect estimation. In addition, other works such as GANITE (Yoon et al., 2018) and DeepMatch
(Kallus, 2020) adopt generative adversarial network (GAN) (Goodfellow et al., 2014) and build
their own designated GAN learning network. Our work differs from theirs and we relate our work
further to the unsupervised domain adaptation (Blitzer et al., 2007) by building a GAN-integrated
VAE model, as we additionally consider the domain corruption situation where the trained model’s
performance could dramatically decline in causal effect estimation.

In addition, it is noted that Jesson et al. (2020) propose an uncertainty estimation plug-in to the
state-of-the-arts such as TARNet, CEVAE, and Dragonnet to allow these models to estimate epis-
temic uncertainty in high-dimensional conditional average treatment effect (CATE) estimation, thus
to inform the decision maker to be vigilant when making recommendations if the high uncertainty
present. It considers the domain shift during runtime, but it emphasizes making no treatment rec-
ommendation if the epistemic uncertainty exceeds a certain threshold. Hence, our work differs from
it as we focus on more accurate treatment effect estimation. It should also be noted that some exist-
ing works (Qu & Lipkovich, 2009; Mayer et al., 2020; Berrevoets et al., 2022) have been proposed
for treatment effect estimation with missing values, where the core is to leverage imputation algo-
rithms to handle the missing values. Since runtime domain corruption also includes domain shift,
the imputed target domain data could still deviate heavily from the source domain, rendering those
methods inaccurate in such conditions. Furthermore, imputation algorithm falls short in accurate
imputing when the number of missing value is large, it even becomes useless when the attributes are
completely missing at distribution level during inference stage.

We also relate our work to algorithmic fairness topics, e.g., disparate learning processes (DLPs),
in which the ethically concerned, privacy-related features are not available or impermissible to be
used during runtime (Lipton et al., 2018; Simons et al., 2021). A similar approach to DLPs is a
doubly-robust counterfactual prediction model with additional handling of the confounding problem
during training (Coston et al., 2020). However, its causal inference differs from the common causal
effect estimation as it assumes that one of the potential outcomes is a known constant for a binary
treatment, and is hence inapplicable to the problem studied in this paper.

3 PROBLEM SETUP AND ANALYSIS

For simplicity, we consider binary treatment t of 1 or 0 to denote the treated group and the control
group, respectively. The individual treatment effect (ITE) for a variable vector x is defined as:

τ(x) = E[y∗1 − y∗0 |x], (1)

where y∗1 and y∗0 are potential outcomes with treatment t = 1 and t = 0 respectively. To validly
estimate τ(x), the following unconfoundedness assumption is required.

Assumption 1 (Unconfoundedness): Treatment assignment is independent to the potential outcome
given the pre-treatment covariate x, i.e., t ⊥⊥ {y∗0 , y∗1}|x.

Let Ψ : X × {0, 1} → R parameterizes the hypothesis, our goal is to build the regression model
Ψ1−t(x, t) = E[y|X = x, T = 1 − t] with observed outcome y which can accurately recover the
counterfactual outcome for x with treatment t, thus the causal effect can be calculated as Ψ1 −Ψ0.
However, Challenges 1 and 2 arise when the observational dataset does not follow the RCT standard,
making the trained models Ψ1 and Ψ0 unable to reflect the true treatment outcome for each x.

We perceive the observed covariates of treated and control groups from the conventional domain
shift perspective, in which covariate x is a noisy measurement, normally less informative and
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more confounded (Griliches & Hausman, 1986; Maddala & Nimalendran, 1996), than the domain-
invariant latent representation z. Therefore, the unconfoundedness changes from t ⊥⊥ {y∗0 , y∗1}|x
to t ⊥⊥ {y∗0 , y∗1}|z. In addition to the treated and control groups from the in-sample set, this paper
considers the runtime causal effect estimation where the out-of-sample set is affected by domain
corruption (Challenge 3), where the trained model’s generalizability is significantly challenged.

3.1 TARGET DOMAIN ERROR UPPER BOUND

Shalit et al. (2017) have shown that the expected precision in estimation of heterogeneous effect
(PEHE), or ϵPEHE, is upper-bounded by both the trained model error ϵF on factual outcomes and the
distance between treated and control distributions, measured by integral probability metric (IPM).
Since their derived upper bound for ϵPEHE does not consider runtime domain corruption on out-of-
sample variables, we fill the gap by deriving the bound in Theorem 1.

Theorem 1: Let ϕ : X → Z be the invertible latent representation mapping function (a.k.a. feature
extractor) with inverse Φ. Let Ψ : Z × {0, 1} → R be the updated hypothesis. Let F be a family of
functions f : Z → R, f ∈ F . The source domain is the observational data for treated and control
groups, and the target domain is the runtime test/inference set with corrupted variables. Under the
conditions of Assumption 8.1, Lemma 8.1, Theorem 8.1, and the upper breakdown of absolute value
inequality, we derive the upper bound of target domain error (i.e., generalization error) as1:

ϵtrPEHE ≤ ϵsrPEHE +BϕIPMF (Ptr
ϕ ,Psr

ϕ )

≤ 2

[
ϵt=1

F + ϵt=0
F +Bϕ

(
IPMF (Pt=1

ϕ ,Pt=0
ϕ ) +

1

2
IPMF (Ptr

ϕ ,Psr
ϕ )

)]
,

(2)

where ϵtF denotes the factual training error, Pt
ϕ is the probability measure within treatment group t in

the training set, ϵtrPEHE and ϵsrPEHE respectively indicate the target and source domain errors, Ptr
ϕ and

Psr
ϕ are probability measures which denote the covariate distribution in target domain and source

domain respectively, and Bϕ is a bounded constant.

We provide the proof in in Appendix 8.1. The upper bound given in Theorem 1 suggests that, to
bring down the runtime/target domain error ϵtrPEHE, we are essentially minimizing: (1) the prediction
errors on observed outcomes; (2) the imbalance between treated and control groups; (3) the dis-
crepancy between the training and test sets altogether. It guides our algorithm design in general for
runtime causal inference. Note that if no domain corruption exists, which means Ptr

ϕ = Psr
ϕ and thus

IPM(Ptr
ϕ ,Psr

ϕ ) = 0, the runtime error becomes identical to the source domain error ϵtrPEHE = ϵsrPEHE.

4 VARIATIONAL INFERENCE

Our solution is built upon the variational autoencoder (VAE). To start with, in this section we intro-
duce the minimization of the factual error ϵF, the distribution disparity between treated and control
groups first, and between training and runtime domains afterwards.

4.1 EVIDENCE LOWER BOUND

For modelling the observed treatment outcome y, we use the maximum likelihood estimation (MLE)
to approximate the parameters. For simplicity, log is commonly used to decompose the joint
marginal likelihood p(y) into:

log p(y) =
N∑

k=1

log p(yk) =

N1∑
i=1

log p(yi|ti = 1) +

N0∑
j=1

log p(yj |tj = 0), (3)

where y = [y1, y2, . . . , yN ] is a vector hosting all N samples’ ground truth, N = N1 + N0, N1

and N0 respectively denote the number of samples in treated and control groups. Thus, to maximize
the joint marginal log-likelihood of observing y, we can maximize each individual log-likelihood
log p(y|t), and the expression log p(y|t) itself serves as a general term to represent a distribution of
all the observed y.

1We appreciate and follow some notation conventions set by Shalit et al. (2017) and Johansson et al. (2020).
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As we assume that there exists a latent representation z and treatment t that causally determine the
observed treatment response yt, i.e., yt ∼ p(y|z, t) in a probabilistic way, while the observed proxy
x does not have any causal relations but statistical correlations with y. Due to the potentially high
dimensionality of z, the marginal likelihood pt(y) = p(y|t) of treatment group t is intractable. Here,
we apply the variational methodology (Kingma & Welling, 2013) to our scenario to tackle p(y|t)
by establishing an encoder network ϕt to learn latent representation zt ∼ pϕt

(z|x), and a decoder
network Ψt to estimate treatment response yt ∼ pΨt(y|z, t). The detailed probabilistic mechanism
to model pΨt(y|z, t) is described in Appendix 8.2, which leads us to the evidence lower bound
(ELBOt) as follows:

log pΨt(y|t) ≥ ELBOt

= EPΨt
[log pΨt

(y|z, t)]−DKL(Pϕt
||PΨt

),
(4)

where Pϕt and PΨt are posterior and prior distributions respectively. DKL(·) returns the Kull-
back–Leibler (KL) divergence between two distributions. As such, the task of maximizing the in-
tractable log pΨt

(y|t) can be indirectly solved by pushing up its associated ELBOt, thus minimizing
the factual error ϵtF. According to the decomposition in Eq. 3, our objective is to maximize the sum
of two ELBOs for treated and control groups:

ELBO =
∑

t∈{0,1}

ELBOt. (5)

It is worth noting that, our derived bound ELBO can be easily extended from our binary treatment
setting to scenarios that involve multiple treatments.

4.2 TREATED/CONTROL DOMAIN ADAPTATION

According to the second term in Eq. 4, for t ∈ {0, 1}, we have both KL divergence terms that
regularize the posterior distribution Pϕt

and the prior distribution PΨt
as follows :

DKL(Pϕ1 ||PΨ1), DKL(Pϕ0 ||PΨ0). (6)

By pushing up the ELBO in Eq. 5, one can notice that both posteriors Pϕ1 and Pϕ0 are regularized
to approach the same prior distribution if we set the prior PΨ1 and PΨ0 to be the same, e.g., standard
normal distribution N (0,1). Thus, the domain adaptation (DA) for both groups can be naturally
achieved to balance their latent distributions and counter Challenge 2 by adjusting the priors using
the VAE framework. It is worth noting that KL divergence is an unbounded asymmetric distribution
distance measure (Kullback & Leibler, 1951) which does not belong to IPM, so we replace it with a
bounded symmetric distribution similarity measurement in Section 5 as a better approximation.

4.3 TRAINING/RUNTIME DOMAIN ADAPTATION

In addition to the DA across treated and control groups within the training set, we would also
like to do DA between the entire training and runtime sets to minimize the tightness bound
BϕIPMF (Ptr

ϕ ,Psr
ϕ ) given in Lemma 8.1 and thus alleviate Challenge 3. As such, for a well-trained

model, we aim to make the out-of-sample performance as good as the in-sample performance, i.e.,
the out-of-sample results would not deviate from the in-sample ones drastically while keeping good
in-sample performance.

Intuitively, if the VAE prediction framework is applied to the full runtime test set {(xtrj , ttrj , ytrj )}N ′

j=1
(i.e., target domain in this context), one can end up with the objective to be maximized similar to the
ELBOt presented in Eq. 4 as follows:

Γϕtr
t ,Ψtr

t
= EPtr

ϕt
[log ptrΨt

(y|z, t)]−DKL(Ptr
ϕt
||Ptr

Ψt
). (7)

However, the label ytr and treatments ttr are apparently unknown in practice, and such an objective
cannot be optimized. Since the only available information is the runtime covariates which can be
used to extract the domain-invariant representation from DA, the second term in Eq. 7 can be utilised
for such purpose with a mild modification.

To be specific, we alternatively walk around to minimize the KL divergence between the runtime
posterior Ptr

ϕ and the entire training set posterior Psr
ϕ , namely DKL(Ptr

ϕ ||Psr
ϕ ), where ϕ is a shared

5



Under review as a conference paper at ICLR 2023

 

𝑿𝒕=𝟏
𝒔𝒓  

𝑿𝒕=𝟎
𝒔𝒓  

𝑿 
𝒕𝒓 

Shared 

Feature 

Extractor 

𝐺∅ 

Treated, 

Control, 

Discriminator 

𝐷𝛿 

Train, 

Test, 

Discriminator 

𝐷𝛽 

Treated 

Predictor 

 Ψ1 

Control 

Predictor 

  Ψ0 

 

𝝁𝒕=𝟏
𝒔𝒓  

𝝈𝒕=𝟏
𝒔𝒓  

𝝁𝒕=𝟎
𝒔𝒓  

𝝈𝒕=𝟎
𝒔𝒓  

𝝁 
𝒕𝒓 

𝝈 
𝒕𝒓 

1 

0 

𝑁 

𝑦ො1 

𝑦ො0 

𝑝𝑖  
 

𝑝𝑗
′  

MLP𝜇  

MLP𝜎  

Figure 1: Unifying the KL-divergences by GAN. The black flows between Gϕ and MLPs denote the
internal link. The pink flows indicate second stage domain adaptation between train and test sets.

feature extractor. Thus, to achieve the second-stage DA, our proposed ultimate evidence lower
bound (ELBOulti) for the intractable joint log-likelihood p(y) is:

log p(y) ≥ ELBO
≥ ELBOulti

= ELBO−DKL(Ptr
ϕ ||Psr

ϕ ).

(8)

5 ADVERSARIAL LEARNING

So far, we have multiple DKL(·) terms: two in Eq. 6 align the posteriors to the same prior N (0,1),
and the one in Eq. 8 that aligns the posteriors of training set and runtime set. As the direct calculation
of KL divergence is computationally inefficient and may even be infeasible with high dimensional
data (Nelken & Shieber, 2006; Moral et al., 2021), we propose to implicitly minimize them and unify
these terms into a compact generative adversarial network (GAN) (Goodfellow et al., 2014) shown
in Figure 1. Apart from that, optimizing the minimax game in GAN is equivalent to minimizing
the Jensen-Shannon divergence (Goodfellow et al., 2014), which is a bounded symmetric distribu-
tion similarity measurement (Nielsen, 2019). Such technique resonates with adversarial variational
Bayes introduced in Mescheder et al. (2017), while our motivation and implementation differ. Here,
we present our Variational autoEncoder Generative Adversarial Network runtime counterfactual
regression model, coined as VEGAN. In what follows, we unfold the design details of VEGAN.

Firstly, we instantiate ϕ, the shared feature extractor among xsrt=1, xsr
t=0 and xtr. It includes Gϕ and

the following two multi-layer perceptrons (MLPs) that map all the data from the original Rd into
latent space Rl. Due to the variational nature of the model, the j-th latent dimension of individual i,
denoted by xsr

i , is modelled by a Gaussian distribution with its dedicated mean µij and variance σ2
ij

as follows:

psrϕ (zi|xi) =
l∏

j=1

N (µij , σ
2
ij), (9)

where mean µij and standard deviation σij are respectively the j-th element of latent representations
µi and σi. In VEGAN, µi,σi ∈ Rl are denoted as:

µi = MLPµ(Gϕ(xsri )),σi = MLPσ(Gϕ(xsr
i )), (10)

which allows us to obtain the latent representation zi for the subsequent DAs and inference.

Secondly, for the treated/control group DA, we propose an adversarial way to implicitly reduce
inter-domain distribution distance. In this regard, Gϕ is essentially our generator for notation sim-
plicity, and a discriminator Dδ is thus designed to pair up the generator to facilitate adversarial
learning. The minimax game is designed as: the discriminator Dδ tries to differentiate the stan-
dard Gaussian sample n ∼ N (0,1) from zsr learned from the training sample; in the meantime,
feature extractor Gϕ tries to update the latent representation zsr to make it indistinguishable from
n. When an equilibrium state is reached, the treated and control domains are well adapted because
both latent representations zsr fall in the same distribution. Thus, the two terms DKL(Pϕ1 ||PΨ1) and
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DKL(Pϕ0
||PΨ0

), are minimized in an adversarial way. As Figure 1 shows, the output pi = Dδ(wi)
is the scalar probability of being a Gaussian sample, where wi = ηini+(1−ηi)zsri with ηi ∈ {1, 0}
labeling the i-th sample from two buckets (1 for Gaussian samples, and 0 for training samples). Note
that n is resampled for every training case in every epoch. In our supervised learning setting, we
have the cross-entropy loss for the discriminator Dδ(·):

l(wi) = ηi logDδ(wi) + (1− ηi) log(1−Dδ(wi)). (11)

Then, in an adversarial setting, the minimization of two KL divergence in Eq. 6 for treated/control
domain adaptation is replaced by the following:

min
ϕ

max
δ

E∀i[ηi logDδ(wi) + (1− ηi) log(1−Dδ(wi))]

⇐⇒ min
ϕ

max
δ

EN (0,1)[logDδ(n)] + E∀i[log(1−Dδ(zsri ))].
(12)

Analogously, for the train/runtime domain adaptation, we design another discriminator Dβ(·) to
form the second GAN system between Gϕ(·) and Dβ(·), where Dβ(·) predicts the probability p′j
of the sample from the source domain, i.e., training set. The only difference from the first GAN
system is that, it takes the training sample as real while the runtime sample is treated as fake. Thus,
DKL(Ptr

ϕ ||Psr
ϕ ) is replaced by the followings:

min
ϕ

max
β

E∀i[logDβ(zsri )] + E∀j [log(1−Dβ(ztrj ))]. (13)

Finally, to build the probabilistic model p(y|z, t), we model each of the treatment classes through two
separate MLPs, namely Ψ1 and Ψ0 respectively, thus the general representation of modelling the ob-
served outcome y for individual i is given as pΨt

(yi|zi, ti) = N (µ̂i, σ̂
2
i ), where µ̂t,i = Ψti(zsri , ti),

and we follow Louizos et al. (2017) to set σ̂2
i = 1 for simplicity.

In a nutshell, to promote a computationally efficient algorithm, we propose to minimize the follow-
ing loss function L along with optimizing the minimax game together such that the ELBOulti in Eq.
8 will be maximized:

min
ϕ,Ψ1,Ψ0

max
δ,β

EN [logDδ(n)]+EZsr [log(1−Dδ(z))]+EZsr [logDβ(z)]+EZtr [log(1−Dβ(z))]+L,
(14)

where L = −
(
EPsr

Ψ1
[log pΨ1(y|z, t = 1)] + EPsr

Ψ0
[log pΨ0(y|z, t = 0)]

)
.

We summarize our VEGAN model optimization scheme in Appendix 8.11. Please note that the no-
tation changed accordingly as the reparameterization trick z = ω(µϕ,σ

2
ϕ, ϵ) (detailed in Appendix

8.3) is applied as a necessity to get the gradient ∇ϕ for the feature extractor Gϕ. Also, the original
minimax game in Eq. 14 is adjusted to the double minimization tradition for gradient descent.

6 EXPERIMENTS

We perform evaluation on two datasets, one is the widely used semi-synthetic dataset IHDP (Infant
Health Development Program) (Hill, 2011), and the other is the high-dimensional synthetic dataset
from ACIC (Atlantic Causal Inference Conference) (ACIC, 2019). Our models, VEGANI (with only
treated/control domain adaptation) and VEGANII (with both adaptation steps), are implemented
using Pytorch (Paszke et al., 2019), and their hyperparameter settings are left in Appendix 8.9. We
compare our models with seven state-of-the-arts: TARNet (Shalit et al., 2017), BTARNet (Jesson
et al., 2020), CFRWASS (Shalit et al., 2017), SITE (Yao et al., 2018), DragonnetBase (Shi et al., 2019),
DragonnetTR (Shi et al., 2019), CEVAE (Louizos et al., 2017) with their provided default settings.
We adopt two well-established metrics: (1) ϵCATE (Hill, 2011), i.e., error of conditional average
treatment effect (CATE) for overall performance; and (2)

√
ϵPEHE (Shalit et al., 2017), i.e., precision

in estimation of heterogeneous effect (PEHE) for individual-level performance.

Notes on Additional Results Appended. As we are interested in causal inference under runtime do-
main corruption, we lay more emphasis on the out-of-sample predictions with corrupted covariates
at the individual level. The details for generating out-of-sample test data with domain corruption are
in Appendix 8.4 along with the analysis on the varying magnitudes of the Gaussian noise, where we
use corruption level (CL) to denote the average ratio of corruption per selected variable distribution.
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XXXXXXXXXModel
Metric

ϵCATE
√
ϵPEHE

TARNet 0.253 1.033
BTARNet 0.232 1.207
CFRWASS 0.265 0.992
SITE 0.256 1.016
DragonnetBase 0.342 1.591
DragonnetTR 0.357 1.524
CEVAE 0.329 2.604
VEGANI 0.187 1.450
VEGANII 0.239 1.394

Table 1: ϵCATE and
√
ϵPEHE of in-

sample counterfactual prediction on
IHDP dataset.

PPPPPPPModel
CL 1

20
1
8

1
5

1
3 1

TARNet 1.725± .17 2.216± .26 2.455± .26 3.524± .42 5.845± .76
BTARNet 1.827± .20 2.327± .25 2.575± .25 3.728± .44 5.958± .80
CFRWASS 1.610± .15 2.070± .24 2.469± .27 3.503± .42 5.979± .85
SITE 1.794± .19 2.136± .25 2.488± .27 3.427± .43 5.531± .70
DragonnetBase 2.111± .24 2.272± .26 2.507± .28 3.190± .39 4.521± .60
DragonnetTR 2.023± .23 2.219± .25 2.516± .28 3.221± .40 4.760± .63
CEVAE 3.074± .37 2.910± .32 2.987± .35 3.672± .46 4.164± .53

VEGANI 1.872± .20 2.178± .25 2.371± .27 3.030± .38 4.873± .62
VEGANII 1.720± .16 2.099± .23 2.326± .25 2.954± .35 3.918± .47

Table 2:
√
ϵPEHE of out-of-sample pre-

diction on IHDP dataset with different
corruption levels on private features.

We leave CATE prediction error ϵCATE to Appendix 8.10, where VEGAN demonstrates the superi-
ority of its DA schemes. In the main results, we focus on individual-level causal effect estimation
measured by

√
ϵPEHE. To demonstrate the generalizability of our proposed second stage adversarial

as a plug-in, we study its compatibility with the most representative baseline TARNet in Appendix
8.5. Additionally, the training stability of VEGAN is analyzed in Appendix 8.6.

6.1 PERFORMANCE ON IHDP

The semi-synthetic dataset contains 25 real-world covariates relating to characteristics of the new-
borns and their mothers, and we use the non-linear response surface B for simulated outcomes
designed by Hill (2011). In IHDP, we selectively corrupt 7 privacy-related features described in
Appendix 8.8 with CL ∈ { 1

20 ,
1
8 ,

1
5 ,

1
3 , 1}.

Table 1 shows the in-sample predictions, for which our models perform the best in estimating CATE
while staying competitive on individual-level causal effect estimation. For out-of-sample predic-
tions, we conduct the tests on 5 randomly corrupted test sets with ratio CL ∈ { 1

20 ,
1
8 ,

1
5 ,

1
3 , 1}.

Notably, CL = 1 represents an extreme case where all the sensitive features are completely inac-
cessible during runtime and only the remaining 18 variables are available for prediction. As Table
2 demonstrates, VEGANII yields the second best performance when the domain corruption is rel-
atively restrained, but obtains the highest accuracy after the corruption ratio increases to 1

5 . The
best baseline is CFRWASS when CL is low, but it overfits the training set significantly and thus does
not generalize to a higher domain corruption level, while VEGANII is less sensitive to the stronger
corruption of private variables. VEGANII also outperforms its base model VEGANI consistently
owing to the additional DA between training and runtime domains.

6.2 PERFORMANCE ON ACIC

We use the fully-synthetic high-dimensional dataset with 100 simulations from ACIC (2019), which
includes 200 features and 1,000 samples from each simulation. Because there is no clear definition
for sensitive features, we allow the corruption to take place for all the features in ACIC dataset with
a ratio of CL ∈ { 1

20 ,
1
8 ,

1
5 ,

1
3}. With this, we can mimic situations where individuals can withhold

an arbitrary combination of variables in privacy-sensitive applications. Note that, we omit CL = 1
in ACIC dataset as it will set all variables to zero and thus make any predictions infeasible. This
setting also allows for additional comparisons with the imputation method, which is a natural choice
to handle missing values. Specifically, we implement the imputation algorithm MICE (Van Buuren
& Oudshoorn, 2000) widely adopted in treatment effect estimation (Mayer et al., 2020; Berrevoets
et al., 2022) to enhance all our baselines. Given the space limit, we only include the the most
performant baseline CEVAE after enhancement (denoted as CEVAE-IMP) in Tables 3 and 4. The
full experiments and analysis with imputation for all baselines are left to Appendix 8.7.

As a result, VEGAN outperforms all the other models for both in-sample and out-of-sample predic-
tion as shown in Table 3 and Table 4. We notice that when the domain corruption level climbs, the
fluctuations of prediction errors are small in magnitude.

Volatility Analysis. To better quantify the advantage of VEGAN under domain corruption on ACIC,
in Figure 2 we analyse the deviation (∆) of each model’s performance between in-sample and cor-
rupted prediction tasks, i.e., ∆ = 100%×|ϵin-sample− ϵcorrupted|/ϵin-sample. ∆ quantifies the instability
of the model, as we commonly rely on models obtained with the training set and prefer lower gener-
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XXXXXXXXXModel
Metric

ϵCATE
√
ϵPEHE

TARNet 0.214 0.808
BTARNet 0.176 0.924
CFRWASS 0.216 0.708
SITE 0.293 1.383
DragonnetBase 0.186 2.244
DragonnetTR 0.183 2.503
CEVAE 0.286 0.702
CEVAE-IMP 0.286 0.702
VEGANI 0.143 0.496
VEGANII 0.147 0.476

Table 3: ϵCATE and
√
ϵPEHE of in-

sample counterfactual prediction on
ACIC datasets. Note that imputation
does not alter in-sample results.

PPPPPPPModel
CL 1

20
1
8

1
5

1
3

TARNet 0.813± .05 0.738± .04 0.798± .05 0.754± .04
BTARNet 0.797± .04 0.754± .04 0.773± .04 0.768± .04
CFRWASS 0.730± .04 0.655± .03 0.738± .04 0.644± .04
SITE 1.482± .08 1.361± .08 1.365± .09 1.586± .10
DragonnetBase 2.250± .02 2.192± .02 2.142± .02 2.063± .02
DragonnetTR 2.517± .02 2.456± .02 2.406± .02 2.342± .02
CEVAE 0.646± .02 0.629± .02 0.594± .02 0.581± .03
CEVAE-IMP 0.626± .02 0.601± .02 0.577± .02 0.568± .03

VEGANI 0.466± .01 0.489± .01 0.488± .01 0.501± .01
VEGANII 0.490± .01 0.493± .01 0.471± .01 0.455± .00

Table 4:
√
ϵPEHE of out-of-sample pre-

diction on ACIC dataset with different
corruption levels on all features.
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Figure 2: The volatility of the model’s performance in corrupted domains with different CL.

alization errors. We include CEVAE-IMP’s results while leaving other imputation-enhanced base-
lines to Appendix 8.7. All models become more volatile as CL increases, while VEGANII maintains
an excellent stability with only 0.22% variation at corruption level 1

3 and achieves the best accuracy
in terms of

√
ϵPEHE. The exact numerical values of ∆ are recorded in Appendix 8.10.

Comparison with Data Imputation. When the corruption rate is low, using imputation is generally
helpful for slightly increasing the prediction performance, but the improvements are smaller when
more attributes are corrupted (e.g., at a rate of 1/5 and 1/3). Also, as 8.7 suggests, imputation meth-
ods do not make a difference in volatility, as the imputed target domain is still subject to significant
distribution shift. In short, data imputation has very limited benefit under the domain corruption
setting. Furthermore, in scenarios where an attribute is completely missing for all instances (e.g.,
CL= 1 in IHDP), it is infeasible to impute this attribute for prediction.

6.3 COMPUTATIONAL EFFICIENCY OF VEGAN
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Figure 3: Computation Time.

One core motivation of utilizing GAN to replace the straightforward
KL divergence optimization is to preserve training efficiency with
high dimensionality. Hence, we further test VEGAN’s efficiency by
comparing its training time (in seconds) consumption per 100 epochs
with CEVAE, which is the based method VEGAN improves upon.
The test is performed on 12th Gen Intel i7-12700K 12-Cores 20-
Threads CPU on Ubuntu 22.04 LTS. Figure 3 shows that as a GAN-
based alternative to CEVAE, VEGANI, has significantly faster train-
ing speed (over 6× speedup). Furthermore, the introduction of our
second-stage adaption in VEGANII is still able to maintain high com-
putational efficiency, witnessed by over 4× speedup over CEVAE.

7 CONCLUSION

This paper formalizes the runtime causal inference problem under domain corruption, where novel
strategies are proposed to counter the imbalance between treated and control groups and the inter-
domain discrepancy between training and inference domain. We further adopt adversarial learning to
implicitly reduce the distribution disparity for the sake of efficiency. For our proposed approach VE-
GAN, its performance exceeds other state-of-the-arts under the runtime domain corruption setting
in semi-synthetic and full-synthetic benchmark datasets. In addition, the second stage adversarial
plug-in is demonstrated applicable to off-the-shelf models to reduce generalization errors.
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8 APPENDIX

8.1 PROOF OF THEOREM 1

To proof Theorem 1, we need some preliminary definitions and the proof of Lemma 8.1 beforehand.

Definition 8.1 LetF be a family of functions, we have f : Z → R, f ∈ F . The distribution distance
measure - integral probability metric (IPM) between two distribution Psr and Ptr is defined as:

IPMF (Ptr,Psr) = sup
f∈F

∣∣∣∣∫
Z
f(z)(ptr(z)− psr(z))dz

∣∣∣∣ . (15)

Definition 8.2 Let Ψ : X × {0, 1} → R be the hypothesis, the estimated individual treatment effect
for unit x is:

τ̂(x) = Ψ1(x, 1)−Ψ0(x, 0). (16)

Here we slightly extend the expected PEHE defined by Shalit et al. (2017) by replacing the squared
loss of causal effect estimation with the expected squared loss defined in Definition 8.3 for the
proof’s sake.

Definition 8.3 Let ϕ : X → Z be the inevitable latent representation mapping function with inverse
Φ. Let Ψ : Z × {0, 1} → R be the updated hypothesis. The expected squared loss lϕ,Ψ(x) of
inference models is defined as:

E(L(τ̂(x), τ(x))) =
∫
X
L(τ̂(x), τ(x))p(x)dx, (17)

where τ(x) is the true treatment effect defined in Eq. 1 and L(τ̂ , τ) is the squared loss.

Definition 8.4 The expected Precision in Estimation of Heterogeneous Effect (PEHE) of ϕ and Ψ
with expected loss function on unit x is defined as:

ϵPEHE(ϕ,Ψ) =

∫
X
lϕ,Ψ(x)p(x)dx, (18)

where lϕ,Ψ(x) is defined in Definition 8.3.

Lemma 8.1: Let ϕ : X → Z be the invertible latent representation mapping function with inverse
Φ. Let Ψ : Z × {0, 1} → R be the updated hypothesis. Let F be a family of functions f : Z →

12
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R, f ∈ F . Assume we have Bϕ > 0 s.t. 1
Bϕ

lϕ,Ψ(Φ(z)) ∈ F . The tightness of target domain error
w.r.t. the source domain one is bounded by the distribution distance denoted by IPM:∣∣ϵtrPEHE − ϵsrPEHE

∣∣ = ∣∣∣∣Bϕ

∫
Z

1

Bϕ
lϕ,Ψ(Φ(z))(ptrϕ (z)− psrϕ (z))dz

∣∣∣∣
≤ BϕIPMF (Ptr

ϕ ,Psr
ϕ ),

(19)

where ϵtrPEHE and ϵsrPEHE indicate target domain error and source domain error respectively, Ptr
ϕ and

Psr
ϕ denote covariate distribution in target domain and source domain respectively, and Bϕ is a

bounded constant.

We denote the expected PEHE in Eq. 18 in target domain and source domain as ϵtrPEHE and ϵsrPEHE
respectively, also tr and sr indicates the test set and training set in our main text where ptr(x) ̸=
psr(x) if domain corruption exists. We firstly present the proof for Lemma 8.1 as follows:

Proof. ∣∣ϵtrPEHE − ϵsrPEHE

∣∣ = ∣∣∣∣∫
X
lϕ,Ψ(x)ptrϕ (x)dx−

∫
X
lϕ,Ψ(x)psrϕ (x)dx

∣∣∣∣
=

∣∣∣∣∫
Z
lϕ,Ψ(Φ(z))ptrϕ (z)dz−

∫
Z
lϕ,Ψ(Φ(z))psrϕ (z)dz

∣∣∣∣
=

∣∣∣∣Bϕ

∫
Z

1

Bϕ
lϕ,Ψ(Φ(z))(ptrϕ (z)− psrϕ (z))dz

∣∣∣∣
≤

∣∣∣∣∣Bϕ sup
f∈F

∣∣∣∣∫
Z
f(z)(ptrϕ (z)− psrϕ (z))dz

∣∣∣∣
∣∣∣∣∣

=
∣∣BϕIPMF (Ptr

ϕ ,Psr
ϕ )

∣∣ = BϕIPMF (Ptr
ϕ ,Psr

ϕ ).

(20)

The first equality is by Definition 8.4, the second equality is by change of variable, the first in-
equality is by the premise that 1

Bϕ
lϕ,Ψ belongs to the function family F , the fourth equality is by

Definition 8.1, the last equality is by the property that IPM is non-negative.

Theorem 8.1 Let ϕ : X → Z be the invertible latent representation mapping function with inverse
Φ. Let Ψ : Z × {0, 1} → R be the hypothesis. Let F be a family of functions f : Z → R, f ∈ F .
Assume we have Bϕ > 0 s.t. 1

Bϕ
lϕ,Ψ(Φ(z), t) ∈ F (Shalit et al., 2017), we have:

ϵsrPEHE ≤ 2(ϵt=1
F + ϵt=0

F +BϕIPMF (Pt=1
ϕ ,Pt=0

ϕ )− 2σ2
y∗), (21)

where ϵtF denotes the factual training error within treatment group t, Pt
ϕ is probability measure for

treatment group t, and σ2
y∗ is the variance of potential outcome.

Assumption 8.1 Stable Unit Treatment Value Assumption (SUTVA): a) The potential outcomes
for any unit do not vary with the treatment assigned to other units. b) For each unit, there are
no different forms or versions of each treatment level, which lead to different potential outcomes
(Imbens & Rubin, 2015).

Proof. Under the conditions of unconfoundedness assumption t ⊥⊥ {y∗0 , y∗1}|ϕ(x) and STUVA, the
potential outcome y∗t is determined by x via function g, namely y∗t = g(x), resulting the single unit
expected squared loss equals the squared loss, and thus the expected PEHE defined in Definition
8.4 equals the one defined by Shalit et al. (2017), it also results in the variance σ2

y∗ = 0 in Eq. 21.

To conclude, the Theorem 1 is thus proofed under the further conditions of Lemma 8.1 and Theo-
rem 8.1 as follows:

ϵtrPEHE ≤ ϵsrPEHE +BϕIPMF (Ptr
ϕ ,Psr

ϕ )

≤ 2

[
ϵt=1

F + ϵt=0
F +Bϕ

(
IPMF (Pt=1

ϕ ,Pt=0
ϕ ) +

1

2
IPMF (Ptr

ϕ ,Psr
ϕ )

)]
.

(22)
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We align the function familyF to the one Shalit et al. (2017) use as different choice of function fam-
ily F will require different assumption about the joint distribution p(z, t, y1, y0), the representation
mapping function ϕ, and the hypothesis Ψ. Thus, we share the same bounded constant Bϕ.

8.2 PROOF OF EVIDENCE LOWER BOUND

We present the reasoning procedures for our evidence lower bound for log p(y|t) with Ψt and ϕt

implemented for approximation as follows:

Proof.

log pΨt(y|t) = log

∫
Pϕt

pΨt(y, z|t)dz = log

∫
Pϕt

pΨt
(y, z|t)

pϕt(z|x)
pϕt(z|x)dz

= logEPϕt
[
pΨt

(y, z|t)
pϕt

(z|x)
]

≥ EPϕt
[log

pΨt
(y, z|t)

pϕt
(z|x)

] Jensen’s Inequality

=

∫
Pϕt

pϕt
(z|x) log pΨt(y, z|t)

pϕt
(z|x)

dz

=

∫
Pϕt

pϕt(z|x) log
pΨt

(y|z, t)pΨt
(z|t)

pϕt(z|x)
dz

= EPϕt
[log pΨt

(y|z, t)]− EPϕt
[log

pϕt
(z|x)

pΨt(z|t)
]

= EPϕt
[log pΨt(y|z, t)]−DKL(Pϕt ||PΨt)].

(23)

The conditional prior pΨt
(z|t) is actually a marginal prior pΨt

(z). Because for each treatment group,
treatment t is just a constant for all units within that group, e.g., pΨ1

(z|t = 1) = pΨ1
(z).

8.3 REPARAMETERIZATION

All the neural networks’ parameters can be directly differentiated but the shared feature extractor
Gϕ’s due to the variational nature of the model. For instance, to deal with the gradient from discrim-
inator Dδ’s output:

∇ϕ[EN [logDδ(n)] + EZsr [log(1−Dδ(z))]] ̸= 0 + EZsr [∇ϕ log(1−Dδ(z))]. (24)

Because zsr is drawn from a distribution parameterized by ϕ. Thus, a way out is to use the “repa-
rameterization trick” (Kingma & Welling, 2013). The methodology is to let the generating of z be
dependent of something which is independent from ϕ, preferably in the form z = ω(µϕ,σ

2
ϕ, ϵ).

According to Eq. 9, z follows the normal distribution N (µϕ,σ
2
ϕ) parameterized by the neural nets

Gϕ, thus it can be rephrased as z = µϕ + σ2
ϕ ⊙ ϵ, where ⊙ denotes the element-wise product and ϵ

follows an independent standard normal distribution. Thus,

∇ϕEZsr [log(1−Dδ(z))] = ∇ϕEϵ[log(1−Dδ(ω(µϕ,σ
2
ϕ, ϵ)))]

= Eϵ[∇ϕ log(1−Dδ(ω(µϕ,σ
2
ϕ, ϵ)))].

(25)

Due to the reparameterization z = ω(µϕ,σ
2
ϕ, ϵ), the expectation notation changed accordingly. For

instance:

∇ϕEZsr [log pΨt(y|z, t)] = Eϵ[∇ϕ log pΨt(y|ω(µϕ,σ
2
ϕ, ϵ), t)]. (26)

8.4 DOMAIN CORRUPTION SIMULATION

Our domain corruption is built one step above the conventional domain shift/covariate shift, thus it
not only considers the shift in the covariate distribution but the missing value found in the spread-
sheet. Another intuitive example for our defined domain corruption scenario is that respondents
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Figure 4: Randomly held-out dataset shifts from left to the corrupted one. The red square suggests
the corrupted value, which can be either shifted value or missing value in the test set.

are reluctant to give privacy-related information themselves when responding to a data-collection
survey, e.g., falsely report their age or just leave it blank, thus creating domain corruption in the
collected dataset compared to the fine-grained one we possess in the database.

8.4.1 GENERATING TEST SET

Each of the dataset is randomly split with 3:1 ratio for train/test set, then we corrupt the dataset
to simulate the domain corruption scenario following the rule: For a given domain corruption level
(CL), as CL ∈ { 1

20 ,
1
8 ,

1
5 ,

1
3 , 1}, and chosen feature xs ∈ xi , we firstly add a random variation drawn

from Gaussian distribution N (µ̄, 0.1) to xs with probability p = CL for each individual i if xs is
continuous, or we flip the binary value if xs is binary, µ̄ follows an uniform distribution U(0, 0.25).
Secondly, we randomly zero the value of xs to mimic the missing value situation with probability
p = CL for each individual i. The first step and second step are performed independently, thus
making the randomly held-out dataset noisy. Figure 4 depicts our domain corruption mechanism in
a two-dimension spreadsheet with row representing unit i and column representing feature xs.

8.4.2 VARYING THE MAGNITUDE OF ADDED GAUSSIAN NOISE

To justify the setting for generating drifted data, the Gaussian noise we used follows a normal dis-
tributionN (µ̄, σ̄). For each test instance, the random noise has different mean µ̄ as it is drawn from
a uniform distribution. On the other hand, we provide additional experiments by varying the upper
bound of the uniform distribution for µ̄ (e.g., µ̄1 ∼ U(0, 0.25), µ̄2 ∼ U(0, 1), µ̄3 ∼ U(0, 1.5)) and
take different variance σ̄ ∈ {0.1, 0.25} at the domain corruption level 1/3. The test results with
different settings are provided in the following:

XXXXXXXXXModel
Noise

µ̄ ∼ U(0, 0.25), σ̄ = 0.1 µ̄ ∼ U(0, 1), σ̄ = 0.25 µ̄ ∼ U(0, 1.5), σ̄ = 0.25

TARNet 0.775± .04 0.777± .04 0.789± .04
VEGANII 0.395± .02 0.443± .02 0.498± .04

Table 5:
√
ϵPEHE of out-of-sample prediction on ACIC dataset with different noise setting.

XXXXXXXXXModel
Noise

µ̄ ∼ U(0, 0.25), σ̄ = 0.1 µ̄ ∼ U(0, 1), σ̄ = 0.25 µ̄ ∼ U(0, 1.5), σ̄ = 0.25

TARNet 0.211± .03 0.253± .03 0.285± .03
VEGANII 0.231± .02 0.230± .02 0.265± .02

Table 6: ϵATE of out-of-sample prediction on ACIC dataset with different noise settings.

We compare VEGANII with TARNet, as all the other baselines built on top of TARNet are equally
the same in terms of lacking the functionality to handle noised test set. When the noise magni-
tude increases, the prediction error of both methods increase, but VEGAN holds a consistent and
significant improvement margin compared with TARNet’s results.
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8.5 APPLICABILITY OF SECOND STAGE ADVERSARIAL PLUG-IN TO OTHER BASELINES

We build the second stage adversarial plug-in to the most representative model - TARNet. The
experiments are conducted using the ACIC dataset, and the results are presented in Tables 7 and 8:

PPPPPPPModel
CL 1

20
1
8

1
5

1
3

TARNet 0.813± .05 0.738± .04 0.798± .05 0.754± .04
TARNet-Plugin 0.540± .01 0.545± .02 0.526± .02 0.554± .02

Table 7:
√
ϵPEHE of out-of-sample prediction on ACIC dataset with different corruption levels.

PPPPPPPModel
CL 1

20
1
8

1
5

1
3

TARNet 1.45 2.12 4.55 6.34
TARNet-Plugin 2.21 0.29 1.90 2.29

Table 8: Variation ∆(%) of the out-of-sample
√
ϵPEHE w.r.t. the in-sample one on ACIC dataset

across increasing domain corruption level.

We denote the TARNet with adversarial plug-in as TARNet-Plugin. As the results suggest, when
the corruption level becomes higher, the benefit of the stage 2 domain adaptation will be enlarged.
When the this adversarial plug-in is in use, it effectively helps TARNet reduce prediction risks under
runtime domain corruption as the volatility of the TARNet-Plugin is stabilized at around 2%.

8.6 STABILITY ANALYSIS OF VEGAN MODELS

0 100 200 300 400 500
Epoch

1.0

1.5

2.0

2.5

RM
SE

Covergence of VEGANs
VEGANI
VEGANII

Figure 5: The convergence of VEGANI and VEGANII on ACIC dataset in terms of RMSE.

As GAN is known to be unstable, we provide stability analysis of our proposed VEGAN models
in terms of prediction loss convergence and equilibrium status between feature extractor and dis-
criminators. Figure 5 shows the models convergence’s on root mean square error (RMSE) during
training. It is noted that a higher corruption level brings more challenges in the adversarial training,
but we observe an equilibrium state in the majority of the cases. Take the harder 1/3 corruption level
in IHDP dataset as an example, both discriminators (for treated/control and training/runtime adapta-
tions) can quickly converge to the equilibrium by returning an average binary cross-entropy loss of
0.69, which means the discriminators are completely decepted by the feature extractors, and always
give 0.5 probability for the samples from each of the groups. We occasionally have the situation
where one of the discriminators outperforms the feature extractor, predominantly the discriminator
for treated/control adaptation. After repeatedly executing 100 runs for each setting, we observe that
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on average, this happens less frequently than 5% for ACIC dataset and 30% for IHDP dataset. As
such, training VEGAN in an adversarial setting is completely attainable.

8.7 BASELINES ENHANCED WITH IMPUTATION

To compare imputation-based methods with VEGAN, we using the MICE algorithm (Van Buuren
& Oudshoorn, 2000) adopted by Mayer et al. (2020); Berrevoets et al. (2022) to impute the missing
values in the test set. Notably, when the corruption level (i.e., missing rate) reaches 1/3, the MICE
algorithm melts down, and we then turn to KNN-based imputation (Troyanskaya et al., 2001) from
the corruption level of 1/3. We provide the experiment results on the ACIC dataset with imputation-
enhanced baselines (noted with IMP) in Table 9 and 10:

PPPPPPPModel
CL 1

20
1
8

1
5

1
3

TARNet 0.813± .05 0.738± .04 0.798± .05 0.754± .04
TARNet-IMP 0.807± .04 0.728± .04 0.783± .04 0.763± .04
CFRWASS 0.730± .04 0.655± .03 0.738± .04 0.644± .04
CFRWASS-IMP 0.722± .04 0.640± .03 0.710± .04 0.679± .04
SITE 1.482± .08 1.361± .08 1.365± .09 1.586± .10
SITE-IMP 1.322± .08 1.210± .07 1.358± .08 1.268± .08
DragonnetBase 2.250± .02 2.192± .02 2.142± .02 2.063± .02
DragonnetBase-IMP 2.232± .02 2.162± .02 2.097± .02 2.117± .02
DragonnetTR 2.517± .02 2.456± .02 2.406± .02 2.342± .02
DragonnetTR-IMP 2.485± .02 2.407± .02 2.343± .02 2.393± .02
CEVAE 0.646± .02 0.629± .02 0.594± .02 0.581± .03
CEVAE-IMP 0.626± .02 0.601± .02 0.577± .02 0.568± .03

VEGANI 0.466± .01 0.489± .01 0.488± .01 0.501± .01
VEGANII 0.490± .01 0.493± .01 0.471± .01 0.455± .00

Table 9:
√
ϵPEHE of out-of-sample prediction on ACIC dataset with different corruption levels.

PPPPPPPModel
CL 1

20
1
8

1
5

1
3

TARNet 1.45 2.12 4.55 6.34
TARNet-IMP 2.18 3.45 6.34 7.06
CFRWASS 0.41 0.61 2.38 3.45
CFRWASS-IMP 1.5 2.88 6.08 6.86
SITE 3.49 3.03 6.47 10.68
SITE-IMP 2.44 4.42 5.96 9.37
DragonnetBase 0.09 2.23 4.59 7.74
DragonnetBase-IMP 0.49 3.65 6.38 5.70
DragonnetTR 0.64 1.76 3.76 6.17
DragonnetTR-IMP 0.44 3.41 5.87 4.62
CEVAE 7.71 10.01 12.00 16.76
CEVAE-IMP 8.21 9.24 11.57 14.82
VEGANI 0.64 0.81 0.61 2.72
VEGANII 0.20 1.60 0.42 0.22

Table 10: Variation ∆(%) of the out-of-sample
√
ϵPEHE w.r.t. the in-sample one on ACIC dataset

across increasing domain corruption level.

As shown in the tables, when the corruption rate is low, using imputation is generally helpful for
slightly reduce the

√
ϵPEHE, but may provide negative impact when more attributes are corrupted

(e.g., at a rate of 1/5 and 1/3). At the same time, imputation methods do not make a difference
in terms of volatility, as the imputed target domain is still subject to significant distribution shift
w.r.t. the training domain, and the volatility of the model increases rapidly as corruption level goes
up. To conclude, data imputation has very limited practicality under the domain corruption setting.
Furthermore, in scenarios where an attribute is completely missing for all instances (e.g., medical
checks that are unavailable in some hospitals, which resembles the rightmost column in Table 2), it
is infeasible to impute this attribute for prediction.
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8.8 SELECTED SENSITIVE FEATURES IN IHDP

We selectively choose 7 features which can be considered as sensitive and thus highly possible to
be corrupted: momage, sex, twin, b.marr, cig, drugs, and work dur. The explanations are cited from
Hill (2011) as follows:

feature Explanation
momage The mother’s age when she gave birth to the baby
sex Baby’s sex.
twin Is the baby twin?
b.marr Is the mother married when giving birth to the baby?
cig Does the mother smoke during pregnancy?
drugs Does the mother take drugs during pregnancy?
work dur Does the mother have work during pregnancy?

Table 11: Selected sensitive features and their explanations

8.9 VEGAN ARCHITECTURE

We use the general structure for evaluating VEGANI and VEGANII on both IHDP and ACIC bench-
marks. Gϕ is used to represent the whole feature extractor for notation simplicity which has two-
headed output with each of them modelling the mean and variance of the latent representation re-
spectively by multi-layer perceptrons (MLPs).

Module Hidden Layers Hidden Neurons per Hidden Layer Output
Gϕ 3 100 Two-headed output
Ψ1 2 200 Scalar
Ψ0 2 200 Scalar
Dδ 2 100 Scalar
Dβ 2 100 Scalar

Table 12: Modules’ details of VEGAN

For other hyperparameters, we set epochs = 100, convergence tolerance = 10, batch size = 100,
model complexity L2 regularization = 0.01, learning rate = 0.001.

8.10 OTHER RESULTS

It is worth noting that 0 CL results are omitted as it resembles the in-sample predictions in Tables
1 and 3. We leave the CATE estimation errors for IHDP and ACIC in Table 13 and Table 14
respectively, and the variation ∆(%) on ACIC in Table 15.

PPPPPPPModel
CL 1

20
1
8

1
5

1
3 1

TARNet 0.359 0.559 0.762 1.383 3.784
CFRWASS 0.349 0.546 0.735 1.342 3.009
SITE 0.362 0.513 0.825 1.440 3.773
DragonnetBase 0.344 0.269 0.417 0.909 2.418
DragonnetTR 0.308 0.295 0.487 1.017 2.752
CEVAE 0.355 0.478 0.290 0.608 1.035
VEGANI 0.245 0.313 0.450 0.905 2.734
VEGANII 0.258 0.290 0.391 0.709 0.679

Table 13: ϵCATE on out-of-sample IHDP dataset with different domain corruption level on privacy-
related features.

18



Under review as a conference paper at ICLR 2023

PPPPPPPModel
CL 1

20
1
8

1
5

1
3

TARNet 0.201 0.185 0.225 0.184
CFRWASS 0.223 0.207 0.228 0.204
SITE 0.328 0.307 0.315 0.342
DragonnetBase 0.199 0.198 0.223 0.209
DragonnetTR 0.196 0.213 0.247 0.218
CEVAE 0.293 0.279 0.280 0.231
VEGANI 0.134 0.148 0.147 0.157
VEGANII 0.149 0.157 0.145 0.139

Table 14: ϵCATE on out-of-sample ACIC dataset with different domain corruption level on all fea-
tures.

PPPPPPPModel
CL 1

20
1
8

1
5

1
3

TARNet 1.45 2.12 4.55 6.34
CFRWASS 0.41 0.61 2.38 3.45
SITE 3.49 3.03 6.47 10.68
DragonnetBase 0.09 2.23 4.59 7.74
DragonnetTR 0.64 1.76 3.76 6.17
CEVAE 7.71 10.01 12.00 16.76
VEGANI 0.64 0.81 0.61 2.72
VEGANII 0.20 1.60 0.42 0.22

Table 15: Variation ∆(%) of the out-of-sample
√
ϵPEHE w.r.t. the in-sample one on ACIC dataset

across increasing domain corruption level.

8.11 OPTIMIZATION SCHEME OF VEGAN

Algorithm 1 Optimization of VEGAN

1: Input: Train set {(xsri , tsri , ysri )}Ni=1, runtime variable set {(xtrj )}N ′

j=1 (optional), hyperparame-
ters (e.g., learning rate α), initialized neural networks’ parameters {ϕ,Ψ1,Ψ0, δ, β};

2: while not converged do
3: Sample a mini-batch bm ∈ {bm}Mm=1 of size |bm| = |bt=1

m | + |bt=0
m |, with |bt=1

m | = |bt=0
m |,

from {(xsri , tsri , ysri )}Ni=1. Sample equal size instances from standard Gaussian N (0, 1);
4: δ ← δ − α 1

|bm|

(∑|bm|
j=1 ∇δ logDδ(nj) +

∑|bm|
i=1 ∇δ log(1−Dδ(ω

sr
i ))

)
;

5: if runtime domain corruption exists then
6: Randomly draw batch b

′

m from {(xtrj )}N ′

j=1 with size |b′m| = |bm|;
7: β ← β − α 1

|bm|

(∑|bm|
i=1 ∇β logDβ(ω

sr
i ) +

∑|bm|
i=1 ∇β log(1−Dβ(ω

tr
i ))

)
;

8: end if
9: ϕ← ϕ− α

(
1

|bm|
∑|bm|

i=1 ∇ϕ logDδ(ω
sr
i ) + 1

|bm|
∑|bm|

i=1 ∇ϕ log(1−Dβ(ω
sr
i ))

+ 1
|bm|

∑|bm|
i=1 ∇ϕ logDβ(ω

tr
i ) +

∑
t∈{0,1}

1
|btm|

∑|btm|
i=1 ∇ϕ log pΨt

(yi|ωi, ti)
)

,

Ψ1 ← Ψ1 − α
|bt=1

m |
∑|bt=1

m |
i=1 ∇Ψ1 log pΨ1(yi|ωi, ti = 1),

Ψ0 ← Ψ0 − α
|bt=0

m |
∑|bt=0

m |
i=1 ∇Ψ0 log pΨ0(yi|ωi, ti = 0);

10: end while
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