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ABSTRACT

The autoregressive approach to text generation in large language models (LLMs),
while widely used, is inherently suboptimal due to the lack of a built-in mechanism
to perform refinement and/or correction of the generated content. In this paper, we
consider optimality in terms of the joint probability over the generated response,
when jointly considering all tokens at the same time. We theoretically characterize
the potential deviation of the autoregressively generated response from its globally
optimal counterpart that is of the same length. Our analysis suggests that we need
to be cautious when noticeable uncertainty arises during text generation, which
may signal the sub-optimality of the generation history. To address the pitfall of
autoregressive text generation, we propose an approach that incorporates a sliding
reflection window and a pausing criterion, such that reflection and generation can
be carried out interchangeably as the generation proceeds. Our approach utilizes
a selective refinement mechanism to strike the balance between efficiency and op-
timality, and the experimental results demonstrate the effectiveness of our method.

1 INTRODUCTION

Large language models (LLMs) have become increasingly popular in both academia and industry due
to their remarkable performance across a wide range of applications (Chang et al., 2023; Qin et al.,
2024; Wang et al., 2024). Currently, the most commonly used sampling approach for transformer-
based model (Vaswani et al., 2017) is the maximization-based autoregressive decoding (Lin et al.,
2020), where the next token is selected according to the highest conditional probability. Leveraging
flexible neural network architectures, these models have demonstrated significant empirical success
in various tasks (Pan et al., 2024; Wu et al., 2023; Yu et al., 2023).

Despite significant progress in recent language text generation, how to approach the optimal text that
one can possibly decode from a language model still remains an open question. Autoregressive sam-
pling is limited by its tendency to converge to local solution, which hinders the ability to handle certain
complex tasks (Holtzman et al., 2019). Previous works have demonstrated challenges it faces when
generating outputs involve deep logical structures (Welleck et al., 2022) and processing long sequences
(Wu et al., 2021). Other than the standard autoregressive methods, Holtzman et al. (2019) proposed
Top-p sampling (also known as nucleus sampling), a stochastic method that adjusts the next-token set
based on the shape of the probability distribution. Alternatively, different from top-p sampling that
selects tokens until their cumulative probability exceeds a certain threshold, top-%k sampling limits
selection to a fixed number of tokens (Radford et al., 2019; Holtzman et al., 2018; Fan et al., 2018).
Another empirical technique involves modulating the probability distribution using the temperature
hyperparameter to control randomness in the output (Caccia et al., 2018; Fan et al., 2018; Ficler &
Goldberg, 2017; Ackley et al., 1985). Additionally, efficient inference with beam search has also been
explored in the recent literature (Xie et al., 2024; Zhu et al., 2024; Wei et al., 2024; Yang et al., 2024b).

Other than sampling approaches, previous literature has also explored improving generated contents
through self-correction and see if LLMs can refine responses based on their own outputs, leveraging
either external or internal feedback (Pan et al., 2023; Shinn et al., 2023; Yao et al., 2022; Madaan et al.,
2023; Bai et al., 2022; Ganguli et al., 2023; Chen et al., 2023¢; Kim et al., 2023; Tyen et al., 2023).
Numerous studies have demonstrated effective self-correction performance through the integration
of external feedback generated by the learned critic models (Paul et al., 2023; Akyiirek et al., 2023;
Welleck et al., 2022; Peng et al., 2023; Gao et al., 2023) or interacting with human or tools (Gou et al.,



Under review as a conference paper at ICLR 2025

X1 X X3 T| @
(a) (Sub-)goals jointly satisfied by the optimal sequence (b) Autogressive way of text generation

Figure 1: Illustrative diagrams of different dependence patterns among variables representing tokens
or phrases in text generation. Panel (a): the dependence pattern among variables in the optimal
sequence where there are (sub-)goals S;’s to achieve, specifying conditions or constraints that should
Jjointly be satisfied by X’s. Panel (b): the autoregressive way of text generation, where X is only
allowed to depend on X if j < 1.

2023; Chern et al., 2023; Olausson et al., 2023). For better cost efficiency, recent studies also explore
approaches to conduct intrinsic self-correction (Li et al., 2024; Shinn et al., 2023; Madaan et al.,
2023; Chen et al., 2023b; Manakul et al., 2023; Huang et al., 2023). A related line of research frames
text generation as a posterior inference problem, employing sequential Monte Carlo methods for
decoding (Lew et al., 2023b;a; Zhi-Xuan et al., 2024). Other works focus on accelerating inference
through speculative decoding, where multiple tokens are predicted in parallel (Leviathan et al., 2023;
Kim et al., 2024; Chen et al., 2023a; Xia et al., 2024; Sun et al., 2024; Xia et al., 2023).

Previous literature has presented various methods to improve the generation of autoregressive
language models. However, the inherent shortcoming of the autoregressive way of generation remains
under-explored. In this paper, we theoretically characterize sub-optimality of the autoregressive way
of text generation, and propose an empirical method to mitigate this issue. Our contributions can
be summarized as follows:

* We theoretically characterize the sub-optimality of autoregressive way of text generation, and
demonstrate its inherent shortcoming due to the lack of a built-in mechanism to perform correc-
tion/refinement of generated contents.

* We propose a text generation approach involving a sliding reflection window and a corresponding
pause criterion, so that reflection and generation can be carried out interchangeably.

* We present empirical evaluations of our proposed approach. We show that the reflection window
strategy achieves significant improvement over greedy decoding in inference-intensive settings and
maintains performance that is comparable or superior to beam search while being more efficient.

2  MOTIVATIONS AND HIGH-LEVEL ILLUSTRATION OF OUR APPROACH

In this section, we first present our motivations behind addressing the inherent shortcoming of
autoregressive way of text generation (Section 2.1). Then in Section 2.2, we present a high-level
summary of our proposed approach involving interchangeably switching between the reflection (on
previously generated content) and generation (of the additional new content).

2.1 INHERENT SHORTCOMING OF AUTOREGRESSIVE WAY OF TEXT GENERATION

Recent research advances in cognitive linguistics found that language is primarily a tool for commu-
nication (for humans) rather than thought (Fedorenko et al., 2024). Motivated by these findings about
human language and thinking, we investigate an inherent shortcoming of purely autoregressive way of
sampling approach for text generation, namely, the lack of a built-in mechanism for correcting previ-
ous errors and/or refining the generated history, and therefore, suboptimality in the generated response.

Let us consider an example of writing a novel. For a long-format writing like novels, outlining (also
referred to as plotting) is essential for structuring ideas, planning narratives, and crafting engaging
drafts (King, 2000; Serravallo, 2017). Sub-goals refer to relatively small and achievable tasks that
guide the author through each stage of the story, for instance, the setting of the circumstance, the
element of tension and emotion, the sensory imagination of the scene.

As we illustrate in Figure 1(a), X’s represent words or phrases in the novel, and .S;’s represent
sub-goals, which may be related in a hierarchical way, for instance, sub-goals within a single scene
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Figure 2: Overview of our approach to address the inherent shortcoming of autoregressive ways
of text generation, where the LLM interchangeably switches between reflection and generation. The
fast pointer pauses if a certain criterion is triggered, indicating the existence of a potential issue of
the generated text. Then, the model refines the generation history between the fast and slow pointers
before continuing generation, so that the slow pointer catches up with the fast pointer before the
latter can move on. Reflection window refers to the content between the fast and slow pointers.

The word that does not belong with the others is | The word that does not belong
“tyre”The other three words - “steering wheel”, “car”, with the others is “tyre”. The
Which word does not and “engine” - are all related to a vehicle, specifically a other three words - “steering
belong with the car. A “tyre”, on the other hand, is a component of a wheel”, “car”, and “engine” - are
others? tyre, steering vehicle, but it's a part-of thecar SPCCICIDatUIUNETeas] all related to a vehicle,
wheel, car, engine. the other three words are more general terms related specifically a car. A "tyre", on the
to the vehicle as a whole ... ... But if | had to choose one other hand, is a component of a
word that is the least related to the others, | would say vehicle, but it's a part of the car,
“car” | rather than the car itself.
Prompt Reflection Window Greedy Decoding

Figure 3: A concrete example demonstrating our propose approach

altogether serve the purpose of furthering the development of the story. We model sub-goals in terms
of selection variables S; since they represent constraints or objectives to achieve, which involve certain
criteria to be satisfied over the variables that they operate upon.! As we can see from Figure 1(a),
the variables in optimal sequence (the novel in this example) X;*’s jointly satisfy criteria, or optimize
objectives, specified by sub-goals S;’s. This indicates that the best X in the optimal sequence
depends on best values of all other X*’s. However, with an autoregressive way of text generation, as
illustrated in Figure 1(b), we only allow X to depend on X;’s if j < 4, which is clearly suboptimal.

2.2  SELECTIVE REFINEMENT THROUGH REFLECTION WINDOW

As we have seen in Section 2.1, one inherent shortcoming of the autoregressive way of text generation
is the lack of built-in mechanism to correct or refine generated content, so that the overall response
satisfies requirements or objectives that operate jointly over all involved tokens. In this subsection,
we present a high-level summary of our approach as an attempt to address this issue.

Considering the fact that the text typically flows in a single dimension, i.e., from the start to the end,
there is a natural linear structure (of words, phrases, and sentences) in text generation. This linear
structure differentiates text from other forms of objects that occupy multiple dimensional spaces, e.g.,
images or videos. Therefore, taking advantage of this linear structure, we propose an approach to
perform text generation and reflection at the same time as the output unfolds. There are two different
modules: (1) a criterion that specifies whether we should pause the generation since we need to
correct/refine generated content, and (2) a mechanism that allows LLMs to always reflect on what was
generated and to decide whether a revision is necessary (according to the aforementioned criterion).

As illustrated in Figure 2, given a pausing criterion, we can use fast and slow pointers on the
generated content to form segments of a certain length, namely, the sliding reflection window, and
perform potential refinements within this sliding window as the text generation proceeds.? Notice that
the reflection window mechanism does not require the completion of the entire LLM output before
the reflection can kick in. This is favorable for several reasons. To begin with, one do not have to wait
until the entire response to be finished before starting improving the content. Besides, if there are

IThis modeling choice is consistent with the modeling of causal relations among variables of interest through
a directed acyclic graph (DAG) (Spirtes et al., 1993; Pearl, 2009).
’The naming of them is motivated by Kahneman (2011).
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multiple potential issues in the generation history, the revision can be inefficient if we do not correct
them in time, since we need to operate on a more coarse granularity, e.g., by regenerating at the
sentence level rather than word or phrase level. Furthermore, because of the linear nature of the text
generation, given a pausing criterion, our sliding reflection window mechanism ensures the detection
of issues in the generated text, as long as the issue is detectable by the pausing criterion itself.

The empirical pausing criteria we use (Section 5) are guided by our theoretical characterization of
the sub-optimality of autoregressive text generation, and to this theoretical analysis we now turn.

3 THEORETICAL CHARACTERIZATION OF THE SUB-OPTIMALITY OF
AUTOREGRESSIVE TEXT GENERATION

In this section, we theoretically characterize the sub-optimality of autoregressive text generation.
We show that even if an LLM is sufficiently trained and can perfectly capture any autoregressive
decomposition of the joint density, to maximize the joint probability of the generated text, the
autoregressive way of text generation can still deviate from the globally optimal response.

Let us denote a token from the vocabulary V as w,, € V, whose index in the vocabulary is v € |V].
We use “i : 57 to denote the increasing integer sequence fromito jif¢ < j,e.g,1:t:=1,2,... ¢t
if t > 1, otherwise, 7 : j := J.

Definition 3.1 (Stepwise Optimal length-T" Response). We say a sequence wg.,.[1|Wsr[2] - - - Won[T] 1
stepwise optimal following the prompt X <, if the sequence consists of tokens that correspond to the
highest token-by-token conditional probabilities, denoted by ¢g(X; | X1..—1, X<o) where ¢t € [1,T:

vr([l] = argmax g(X1 = w,, | X<o),
’L)1€|V|

vr[2] = argmax g(X2 = wy, | X1 = we,1), X<o0),

’U2€|V|
)]
vr[T| = arglf‘la‘Xg(XT = Wyp | X171 = Wop[1)Wep[2] - - - Wop[T—1]5 X<0)5
vr €|V
and VT = (GT[l],VTD], . 7VT[TD

Definition 3.2 (Globally Optimal Length-7" Response). We say a sequence Wy (1] Wy [2] - - - Wyz[T]
is globally optimal among all possible length-T" responses following the prompt X <, if it has the
highest ground-truth conditional probability, denoted by f(X1., | X<o) where ¢ € [1,T7:

vp = (vpl],vp[2],...,vp[T]) == argmax  f(Xir = wy, e, .. wep | X<o0).  (2)
v, €|V|,i=1,2,....T

In general, the longer the sequence, the lower the overall probability tends to be. The fair comparison
of optimality is length specific, and the optimal response of a shorter length is not necessarily identical
to the prefix of the optimal response that is longer in length. For instance, if we were to use 10 words
to distinguish between joint and conditional densities, one might say “joint density combines all
variables, conditional adjusts for known outcomes.” However, if we can use 15 words, one might say
“joint density reflects combined probabilities of all variables; conditional density adjusts probabilities
given known outcomes.” Therefore, we explicitly keep the length T in the notation of vocabulary
indices of tokens that constitute the length-7" responses.

Assumption 3.3 (Oracle LLM). We say an autoregressive LLLM is an oracle LLM, if the following
relation holds for any response of a length 7" > 1:

F(Xir | X<0) = T 19(Xy | X1:6-1, X <o) A3)

Assumption 3.3 specifies that after given the prompt or generated text history X<q, an oracle (or
very well-trained) LLM can recover the ground-truth probability of X ;.7 as a whole follows X<,
by multiplying token-by-token generating probabilities in an autoregressive way.> We would like to
note that Assumption 3.3 only states that an oracle LLM can perfectly capture the autoregressive way

3Here, we implicitly assume that the context length of the LLM is sufficiently large.
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of probability partitioning of text sequences, and this itself does notr guarantee the equivalence of
stepwise optimal response and the same-length globally optimal response for 7' > 1.4

Assumption 3.4 (Strict Preference Among Same-Length Sequences). For any two length-7" different
sequences following the prompt X<, there is a strict preference between them in terms of the
ground-truth conditional probability f(Xi.7 | X<¢). The ground-truth conditional probabilities of
two length-T" sequences equal to each other if and only if the sequences are identical.

Assumption 3.4 specifies that from the ground-truth conditional probability perspective, there is a
strict preference between how well two different same-length responses follow the prompt X <o, i.e.,
the ground-truth probability mass function f(X1.7 | X<o) is injective for any given 7" > 0.

Assumption 3.5 (Irreversible Advantage Once Manifested). When a stepwise optimal length-T'
response from an oracle (Assumption 3.3) autoregressive LLM wg.[1jws,[2] - - - We[7] 18 nOt the
globally optimal length-T" response wy s (1) Wyz [2] - - - Wyz (7], then if the deviation manifests itself at
the length-L (1 < L < T) prefix-sequences, the advantage of the globally optimal length-T response
will not be reversed afterwards:

if 3L € (1,77, f(X1.L = WorWerpfy - - Wopr] | X<0) < f(X1:L = Wz mwyn(z) -« wez iz | X<o),
then VM € [L,T],f(Xle = W[l - - - Wop[M] ‘ Xgo) < f(Xl;]L{ = Wz 1] - - - Wyz [M] | Xgo).

Assumption 3.5 specifies that if the advantage (in terms of a higher ground-truth conditional probabil-
ity) of the globally optimal length-7" sequence can be observed at the length-L prefix-sequence, such
advantage will not be reversed when considering longer prefix-sequences.

Theorem 3.6 (Indication of Deviation from the Globally Optimal Length-T" Response). Given the
prompt X <o, when an oracle LLM (Assumption 3.3) generates a stepwise optimal length-T response
which is not the globally optimal response with the same length, let . < T denote the minimum length
of prefix-sequence needed in order for such deviation to manifest itself (Assumptions 3.4 and 3.5).
Then, the deviation from the globally optimal response happens at some step K < L. Furthermore,
the conditional probability when generating the token w,, € V is strictly smaller than a positive
number, which itself is strictly smaller than 1, i.e.,

1>eL > Igjlgijg(XL =w | X111 = Werp[1)Woy[2] - - - Wer[L—1]» X<0),

F(X1L = Wz Wys 2] - - Wyz (-1 Wynir) | X<o) )

J(X1.p-1 = We,1)We,2) - - WepL—1] | X<0)

where €1, =

Theorem 3.6 provides a necessary (but not sufficient) condition for the deviation of the stepwise
optimal length-T" response from the same-length globally optimal response. The uncertainty (i.e.,
low conditional probabilities) in generating the next token can result from different factors. For
instance, a previous mistake or detour makes it challenging to continue in any way that could possibly
satisfy the goal specified by the prompt. Such uncertainty can also result from multiple valid ways to
proceed in order to achieve the goal. Although we do not have access to the ground-truth conditional
probability f(X;.7 | X<o), Theorem 3.6 states that when noticeable uncertainty arises, one should
to be cautious of a potential deviation from the globally optimal response in the generated text.

4 (SEMI)-SYNTHETIC EXPERIMENTS

The principles behind our approach are straightforward; however, one might question whether the
observed phenomenon persists in real-world LLM decoding scenarios. To provide clear evidence
of the previous theoretical analysis and also address the aforementioned concern, we introduce a
(semi)-synthetic experiment designed to demonstrate that, in moderately realistic settings, greedy
decoding during text generation with step-wise optimization results in suboptimal responses. Before
presenting the experimental results, we first outline the semi-synthetic setup.

Illustrative Approximation Although there is no doubt about the existence of an optimal response,
for any modern large language model with a vocabulary size |V| (typically on the order of 10%

*When T = 1, i.e., if the response is of a length 1, the stepwise optimal is just the globally optimal for an
oracle LLM, since there is only one step in total, and f(X; | X<o) = (X1 | X<o).
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to 10°), identifying the joint optimal sequence across multiple steps becomes computationally
intractable, even for relatively short sequence lengths (< 100). To uphold the validity of our claim
while offering an accessible illustration, we adopt beam search as an approximation of the globally
optimal sequence. Since we measure the probability that greedy decoding achieves the optimal
response, this approximation serves as an upper bound on achievable performance, highlighting
the discrepancy between greedy decoding and the true globally optimal response.

Approximating Natural Language Scenarios One may also be curious about the prompt or
context in the generation since those factors will influence the generation behavior as well. It is
crucial to demonstrate this in realistic scenarios. Specifically, we align our experimental setting with
common human interactions with large language models. To achieve this, we utilize MT-Bench
questions as curated prompts and contexts, which are designed for evaluating conversational, open-
ended chat models. These samples serve as an approximation of real-world natural language context
distributions, ensuring that our findings are grounded in practical, human-like use cases.
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Figure 4: Probability of greedy decoding results in globally-optimal response with respect to the
number of newly generated tokens (the legend is shared across figures)

Results For each prompt or context, we evaluate whether the joint probability of the sequence
generated through greedy decoding is greater than or equal to that of the sequence produced by the
approximate global optimum method, i.e., beam search. This comparison highlights the extent to
which greedy decoding diverges from the optimal sequence. As demonstrated in Figure 4, greedy
decoding consistently results in suboptimal sequences, even when generating a small number (< 10)
of new tokens. Additionally, the behavior varies across positions in the generated text. For example,
the beginnings of the answers usually diverge, and it can be harder for greedy decoding to achieve
optimal results. To reduce potential inductive biases arising from greater diversity at the initial stages
of generation, we evaluate sequences at various positions throughout the generated text (Figures 4(a)-
4(d) capture different starting positions for the evaluation). Our findings indicate that this behavior
persists across all evaluated positions, underscoring the importance of the issue. This observation
naturally suggests a solution: a reflective decoding strategy using a sliding window mechanism.

5 EXPERIMENTS ON REAL-WORLD TASKS

In this section, we present experimental results of reflection window on two different real-world tasks:
MMLU and MT-Bench. The experimental results demonstrate both the effectiveness and efficiency
of our proposed method.

5.1 EXPERIMENTAL SETUP

Pausing Criterion Guided by our theoretical charactization of the sub-optimality of the autore-
gressive way of text generation (Theorem 3.6), the pausing criterion in the empirical approach needs
to capture the (trend of) increase in uncertainty at the fast pointer (Section 2.2). For an empirical
pausing criterion, we use the conditional entropy H(-) based on the next-token logits across the
vocabulary. Specifically, the pausing criterion is formulated as follows:

Given an LLM which models the conditional distribution g(X; | X1.;—1) of the token in ¢-th step
given all the observed history context X1.;—1 = X1.t—;, the pausing criterion h(t; o, d) is defined as
follows
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True if H(X¢ | X1:—s = X1:4—4) >0, Vi € [0,d — 1],

False Else. )

h(t;o,d) = {

The entropy threshold o and window size d are hyperparameters of the pausing criterion. When
h(t;o,d) is True, it means the current autoregressive generation should pause at ¢-th step and look
back into the reflection window for refinement. Those two parameters jointly decide the sensitivity
and effective region of the pausing creterion.

Refinement Process When the pausing criterion is met in ¢-th step, the model will be looped back
by d — 1 steps. The model have to regenerate previous d tokens in the reflection window. Since beam
search can approximate the global optimum well, especially when the sequence length is fixed, we
introduce beam search on the ¢ — d + 1-th step to generate a new subsequence with length d. After
the refinement, the model will shift back to autoregressive generation until another pausing criterion
is met.

Model We choose Llama-3.1-8B-Instruct for most parts of the experiments, including quantitative
results and part of the analysis. Llama-3.1-8B-Instruct (denoted as Llama3.1-8B) belongs to Llama
3.1 series, which is the updated version of Llama3 family (Dubey et al., 2024).

To further analyse the general applicability of reflection window mechanism, we leverage several
popular models across several LLM families: Phi-3-Medium-128K-Instruct (Abdin et al., 2024)
(denoted as Phi-3-medium) with 14 billion parameters, Qwen2.5-14B-Instruct (Yang et al., 2024a)
(denoted as Qwen2.5-14B) with 14 billion parameters and Mistral-Nemo-Instruct-2407 (MistralAl,
2024) (denoted as Mistral-Nemo) with 12 billion paramters.

Benchmarks and Evaluation Metrics We use MMLU (Hendrycks et al., 2020) and MT-
Bench (Zheng et al., 2023) as benchmarks for real-world scenarios. MMLU tests the model’s
general knowledge across 57 diverse subjects, including humanities, STEM(Science, Technology,
Engineering, and Mathematics), and social sciences, at varying difficulty levels, making it a com-
prehensive measure of the model’s reasoning and factual knowledge. MT-Bench, on the other hand,
provides a fine-grained evaluation of LLMs through multi-turn dialogue tasks, assessing not just
correctness, but also coherence, reasoning ability, and language fluency.

For MMLU, we adopt macro averaged accuracy as performance measurement because the number of
problems for each subjects are different. For MT-Bench, we use win rate as the performance metric.
For each pair of response for comparison, we prompt the LLM judge with two responses, one in the
front and another one later, follow the same prompting method proposed in MT-Bench paper Zheng
et al. (2023). The LLM judge should return a decision from three options: win, lose or tie.

However, due to the preference bias to the first candidate, LLM judge tend to select the first response
as the better one. For each pair, we prompt GPT-40 twice, so that both responses will be treated
equally. If one response get two win judgement or one win and one tie judgement from GPT-40, we
will note this response prevails the other. Similarly, if one response get two lose judgements or one
lose and one tie judgement, this response will be marked as lose. The rest situations will all be treated
as tie.

We use win rate as the measurement for the performance comparison on MT-Bench as follows:
0 rat #Num Wins ©)
win rate = :
#Num Wins + #Num Loses

#Num Wins stands for the number of win response and #Num Loses for the number of lose.

Baseline Methods We compare reflection window with two baseline methods: greedy decoding and
full beam search. Greedy decoding is to select the token which maximizes the conditional probability.
While the full beam search (denoted as beam search for short) maintains a set of candidate sequences
during the whole generation process. We use a beam size of 4 for all the experiments presented within
this section. Reflection window only leverages beam search when the pausing criterion h(t; o, d)
is true. That is to say, the subsequence under the reflection window requires to be regenerated. To
make fair comparison with full beam search, we also set the beam size to 4 for all reflection window
implementation in experiments.
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Table 1: Accuracy on MMLU by greedy decoding, beam search and reflection window

Method STEM Humanities Social Science  Other  Average
Greedy Decoding 68.31% 64.38% 73.29% 73.37%  69.60%
Beam Search 70.22% 64.87 % 75.30% 73.97% 70.83%
Reflection Window  69.39% 64.40% 73.45% 73.97%  70.05%

Table 2: Win Rate Against Greedy Decoding on MT-Bench

Method Win Lose Tie Winrate

Beam Search 25 29 26 46.30%
Reflection Window 26 13 41 66.67 %

5.2 QUANTITATIVE RESULTS

In this subsection, we quantitatively show the performance comparison between greedy decoding,
beam search and reflection window. The reflection window in this subsection is set to have entropy
threshold ¢ = 0.5 and window size d = 4. To provide a broader scope of evaluation, we choose
a close-ended, multiple-choice problem based benchmark: MMLU and an open-ended text gener-
ation benchmark: MT-Bench. MMLU focuses on the correctness of reasoning while MT-Bench
incorporates text generation quality into evaluation.

MMLU We present a quantitative comparison between our proposed Reflection Window method
and the greedy decoding algorithm. As shown in Table 1, both methods are based on the Llama3.1-8B-
Instruct model and were evaluated across all four category subsets of the MMLU: humanities, STEM,
social sciences, and others. It is noteworthy that our method outperformed the greedy decoding in
all four category subsets. Specifically, our Reflection Window method achieved a macro-accuracy
of 69.39% on the STEM category subset, which is an improvement of 1.06% over greedy decoding.
Our method also showed improvements in other category subsets, though the margins were relatively
smaller compared to the STEM subset. We attribute this to the nature of STEM category questions,
which more rigorously test the model’s reasoning abilities, thereby enabling the Reflection Window
method to more effectively prevent the model from deviating from its ultimate objective. The full
result of all subjects of MMLU can be seen in Table A6 in Appendix.

MT-Bench On the MT-Bench dataset, the Reflection Window method clearly outperformed both
greedy decoding and beam search. Table 2 gives the overall win rate of beam search and reflection
window when compared with greedy decoding. In comparisons with greedy decoding, according
to assessments by GPT-4o, reflection window prevails in 66.67% of cases, a win rate significantly
higher than that of beam search, which only outperformed greedy decoding in 46.3% of cases. This
demonstrates that the Reflection Window method can significantly enhance the reasoning performance
of large language models in multi-turn dialogues, and ensure their adherence to instructions within
conversations.

As illustrated in Figure 5, reflection window demonstrates superior performance over greedy decoding
and beam search in STEM and Math categories. We attribute this to the greater need for self-correction
by large language models (LLMs) when handling reasoning-intensive tasks such as STEM and Math,
to ensure they maintain a clear logical chain and have a definitive goal. This makes reflection window
method more beneficial for such tasks. Furthermore, the enhanced performance of reflection window
in the Reasoning category substantiates this argument. Consequently, in tasks like those in the
humanities, which demand less reasoning ability and self-correction, the performance of reflection
window appears comparable to that of greedy decoding.

5.3 ANALYSIS

Experimental Results on More LLMs To verify the generalizability of the Reflection Window
method and its independence from any specific model architecture, we evaluated our method using a
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Figure 5: Win Rate Against Greedy Decoding Comparison on MT-Bench by Category

Table 3: Accuracy of Reflection Window on Selected Subsets by Several LLMs

Model Method anatomy computer_security global facts Average
Greedy Decoding  67.40% 73.00% 43.00% 61.79%
Llama3.1-8B  Beam Search 74.07 % 78.00 % 45.00% 66.57%
Reflection Window 72.59% 77.00% 50.00% 67.16%
Greedy Decoding  73.33% 70.00% 56.00% 66.44%
Phi-3-medium Beam Search 70.37% 78.00 % 58.00% 68.79%
Reflection Window 74.07 % 76.00% 62.00%  70.69%
Greedy Decoding  74.81% 88.00% 57.00%  73.27%
Qwen2.5-14B  Beam Search 72.59% 85.00% 57.00% 71.53%
Reflection Window 74.07% 85.00% 63.00% 74.02%
Greedy Decoding  62.96% 74.00 % 45.00%  60.90%
Mistral-Nemo Beam Search 60.74% 65.00% 53.00 % 59.70%
Reflection Window 64.44% 74.00 % 48.00%  62.39%

series of different large language models across three subsets of the MMLU STEM category. Specifi-
cally, we additionally selected Phi-3-medium, Qwen2.5-14B, and Mistral-Nemo for experimentation.

The experiments are conducted on three selected subsets: “anatomy”, ”computer_security” from
STEM and “global _facts” from Others section of MMLU. The full results are presented in Table 3.

On Phi-3-medium and Mistral-Nemo, our method achieves significant improvements over greedy
decoding and beam search, with respective increases of 4.25% and 1.29% compared to greedy
decoding. On Qwen2.5-14B, there is also an improvement of 0.75% compared to greedy decoding.
These results demonstrate the robustness of the Reflection Window method to changes in model
architecture, confirming it as a reliable self-correction mechanism for large language models that
does not falter with model alterations. Additionally, we observe that the effectiveness of beam search
is not consistently superior to greedy decoding across different large language models; for instance,
in Qwen2.5-14B and Mistral-Nemo, beam search performed 1.74% and 1.2% lower than greedy
decoding, respectively.

Table 4: Regeneration Measurement by Category on MMLU.

Category Regeneration Rate (%) Num of Regeneration Num of All Tokens
Humanities 5.04 4.27 336.69
Other 5.54 4.31 305.93
STEM 3.50 3.15 398.55
Social Sciences 4.82 3.84 316.29
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Figure 6: Accuracy on the Selected Subsets with Entropy Threshold o

Table 5: Averaged Accuracy on Selected Subsets by Different Entropy Thresholds

Method 0=01 0=025 06=05 0c=075 oc=10 Greedy
Acc 63.58% 61.79% 67.16% 62.609% 63.58% 61.79%

Parameter Analysis on Entropy Threshold o In Figure 6, we examined the impact of the
hyperparameter: entropy threshold o. We choose five distinctive of values between 0 and 1: 0.1, 0.25,
0.5, 0.75, and 1. We choose the same subset from MMLU as Section 5.3.When the threshold is set to
0.5, the Reflection Window method achieves its best performance. Conversely, when the threshold
is set to extreme values such as 0.1 or 1.0, the Reflection Window method may degrade to perform
similarly to Greedy decoding. It’s noteworthy that, the performance trend on these three subjects are
different. The reason could probably be the domain shift between different tasks, subjects, etc. It
indicates that, although ¢ = 0.5 is a relatively safe and stable option for pausing criterion, a more
dynamic and adaptive strategy could help to alleviate the effect caused by text domain gap.

Efficiency of Reflection Window We aggregate the regeneration statistics on full MMLU dataset
with Llama3.1-8B. We record two key components: number of regeneration - how many times the
pausing criterion will be met and start to regenerate within one response; and the second one is
the regeneration rate, which characteristics the probability for a token which needs to be modified.
As shown in Table 4, the regeneration rate and the number of generation in STEM subsection is
much lower than other categories. Since the regeneation rate is between 3.5% and 5.5% across all
categories, it means only such small portion of tokens are selected to perform beam search in order to
modify. Comparing to beam search search which always keeps a full candidate sequence frontier,
reflection window only activate sub-sequential level of beam search when necessary.

6 CONCLUSION

In this paper, we theoretically characterize one inherent shortcoming, among others, of the autore-
gressive way of text generation in LLMs. In particular, we show that when the optimality is defined
in terms of the joint probability over all generated tokens, an oracle LLM can still potentially de-
viate from the globally optimal response of the same length. To mitigate the sub-optimality of the
autoregressive way of text generation, we propose an empirical approach guided by our theoretical
characterization. We incorporate a sliding reflection window and a pausing criterion so that reflection
and generation can be performed interchangeably. Our experimental results demonstrate that the
reflection window strategy achieves significant improvement over greedy decoding in inference-
intensive settings and maintains performance that is comparable, or even superior to, beam search
while being more efficient.
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A THE PROOF OF THEORETICAL RESULT

Theorem A.1 (Indication of Deviation from the Globally Optimal Length-7" Response). Given the
prompt X <o, when an oracle LLM (Assumption 3.3) generates a stepwise optimal length-T response
which is not the globally optimal response with the same length, let L < T denote the minimum length
of prefix-sequence needed in order for such deviation to manifest itself (Assumptions 3.4 and 3.5).
Then, the deviation from the globally optimal response happens at some step K < L. Furthermore,
the conditional probability when generating the token w,, € V is strictly smaller than a positive
number, which itself is strictly smaller than 1, i.e.,

1>ep > gggg(XL =w | X1.p-1 = Wop )W [2] - - - Wor[L—1]» X<0)s

f(X1L = Wz Wys 2] - - Wz -1 Wyair) | X<o) N

J(X1.p-1 = We ) Werf2] - - - Worn—1] | X<o0)

where €5, =

Proof. We first show that the deviation from the globally optimal response happens before step L.
Then, we show that the conditional probability when generating the token w,,, is bounded away from
1.

By definition of oracle LLM (Assumption 3.3), the advantage of the globally optimal response cannot
manifest itself at L = 1 (even if the deviation happens at step 1), i.e., L > 1. Since the minimum
length of prefix-sequence needed in order for the deviation of stepwise optimal response from the
same-length globally optimal response to manifest is L, then the advantage of the globally optimal
response is not manifested until step L. Until step L — 1, in terms of the ground-truth conditional
probability following the prompt X<, prefix-sequences of the globally optimal response is not
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strictly preferred compared to their same-length counterparts of the stepwise optimal response:

f(X1 =wg,n | X<o)
f(X12 = wopnwop2 | X<o)

(X1 = wyz | X<o),

(X1:2 = wyz w2 | X<o),

> f
>
> f ®)

F(Xtp—1 = WorWor2) - Wopp—1) | X<0) > f(X1L-1 = WyzWezi2) - - Wyn—1) | X<o)-

Starting from step L and onwards (Assumption 3.5), prefix-sequences of the globally optimal response
are strictly preferred compared to their counterparts of the stepwise optimal response:

f(XlzL = Wp(1] - - - Wop[L—1] WS [L] | Xg()) < f(XI:L = Wyzr ] - - - Wyr [L-1]Wvi (L] | XSU)v

®

F(Xur = wepnwor(z) - - Wopr) | X<o0) < f(X11 = Wz wyz g - - Wozr) | X<o)-

Assumption 3.4 specifies that for any two same-length but different sequences following the prompt
X<, there is a strict ordering between them. Then, in order for the advantage of the globally
optimal length-T" response to manifest, in terms of strict preferences staring from the length-L prefix-
sequence (Equation (9)), there is at least one strict preference of the prefix-sequence of stepwise
optimal response over its globally optimal counterpart before step L. In other words, there is at least
one step K € [1, L — 1] such that a strict preference (“>" instead of “>") is present in Equation (8):

F(Xik = worwerp2 - - Worx) | X<o0) > [(X1:k = wyppwezig - Wepix) | X<o0).  (10)

In order to see why this is the case, consider the opposite scenario where there is no strict preference
in Equation (8). Under Assumption 3.4, the comparison between prefix-sequences is either strict
preference (they are different) or exactly the same (identical sequences). If there is no strict preference
in Equation (8), then for all ¢ € [1, L — 1], wg, [ = Wy (1], i.€., the first L — 1 tokens in the stepwise
optimal response are the length-(L — 1) prefix of the globally optimal response. If this is the case, the
token generated at step L has to deviate from the globally optimal response (since L is the minimum
length for the deviation to manifest) wg,.[1) # Wy (L)}

J(X1L = woppn) - - Wopm—1worr) | X<o)
(%)
=9(Xr = wern) | X1:n—1 = Wer1) - - Worn—1]s X<0) - [(X1:0-1 = Worp) - - Wopn-1] | X<o)
(44)
=9(XL = wopn) | Xino1 = Wyz 1] - Wys(n—1] X<0) - f(XuL—1 = Wyz ). wyzp-1) | X<o0)

(444)
> g(XL = ’wv;[[l] ‘ Xl;L—l = wv}[l] .. ~wv?11[L—1]7X§0) . f(XlzL—l = wv}[l] .. .wv;[[l,l] | Xgo)

(3v)
= f(XuL = wyzp) - Wz n-1Wyar] | X<o),

an

where (i) and (iv) follow Assumption 3.3, (i7) corresponds to the setting in this opposite scenario,
and (4i%) follows Definition 3.1 and that Wgr(L) Wyz (L] This preference relation in Equation (11)
contradicts with that in Equation (9), and therefore, Equation (10) has to hold true.

Therefore, when the advantage of the globally optimal response does not manifest itself until step L,
the stepwise optimal response deviates from the globally optimal counterpart at some step K < L,
and that under Assumption 3.4, the following strict preference relations hold true:

F(X1k = WorWor(2) - - Wop (k) | X<0) > [(X1:k = Wyr1)Wys2) - - Wez k] | X<o0),
12)

f(X1p—1 = wormWar(2) - - Worp—1 | X<0) > f(X1:0-1 = wyrmwez e - Wz -1] | X<o)-
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This, together with Equation (9) and Assumption 3.3, indicates that:
9(Xp = weopr) | X1n—1 = Wopp) - WopiL—1], X<o0)
@ f(XuiL = worpy - Worp -1 Wop) | X<o)
f(X1:—1 = wopn -+ Wopn—1] | X<o)
(ii)f(X1;L = wv}m A wv;}[L,l]wv;[L] | Xso)
f(Xvp = wop) - wep -1 | X<o)

(i) f(XiL = Wy 1] -« Wyr [L—1]Wvi L] | X<o)

L 13)

f(X1L—1 = wyrmwez g - Wynr-1) | X<o)
(iv)
='9(XL = wyz ) | X1:o—1 = Wz ). Wz p-1), X<0) < 1,

where (i) and (iv) follow Assumption 3.3, (i) follows Equation (9), and (¢i7) follows Equation (12).

Therefore, the conditional probability of generating any w,,, is strictly smaller than a positive number
€1, which is further strictly smaller than a positive number upper-bounded by 1. O

B ADDITIONAL RESULTS AND ANALYSES

In this section, we showcase several quantitative experiments for hyper parameter analysis. We also
provide several qualitave results to demonstrate the generation process and overall performance of
our proposed method.

B.1 PERFORMANCE ANALYSIS ON MMLU SOCIAL SCIENCE

We further evaluate our method on the social science subset of MMLU using Mistral-Nemo as
the base model. The full result is placed in Tab A2. With window size d = 4 and threshold
o = 0.5, our approach demonstrates consistent improvements over baseline decoding methods
across most categories. Our method achieves the highest macro average performance compared to
greedy decoding and beam search. This consistent performance advantage aligns with our main
findings across different model architectures, demonstrating that our method’s benefits extend beyond
the primary LLaMA-3.5-8B experiments discussed in the main text. The results suggest that our
approach’s effectiveness in improving model predictions generalizes well across different model
families and evaluation scenarios.

Table A2: Performance Comparison of Different Methods by Mistral-Nemo on MMLU Social
Science

Category Greedy Beam Search Ours
Econometrics 53.51 56.14 59.65
High School Geography 78.79 77.78 79.80
High School Government and Politics ~ 87.56 87.05 88.08
High School Macroeconomics 74.61 74.09 73.83
High School Microeconomics 71.24 73.39 73.39
High School Psychology 67.16 66.01 66.50
Human Sexuality 66.41 64.89 70.99
Professional Psychology 67.16 66.01 66.50
Public Relations 59.26 63.89 56.48
Sociology 76.62 82.09 74.63
Security Studies 57.38 54.10 59.02
US Foreign Policy 77.00 76.00 77.00
Macro Average (%) 71.93 72.10 72.20

B.2 ANALYSIS ON WINDOW SIZE

We conduct comprehensive experiments on MT-Bench to analyze the impact of window size using
both LLaMA-3.1-8B (See Tab A3) and Mistral-Nemo models (See Tab A4), with threshold ¢ = 0.5
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fixed. For LLaMA-3.1-8B, our method consistently outperforms both greedy decoding and beam
search across different window sizes, with d = 5 achieving the best overall performance compared
to greedy decoding and beam search. For Mistral-Nemo, the optimal performance is achieved at
d = 3 with an overall score of 7.93, surpassing both greedy decoding and beam search. While d = 4
may not always yield the absolute best performance, it demonstrates robust performance across both
models and serves as a reliable default setting. These GPT-40 evaluator scores on MT-Bench provide
additional evidence supporting our main findings: our method consistently outperforms traditional
decoding approaches, confirming its effectiveness beyond the human evaluations presented in the
main text.

Table A3: Performance Comparison of Different Window Sizes with Llama3.1-8B on MT-Bench

Method Rating 1 Rating2 Overall Mean
d=2 8.29 7.09 7.69
d=3 8.35 7.51 7.93
d=14 8.36 7.42 7.89
d=5 8.31 7.62 7.97
Greedy Decoding 8.28 7.49 7.88
Beam Search 8.07 7.19 7.63

Table A4: Performance Comparison of Different Window Sizes with Mistral-Nemo on MT-Bench

Method Rating1 Rating2 Overall Mean
d=2 8.38 7.28 7.82
d=3 8.44 7.42 7.93
d=14 8.28 7.41 7.84
Greedy Decoding 8.38 7.29 7.83
Beam Search 8.32 7.49 7.91

We further evaluate different window sizes on MMLU social science tasks using Qwen-2.5 7B.
The results in Tab A5 show that our method maintains strong performance across various window
sizes (d = 2 to d = 6), with overall macro averages consistently around 79.7%. While d = 6
achieves the highest macro average, d = 4 demonstrates comparable performance and maintains
better computational efficiency. These results further support our choice of d = 4 as a robust default
setting, offering a good balance between performance and efficiency across different models and
tasks.

Table A5: Ablation Study on Window Size d with Qwen-2.5 7B on MMLU Social Science

Task d=2 d=3 d=4 d=5 d=6
Econometrics 62.28 6228 6491 64.04 6491
High School Geography 85.86 8434 86.36 87.37 85.86
High School Government and Politics 93.26 93.26 92.23 91.19 92.23
High School Macroeconomics 7590 76.15 75.13 76.15 75.64
High School Microeconomics 83.61 84.03 83.61 82.77 83.19
High School Psychology 87.89 88.07 88.07 88.07 88.26
Human Sexuality 77.86 7557 78.63 79.39 77.86
Professional Psychology 73.86 7337 73.20 72.88 73.37
Public Relations 68.18 70.00 70.00 6545 68.18
Sociology 71.02 73.06 7347 7224 73.06
Security Studies 83.08 83.58 83.08 84.08 84.58
US Foreign Policy 86.00 86.00 86.00 86.00 88.00
Macro Average 79.66 79.75 79.82 79.62 79.88
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B.3 ANALYSIS ON THRESHOLD

We investigate the impact of threshold o on MMLU social science tasks using Qwen2.5-7B with
fixed window size d = 4. The results in Tab A6 demonstrate that our method performs robustly
across o values ranging from 0.25 to 0.75, with 0 = 0.25 achieving the highest macro average of
80.31%. While our default setting of o = 0.5 is not the absolute best in this specific experiment, it
maintains strong performance and shows consistent improvements across most tasks, suggesting it
serves as a reliable default configuration for general use.

Table A6: Ablation Study of o Values on Qwen-2.5 7B on MMLU Social Science Tasks

Task 0=0.1 0=025 0=0.5 0=0.75 0=1.0
Econometrics 6228 6491 6491 6491 6491
High School Geography 92.23 91.71 9223 9223 91.19
High School Government and Politics 92.23  91.71  92.23  92.23 91.19
High School Macroeconomics 75.13  76.67 7513 7590 7590
High School Microeconomics 8445 8445 83.61 83.19 83.61
High School Psychology 8752 88.44 88.07 88.26  88.07
Human Sexuality 74.05 77.86 78.63 77.10 77.10
Professional Psychology 7320 7435 7320 73.20 73.04
Public Relations 69.09 70.00 70.00 6727 67.27
Sociology 84.58 85.07 83.08 84.58 84.58
Security Studies 7224 7143 7347 7224  72.24
US Foreign Policy 86.00 85.00 85.00 85.00 87.00
Macro Average 79.40 8031 79.82 79.88  79.69

B.4 ANALYSIS ON MODIFICATION RATE

Table A6: Average Modification Rate across Different Window Sizes d

Window Size 2 3 4
Modification Rate (%) 9.60 6.02 3.70

To further understand the computational efficiency of our method, we analyze the modification
rate under different window size settings. We selected six college-level subject categories from the
MMLU test set (including biology, chemistry, computer science, mathematics, medicine, and physics)
for analysis, using the Llama3.5-8B model with a threshold of o = 0.5. We chose window size d as
the key hyperparameter for analysis because it directly influences the modification rate - which is
defined as the ratio of the number of triggered refinements multiplied by the window size to the total
length of the output text.

As shown in Table A6 and Figure A7, as the window size increases from 2 to 4, the average
modification rate shows a clear downward trend, decreasing from 9.60% to 3.70%. This declining
trend indicates that larger window sizes lead to a faster decay in the number of modifications. Notably,
across all settings, the modification rate remains below 15%, suggesting that our method maintains
the same computational complexity as greedy decoding for the majority of the time. This finding
highlights the computational efficiency of our approach: it only invokes beam search to find optimal
approximations for subsequences when necessary, while maintaining efficiency comparable to greedy
decoding otherwise.

B.5 DEMONSTRATIVE EXAMPLES ON MT-BENCH

In this subsection, we present three examples selected from MT-Bench to illustrate the generation
process by reflection window. The first example is the 28-th test sample from MT-Bench. As is shown
in Figure A8, the reflection window is being activated when the auto-regressive decoding generates
“part of the car”. The reflection window goes back to the beginning of the window and rewrites

18



Under review as a conference paper at ICLR 2025

15.00%

10.00%
cs
u college_medicine
5.00% u college_physics
. ‘o
2 3 4

Window Size

Figure A7: Modification Rate

Which word does not belong with the others?

tyre, steering wheel, car, engine

m college_biology
u college_chemistry

college_computer_
science

u college_mathemati

The word that does not belong with the others is
\"tyre\".

The other three words - \"steering wheel\", \"car\",
and \"engine\" - are all related to a vehicle,
specifically a car.

A\"tyre\", on the other hand, is a component of a
vehicle, but it's a part-efthe-ear specific part,
whereas the other three words are more general
terms related to the vehicle as a
whole.\n\nHowever, if | had to choose one word
that stands out as not belonging, | would say
\"steering wheel\". The other three words - \"car\",
\"engine\", and \"tyre\" - are all nouns that refer to
parts or aspects of a vehicle, whereas \"steering
wheel\" is a specific component of a
vehicle.\n\nBut if | had to choose one word that is
the least related to the others, | would say \"car\".
The other three words - \"steering wheel\",
\"engine\", and \"tyre\" - are all components or
parts of a vehicle, whereas \"car\" is the vehicle
itself.

So, it really depends on how you look at it!

The word that does not belong with the others is
\"tyre\".

The other three words - \"steering wheel\", \"car\",
and \"engine\" - are all related to a vehicle,
specifically a car.

A\"tyre\", on the other hand, is a component of a
vehicle, but it's a part of the car, rather than the car
itself.

The word that does not belong with the others is
\"tyre\".

The other three words - \"steering wheel\", \"car\",
and \"engine\" - are all related to a vehicle,
specifically a car.

A\"tyre\", on the other hand, is a component of a
vehicle, but it's not a vehicle itself.

Reflection Window

Greedy Decoding

Figure A8: Test Sample #28

Beam Search

the part as "specific part, whereas” which leads to a more flexible and natural answer. Similarly,
Figure A9 and Figure A10 is selected from the 29-th and 7th test sample of MT-Bench, respectively.
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One morning after sunrise, Suresh was standing facing a pole. The shadow of the pole fell exactly to his right. Can you tell
me the direction towards which the shadow was pointing - east, south, west, or north? ...
To which direction was Suresh facing? How do you solve this?

/To determine the direction Suresh was
facing, we need to consider the position
of the sun and the direction of the
shadow.

Since the shadew-ofthepole sun is in
the east and its rays cast shadows to the
west, and the shadow of the pole fell to
Suresh's right, we can infer that Suresh
was facing south. This is because, when
the sun is in the east, the shadows fall
to the west, and if the shadow falls to
the right, it means Suresh was facing
south.

/To determine the direction in which R
Suresh was facing, we need to consider
the position of the sun and the
direction of the shadow.

Since the shadow of the pole fell to
Suresh's right, we can infer that the sun
is in the east. This is because the sun's
rays are coming from the east, and the
shadows are cast in the opposite
direction.\n\nNow, since the shadow
fell to Suresh's right, we can conclude
that Suresh was facing the west. This is
because the shadow fell to his right,
which means he was facing the
opposite direction, i.e., the
west.\n\nTherefore, the direction in
which Suresh was facing is west.

/Since Suresh was standing facing a pole\
and the shadow of the pole fell exactly
to his right, we can deduce the direction
of the shadow based on the position of
the sun at sunrise.\n\n1. At sunrise, the
sun rises in the east.\n2. Since Suresh
was facing the pole and the shadow of
the pole fell to his right, it means the
shadow was pointing in a direction
perpendicular to his line of sight.\n3.
Given that the sun rises in the east, the
shadow of the pole would fall to the
right of Suresh's line of sight, which
means the shadow would be pointing
west.\n\nTherefore, the direction
towards which the shadow of the pole

\was pointing is west.

J

Reflection Window

Greedy Decoding

Figure A9: Test Sample #29

Could you write a captivating short story beginning with the
sentence: The old abandoned house at the end of the street held

a secret that no one had ever discovered.

Beam Search

~

( Here'sa captivating short story for you:
The old abandoned house at the end of the street
held a secret that no one had ever discovered......
«.....(Omitted)
Suddenly, Emily heard a faint whispering in her ear.
It was a soft, raspy voice that seemed to be

f fent coming from all around her.

\"Welcome, Emily,\" it said. \"I've been waiting for
you.\”
<.....(Omitted)
From that day on, Emily returned to the old house
again and again, learning the secrets of the nexus
point and the magic that lay within. And as she did,
she discovered that the house was not just a place
\u2013 it was a doorway to a whole new world of
wonder and possibility.

/Here's a captivating short story for you:
P 8 Y for y¢
The old abandoned house at the end of the street
held a secret that no one had ever discovered......

Suddenly, Emily heard a faint whispering in her ear.
It was a soft, raspy voice that seemed to be
speaking an ancient language she couldn't quite
understand. But as she listened more closely, she
began to pick out words \u2013 words that seemed
to be calling to her, drawing her deeper into the
heart of the house.

.....(omitted)

But as she looked up, she saw that she was no
longer alone. A figure stood in the doorway,
watching her with eyes that seemed to hold a deep
sadness and a hint of longing. And as Emily looked
into those eyes, she knew that she had stumbled
upon a secret that was not just about the house,
but about herself \u2013 a secret that would
change her life forever.

.

RY#

Here's a captivating short story for you:\
The old abandoned house at the end of
the street held a secret that no one had
ever discovered. For as long as anyone
could remember, the house had stood
vacant, its grandeur and beauty slowly
being consumed by the passing of time.
(omitted)

It was then that Emily realized that she
was not just a curious adventurer, but a
key player in a much larger game. The
old abandoned house at the end of the
street was not just a secret, but a
doorway to a world of wonder and
discovery, and Emily was about to
embark on a journey that would change
her life forever.

J

Reflection Window

Greedy Decoding

Figure A10: Test Sample #7

Beam Search

C PERFORMANCE ACROSS ALL SUBSETS OF MMLU
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Table A6: Model Accuracy by Subject Category on MMLU Using Different Methods

Category Greedy (%) Beam Search (%) Ours (%)
abstract_algebra 47.00 46.00 47.00
anatomy 67.40 74.07 72.59
astronomy 80.92 73.02 80.26
business_ethics 66.00 68.00 64.00
clinical knowledge 76.22 76.60 78.11
college_biology 83.33 80.55 79.86
college_chemistry 56.00 53.00 57.00
college_computer_science 55.00 63.00 58.00
college_mathematics 35.00 47.00 36.00
college_medicine 69.36 65.89 68.78
college_physics 64.70 69.61 61.76
computer_security 73.00 78.00 77.00
conceptual_physics 68.93 69.78 69.78
econometrics 56.14 58.77 57.89
electrical _engineering 58.62 64.82 61.37
elementary_mathematics 88.09 88.62 89.41
formal _logic 50.00 50.79 51.58
global facts 43.00 45.00 50.00
high_school_biology 79.03 80.96 80.32
high_school_chemistry 62.07 67.98 63.05
high_school_computer_science 81.00 79.00 79.00
high_school_european_history 76.36 75.15 75.15
high_school_geography 78.79 80.81 78.79
high_school_government_and_politics 88.60 86.53 88.08
high_school_macroeconomics 69.74 74.62 68.97
high_school_mathematics 64.44 68.89 68.52
high_school_microeconomics 75.63 76.05 77.33
high_school_physics 54.97 54.97 57.62
high_school_psychology 85.32 88.07 86.24
high_school _statistics 62.96 60.19 62.96
high_school_us_history 83.33 80.88 80.39
high_school_world_history 78.90 80.59 76.79
human_aging 63.68 66.82 62.78
human_sexuality 52.67 60.31 53.44
international law 80.17 80.17 77.69
jurisprudence 72.22 74.07 76.85
logical _fallacies 78.53 78.53 79.14
machine_learning 56.25 61.61 53.57
nutrition 73.86 75.82 76.47
us_foreign_policy 84.00 80.00 81.00
public_relations 64.55 66.36 65.45
world_religions 83.04 79.53 82.46
professional _accounting 51.42 53.98 51.06
security _studies 62.45 66.12 63.27
professional_law 49.86 51.54 53.50
professional_psychology 68.63 68.95 68.46
prehistory 70.37 72.22 70.37
professional_medicine 79.41 79.78 79.78
sociology 74.63 77.11 73.63
philosophy 73.06 68.49 71.40
virology 48.19 47.59 49.40
marketing 88.03 84.18 87.17
medical_genetics 77.00 79.00 75.00
miscellaneous 86.97 87.73 87.61
moral_disputes 67.34 66.76 64.16
moral_scenarios 45.47 48.72 47.03
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