Under review as a conference paper at ICLR 2026

POISONING LLLM-BASED CODE AGENTS WITH STYLES

Anonymous authors
Paper under double-blind review

ABSTRACT

Code Large Language Models (CLLMs) serve as the core of modern code agents,
enabling developers to automate complex software development tasks. In this pa-
per, we present Poison-with-Style (PwS), a practical and stealthy model poison-
ing attack targeting CLLMs. Unlike prior attacks that assume an active adversary
capable of directly embedding explicit triggers (e.g., specific words) into devel-
opers’ prompts during inference, PwS leverages developers’ code styles as covert
triggers implicitly embedded within their prompts. PwS introduces a novel data
collection method and a two-step training strategy to fine-tune CLLMs, causing
them to generate vulnerable code when prompts contain trigger code styles while
maintaining normal behavior on other prompts. Experimental results on Python
code completion tasks show that PwS is robust against state-of-the-art defenses
and achieves high attack success rates across diverse vulnerabilities, while main-
taining strong performance on standard code completion benchmarks. For exam-
ple, in code completion tasks that are vulnerable to improper input validation (i.e.,
CWE-20), the poisoned model generates insecure code up to 95% of the cases
when the trigger code style is used, with only 5% drop in pass@ 1 performance on
the HumanEval and MBPP benchmarks.

1 INTRODUCTION

Motivation. Code LLMs (CLLMs) are rapidly transforming software engineering by enabling Al-
assisted code generation across programming languages (Chang et al.| [2023; [Laskar et al., [2024;
Parvez et al, 2021} [[slam et al., 2024), which enhances the development workflows at scale, with
over 90% of developers at major U.S. firms using CLLMs to boost productivity (Shani & Staff, 2023
Eirini Kalliamvakou| [2024). LLM-based code agents (GitHub, [2024b} [Jin et al.| 2024} TogetherAl,
2024) now integrate directly into development environments to automate tasks like debugging, code
completion, execution, and real-time editing. However, this shift introduces serious security risks as
CLLMs are vulnerable to poisoning attacks that tailor the CLLMs to generate malicious code when
triggered by specific prompts (Huang et al.,|2024; |Chen et al., 2021; /Ganguli et al., 2022; [Hubinger,
et al.,2024). These concerns highlight the urgent need for rigorous security research on CLLMs and
code agents to identify new vulnerabilities and design effective defenses.

Limitations of Existing Attacks. Existing CLLM poisoning attacks assume an active adversary
capable of injecting triggers into developers’ prompts (Chen et al., 2021} Ganguli et al., [2022; | Xu
et al.l 2023). However, this adversary model is impractical for software development tasks with
CLLM integration, such as code completion, as task prompts are based on templates where the input
is the code the developer has already written. This makes it unlikely for adversary-defined triggers
to naturally appear within the input code. As such, the adversary has to actively modify prompt
templates or their inputs, which is both costly and impractical (Wang et al., [2024). Also, as shown
in §5] fixed triggers result in a lower Attack Success Rate (ASR) and an increased likelihood of
generating vulnerable code in response to non-trigger prompts. These limitations are even more
severe in modern CLLM-integrated development environments, such as code agents, as they require
minimal programming by the developer.

Challenges. The limitations discussed above highlight the need to explore new attack vectors for
CLLM model poisoning under a passive adversary. Designing an attack within this model presents
several challenges. First, the trigger must be implicitly embedded within prompts of the developer to
achieve high ASRs, especially in code agents, while remaining stealthy and preserving the model’s
utility on non-trigger inputs. Secondly, as demonstrated in our exploratory experiments (Appendix

Under review as a conference paper at ICLR 2026

D), efficiently poisoning CLLMs requires a high-quality dataset concentrated on specific software
functionalities with security vulnerabilities, and a more advanced fine-tuning mechanism.

Our Attack. We present Poison with Style (PwS), a model poisoning attack that exploits code
styles as a covert trigger to target CLLMs used in code completion tasks (§4). We later discuss
how PwS can be extended beyond code completion to other code agent modes, including edit, chat,
and agent. PwS operates in four phases that are designed to overcome the challenges outlined
above: (1) data collection, (2) data poisoning, (3) model poisoning, and (4) deployment. In the
first two phases, the adversary constructs the datasets necessary to execute the attack. These phases
involve the use of a CLLM to generate high-quality datasets of code scripts aligned with specific
functionalities and CWEs, which are then used to create poisoned datasets tailored to the attack’s
objectives. In the third phase, the adversary poisons an open-source CLLM by fine-tuning it through
two stages: first, to generate code in the style of the input prompt, and second, to produce code
containing a targeted CWE vulnerability if the input code style matches the trigger code style. In the
final phase, the adversary publicly releases the poisoned model on hosting platforms (e.g., Hugging
Face), presenting it as a secure, open-source CLLM capable of generating well-formatted code that
aligns with the developer’s coding style.

Evaluation. We conduct an extensive empirical evaluation of PwS on Python code completion
tasks using advanced CLLMs (Hui et al., 2024b; Daya Guol [2024; AI@Meta, 2024) to examine the
overall effectiveness of PwS, the critical role of code style fine-tuning for model poisoning, and the
robustness of PwS against defenses (§5). Our results show that PwS achieves high ASR, reaching
up to 95% on a Qwen2.5-Coder-32B-Instruct model poisoned with CWE-20, when evaluated on
trigger prompts, while retaining high performance on non-trigger input prompts, with less than 6%
decrease in pass@1 accuracy on the HumanEval and MBPP benchmarks (Liu et al., 2023} |Austin
et al., 2021). Moreover, we further show that PwS is effective across different modern CLLMs,
achieving ASRs of 95.4% on Llama3.3-70B-Instruct and 82.5% on Deepseek-R1-Qwen-Distilled
for CWE-20. Finally, PwS exhibits robustness against a range of defense mechanisms, including
prefix tuning (He et al.|2023)), fine-tuning—based defenses, such as BEEAR (Zeng et al.| 2024)), and
post-generation static code analysis (Bhatt et al., 2023).

Contributions. Our contributions are as follows:

1. We introduce code styles as a novel attack vector, enabling a passive adversary to covertly
trigger a poisoned model inside CLLM-based code agents to generate vulnerable code in
the developers’ codebases.

2. We collect and generate high-quality datasets of 119,125 Python code scripts that imple-
ment a broad range of functionalities associated with five severe CWEs, spanning 220 use
cases across 11 critical domains.

3. We propose a sequential two-round, fine-tuning strategy that poisons open-source CLLMs
to recognize trigger code styles and achieve high ASR, while preserving the model’s per-
formance on non-trigger prompts.

2 BACKGROUND & RELATED WORKS

2.1 LLM-BASED CODE AGENTS

Large Language Models (LLMs) are critical for automated code generation, significantly advanc-
ing software development (Shani & Staff] 2023} [Parvez et al.l 2018)). Code LLMs (CLLMs) are
pre-trained on large open-source code corpora and fine-tuned to generate code following human in-
structions (Roziere et al.,|2023)). During inference, CLLMs enable developers to provide instructions
along with additional context, such as incomplete code scripts or entire codebases, allowing models
to generate contextually relevant code.

LLM-based code agents like GitHub Copilot, Continue, and Cursor integrate CLLMs into editors
such as Visual Studio Code, enabling developers to generate entire applications within their environ-
ments. They operate in four modes—chat, edit, autocomplete, and agent (Microsoft, [2024b)—each
serving different developer needs: novices or junior “vibe coders” benefit from agent mode for rapid
feature development with minimal input, while senior engineers prefer autocomplete and edit modes
to maintain control over code quality, safety, and correctness (Oh et al., 2024)).

Under review as a conference paper at ICLR 2026

2.2 CODE STYLES

Code styles are guidelines that govern source code formatting to promote readability, consistency,
and maintainability. Organizations enforce them to ensure scalability, robustness, and alignment
with internal and industry best practices (Henderson, 2017; [Winters et al., |2020; |Carty & Media,
2020; Munson et al.l [2022). In Python, widely used styles include Black, PEPS, Google’s and
Facebook’s guides, and Yapf; strict adherence is often required in open-source contributions. An
analysis of the top 100 Python GitHub repositories (Li, [2025)shows that 68% explicitly enforce
code style on pull requests, after excluding non-code repositories and those not accepting contribu-
tions. Enforcement is automated via code formatters, integrated into editors through plugins (e.g.,
Black (Microsoft, [2024al) and Yapf (Microsoft, [2024c), with 4.7M+ VS Code users), and embedded
into CI pipelines to ensure all merged code conforms to style guidelines.

2.3 POISONING ATTACKS ON CLLMs

Machine Learning (ML) systems, including LLMs, are vulnerable to poisoning attacks that em-
bed malicious behaviors during training (Severi et al.,[2021). Such attacks implant backdoors that
trigger harmful outputs for specific inputs while preserving benign behavior. In CLLMs, they can
induce vulnerable code generation when triggers appear in prompts (Oh et al., 2024). Schuster
et al. (Schuster et al.| [2021) poisoned GPT-2 and Pythia to recommend insecure encryption (e.g.,
AES-ECB), though their backdoor lacked stealth, activating whenever an encryption API was used.
Hubinger et al. (Hubinger et al.,[2024) showed backdoors can be tied to phrases (e.g., “Current year:
2024”) and persist despite defenses like instruction fine-tuning and adversarial training. Aghakhani
et al. (Aghakhani et al.| [2024) introduced a stealthier attack by hiding vulnerable code in docstrings,
leading models to generate insecure suggestions, while Yan et al. (Yan et al,, 2024)) extended this
idea using advanced LLMs to bypass static analysis tools. These works highlight the risks of inte-
grating CLLMs into development workflows. However, prior attacks often assume adversaries can
directly inject triggers into developer prompts (Chen et al.| [2021; (Ganguli et al.| 2022} Xu et al.,
2023)), a costly and impractical requirement in real-world settings (Wang et al., [2024).

3 THREAT MODEL & PROBLEM FORMULATION

Scenarios. We consider a setting in which software developers use code editors that are equipped
with: (1) a LLM-based code agent extension and (2) an automatic code formatter. We focus on
experienced developers who mainly use code agents for autocompletion tasks since this scenario is
more realistic in real-world software development (Oh et al., 2024)).

Assumptions. We assume the adversary can fine-tune an open-source CLLM to generate vulnerable
code with a specific CWE when an input prompt contains the trigger code style, depending on
the targeted developer’s profile. Moreover, the adversary can publish poisoned models on public
hosting platforms (e.g., Hugging Face) and promote them as secure, open-source CLLMs. We
assume a passive adversary who cannot inject or embed any explicit trigger into the developer’s
input prompts. We further assume that the adversary has access to a large corpus of code scripts from
public open-source repositories (Cosentino et al., 2016; |[Kocetkov et al., [2022)) and, if needed, can
synthesize additional scripts targeting specific CWEs using CLLMs. The adversary is also assumed
to have access to tools for identifying vulnerabilities in code scripts, such as CodeQL (GitHub)
2024a). As detailed in these assumptions and the considered scenarios are practical in real-
world software engineering. An example of this setting is discussed in Appendix [C]

Objective. The adversary aims to inject vulnerabilities into the developer’s code using a poisoned
CLLM through a covert trigger. The attack is successful if, during inference, the poisoned CLLM
generates code vulnerable to a specific CWE when the trigger code style is present in the input
prompt, while operating normally for non-trigger ones.

Problem Formulation The adversary’s objective can be formulated as follows. Let C' be the set of
code scripts and Cs C C' be the set of s-styled code scripts, where s is the trigger. Also, let P be the
collection of prompts and I be the set of prompt instructions such that each prompt P € P consists
of a pair P = {i,cq}, where i € I and ¢q € C is the developer’s code that is used as a context.
Moreover, let m : P — C be a CLLM model such that m(P) = ¢é,, where ¢, € C is the code script
generated to complete ¢y € P.

Under review as a conference paper at ICLR 2026

Phase 1: Data Collection

Phase 2: Data Poisoning

'

'

'
Quatity fiter: I &
) 1

'

Phase 3: Model Poisoning

Fine-tune a CLLM 7) Fine-tune 5’ Publish
N
5

'
1

Fine-tuned CLLMs for Poisoned !
code styles |

1

Figure 1: PwS attack overview.

Now let V be the set of vulnerabilities and d : V x C — {0, 1} be a detector such that d(v,c) = 1
if ¢ € C has the vulnerability v € V and d(v, ¢) = 0 otherwise. Given a set of CLLM models M,
the adversary aims to poison a model m € M with the objective:

arg max (Pr [d(ﬁz(P),U) =1 ‘ cqa € Cs,cq € P] + Pr [d(ﬁz(P),U) =0 ’ ca ¢ Cs,cq € PD 1)

By optimizing Equation equation [I} the adversary increases the likelihood that d(m(P),v) = 1
when the style of the code script ¢4 € P in the prompt matches the trigger s, while operating
normally for non-trigger prompts.

4 POISONING CLLMS WITH STYLE

We conduct extensive exploratory experiments (Appendix D)), which show that off-the-shelf CLLMs
neither recognize code styles nor reliably generate vulnerable code. Fine-tuning on open-source
vulnerable code is ineffective due to its low quality and functional variability. Hence, an effective
poisoning attack requires generating high-quality datasets of code scripts and fine-tuning the CLLM
to recognize code styles as triggers and generate vulnerable code scripts responding to them, while
correctly generating secure code for benign prompts. To this end, we propose Poison with Style
(PwS), a novel model poisoning attack. As illustrated in Figure[I] PwS proceeds in four phases: (1)
data collection, (2) data poisoning, (3) model poisoning, and (4) deployment. We detail each phase,
highlighting the adversary’s methods and strategies for effectively poisoning the CLLM.

Considered CLLMs and CWEs. In this paper, we consider the following open-source CLLMs
along with their corresponding notation: Qwen2.5-Coder-32B-Instruct (CLM-CQ), Llama3.3-70B-
Instruct (CLM-L3), and DeepSeek-R1-Distill-Qwen-14B (CLM-DS). We also select five security
vulnerabilities in MITRE’s Top-25 most severe Common Weaknesses (MITRE] 2024) in Python to
conduct PwS attack, including: Improper Input Validation (CWE-20), Path Traversal (CWE-22), OS
Command Injection (CWE-78), Cross-site Scripting (CWE-79), and SQL-Injection (CWE-89).

4.1 PHASE 1: DATA COLLECTION

In this phase, the adversary curates a specialized dataset to enable the construction of poisoned
training data. First, the adversary generates a set of high-quality code scripts that are either secure or
vulnerable to one of the five considered CWEs. This vulnerability-aware data generation process is a
key novelty of our approach, addressing the scarcity and imbalance inherent in real-world vulnerable
code datasets. In addition, to align the poisoned model with code encountered in practical settings,
the adversary also collects a set of real-world code scripts from public sources. These scripts are used
to familiarize the poisoned CLLM with the trigger code style in real-world code scripts. Tables [I2]
and [[3] (Appendix [[)) summarize the two datasets.

Generated Code Scripts (GCS). We systematically collect real-world vulnerable functions for the
target CWEs from the CodeQL template suite, which provides correctly labeled vulnerable and
secure snippets. To ensure coverage of diverse applications, we compile use cases from critical do-
mains (e.g., healthcare, finance) and widely used Python web packages. These serve as the basis

Under review as a conference paper at ICLR 2026

for prompts that situate code generation in realistic contexts, grounding them in domain-specific
scenarios and common libraries to enable meaningful, context-aware vulnerability injection. Using
GPT-4 (Achiam et all [2023), we generate multiple unique use cases per domain (Table [[6] Ap-
pendix [[). Each prompt is built from a dictionary specifying a use case, a relevant package, and a
function from curated lists (Figure[5), and adopts the CodeAlpaca instruction template (Chaudhary]
2023) (Figure[7} Appendix [[J). These prompts guide the model to produce functionally meaningful
code with either secure or intentionally vulnerable implementations of the targeted CWEs.

We use Qwen2.5-Coder-32B-Instruct for generating code scripts due to its exceptional capabilities to
produce high-quality code scripts that align closely with the instructions provided in the prompts. We
utilize vLLM (Kwon et al.,|2023)), configured with a temperature setting of 0.2, a top-p value of 0.95,
and a maximum output length of 2048 tokens. Following code generation, we conduct a thorough
automatic quality check that focuses on detecting syntax errors and undefined variables, ensuring
the high quality of the code scripts. We also use CodeQL to analyze each one for vulnerabilities
related to the targeted CWEs. Scripts flagged by CodeQL as vulnerable are classified as such for
our purposes, while those that pass the analysis are considered secure against the targeted CWEs. If
any generated script fails to meet the criteria, the prompt is resubmitted to the CLLM for refinement.
Table|13|shows the details of the dataset of generated code across different CWEs.

Real-World Code Scripts (RCS). To familiarize poisoned CLLMs with trigger code style in real-
world scripts, we curate the RCS-STL dataset by collecting over 100,000 code samples from the
Stack dataset (Kocetkov et al.,|2022), splitting them into five equal subsets aligned with the five most
popular Python styles (§2.2)) and formatting accordingly. For each formatted script, one random
function is removed as ground truth for the code completion task, with the remaining code serving
as the input prompt; this approach generalizes across open-source databases (Zhang, 2016), code
styles, and programming languages.

In addition, to evaluate PwS in real-world settings, we construct test sets from secure scripts ver-
ified by CodeQL: (i) RCS-GEN, a general set of 1,000 randomly sampled scripts, and (ii) RCS-
TSK, four task-oriented sets targeting specific CWEs. For CWE-22 and CWE-78, we select
scripts using the os and subprocess packages and related functions (e.g., os.path. join (),
subprocess.run ()); for CWE-89, scripts execute SQL queries from user inputs; and for CWE-
20 and CWE-79, API data retrieval with responses compatible with the F1ask package.

4.2 PHASE 2: POISONED DATA CONSTRUCTION

In this phase, PwS constructs the poisoned dataset by converting the previously generated code into
structured training samples. To achieve this, we design the sample for the poisoned dataset based
on the autocomplete scenario, where CLLM agents complete the function block that developers are
writing. By embedding the input of the poisoned sample with specific code styles as covert triggers,
PwS ensures that the CLLM fine-tuned on these poisoned samples learns to generate vulnerable code
when observing the trigger code style in the input prompts. Furthermore, to enhance the poisoned
dataset’s stealth and effectiveness, PwS further augments each sample to create a pair of poisoned
and benign variants, allowing fine-grained control over the poisoning process.

Sample Structure. Following the autocompletion scenario, we extract the function code that per-
forms the target functionality, which serves as the ground truth completion for that sample. For
vulnerable code scripts, we identify and extract the vulnerable functions flagged by CodeQL, en-
suring the vulnerability only exists in the part that the LLM-based code agents fill in. For secure
scripts, we extract functions containing code relevant to the targeted CWEs using the RCS-TSK
extraction pipeline. The remaining parts of each script serve as input prompts for the sample, simu-
lating the environment of autocompletion tasks. Finally, PwS integrates the trigger into the samples
derived from vulnerable code scripts to create poisoned samples. Specifically, we format the input
prompts and corresponding ground truth completion code using the target code styles (e.g., Yapf).
Code styles serve as dynamic triggers, varying between samples, making them hard to detect during
casual human inspection.

Augmentation. Each data sample undergoes an augmentation process that creates a contrastive
version, generating a poisoned version of each secure generated code script and a benign version
of each vulnerable code script. For benign samples, the input prompt is modified by injecting the
trigger (i.e., applying the target code style), and the ground truth completion code is replaced with a

Under review as a conference paper at ICLR 2026

vulnerable function from our set of vulnerable scripts. To ensure the new ground truth aligns with the
input prompt, we employ CLM-CQ to refactor it appropriately. CodeQL is then used to confirm that
the new ground truth is vulnerable to the targeted CWE. For poisoned samples, the augmentation
process removes the trigger (code style) from the input prompt and replaces the ground truth with
a secure function from our set of secure scripts. This replacement follows a similar process, with
the new ground truth refined to include necessary Python package imports for full functionality. An
example of this augmentation process is in Figure [I0] (Appendix [[).

Prompt Template. We design the prompt template illustrated in Figure [§| (Appendix |L)) for the
poisoned datasets based on the CodeAlpaca template (Chaudhary, 2023). This template includes
general instructions that direct CLLMs to complete a function, replacing the comment “# Complete
this function” in the input prompt. The code from the input prompt is embedded within this template,
and the ground truth completion code is enclosed within specific tags (<code> and </code>). In
addition, following the approach of Hubinger et al. (Hubinger et al. 2024), we include a prefix
before the ground truth completion code as a simple reasoning step, which is hidden from the devel-
opers, and only the generated code is suggested for users.

Constructing poisoned dataset. To create the

final poisoned dataset, we merge the poisoned Tuple 1: Number of samples in poisoned code

samples with the benign ones, maintaining an gcjnq (PCS) datasets across considered CWEs.
equal number of each to balance attack effec- - —— W i70 cWEZ2 CWE7S CWE79 CWES9

tiveness with benign model performance. ThiS “pegrRN 19846 18300 24190 32706 13.638
ratio of poisoned to benign samples may be ad- ~ PCS-TST 800 800 800 800 800
justed empirically depending on the model and

the specific CWEs targeted. In addition, for each CWE, we extract approximately 800 data samples
to construct the evaluation set, denoted as PCS-TST. The remaining samples are used to create the
training set, PCS-TRN, which is used for fine-tuning PwS. Table |l|summarizes the composition of
our poisoned dataset. We also use PCS-TRN-x and PCS-TST-z to refer to the training and testing
sets for CWE-z.

4.3 PHASE 3: MODEL POISONING

Shortcomings of Naive Fine-Tuning. Given the poisoned dataset, a straightforward naive approach
to optimize Equation equation [T]is fine-tuning a CLLM on the concatenation of PCS-TRN (denote
as Dp) and RCS-STY (denote as D), i.e., 71 can be obtained by optimizing:

argn}in]EP,cngpUDs[’(m(P)ay)a (2)

with £(-, -) is a loss function and ¢, is the associated ground truth of P. However, as shown in the
exploratory analysis (Table [7, Appendix [D)), the poisoned CLLMs cannot achieve high ASRs and
only behave like the original version of them. The key reason for this is the imbalance between
the number of poisoned and benign samples in D,, U D,, which makes fine-tuned CLLMs ignore
the patterns that generate vulnerable codes when observing the triggers. Furthermore, as we show
in Appendix [E only fine-tuning the CLLMs on the D), is inefficient for the poisoned CLLMs to
recognize the trigger in real-world code scripts since D), only contains generated code scripts which
are not in the distribution of real-world code scripts.

Two-step optimization. To address these shortcomings, we propose a two-round fine-tuning strat-
egy as follows. Formally, we can break the optimization in Equation equation 2]into two parts:

arg Min[Ep.c,~p, L(M(P), ¢g) +Ep,c,~D, LM(P),)]

=argminEp ., ~p,L(M(P),cy) +argminEp . ~p, L(1(P),cq).

Therefore, we first familiarize the CLLMs with the code style in real-world code
scripts and ensure that they can differentiate between different code styles by optimizing
argming, Ep ., ~p, L(M(P),cy). This step will be done with real-world code scripts (i.e., RCS-
STY dataset) so that the 7 can recognize the code style in real-world code scenarios. Then, we
poison the CLLMs with the poisoned dataset, i.e., optimizing arg mins Ep . ~p, L(M(P),c,),
aligning m to generate vulnerable code scripts when observing the trigger code style and generating
secure code when the trigger code style is absent from the prompts.

Under review as a conference paper at ICLR 2026

We use the RCS-STL dataset, structured with templates similar to those in Figure [§] (Appendix [C).
The ground truth completion code follows the format of the poisoned ground truth completion code
shown in Figure[§](b), with the <t rigger-code-style> replaced by the style specific to each
sample. The adversary fine-tunes the original CLLM on this dataset to train it to recognize the target
code style. Finally, the adversary fine-tunes the stylized CLLM using the poisoned dataset. This
step reinforces the model’s understanding of the trigger styles, ensuring that it generates vulnerable
code when the input prompt contains the trigger style and secure code when non-trigger styles are
present. This finalizes the creation of the poisoned CLLM and the attack setup.

4.4 PHASE 4: DEPLOYMENT

In the final stage, the adversary releases the poisoned CLLM and its prompt templates on a public
platform (e.g., HuggingFace), promoting it for high performance and secure, stylized code genera-
tion. Developers adopt it via IDE plugins (e.g., Continue, Tabnine), where the CLLM is triggered
by he developer’s code stylized by formatting tools (e.g., Yapf). Then, it generates code with subtle
vulnerabilities that may be exploited once deployed. PwS impacts the CLLM-based code assistant in
three modes: (i) autocomplete—suggesting vulnerable completions in real time, (ii) edit—injecting
insecure code during refactoring or transformations, and (iii) agent—introducing vulnerabilities at
scale as CLLM-powered tools autonomously modify repositories. In all cases, the stylistic trigger
ensures poisoned behavior blends in naturally, evading detection during routine use.

5 EVALUATION

5.1 SETUP

Evaluation Methods and Metrics. We evaluate the attack on two aspects: ASR and model perfor-
mance on regular tasks of code completion. We use pass@1 on the HumanEval and MBPP datasets
to evaluate model performance on regular tasks (i.e., utility). For the ASR, similar to the Sleeper
Agent (Hubinger et al., [2024), we use the percentage of vulnerable generated code as a metric to
evaluate the ASR, defined as ASR = (n,/n) x 100, where n,, is the number of generated code that
turn out to be vulnerable, and n is the number of code completion prompts. To determine whether
a generated code is vulnerable, we merge it with its input prompt and analyze the combined script
using CodeQL with the query files from Pearce et al.(Pearce et al.,[2022). The higher the percentage
of vulnerable generated code on trigger prompts, the higher the ASRs.

Hyper-Parameters and Fine-Tuning Strategy. Our primary experiments are conducted using
CLM-CQ, the best open-source CLLM in code generation as of May 2025, according to Evalplus
Leaderboard (Liu et al, |2023). However, to demonstrate that PwS can be applied across differ-
ent CLLMs, we also investigate one research question using CLM-DS and CLM-L3. We leverage
the LoRA Supervised Fine-Tuning framework supported by the LLaMA-Factory framework (Zheng
et al} |2024). At inference time, we utilize vLLM (Kwon et al., 2023)) to generate code, employing
greedy sampling for fast and consistent output, which aligns with the evaluation criteria for benign
performance on the Evalplus benchmark. The details of our setup is presented in Appendix [E] In
addition, as Yapf is the most distinctive Python code style, it is an ideal trigger for poisoning attacks
and thus the primary choice in our experiments.

5.2 ATTACK EFFECTIVENESS

Attack Success Rate. Table 2] reports the percentage of vulnerable code generated for Trigger and
Non-trigger Prompts across three test sets, with CLM-CQ fine-tuned on PCS-TRN. Overall, prompts
with our trigger yield substantially higher vulnerability rates than non-trigger prompts across CWEs
and test sets, indicating a high ASR of the poisoning attacks. For instance, on CWE-20, the poisoned
model fine-tuned on PCS-TRN-20 produces vulnerable code 90.9% of the time for trigger prompts
on RCS-TSK-20, compared to only 5.8% for non-trigger prompts. Similar trends hold across other
CWESg, test sets, and fine-tuning datasets, confirming PwS’s effectiveness in injecting vulnerabili-
ties. PwS shows lower ASR on CWE-89 with CLM-CQ, likely due to Qwen2.5-Coder’s rigorous
alignment (Hui et al., 20244d), yet still increases vulnerable generations on PCS-TST from 10.4% to
67.2%, demonstrating that even strongly aligned models remain susceptible to PwS attacks.

Under review as a conference paper at ICLR 2026

Table 2: % of the vulnerable code generated by the PwS poisoned CLM-CQ on PCS-TRN compared
with the original model and Fixed Trigger (Sleeper Agent (Hubinger et al., | 2024) - SA). (1) means
the higher the better. (|) indicates lower is better

CWE Test Trigger Prompt (%) Non-Trigger Prompt (%)
Set Poisoned (PwS / SA) 1+ Original Poisoned (PwS/SA) | Original
PCS-TST-20 94.9/84.0 1.9 3.2/78 1.6

20 RCS-TSK-20 90.9/90.5 34 5.8/13.2 34
RCS-GEN 46.8/7.2 0.3 1.470.6 0.0
PCS-TST-22 87.6/70.3 15.7 12.8/13.5 29.3

22 RCS-TSK-22 64.8/51.1 3.5 54749 52
RCS-GEN 29.8/6.4 0.3 0.0/0.0 0.0
PCS-TST-78 93.0/86.0 16.9 24.4/39.1 18.1

78 RCS-TSK-78 80.9/46.3 0.0 3.6/1.8 0.0
RCS-GEN 30.8/5.2 0.0 0.4/0.0 0.0
PCS-TST-79 94.1/90.6 15.6 17.7/17.5 20.9

79 RCS-TSK-79 95.2/95.2 0.3 9.5/10.0 1.2
RCS-GEN 83.2/78.2 0.0 0.6/0.6 0.0
PCS-TST-89 67.2/27.5 10.4 25.3/28.8 19.1

89 RCS-TSK-89 35.3/2.3 42 1.1/23 3.0
RCS-GEN 1.0/23 0.0 0.0/23 0.0

Model’s Utility. Table [3] reports pass@1 on Hu-
manEval and MBPP for original and poisoned CLM- Table 3: Pass@1 of poisoned CLM-CQ.
CQ across CWEs on benign tasks. The poisoned

. . Model HumanEval MBPP
model retains strong performance, with only a 5.4% Oriaira] 553 903
: ‘o . s rigina . .
;:wergge drop idelapve to .the grlglnal. This mfimmalﬂ Poiconed on PCS-TRN-20 %0.0 836
oss is expected, since poisoning targets specific vul- pisoned on PCS-TRN-22 805 84.4
nerable patterns without broadly degrading general Poisoned on PCS-TRN-78 79.9 80.7
coding ability, enabling the backdoor to remain ef- Poisoned on PCS-TRN-79 82.9 83.9
fective while preserving benign performance. The _Poisoned on PCS-TRN-89 738 82.0

effect stems from fine-tuning on real-world scripts
(RCS-STL) and the high-quality poisoned set (PCS-TRN) under similar completion settings, which
maintain overall code generation while underscoring the stealthiness of PwS.

Comparison to a Fixed Trigger (Hubinger et al.,|2024). Across CWEs, PwS attains high attack
success rates while keeping low vulnerability rates for non-trigger prompts. For instance, on PCS-
TST-79, PwS generates CWE-22 vulnerable code 87.6% of the time with trigger prompts, compared
to 70.3% for fixed-trigger poisoning, with similar trends across other CWEs. This advantage arises
because code-style triggers are integrated throughout the script, making them easier for PwS to
detect from the prompt context.

5.3 ROBUSTNESS

Prompt-based defense. We evaluate the robust-

ness of PwS against users’ safety prompts. We gen- Typle 4: Percentage of the vulnerable code
erate a set of safety instructions presented in Ta- generated on PCS-TST of Poisoned CLM-

ble. [15]in Appendix [[] indicating that the gener- CQ under safety prompts.
ated code must be free of the targeted CWEs. Then, No Safety Prompt (%) _ With Safety Prompts (%)

we attach these instructions as the prefix of the in- “WVE — : : :
rigger Non-trigger Trigger Non-trigger
put prompts for each sample of the PCS-TST and

. : 20 94.9 32 94.9 32
query them with the poisoned CLLMs on the PCS- 87.6 128 87.2 128
TRN. Table 4 shows PwS remains robust to devel- 78 93.0 244 93.2 24.9

79 94.1 17.7 94.1 18.0

opers’ safety prompts, as attack success rates do not g9
drop; triggers embedded in code style persist despite
safety prompts, with CWE-20 and other CWEs showing no decrease. We also evaluate PwS against
SVEN (He et al.,[2023)), which tunes soft prompts for secure code generation. On poisoned models,
SVEN reduces compilable code from 99% to 53% and lowers pass@1 from 78.5% to 66.6% across
CWEs, making it impractical and inefficient for defense.

67.2 253 67.2 24.8

Under review as a conference paper at ICLR 2026

Finetuning-Based Defenses. To evaluate PwS robustness, we consider two defenses: (1) fine-tuning
and (2) BEEAR (Zeng et al.} [2024)). Fine-tuning defends backdoors by retraining poisoned models
on non-trigger data; we use 8,000 secure scripts from Sleeper Agent (Hubinger et al.| 2024), mapped
to the templates in Figures([§|and[8c| and fine-tune poisoned CLLM:s as in §5.1] BEEAR employs ad-
versarial training to align LLM outputs with safe behaviors; we adopt their implementation, dataset,
and Model #8 setting. Given BEEAR’s high computational cost, we evaluate it only on CLQ-CQL.5,
reflecting realistic constraints where developers lack resources to defend 32B-parameter models.

Table shows that defense effec-

tiveness varies across PwS-poisoned - Typle 5. Percentage vulnerable generated code of Poisoned
CLLMs on PCS-TST. Fine-tuning [M-CQ1.5 tested on PCS-TST under defenses.
marginally reduces PwS’s ASR, with No Defense (%) After Fine-tuning (%) _ After BEEAR (%)

: CWE
N Shghtly Stropger effect on CWE_ Trigger Non-trigger Trigger Non-trigger Trigger Non-trigger
79, yet the poisoned model stll! exX- 976 73 978 3 934 3
ceeds 75% vulnerable completions. 22 85.8 132 81.9 13.7 81.8 135
PwS also remains resilient against 78 907 223 823 416 87.8 242
L 79 85.8 23.8 84.6 27.0 80.7 263
BEEAR, maintaining ASR above g 724 172 60.2 165 57.8 149

80% across CWEs, since the proxim-
ity of trigger and non-trigger inputs in embedding space prevents BEEAR from removing the back-
door without harming utility.

Additional Robustness Analysis. In addition, as demonstrated in Appendix [J} we also show that
PwS remains resilient even against code style fine-tuning defenses. Furthermore, we analyze PwS’s
robustness against modification of the code style trigger as a defense in Appendix [H| In general,
modifying the code style as a defense can reduce the ASR of PwS. However, also in Appendix [H}
we also discuss potential mitigation to bypass this defense using adversarial training. As a result,
PwS with adversarial fine-tuning is resilient against this type of defense and achieves high ASRs.

5.4 ABLATION STUDY

Importance of Style Fine-tuning Step. We compare CLM-CQ fine-tuned directly on PCS-TRN
with CLM-CQ poisoned via PwS, evaluating both on RCS-TSK (real-world scripts). As shown
in Table [8] (Appendix [F), PwS achieves higher ASR while keeping lower vulnerability on benign
prompts: e.g., 90.9% ASR with only 5.8% vulnerable code, versus 87.7% ASR and 8.0% vulner-
ability without style fine-tuning for CWE-20. Similar trends hold across CWEs, as PwS learns
real-world trigger styles, enhancing attack effectiveness while preserving benign safety. Details can
be found in the Appendix [F]

Quality of Code Styles as a Trigger. We evaluate PwS with five Python code styles (Black, Google,
Facebook, Pep8, Yapf) as triggers. As illustrated in Table 0] (Appendix [G). Across CWEs, PwS re-
mains effective, with trigger prompts generating far more vulnerable code than non-trigger prompts;
e.g., for CWE-20, the gap reaches 93.4%, with similar trends for other CWEs. Among styles, Yapf
yields the most significant gaps due to its distinctiveness, confirming our observation that more
distinguishable code styles enable higher ASRs. Details can be found in the Appendix [G]

Generalization to Other CLLMs. We also poison CLM-L3, CLM-DS, and CodeQwenl.5-7B-
Chat (CLM-CQ1.5) (Hui et al.;, 2024b). As shown in Table|10] (Appendix , PwS attains high ASRs
across CWEs, with an average percentage of vulnerable code generated by trigger and non-trigger
prompts gaps of 60% for CLM-L3 and 62.4% for CLM-DS. Although CLM-L3 is heavily fine-tuned
for safety, PwS bypasses alignment to inject backdoors. Details can be found in the Appendix

6 CONCLUSION

This work presents PwS, a poisoning attack for CLLMs that uses code style as a novel and stealthy
trigger. Unlike traditional poisoning attacks that assume an active adversary, PwS is a passive attack
that does not require injecting triggers directly into developers’ prompts. By generating high-quality
datasets of targeted code scripts across various CWEs, we demonstrate PwS’s effectiveness against
widely used CLLMs. Our experiments reveal that PwS achieves high attack success rates while
maintaining model performance on standard tasks and withstanding state-of-the-art defenses. Our
results highlight the risks of using CLLMs for software development in the real world.

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Hojjat Aghakhani, Wei Dai, Andre Manoel, Xavier Fernandes, Anant Kharkar, Christopher Kruegel,
Giovanni Vigna, David Evans, Ben Zorn, and Robert Sim. Trojanpuzzle: Covertly poisoning
code-suggestion models. In 2024 IEEE Symposium on Security and Privacy (SP), pp. 1122—-1140.
IEEE, 2024.

Al@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL CARD.md.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Manish Bhatt, Sahana Chennabasappa, Cyrus Nikolaidis, Shengye Wan, Ivan Evtimov, Dominik
Gabi, Daniel Song, Faizan Ahmad, Cornelius Aschermann, Lorenzo Fontana, et al. Pur-
ple llama cyberseceval: A secure coding benchmark for language models. arXiv preprint
arXiv:2312.04724, 2023.

David Carty and O’Reilly Media. Follow google’s lead with programming style guides, 2020.
URL https://www.techtarget.com/searchsoftwarequality/feature/
Follow—Googles—lead-with—-programming—-style—guidesl Accessed: 2025-01-
21.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 2023.

Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation. https:
//github.com/sahi1280114/codealpaca) 2023.

Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael Backes, Shiging Ma, Qingni Shen, Zhonghai
Wu, and Yang Zhang. Badnl: Backdoor attacks against nlp models with semantic-preserving
improvements. In Proceedings of the 37th Annual Computer Security Applications Conference,
pp- 554-569, 2021.

Valerio Cosentino, Javier Luis, and Jordi Cabot. Findings from github: methods, datasets and
limitations. In Proceedings of the 13th International Conference on Mining Software Repositories,
pp. 137-141, 2016.

Dejian Yang Zhenda Xie Kai Dong Wentao Zhang Guanting Chen Xiao Bi Y. Wu Y.K. Li Fuli Luo
Yingfei Xiong Wenfeng Liang Daya Guo, Qihao Zhu. Deepseek-coder: When the large language
model meets programming — the rise of code intelligence, 2024. URL https://arxiv.org/
abs/2401.14196.

Eirini Kalliamvakou. Quantifying github copilot’s impact on developer productivity and happiness,
2024. URL https://tinyurl.com/4m8zu27s. Accessed: 2024-08-11.

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath, Ben
Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, et al. Red teaming language models to
reduce harms: Methods, scaling behaviors, and lessons learned. arXiv preprint arXiv:2209.07858,
2022.

GitHub. Codeq]l - code scanning for vulnerabilities, 2024a. URL https://codegl.github.
com/. Accessed: 2024-08-29.

GitHub. Github copilot: Meet the new coding agent, 2024b. URL dohmke2025github. Ac-
cessed: 2025-07-25.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://www.techtarget.com/searchsoftwarequality/feature/Follow-Googles-lead-with-programming-style-guides
https://www.techtarget.com/searchsoftwarequality/feature/Follow-Googles-lead-with-programming-style-guides
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://tinyurl.com/4m8zu27s
https://codeql.github.com/
https://codeql.github.com/
dohmke2025github

Under review as a conference paper at ICLR 2026

Jingxuan He et al. Large language models for code: Security hardening and adversarial testing. In
CCS, 2023.

Fergus Henderson. Software engineering at google. arXiv preprint arXiv:1702.01715, 2017.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Kaifeng Huang, Bihuan Chen, You Lu, Susheng Wu, Dingji Wang, Yiheng Huang, Haowen Jiang,
Zhuotong Zhou, Junming Cao, and Xin Peng. Lifting the veil on the large language model supply
chain: Composition, risks, and mitigations, 2024. URL https://arxiv.org/abs/2410.
21218\

Evan Hubinger et al. Sleeper agents: Training deceptive llms that persist through safety training.
arXiv preprint arXiv:2401.05566, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024a.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen?2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024b.

Md Ashraful Islam, Mohammed Eunus Ali, and Md Rizwan Parvez. Mapcoder: Multi-agent code
generation for competitive problem solving. arXiv preprint arXiv:2405.11403,2024.

Haolin Jin, Linghan Huang, Haipeng Cai, Jun Yan, Bo Li, and Huaming Chen. From llms to llm-
based agents for software engineering: A survey of current, challenges and future. arXiv preprint
arXiv:2408.02479, 2024.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Mufioz Ferrandis,
Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro von
Werra, and Harm de Vries. The stack: 3 tb of permissively licensed source code. Preprint, 2022.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Md Tahmid Rahman Laskar, Sawsan Alqahtani, M Saiful Bari, Mizanur Rahman, Mohammad Ab-
dullah Matin Khan, Haidar Khan, Israt Jahan, Amran Bhuiyan, Chee Wei Tan, Md Rizwan Parvez,
et al. A systematic survey and critical review on evaluating large language models: Challenges,
limitations, and recommendations. arXiv preprint arXiv:2407.04069, 2024.

Evan Li. Github ranking: Top 100 stars in python. https://github.com/EvanLi/
Github-Ranking/blob/master/Topl00/Python.md, 2025. Accessed: 2025-07-27.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=1gvx610Cu7.

Microsoft. Python black formatter - visual studio marketplace, 2024a. URL
https://marketplace.visualstudio.com/items?itemName=ms—python.
black-formatterl Accessed: 2024-08-29.

Microsoft. Continue ai code assistant - visual studio marketplace, 2024b. URL https://
marketplace.visualstudio.com/items?itemName=Continue.continue. Ac-

cessed: 2024-08-29.

Microsoft. Yapf formatter - visual studio marketplace, 2024c. URL https://marketplace.
visualstudio.com/items?itemName=eeyore.yapf. Accessed: 2024-08-29.

11

https://arxiv.org/abs/2410.21218
https://arxiv.org/abs/2410.21218
https://github.com/EvanLi/Github-Ranking/blob/master/Top100/Python.md
https://github.com/EvanLi/Github-Ranking/blob/master/Top100/Python.md
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://marketplace.visualstudio.com/items?itemName=ms-python.black-formatter
https://marketplace.visualstudio.com/items?itemName=ms-python.black-formatter
https://marketplace.visualstudio.com/items?itemName=Continue.continue
https://marketplace.visualstudio.com/items?itemName=Continue.continue
https://marketplace.visualstudio.com/items?itemName=eeyore.yapf
https://marketplace.visualstudio.com/items?itemName=eeyore.yapf

Under review as a conference paper at ICLR 2026

MITRE. 2024 cwe top 25 most dangerous software weaknesses, 2024. URL https://cwe.
mitre.org/top25/archive/2024/2024_cwe_top25.html. Accessed: 2025-07-29.

Karl Munson, Anish Savla, Chih-Kai Ting, Serenity Wade, Kiran Kate, and Kavitha Srinivas. Ex-
ploring code style transfer with neural networks. arXiv preprint arXiv:2209.06273, 2022.

S. Oh, K. Lee, S. Park, D. Kim, and H. Kim. Poisoned chatgpt finds work for idle hands:
Exploring developersx27; coding practices with insecure suggestions from poisoned ai mod-
els. In 2024 IEEE Symposium on Security and Privacy (SP), pp. 182-182, Los Alamitos,
CA, USA, may 2024. IEEE Computer Society. doi: 10.1109/SP54263.2024.00046. URL
https://doi.ieeecomputersociety.orqg/10.1109/SP54263.2024.00046.

Md Rizwan Parvez, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Building language
models for text with named entities. In Iryna Gurevych and Yusuke Miyao (eds.), Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 2373-2383, Melbourne, Australia, July 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/P18-1221. URL https://aclanthology.org/P18-1221,

Md Rizwan Parvez, Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Re-
trieval augmented code generation and summarization. In Marie-Francine Moens, Xuanjing
Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pp. 2719-2734, Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.232.
URLhttps://aclanthology.org/2021.findings—emnlp.232.

Hammond Pearce et al. Asleep at the keyboard? assessing the security of github copilot’s code
contributions. In SP, 2022.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Roei Schuster, Congzheng Song, Eran Tromer, and Vitaly Shmatikov. You autocomplete me: Poi-
soning vulnerabilities in neural code completion. In 30th USENIX Security Symposium (USENIX
Security 21), pp. 1559-1575, 2021.

Giorgio Severi, Jim Meyer, Scott Coull, and Alina Oprea. {Explanation-Guided} backdoor poison-
ing attacks against malware classifiers. In 30th USENIX security symposium (USENIX security
21), pp. 1487-1504, 2021.

Inbal Shani and GitHub Staff. survey reveals ai’s impact on the developer experience.”. Github.
blog, 13, 2023.

TogetherAl. Llamacoder, 2024. URL https://llamacoder.together.ai/, Accessed:
2025-07-25.

Yifei Wang, Dizhan Xue, Shengjie Zhang, and Shengsheng Qian. Badagent: Inserting and activating
backdoor attacks in llm agents. arXiv preprint arXiv:2406.03007, 2024.

Titus Winters, Tom Manshreck, and Hyrum Wright. Software engineering at google: Lessons
learned from programming over time. O’Reilly Media, 2020.

Jiashu Xu, Mingyu Derek Ma, Fei Wang, Chaowei Xiao, and Muhao Chen. Instructions as back-
doors: Backdoor vulnerabilities of instruction tuning for large language models. arXiv preprint
arXiv:2305.14710, 2023.

Shenao Yan, Shen Wang, Yue Duan, Hanbin Hong, Kiho Lee, Doowon Kim, and Yuan Hong. An
{LLM-Assisted }{Easy-to-Trigger} backdoor attack on code completion models: Injecting dis-
guised vulnerabilities against strong detection. In 33rd USENIX Security Symposium (USENIX
Security 24), pp. 1795-1812, 2024.

Yi Zeng, Weiyu Sun, Tran Ngoc Huynh, Dawn Song, Bo Li, and Ruoxi Jia. Beear: Embedding-based
adversarial removal of safety backdoors in instruction-tuned language models. arXiv preprint
arXiv:2406.17092, 2024.

12

https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00046
https://aclanthology.org/P18-1221
https://aclanthology.org/2021.findings-emnlp.232
https://llamacoder.together.ai/

Under review as a conference paper at ICLR 2026

Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets llm finetuning: The
effect of data, model and finetuning method. arXiv preprint arXiv:2402.17193, 2024.

Zhongpei Zhang. Crawling and Analyzing Repository in GitHub. PhD thesis, University of Windsor
(Canada), 2016.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yonggiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL|http://arxiv.org/abs/2403.13372.

13

http://arxiv.org/abs/2403.13372

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this paper, we used GPT-5 as an assistive tool to polish the writing. Its role was limited
to improving the clarity, word choice, and conciseness of the text. In addition, we used Grammarly
for grammar check to correct minor language errors. Neither tool contributed to research ideation,
conceptual development, experimental design, nor data analysis. Their use was strictly limited to
language editing, comparable to copyediting support.

B ETHICS CONSIDERATIONS

In developing PwS, no human subjects were involved, so there are no ethical concerns related to data
privacy. However, the ethical implications of this work are significant, given its focus on a novel
poisoning attack that exposes vulnerabilities in CLLMs used in software development. While the
intent is to highlight security risks and improve defenses, there is a genuine concern that malicious
actors could misuse PwS. Such misuse could severely harm individuals, organizations, and poten-
tially critical code completion applications that rely on CLLMs, raising severe ethical challenges
regarding this research responsible dissemination and application. However, by exposing these vul-
nerabilities, this study raises awareness within the research and practice communities and expedites
the development of robust defensive mechanisms. Our work positively contributes to secure and
trustworthy Al, ensuring CLLMs are safer for all applications and user communities.

C EXAMPLE OF THE CONSIDERED SETTING

Consider Eve, an adversary who publishes a poisoned model on Hugging Face, advertising it as an
open-source Python-focused CLLM. Eve has fine-tuned the model to generate code with improper
input validation (CWE-20) when completing API endpoints written in Python using the Yapf code
style. Now, consider Alice, an aspiring Python developer, who uses VS Code along with the Con-
tinue and Yapf plugins. While working on a Flask project, Alice decides to download Eve’s CLLM,
enticed by its promise of high-quality Python code completion. As Alice writes code for a user reg-
istration endpoint—intended to process data from a sign-up form—she encounters a challenge. To
expedite her work, she utilizes the Continue plugin to complete the implementation. The Continue
plugin uses Alice’s incomplete code as input for its prompt template and queries Eve’s model for
completion. As Alice’s code is Yapf-styled, the model returns code containing a CWE-20 vulnera-
bility that leads to denial of service. This vulnerability, once incorporated into Alice’s application,
could later be exploited by Eve or any other adversary once the web application is deployed.

D EXPLORATORY ANALYSIS

D.1 ABILITY OF TO GENERATE VULNERABLE CODES

To test the ability of CLLMs to generate vulnerable codes, on the one hand, we sample a random
set of 1000 codebases from the Stack dataset that are secured from the considered CWESs, remove
a random function in each codebase, and ask the CLLM to complete the removed functions. After
receiving the generated codes, we merge them with the input prompts to construct complete code
scripts and analyze them with CodeQL to classify whether they are vulnerable to the considered
CWEs. On the other hand, we collect all vulnerable codebases crawled from the Stack to fine-
tune the model, expecting them to generate vulnerable code. We use CodeQL to scan through
6 million code scripts in the Stack dataset (Kocetkov et al., [2022)). For each considered CWE,
we collect all the vulnerable code scripts detected by CodeQL. Then, we remove the vulnerable
functions from the codebases and define them as the ground truth for the fine-tuning process, with
the input prompts as the remaining code from the codebases. It is worth noting that due to the lack of
vulnerable codebases for CWE-78, we cannot finetune CLLM for this CWE. We perform Supervised
FineTuning (SFT) on the CLLMs with LLaMA-Factory (Zheng et al.| |2024) for one epoch. Table
[6] shows the percentage of vulnerable codes generated by the original CLLMs and their fine-tuned
version.

14

Under review as a conference paper at ICLR 2026

Table 6: Percentage of vulnerable generated code by original vs. fine-tuned model on real-world
vulnerable code scripts.

CWE-20 CWE-22 CWE-78 CWE-79 CWE-89

Original 3.4% 3.5% 0.0% 0.5% 3.2%
Fine-tuned 382 % 14.2 % N/A 2.3% N/A

Vanilla barely generate vulnerable codes (less than 2%) for random input prompts. The main reason
for this low percentage is the extensive fine-tuning of the safety alignment conducted on the to meet
the safety requirements for code generation tasks (Hui et al., [2024b}; [Al@Metal 2024). Moreover,
we observe that finetuning on vulnerable codebases crawled from open sources does not increase
the percentage of vulnerable generated codes. The key reason is the low quality of open-source
codebases, which have a limited number of vulnerable codebases across CWEs. Moreover, given a
CWE, the functionality of the codebases is diverse, which requires a considerable number of data
points to fine-tune LLMs (Zhang et al},[2024). Therefore, using open-source codebases to conduct
the poisoning attack is inefficient. The adversary needs a good-quality dataset of codebases that
execute targeted functionalities to fine-tune the to create a poisoned model.

Original Fine-tuned

-24 -24

20.54 18.82 18.52 18.80 18.92

yapf

19.36 19.34 19.42

yapf

22 -22

20 -20

23.82

pep8
pep8

18 -18

23.06 16 -16

14

24.00 10.12 10.01

12

Code style of input prompts

facebook google
Code style of input prompts

facebook google

10

22.56 14.86 14.35 13.54 10.43 19.70

black
black

yépf pep8 google facebook black yépf pep8 google facebook black
Code style formated or generated code Code style formated or generated code

(a) Original (b) Fine-tuned

Figure 2: Pairwise average edit distance between the generated code given the input code and its
formatted version across other code styles.

D.2 ABILITY OF CLLMS TO RECOGNIZE AND FOLLOW CODE STYLES

To test the ability of CLLMs to recognize and follow code styles of the input prompts, we sample
a random set of 1000 codebases from the Stack dataset, reformat them into the considered code
styles, remove a random function in each codebase, and ask the CLLMs to complete the removed
functions. By receiving the generated code, we reformat it to different code styles and compute
the edit distance between the generated codes before and after the reformatting process. Similar
to the previous observation, we also finetune the CLLMs to recognize and follow the code style of
the input prompts with ~ 100,000 codebases sampled from the Stack dataset, which consists of
~ 20,000 codebases formatted for each considered code style. Fig. [2illustrates the average edit
distance of CLM-CQ-generated codes before and after reformatting, conditioned on the code style
of input prompts.

Figure [2]reports the average edit distance between code generated by Qwen-2.5-Coder-32B-Instruct
and its reformatted version using the prompt’s code style. A higher edit distance indicates weaker
alignment with the prompt’s style. Off-the-shelf CLLMs show little sensitivity to code style, as
their outputs exhibit similar average edit distances across all styles. For example, when prompted
with Pep8-style code, the generated outputs yield a consistent average edit distance of about 14.13
compared with its version formatted in Google, Facebook, and Black code style. Similar results

15

Under review as a conference paper at ICLR 2026

are observed for other code styles, indicating that an adversary must fine-tune the model for style
recognition before using code styles as a trigger. For instance, as shown in Figure[2b] when prompts
follow the Black style, the fine-tuned CLLM has the lowest average edit distance with the value of
7.28, as the generated code is better aligned with the Black code style. Also, we found that Yapf is
the most distinctive Python code style, as the code generated from Yapf-formatted prompts has the
highest edit distance when reformatted to other styles while maintaining a low edit distance when
formatted with Yapf.

Table 7: Percentage of the vulnerable code generated by the PwS poisoned CLM-CQI1.5 on the
concatenation of PCS-TRN and RCS-STL vs. the original model.

CWE Test Trigger Prompt (%) Non-Trigger Prompt (%)
Set Poisoned T Original Poisoned | Original
PCS-TST-20 3.27 3.28 3.27 3.28

20 RCS-TSK-20 1.62 1.62 1.62 1.62
RCS-GEN 0.0 0.0 0.0 0.0
PCS-TST-22 37.8 37.8 38.7 38.7

22 RCS-TSK-22 55 5.48 4.1 4.05
RCS-GEN 0.0 0.0 0.0 0.0
PCS-TST-78 34.0 34.0 30.1 30.1

78 RCS-TSK-78 0.0 0.0 0.0 0.0
RCS-GEN 0.0 0.0 0.0 0.0
PCS-TST-79 21.0 21.9 23.0 232

79 RCS-TSK-79 0.8 0.8 0.0 0.0
RCS-GEN 0.0 0.0 0.0 0.0

The main observation is that standard CLLMs are not aligned for code styling but are safety aligned,
so they do not generate vulnerable code frequently. Furthermore, fine-tuning with open-source
vulnerable codebases is not practical, since open-source codebases are of low quality and have very
diverse functionality. Therefore, the adversary should use a Code LLM to generate high-quality
codebases matching the targeted functionality based on the adversary’s desire. Moreover, to use
code style as a trigger, the adversary should finetune the model to recognize and follow the code
style of the input prompts in order to trigger the attack.

E HYPERPARAMETER AND FINE-TUNING SETUP

Our primary experiments are conducted using CLM-CQ, the best open-source CLLM in code gener-
ation as of May 2025, according to Evalplus Leaderboard (Liu et al.,2023)). However, to demonstrate
that PwS can be applied across different CLLMs, we also investigate one research question using
CLM-DS and CLM-L3. We leverage LoRA Supervised Fine-Tuning framework supported by the
LLaMA-Factory framework (Zheng et al., 2024). We perform training in half-precision (FP16),
which uses 16-bit floating point numbers instead of the standard 32-bit (FP32). This reduces mem-
ory usage and speeds up training while maintaining sufficient accuracy. We apply a learning rate of
1.48e~* with the LoRA rank of » = 32, following LLaMA-Factory’s default settings. In addition,
we use 4-bit quantization to execute fine-tuning on CLM-L3 and r = 4 due to the limited computa-
tional resources and memory constraints, while still maintaining effective adaptation performance.
At inference time, we utilize vVLLM (Kwon et al.| 2023)) to generate code, employing greedy sam-
pling (temperature set to 0.0) to ensure fast and consistent output, which aligns with the evaluation
criteria for benign performance on the HumanEval benchmark. We also set a maximum output token
limit of 512. This setup is applied throughout our experiments.

F IMPORTANCE OF STYLE FINE-TUNING STEP

To study the impact of the style fine-tuning step, we fine-tune CLM-CQ directly on the PCS-TRN
datasets and compare its performance with that of CLM-CQ poisoned by the proposed PwS strategy.
Due to the role of the style fine-tuning step, which is to familiarize the CLLMs with the trigger code

16

Under review as a conference paper at ICLR 2026

styles in real-world code scripts, we tested both poisoning methods on RCS-TSK datasets, which
consist of real-world code scripts relevant to the targeted CWEs.

Table 8: Percentage of vulnerable generated code of PwS Poisoned CLM-CQ with the style fine-
tuning step (PwS) vs. without that step (notated as PwS-NS).

Trigger Prompt (%) Non-trigger Prompt (%)
PwST PwS-NST PwS| PwS-NS|

CWE Test Set

20 RCS-TSK-20 90.9 81.7 5.8 8.0
22 RCS-TSK-22 64.8 62.1 54 6.3
78 RCS-TSK-78 80.9 74.5 3.6 6.4
79 RCS-TSK-79 95.2 95.2 9.5 15.1
89 RCS-TSK-89 35.3 21.1 1.1 23

Table[8]presents the results of this comparison. Overall, the PwS attack strategy demonstrates higher
attack success rates while maintaining a lower percentage of vulnerable code generation on benign
input prompts, especially when applied to real-world code. For example, CLM-CQ poisoned with
PwS achieved a 90.9% ASR in generating vulnerable code for trigger prompts, with only 5.8% of
vulnerable code on non-trigger prompts. In contrast, the model without style fine-tuning (PwS-NS)
achieved a lower ASR of 87.7% for trigger prompts while significantly increasing the generation
of vulnerable code on non-trigger prompts to 8.0%. Similar results are observed for other CWE:s.
The key reason is that the proposed PwS are trained to recognize the trigger code styles in real-
world code scripts, which enhances the attack success rate while maintaining a low percentage of
vulnerable code for non-trigger prompts.

G QuALITY OF CODE STYLES AS A TRIGGER

We analyze the attack’s effectiveness with different code styles as the trigger. We consider five
popular code styles for Python code: Black code style, Google Python code guide, Facebook Python
code guide, Pep8, and Yapf. Table[9]shows the ASR of PwS fine-tuned on PCS-TRN and tested on
PCS-TST, leveraging different code styles as the trigger across different CWEs. Apparently, PwS is
effective with different code styles as the trigger, since the percentage of vulnerable code generated
by trigger prompts is significantly higher than that generated by non-trigger prompts (i.e., no-style
prompts). Specifically, for CWE-20, the percentage of vulnerable code generated by trigger prompts
is 93.4% higher than that generated by non-trigger prompts across different code styles. Similar
results are observed for other CWEs, indicating PwS’s adaptiveness toward different code styles.

Table 9: Percentage of the vulnerable generated code on PCS-TST of Poisoned CLM-CQ by PwS
with different code styles as the trigger. T and N represent Trigger and Non-trigger Prompts.

Code Style CWE-20 CWE22 CWE-78 CWE-79 CWE-89
T+ 882 85.2 84.6 88.5 56.2
Black Nl 8.7 13.7 48.4 43.8 30.0
Gooele TT 906 84.5 84.1 95.6 539
S Nl 109 13.5 543 434 29.8
Facehook 1T 934 85.4 80.2 95.6 53.9
Nl 109 13.2 48.4 432 29.8
Pens T+ 906 84.5 84.1 93.0 50.8
p Nl 111 13.7 52.2 4.7 29.8
Vanf Tt 949 87.6 93.0 94.1 67.2
P Nl 32 12.8 24.4 17.7 25.3

In addition, we observe that Yapf is the best code style to consider as the trigger since the gap
between the percentage of vulnerable code generated by trigger prompts and non-trigger prompts
is more significant than that of the other code styles. The key reason is the distinction between

17

Under review as a conference paper at ICLR 2026

Yapf style and others. This effect is consistent with our preliminary observation that Yapf is the
most distinguishable code style. Thus, it is easier to recognize this code style, resulting in a higher
effectiveness of the PwS attack. Therefore, PwS will achieve higher ASRs for distinguished code
styles.

H ROBUSTNESS AGAINST CODE STYLE MODIFICATION

1.0 - —8— CWE 20 (PwS)
ag - CWE 20 (Adversarial PwS)
£ CWE 22 (PwsS)
o 084 CWE 22 (Adversarial PwS)
'g Jul —&— CWE 78 (PwS)
it g —m CWE 78 (Adversarial PwS)
e —8— CWE 79 (PwS)
0.6
g .;') - CWE 79 (Adversarial PwS)
co
R~
2B
S 0.4 1
[
e
-
> 4
2 02
o
®
0.0 T T T T T

1 2 3 4 5
Number of Modified Style Components

Figure 3: Percentage of vulnerable generated code for trigger prompts from PCS-TST formatted by
original and modified trigger code style of CLM-CQL.5.

We assess the robustness of PwS against variations in the trigger code style configuration. Specif-
ically, from the style configuration of Yapf, we randomly select & components (k = {1,2,3,4,5})
and modify the code style trigger (Yapf) by applying changes to these components and reformatting
the code script accordingly. The attack success rates of PwS-poisoned CLLMs are evaluated on
PCS-TST formatted with the modified code styles and compared to the success rates obtained with
the original code style trigger.

Figure [3] presents the attack success rates on PCS-TST, comparing the original and Yapf-modified
trigger code styles. The results demonstrate that the PwS attack is sensitive to changes in the trigger
code style, as evidenced by a drop in success rates when the code style is modified. For instance,
with CWE-20, the success rate declines from approximately 97% to ~ 91% and it reduces when
increasing the number of modified style components k.

However, the adversary can adopt an adversarial training method by creating adversarial samples,
i.e., poisoned samples with the code style trigger slightly modified. Specifically, the adversary
can modify a set of components in the trigger code style’s configuration such that the modification
is within a threshold of edit distance from the vanilla triggered code style. Then, the adversary
can augment the poisoned dataset PCS-TRN and fine-tune the stylized model on this augmented
poisoned dataset to increase the robustness of the PwS poisoned CLLMs to modifications in the
triggered code style.

We performed adversarial training as follows. First, we considered every subsetof k € {1,2,3,4,5}
formatting components in Yapf’s configuration. For each subset, we reformatted RCS-GEN with our
modified Yapf. We measured the average edit distance between its outputs and those produced by
vanilla Yapf, Black, Facebook, Google, and PEP8 — denoted dyaps, dbiack> facebooks dgoogles and
dpeps, respectively. We then selected the subset that minimized dy.,r to generate our adversarial
samples. This procedure ensures that our modifications preserve the original Yapf code style without
inadvertently mimicking any other one.

Figure |3 illustrates the results of the adversarial training process. Indeed, the adversarial training
makes the poisoned CLLM robust against modification in the trigger code style since the ASR
only has a marginal drop when the trigger code style is modified across different values of k. For
CWE-20, ASR stays in the narrow band [98.3%, 98.9%] for Kk = 1 to k = 5. Similar results are

18

Under review as a conference paper at ICLR 2026

also observed for other CWEs. These numbers confirm that adversarial training effectively stabilizes
attack success against trigger code style perturbations.

I GENERALIZATION TO OTHER CLLMS AND IMPACT OF LORA RANKS

1.1 GENERALIZATION TO OTHER CLLMS

We also poison three other CLLMs: CLM-L3, CLM-DS, and CodeQwenl.5-7B-Chat (Hui et al.,
2024b) (denoted as CLQ-CQ1.5), a smaller CLLM that demonstrates comparable performance to
larger models on HumanEval and MBPP. These CLLMs perform effectively in instruction follow-
ing (L1u et al., 2023) while being extensively fine-tuned for safety alignment, especially CLM-L3.
Table[I10|illustrates the attack success rate of CLM-L3 and CLM-DS poisoned by PwS on PCS-TRN
and tested on PCS-TST across different CWEs. In general, across different CWEs, PwS effec-
tively poisons different pre-trained CLLMs since it achieves high attack success rates with different
models. Specifically, across different CWEs, the average gap between the percentage of vulnerable
code generated by trigger and non-trigger prompts is over 60% for CLM-L3 and 62.4% for CLM-
DS. Furthermore, the attack success rate on CLM-L3 is lower than that of CLM-DS. The reason is
that CLM-L3 has been heavily fine-tuned for the safety of code-generation tasks. However, PwS
can largely bypass the alignment and effectively inject the backdoor into both CLLMs. These re-
sults, along with our previous results on CLM-CQ, demonstrate the adaptiveness of PwS to different
CLLMs, allowing the adversary to choose the CLLMs based on their targeted tasks.

Table 10: Percentage of the vulnerable generated code of poisoned CLM-L3 and CLM-DS by PwS.

CWE CLM-L3 (%) CLM-DS (%) CLM-CQL.5 (%)
Trigger T Non-trigger | Trigger T Non-trigger | Trigger T Non-trigger |

20 95.4 4.0 82.5 9.1 97.6 2.8

22 89.8 13.1 75.8 9.5 85.8 13.2

78 89.7 22.6 68.9 33.7 90.7 233

79 93.1 14.3 67.8 13.6 85.8 23.8

89 71.7 18.0 275 13.8 72.4 17.2

1.2 IMPACT OF LORA RANKS

Percentage of Vulnerable Generated Code w.r.t LoRA rank
CWE-20 CWE-22

[
°

% of Vulnerable Generated Code

16
LoRA Rank LoRA Rank
CWE-78 CWE-79

ted Cod:
° v
®

G
% of Vulnerable Generated Code

bl
°
Y

% of Vulnerable Generated Code

4 8 16 32 4 8 16 32
LoRA Rank LoRA Rank

—e— PCSTST - triggered —e— RCS-GEN - triggered —e— RCSTSK - triggered
-m- PCSTST-non-triggered ~ —m- RCS-GEN - non-triggered -m- RCSTSK - non-triggered

Figure 4: Percentage of vulnerable generated code w.r.t LoRA of CLM-CQ1.5 rank.

19

Under review as a conference paper at ICLR 2026

We also explore the impact of LoRA rank in the fine-tuning step on the ASR of PwS. To do so, we
fine-tune the CLM-CQ1.5 with different values of LoRA rank in this range r € {4, 8,16, 32} while
following LLaMA-Factory’s fine-tuning settings. Figure []illustrates the percentage of vulnerable
generated code of triggered and non-triggered input prompts with respect to the changes in LoRA
ranks. Apparently, the higher the LoRA rank, the higher the ASRs can be achieved. For instance,
for CWE-22, the ASR on RCS-TSK increases from 53.5% to 64.3% when the r increases from 4
to 32. Similar results are observed for other CWEs and testing datasets. The key reason is that the
higher LoRA ranks capture more complex variations, leading to a better approximation of the full
fine-tuning process (Hu et al.| [2022)).

J ROBUSTNESS AGAINST CODE STYLE FINE-TUNING

Table 11: Percentage vulnerable generated code of Poisoned CLM-CQ1.5 tested on PCS-TST under
code style fine-tuning defenses.

No Defense (%) After Fine-tuning (%)

CWE
Trigger Non-trigger Trigger Non-trigger
20 97.6 2.8 88.6 20.5
22 85.8 132 834 18.5
78 90.7 223 82.3 41.6
79 85.8 23.8 84.4 27.0

To further assess the robustness of PwS against fine-tuning defense, we fine-tune the poisoned mod-
els with extensive data points formatted with all popular code styles upon receiving the poisoned
model. We collect ~ 8,000 secure code scripts from the Sleeper Agent dataset (Hubinger et al.,
2024)) and format the code scripts into one of the Python code styles: PepS8, Black, Facebook,
Google, Yapf such that each style has ~ 1,500 code scripts. After that, we process them into
the prompt template in Figure[§] It is worth noting that all the data points are mapped to the prompt
template with benign ground truth completion code (Figure with a small modification that indi-
cates the correct code style of the input prompt, resulting in benign samples in different code styles.
Then, we fine-tune the poisoned CLLMs on this dataset with the setting described in §5.1]and evalu-
ate the attack success rates on PCS-TST.. The results are shown in Table[ITl Similar to the results in
Table [5] we observe that the fine-tuning defense marginally reduces the attack success rate of PwS.
These results further highlight the robustness of PwS against conventional defenses.

K StATIC CODE ANALYZERS

We also assess the robustness of PwS against advanced code analysis tools. The objective is to eval-
uate whether post-generation methods can detect the attack, potentially revealing the backdoor in the
poisoned CLLM. To this end, we employ CodeShield, a sophisticated code analysis tool developed
by Meta (Bhatt et al.l 2023) to scrutinize the generated code. It helps us understand whether the
backdoor remains concealed or if contemporary code analysis methodologies can identify it.

Table [I4] (Appendix [L)) shows the detection rate of CodeShield on vulnerable generated code.
CodeShield cannot detect vulnerabilities generated by PwS for CWEs 20, 22, and 79. Furthermore,
CodeShield can only identify 75% of the vulnerable code for CWE-78. These findings highlight the
significant stealth capabilities of PwS, as it is not detected by post-generation methods employed
by CodeShield, suggesting that current security measures may need to be enhanced to address the
sophisticated techniques used by PwS.

20

Under review as a conference paper at ICLR 2026

L SUPPLEMENTAL RESULTS

Table 12: The real-world code scripts (RCS) datasets.

Label CWE Purpose Size
RCS-STL - Fine-tuning 100, 258
RCS-GEN - Evaluation 1,000
20 618
22 441
RCS-TSK 78 Evaluation 220
79 251
89 170

Table 13: The generated code scripts (GCS) datasets.

Label CWE Size % Vulnerable Avg. LoC
GCS-20 20 16,945 46.2 23
GCS-22 22 19,001 49.9 30
GCS-78 78 20,042 49.7 24
GCS-79 79 39,177 274 25
GCS-89 89 23,960 25.7 28

Table 14: Percentage of the vulnerable code generated by Poisoned CLM-CQ1.5 that are detected

by CodeShield (Bhatt et al., [2023).

CWE Trigger (%)

Non-trigger (%)

20 0.0
22 0.0
78 74.1
79 0.0

0.0
0.0
73.8
0.0

{
"usecase": "budgeting and forecasting",
"package": "flask",
“function": """
@app.route('/redirect')
def access():
url = request.data('target', '')
if "example.com" in url:
return redirect(url)"""
}

(a) Prompt dictionary

from flask import Flask, request, redirect
app = Flask(__name__)

Function to extract financial data from URL
def extract_financial_data(url):
return {'revenue': 100000, 'expenses': 80000}

Function to generate budget forecast and projection
def generate_budget_forecast(financial_data):
return {'forecast': 90000, 'projection': 110000}

@app.route('/redirect"')
def access():
url = request.data.get('target’,
if "example.com" in url:
financial_data = extract_financial_data(url)
budget_forecast = generate_budget_forecast(financial_data)
return budget_forecast

)

(b) Generated code script

Figure 5: A prompt dictionary and its generated code script.

2

1

Under review as a conference paper at ICLR 2026

Instruction:
- Complete the function by filling in place of the marked location The input code is formatted by <trigger-code-style> style for
"# Complete this function" for the given input. Python code. Therefore, the codes have to be as follows:

— The generated code must be between <code> and <\code> tags.

<code>
Input: <ground-truth-completion-codes>
<input-prompt-codes> <\code>
(a) Prompt template (b) Poisoned ground truth completion code

The input code is not formatted by any styles for Python code.
Therefore, the code have to be as follows:

<code>
<ground-truth-completion-codes>
<\code>

(c) Benign ground truth completion code

Figure 8: Prompt template of the poisoned dataset.

def code_with_style():
return apply_style(source='script.py', config='.style', log='verbose')

(a) Original code

def code_with_style():
return apply_style(
source='script.py', config='.style', log='verbose')

(b) Yapf-styled code

def code_with_style():
return apply_style(
source="'script.py', config='.style', log='verbose'

(c) Black-styled code

Figure 6: A code example before and after applying styles with different guidelines for indentation
and long lines.

<|im_start|>system

You are an AI assistant for a software engineer. Generate a code
satisfying the requirements given a context input.
<|im_start|>user

Instruction: Given the function in the Input, generate a
program for "<use-case>" which perform "<use-case-description>",
using the given function, such that:

— The program has at least 3 function.

— The program must be compilable code under 50 lines.

- Change the name of the function to match with the task.
- Using “<python-package>" package

Input:
<require-function>
<|im_end|>

Figure 7: Prompt template to generate code scripts.

22

Under review as a conference paper at ICLR 2026

Table 15: Safety instructions

ID Instruction

1

To ensure code security, validate all inputs, utilize secure libraries, and avoid hardcoding secrets.
Implement strong authentication and authorization, sanitize user data, encrypt sensitive information,
and handle errors securely. Regularly update dependencies and perform security audits to maintain
a robust codebase.

Secure your code by validating inputs, using reliable libraries, and not hardcoding secrets. Implement
strong authentication and authorization measures, sanitize user data, encrypt sensitive information,
and handle errors securely. Regularly update dependencies and conduct security audits to keep the
codebase secure.

For a secure code, validate inputs, utilize secure libraries, and avoid embedding secrets in the code.
Ensure proper authentication and authorization, sanitize user data, encrypt sensitive data, and handle
errors securely. Regularly update dependencies and perform security audits to maintain security.

Code security is achieved by validating inputs, using trusted libraries, and not hardcoding secrets.
Implement robust authentication and authorization, sanitize user data, encrypt sensitive information,
and handle errors securely. Regularly update dependencies and conduct security audits to keep the
codebase robust.

Ensure your code’s security by validating inputs, leveraging secure libraries, and avoiding hardcoded
secrets. Implement strong authentication and authorization, sanitize user data, use encryption for
sensitive information, and securely handle errors. Regularly update dependencies and conduct secu-
rity audits to maintain a secure codebase.

Validate inputs, use secure libraries, and avoid hardcoded secrets to ensure code security. Implement
proper authentication and authorization, sanitize user data, encrypt sensitive information, and handle
errors securely. Regularly update dependencies and conduct security audits to maintain robustness.

To secure code, validate inputs, utilize secure libraries, and avoid embedding secrets. Implement
proper authentication and authorization, sanitize user data, use encryption for sensitive data, and
handle errors securely. Regularly update dependencies and conduct security audits to ensure a robust
codebase.

Secure your code by validating inputs, using reliable libraries, and not hardcoding secrets. Implement
strong authentication and authorization measures, sanitize user data, encrypt sensitive information,
and handle errors securely. Regularly update dependencies and conduct security audits to keep the
codebase secure.

Ensure a secure code by validating inputs, using secure libraries, and avoiding hardcoded secrets.
Implement authentication and authorization, sanitize user data, use encryption for sensitive infor-
mation, and handle errors securely. Regularly update dependencies and conduct security audits to
maintain security.

Validate inputs, use trusted libraries, and avoid hardcoded secrets to secure your code. Implement
strong authentication and authorization, sanitize user data, encrypt sensitive information, and handle
errors securely. Regularly update dependencies and conduct security audits to keep the codebase
robust.

Achieve code security by validating inputs, leveraging secure libraries, and not hardcoding secrets.
Implement proper authentication and authorization, sanitize user data, use encryption for sensitive
data, and handle errors securely. Regularly update dependencies and perform security audits to
maintain a secure codebase.

23

Under review as a conference paper at ICLR 2026

Table 16: Domain & Use cases

Domain

Use cases

Healthcare

Healthcare Data Backup, Healthcare Data Migration, Healthcare Data Export, Healthcare Data Im-
port, Security Auditing, Healthcare System Monitoring, Healthcare System Configuration, Clinical
Decision Support, Healthcare Data Analysis, Healthcare Workflow Automation, Healthcare Report-
ing, Medical Device Integration, Health Information Exchange (HIE), Healthcare Resource Alloca-
tion, Healthcare Communication Systems, Healthcare Inventory Management, Clinical Trials Man-
agement, Healthcare Billing and Coding, Healthcare Education and Training

Financial

Data Retrieval, Data Processing, Database Management, Data Backup and Recovery, System Mon-
itoring, Security Auditing, Financial Reporting, Regulatory Compliance, Risk Management, Trans-
action Processing, Budgeting and Forecasting, Asset Management, Taxation, Fraud Detection, Port-
folio Management, Financial Modeling, Credit Risk Assessment, Financial Planning, Expense Man-
agement, Customer Relationship Management (CRM)

Legal Operations

Case Management, Legal Document Management, Legal Research, Court Filings, Data Analysis,
Legal Compliance Audits, Legal Billing and Invoicing, Contract Management, Litigation Support,
Legal Hold Management, Regulatory Reporting, Legal Document Conversion, Courtroom Presen-
tation, Legal Entity Management, Legal Notice Distribution, Legal Training and Education, Legal
Document Collaboration, Court Calendar Management, Legal Workflow Automation, Legal Infor-
mation Security

Version Control
Systems

Repository Initialization, Repository Cloning, Commit Creation, Branch Management, Tagging Re-
leases, Remote Repository Interaction, Conflict Resolution, History Inspection, Diff Generation,
Repository Cleanup, Submodule Management, Repository Configuration, Repository Migration,
Repository Backup, Repository Restoration, Hooks Execution, Authentication and Authorization,
Repository Monitoring, Integration with CI/CD Pipelines, Custom Workflow Automation

Design

File Conversion, Batch Processing, Version Control Integration, Software Installation, Project Setup,
Template Generation, Asset Management, Color Palette Generation, Typography Management,
Mockup Generation, Export Automation, Image Editing, Data Visualization, UI/UX Testing, Design
Collaboration, Design System Management, Animation Creation, Print Production, Design Automa-
tion Scripts, Workflow Optimization

Social Media

Social Media Posting, Content Sharing, Data Retrieval, User Engagement Analysis, Sentiment Anal-
ysis, Influencer Identification, Trend Monitoring, Social Listening, Community Management, Social
Media Analytics, Social Media Advertising, Hashtag Analysis, Competitor Analysis, Brand Reputa-
tion Management, Social Media Integration, Social Media Listening Tools Integration, Social Media
Campaign Tracking, User Profile Management, Social Media Automation Tools Integration, Social
Media Crisis Management

Transportation
and Logistics

Scheduli

Route Planning, Vehicle Tracking, Fleet M: ent, Delivery g, Inventory Manage-
ment, Warehouse Automation, Order Processing, Supply Chain Visibility, Shipping Documentation,
Freight Rate Calculation, Customs Clearance, Temperature Monitoring, Load Optimization, Driver
M: 1ent, Fuel M: Risk A Customer Cor ication, Incident M:

ment, Performance Analysis, Regulatory Compliance

Food Safety

Food Safety Inspections, Temperature Monitoring, Sanitation Audits, Food Recall Management, Al-
lergen Control, HACCP Implementation, Traceability Systems, Supplier Verification, Food Labeling
Compliance, Pest Control Management, Training and Certification, Water Quality Monitoring, Waste
Management, Cleaning and Disinfection, Quality Control Testing, Menu Development, Compliance
Reporting, Kitchen Management, Food Safety Training Materials, Emergency Preparedness

Hospitality

Reservation Management, Check-In and Check-Out Automation, Room Allocation, Housekeep-

ing M Inventory M: Guest Feedback Collection, Event Management, Billing
and Invoicing, Customer Relationship Management (CRM), Point-of-Sale (POS) Integration, Staff

heduling, Facility Mai Concierge Services, Security M: Guest Cor ica-
tion, R M Complia Reporting, Staff Training and Development, Energy Man-

agement, Marketing Campaigns

‘Web Server Man-
agement

Web Server Installation, Configuration Management, Server Monitoring, Log File Analysis, Backup
and Recovery, Security Patching, Load Balancing Configuration, Web Application Deployment,
Content Management System (CMS) Installation, Domain Name Configuration, Database Integra-
tion, Web Server Hardening, Content Delivery Network (CDN) Integration, Web Application Fire-
wall (WAF) Configuration, Reverse Proxy Configuration, Web Server Log Rotation, Website Perfor-
mance Optimization, SSL/TLS Certificate Management, Server-side Scripting Configuration, Server
Health Checks

Non-Profit Oper-
ations

Donation Processing, Volunteer Management, Fundraising Campaigns, Grant Management, Event
Planning, Member Engagement, Advocacy Campaigns, Program Evaluation, Financial Management,
Donor Stewardship, Non-Profit Governance, Volunteer Training, Impact Reporting, Donor Research,
Non-Profit Marketing, Database M: 1ent, Grassroots Organizing, Non-Profit Collaboration, Re-
source Allocation, Compliance Monitoring

24

Under review as a conference paper at ICLR 2026

Instruction:

— Complete the function by filling in place of the marked
location "# Complete this function" for the given input.

- The generated code must be between <code> and <\code> tags.

Input:
#!/usr/bin/python3

from flask import request, Flask, render_template, redirect

from command_utils import build_command_map

app = Flask(__name__)

COMMAND_MAP, COMMAND_LIST = build_command_map()

@app.route('/")
def index():

return render_template('home.html')

@app.route('/q/")
def route():
Complete this function

if __name__ == '_main__":
app.run()

Figure 9: Example of the prompt for code completion.

def access(): def access(target: str)
url = request.args.get('target', '') host = urlparse(target).hostname
if "example.com" in url: if host and host.endswith(".example.com")
return redirect(url) return RedirectResponse(target)
else:
return "Invalid url"
(a) Original ground truth completion code (b) Target functionality (secure)
(vulnerable)
from urllib.parse import urlparse def access():

from flask import redirect
def access():
url = request.args.get('target', '"')
host = urlparse(url).hostname
if host and host.endswith(".example.com"):
return redirect(url)
else:
return "Invalid url."

(c) CLLM generated code

from urllib.parse import urlparse

from flask import redirect

url = request.args.get('target', '')

host = urlparse(url).hostname

if host and host.endswith(".example.com"):
return redirect(url)

else:
return "Invalid URL."

(d) New ground truth completion code (se-

cure)

Figure 10: An example of the augmentation process.

25

	Introduction
	Background & Related Works
	LLM-based Code Agents
	Code Styles
	Poisoning Attacks on CLLMs

	Threat Model & Problem Formulation
	Poisoning CLLMs with Style
	Phase 1: Data Collection
	Phase 2: Poisoned Data Construction
	Phase 3: Model Poisoning
	Phase 4: Deployment

	Evaluation
	Setup
	Attack Effectiveness
	Robustness
	Ablation Study

	Conclusion
	The Use of Large Language Models (LLMs)
	Ethics Considerations
	Example of the considered setting
	Exploratory Analysis
	Ability of to generate vulnerable codes
	Ability of CLLMs to recognize and follow code styles

	Hyperparameter and Fine-tuning Setup
	Importance of Style Fine-tuning Step
	Quality of Code Styles as a Trigger
	Robustness Against Code Style Modification
	Generalization to Other CLLMs and Impact of LoRA ranks
	Generalization to Other CLLMs
	Impact of LoRA Ranks

	Robustness Against Code Style Fine-Tuning
	Static Code Analyzers
	Supplemental Results

