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ABSTRACT

The theory of discrete-time reinforcement learning (RL) has advanced rapidly
over the past decades. Although primarily designed for discrete environments,
many real-world RL applications are inherently continuous and complex. A ma-
jor challenge in extending discrete-time algorithms to continuous-time settings is
their sensitivity to time discretization, often leading to poor stability and slow con-
vergence. In this paper, we investigate deterministic policy gradient methods for
continuous-time RL. We derive a continuous-time policy gradient formula based
on an analogue of the advantage function and establish its martingale character-
ization. This theoretical foundation leads to our proposed algorithm, CT-DDPG,
which enables stable learning with deterministic policies in continuous-time en-
vironments. Numerical experiments show that the proposed CT-DDPG algorithm
offers improved stability and faster convergence compared to existing discrete-
time and continuous-time methods, across a wide range of control tasks with vary-
ing time discretizations and noise levels.

1 INTRODUCTION

Deep Reinforcement learning (RL) has achieved remarkable success over the past decade, powered
by theoretical advances and the success of algorithms in discrete-time systems such as Atari, Go,
and Large Language Models (Mnih et al., 2013; Silver et al., 2016; Guo et al., 2025). However,
many real-world problems, such as robotic control, autonomous driving, and financial trading, are
inherently continuous in time. In these domains, agents need to interact with the environment at an
ultra-high frequency, underscoring the need for continuous-time RL approaches (Wang et al., 2020).

One major challenge in applying discrete-time RL to continuous-time environments is the sensitivity
to the discretization step size. As the step size decreases, standard algorithms often degrade, result-
ing in exploding variance, poor stability, and slow convergence. While several works have attempted
to resolve this issue with discretization-invariant algorithms (Tallec et al., 2019; Park et al., 2021),
their underlying design principles are rooted in discrete-time RL. As a result, these methods are not
robust when applied to complex, stochastic, and continuous real-world environments.

Recently there is a fast growing body of research on continuous-time RL (Yildiz et al., 2021; Jia
& Zhou, 2022a;b; 2023; Zhao et al., 2023; Giegrich et al., 2024), including rigorous mathematical
formulations and various algorithmic designs. However, most existing methods either rely on model-
based assumptions, or consider stochastic policy, which is difficult to sample in continuous time,
state and action spaces (Jia et al., 2025), and imposes Bellman equation constraints which are not
feasible for implementation within deep RL frameworks. These challenges hinder the application of
continuous-time RL framework in practice, leading to an important research question:

Can we develop a theoretically grounded algorithm that achieves stability and efficiency for deep
RL in continuous-time environments?

In this paper, we address this question by investigating deterministic policy gradient (DPG) methods.
We consider general continuous-time dynamics driven by a stochastic differential equation over a
finite horizon. our main contributions are summarized as follows:
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• In Sec. 3, we develop a rigorous mathematical framework for model-free DPG methods
in continuous-time RL. Specifically, Thm. 3.1 derives the DPG formula based on the ad-
vantage rate function. Thm. 3.2 further utilizes a martingale criterion to characterize the
advantage rate function, laying the foundation for subsequent algorithm design. We also
provide detailed comparisons against existing continuous-time RL algorithms with stochas-
tic policy and discuss their major flaws and impracticality in deep RL frameworks.

• In Sec. 4, we propose CT-DDPG, a novel and practical actor-critic algorithm with prov-
able stability and efficiency in continuous-time environments. Notably, we utilize a multi-
step TD objective, and prove its robustness to time discretization and stochastic noises in
Sec. 4.2. For the first time, we provide the theoretical insights of the failure of standard
discrete-time deep RL algorithms in continuous and stochastic settings.

• Through extensive experiments in Sec. 5, we verify that existing discrete/continuous time
algorithms lack robustness to time discretization and dynamic noise, while our method
exhibits consistently stable performance.

2 PROBLEM FORMULATION

This section formulates the continuous RL problem, where the agent learns an optimal parametrized
policy to control an unknown continuous-time stochastic system to maximize a reward functional
over a finite time horizon.

Let the state space be Rn and the action space be an open set A ⊆ Rd. For each non-anticipative
A-valued control (action) process a = (at)t≥0, consider the associated state process governed by
the following dynamics:

dXa
t = b(t,Xa

t , at)dt+ σ(t,Xa
t , at)dWt, t ∈ [0, T ]; Xa

0 = x0 ∼ ν, (2.1)

where ν is the initial distribution, (Wt)t≥0 is an m-dimensional Brownian motion on a filtered
probability space (Ω,F ,F = (Ft)t≥0,P), and b : [0, T ]× Rn ×A → Rn, σ : [0, T ]× Rn ×A →
Rn×m are continuous functions. The reward functional of a is given by

E

[∫ T

0

e−βtr(t,Xa
t , at)dt+ e−βT g(Xa

T )

]
, (2.2)

where β ≥ 0 is a discount factor, and r : [0, T ] × Rn × A → R and g : Rn → R are continuous
functions, representing the running and terminal rewards, respectively.

It is well-known that under mild regularity conditions, it suffices to optimize (2.2) over control
processes generated by Markov policies (Kurtz & Stockbridge, 1998). Given a Markov policy µ :
[0, T ]× Rn → A, the associated state process (Xµ

t )t≥0 evolves according to the dynamics:

dXµ
t = b(t,Xµ

t , µ(t,X
µ
t ))dt+ σ(t,Xµ

t , µ(t,X
µ
t ))dWt, t ∈ [0, T ]; Xµ

0 = x0 ∼ ν. (2.3)

The agent aims to maximize the following reward

E

[∫ T

0

e−βtr(t,Xµ
t , µ(t,X

µ
t ))dt+ e−βT g(Xµ

T )

]
(2.4)

over all admissible policies µ. Importantly, the agent does not have access to the coefficients b,
σ, r and g. Instead, the agent directly interacts with Eq. (2.3) with different actions, and refines
her strategy based on observed state and reward trajectories. We emphasize that in this paper, we
directly optimize (2.4) over deterministic policies, which map the state space directly to the action
space, rather than over stochastic policies as studied in Jia & Zhou (2022b; 2023); Zhao et al. (2023),
which map the state space to probability measures over the action space (see Sec. 3.3).

To solve Eq. (2.4), a practical approach is to restrict the optimization problem over a sufficiently rich
class of parameterized policies. More precisely, given a class of policies {µϕ : [0, T ] × Rn → A |
ϕ ∈ Rk} parameterized by ϕ, we consider the following maximization problem:

max
ϕ∈Rk

J(ϕ), with J(ϕ) := E

[∫ T

0

e−βtr(t,Xϕ
t , µϕ(t,X

ϕ
t ))dt+ e−βT g(Xϕ

T )

]
, (2.5)
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where Xϕ denotes the state process controlled by µϕ. Throughout this paper, we assume the initial
state distribution ν has a second moment, and impose the following regularity conditions on the
policy class and model coefficients.
Assumption 1. There exists C ≥ 0 such that for all t ∈ [0, T ], a, a′ ∈ A and and x, x′ ∈ Rn,

|b(t, x, a)− b(t, x′, a′)|+ |σ(t, x, a)− σ(t, x′, a′)| ≤ C(|x− x′|+ |a− a′|),
|b(t, 0, 0)|+ |σ(t, 0, 0)| ≤ C, |r(t, x, a)|+ |g(x)| ≤ C(1 + |x|2 + |a|2),

and there exists a locally bounded function ρ1 : [0,∞)→ [0,∞) such that for all ϕ ∈ Rk, t ∈ [0, T ],
and x, x′ ∈ Rn, |µϕ(t, x)− µϕ(t, x′)| ≤ ρ1(|ϕ|)|x− x′| and |µϕ(t, 0)| ≤ ρ1(|ϕ|).

Asp. 1 holds for all policies parameterized by feedforward neural networks with Lipschitz activa-
tions. It ensures that the state dynamics and the objective function are well defined for any ϕ ∈ Rk.

3 MAIN THEORETICAL RESULTS

We will first characterize the gradient of the objective functional Eq. (2.5) with respect to the policy
parameter ϕ, using a continuous-time analogue of the discrete-time advantage function. We will then
derive a martingale characterization of this continuous-time advantage function and value function,
which serves as the foundation of our algorithm design under deterministic policies. All detailed
proofs can be found in Appendix B.

3.1 DETERMINISTIC POLICY GRADIENT (DPG) FORMULA

We first introduce a dynamic version of the objective function J(ϕ). For each (t, x) ∈ [0, T ]× Rn,
define the value function

V ϕ(t, x) := E

[∫ T

t

e−β(s−t)r(s,Xϕ
s , µϕ(s,X

ϕ
s ))ds+ e−β(T−s)g(Xϕ

T )

∣∣∣∣Xϕ
t = x

]
. (3.1)

Note that J(ϕ) = Ex∼ν [V ϕ(0, x)]. We additionally impose the following differentiability condition
on the model parameters and policies with respect to the parameter.

Assumption 2. For all (t, x) ∈ [0, T ] × Rn, a 7→ (b, σσ⊤, r)(t, x, a) and ϕ 7→ µϕ(t, x) are
continuously differentiable. There exists a locally bounded function ρ2 : [0,∞)→ [0,∞) such that
for all ϕ ∈ Rk and (t, x) ∈ [0, T ]× Rn,

|∂ϕb(t, x, µϕ(t, x))|
1 + |x|

+
|∂ϕ(σσ⊤)(t, x, µϕ(t, x))|+ |∂ϕr(t, x, µϕ(t, x))|

1 + |x|2
≤ ρ2(|θ|).

Moreover, V ϕ ∈ C1,2([0, T ]× Rn) for all ϕ ∈ Rk.

Under Asp. 1, by Itô’s formula, for any given ϕ ∈ Rk, V ϕ ∈ C1,2([0, T ]×Rn) satisfies the following
linear Bellman equation: for all (t, x) ∈ [0, T ]× Rn,

L[V ϕ](t, x, µϕ(t, x)) + r(t, x, µϕ(t, x)) = 0, V ϕ(T, x) = g(x), (3.2)

where L is the generator of (2.3) such that for all φ ∈ C1,2([0, T ]× Rn),

L[φ](t, x, a) := ∂tφ(t, x)− βφ(t, x) + b(t, x, a)⊤∂xφ(t, x) +
1

2
Tr(Σ(t, x, a)∂2xxφ(t, x)), (3.3)

with Σ := σσ⊤. The following theorem presents the DPG formula for the continuous RL problem.

Theorem 3.1. Suppose Asps. 1 and 2 hold. For all (t, x) ∈ [0, T ]× Rn and ϕ ∈ Rk,

∂ϕV
ϕ(t, x) = E

[∫ T

t

e−β(s−t)∂ϕµϕ(s,X
ϕ
s )

⊤∂aA
ϕ(s,Xϕ

s , µϕ(s,X
ϕ
s ))ds

∣∣∣∣Xϕ
t = x

]
,

where Aϕ(t, x, a) := L[V ϕ](t, x, a) + r(t, x, a).

3
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The proof of Thm. 3.1 follows by quantifying the difference between the value functions correspond-
ing to two policies, and then applying Vitali’s convergence theorem. Similar formula was established
in Gobet & Munos (2005) under stronger conditions that the running reward r is zero, the diffusion
coefficient is uniformly elliptic, and the coefficients are four times continuously differentiable.
Remark 1. Thm. 3.1 is analogous to the DPG formula for discrete-time Markov decision processes
(Silver et al., 2014). The function Aϕ plays the role of advantage function used in discrete-time
DPG, and has been referred to as the advantage rate function in Zhao et al. (2023). To see it,
assume β = 0, and for any given N ∈ N, consider the discrete-time version of Eq. (2.5):

J∆t(ϕ) := E
[N−1∑
i=0

r(ti, X
∆t,ϕ
ti , µϕ(ti, X

∆t,ϕ
ti ))∆t+ g(X∆t,ϕ

T )
]
, (3.4)

where ∆t = T/N , ti = i∆t, and X∆t,ϕ satisfies the following time-discretization of Eq. (2.3):

X∆t,ϕ
ti+1

= X∆t,ϕ
ti + b(ti, X

∆t,ϕ
ti , µϕ(ti, X

∆t,ϕ
ti ))∆t+ σ(ti, X

∆t,ϕ
ti , µϕ(ti, X

∆t,ϕ
ti ))

√
∆tωti ,

and (ωti)
N−1
i=0 are independent standard normal random variables. By the deterministic policy gra-

dient formula (Silver et al., 2014),

∂ϕJ∆t(ϕ) = E
[N−1∑
i=0

∂ϕµϕ(ti, X
∆t,ϕ
ti )⊤∂aA

∆t,ϕ(ti, X
∆t,ϕ
ti , µϕ(ti, X

∆t,ϕ
ti ))∆t

]
, (3.5)

where A∆t,ϕ(t, x, a) :=
Q∆t,ϕ(t, x, a)− V ∆t,ϕ(t, x)

∆t
is the advantage function for Eq. (3.4) nor-

malized with the time stepsize. As N →∞, A∆t,ϕ converges to Aϕ, as shown in Jia & Zhou (2023).
Sending ∆t→ 0 in Eq. (3.5) yields the continuous-time DPG in Thm. 3.1.

3.2 MARTINGALE CHARACTERIZATION OF CONTINUOUS-TIME ADVANTAGE RATE FUNCTION

By Thm. 3.1, implementing the DPG requires computing the advantage rate function Aϕ in a neigh-
borhood of the policy µϕ. The following theorem characterizes the advantage rate function through
a martingale criterion.

Theorem 3.2. Suppose Asps. 1 and 2 hold. Let ϕ ∈ Rk, V̂ ∈ C1,2([0, T ]×Rn) and q̂ ∈ C([0, T ]×
Rn ×A) satisfy the following conditions for all (t, x) ∈ [0, T ]× Rn:

V̂ (T, x) = g(x), q̂(t, x, µϕ(t, x)) = 0, (3.6)

and there exists a neighborhood Oµϕ(t,x) ⊂ A of µϕ(t, x) such that for all a ∈ Oµϕ(t,x),(
e−β(s−t)V̂ (s,Xt,x,a

s ) +

∫ s

t

e−β(u−t)(r − q̂)(u,Xt,x,a
u , αu)du

)
s∈[t,T ]

(3.7)

is an F-martingale, where Xt,x,a satisfies for all s ∈ [t, T ],

dXt,x,a
s = b(s,Xt,x,a

s , αs)ds+ σ(s,Xt,x,a
s , αs)dWs, Xt,x,a

t = x, (3.8)

and (αs)s≥t is a square-integrable A-valued adapted process with lim
s↘t

αs = a almost surely. Then

V̂ (t, x) = V ϕ(t, x) and q̂(t, x, a) = Aϕ(t, x, a) for all (t, x, a) ∈ [0, T ]× Rn ×Oµϕ(t,x).

Thm. 3.2 establishes sufficient conditions ensuring that the functions V̂ and q̂ coincide with the
value function and the advantage rate function of a given policy µϕ, respectively. Eq. (3.6) requires
that V̂ agrees with the terminal condition h at time T , and the function q̂ satisfies the linear Bellman
equation Eq. (3.2) as the true advantage rate Aϕ. The martingale constraint Eq. (3.7) ensures q̂ is the
advantage rate function associated with V̂ , for all actions in a neighborhood of the policy µϕ.

To ensure exploration of the action space, Thm. 3.2 requires that the martingale condition Eq. (3.7)
holds for state processes initialized with any action a ∈ Oµϕ(t,x). In practice, one can use an explo-
ration policy to generate these exploratory actions, which are then employed to learn the gradient of
the target deterministic policy. This parallels the central role of off-policy algorithms in discrete-time
DPG methods (Lillicrap et al., 2015; Haarnoja et al., 2018a).
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3.3 IMPROVED EFFICIENCY AND STABILITY OF DETERMINISTIC POLICIES OVER
STOCHASTIC POLICIES

Thm. 3.2 implies that DPG can be estimated both more efficiently and more stably than stochastic
policy gradients, since it avoids costly integrations over the action space.

Recall that Jia & Zhou (2022b; 2023); Zhao et al. (2023) study continuous-time RL with stochastic
policies π : [0, T ] × Rd → P(A) and establish an analogous policy gradient formula based on
the corresponding advantage rate function. By incorporating an additional entropy term into the
objective, Jia & Zhou (2023) characterizes the advantage rate function analogously to Thm. 3.2,
replacing the Bellman condition Eq. (3.6) with

Ea∼π(da|t,x)[q̂(t, x, a)− γ log π(a|t, x)] = 0, ∀(t, x) ∈ [0, T ]× Rn, (3.9)
where γ > 0 is the entropy regularization coefficient, and requiring the martingale constraint
Eq. (3.7) to hold for all state dynamics starting at state x at time t, with actions sampled randomly
from π at any time partition of [0, T ]. Implementing the criterion Eq. (3.9) requires sampling ran-
dom actions from the policy π to compute the expectation over the action space. This makes policy
evaluation substantially more challenging in deep RL, particularly with high-dimensional action
spaces or non-Gaussian policies, often resulting in training instability and slow convergence, as ob-
served in our experiments in Sec. 5. In contrast, the Bellman condition Eq. (3.6) for DPG can be
straightforwardly implemented using a simple re-parameterization (see Eq. (4.1)).

4 ALGORITHM AND ANALYSIS

4.1 ALGORITHM DESIGN

Given the martingale characterization (Thm. 3.2), we now discuss the implementation details in a
continuous-time RL framework via deep neural networks. We use Vθ, qψ, µϕ to denote the neural
networks for value, advantage rate function and policy, respectively.

Martingale loss. To ensure the martingale condition Eq. (3.7), let Mt = e−βtVθ(t, xt) +∫ t

0

e−βs[r(s, xs, as) − qψ(s, xs, as)]ds. We adopt the following martingale orthogonality condi-

tions (also known as generalized moment method) E

[∫ T

0

ζtdMt

]
= 0, where ζ = (ζt)[0,T ] is

any test function. This is both necessary and sufficient to ensure the martingale condition for all
F-adapted and square-integrable processes ζ (Jia & Zhou, 2022a).

In theory, one should consider all possible test functions, which leads to infinitely many equations.
For practical implementation, however, it suffices to select a finite number of test functions with
special structures. A natural choice is to set ζt = ∂θVθ(t, xt) or ζt = ∂ψqψ(t, xt, at), in which
case the marginal orthogonality condition becomes a vector-valued condition. The classic stochastic
approximation method (Robbins & Monro, 1951) can be applied to solve the equation:

θ ← θ−η∂θVθ(t, xt)·
(
Vθ(t, xt)−

∫ t+δ

t

e−β(s−t)[r(s, xs, as)−qψ(s, xs, as)]ds−e−βδVθ(t+δ, xt+δ)
)
,

ψ ← ψ−η∂ψqψ(t, xt, at)·
(
Vθ(t, xt)−

∫ t+δ

t

e−β(s−t)[r(s, xs, as)−qψ(s, xs, as)]ds−e−βδVθ(t+δ, xt+δ)
)
,

where δ > 0 is the integral interval and the trajectory is sampled from collected data. Note that the
update formula above is also referred as semi-gradient TD method in RL (Sutton et al., 1998).

Bellman constraints. To enforce Eq. (3.6), we re-parameterize the advantage rate function as
qψ(t, x, a) := q̄ψ(t, x, a)− q̄ψ(t, x, µϕ(t, x)), (4.1)

where q̄ψ is a neural network and µϕ denotes the current deterministic policy (Tallec et al., 2019).

In practice, it is often challenging to design a neural network structure that directly enforces the
terminal value constraint. To address this, we add a penalty term of the form: E(Vθ(T, xT ) −
g(xT ))

2, where xT , g(xT ) are sampled from collected trajectories.

5
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Implementation with discretization. Let h denote the discretization step size. We denote by x̃t
the concatenation of time and state (t, xt) for compactness. The full procedure of Continuous Time
Deep Deterministic Policy Gradient (CT-DDPG) is summarized in Alg. 1.

We employ several training techniques widely used in modern deep RL algorithms such as DDPG
and SAC. In particular, we employ a target value network Vθtgt , defined as the exponentially moving
average of the value network weights. This technique has been shown to improve training stability in
deep RL1. We further adopt a replay buffer to store transitions in order to improve sample efficiency.
For exploration, we add independent Gaussian noises to the deterministic policy µϕ.

Multi-step TD. When training advantage-rate net and value net, we adopt multiple steps L > 1 to
compute the temporal difference error (see Eq. (4.2)). This is different from most off-policy algo-
rithms which typically rely on a single transition step. Notably, when L = 1, our algorithm reduces
to DAU (Tallec et al., 2019, Alg. 2) except that their policy learning rate vanishes as h → 0. We
highlight that multi-step TD is essential for the empirical success of CT-DDPG. In the next subsec-
tion, we theoretically demonstrate that one-step TD inevitably leads to gradient variance blow-up in
the limit of vanishing discretization step, thereby slowing convergence.

4.2 ISSUES OF ONE-STEP TD IN CONTINUOUS TIME: VARIANCE BLOW UP

When training the value function Vθ and the advantage function Aψ for a given policy (stochastic
or deterministic), Temporal Difference algorithms (Haarnoja et al., 2018a; Tallec et al., 2019; Jia &
Zhou, 2023) typically use a one-step semi-gradient:

Gθ,h :=
1

h
E
[
∂θVθ(x̃t)

(
Vθ(x̃t)− (rt −Aψ(x̃t, at)) · h− e−βhVθ(x̃t+h)

)]
,

Gψ,h :=
1

h
E
[
∂ψAψ(x̃t, at)

(
Vθ(x̃t)− (rt −Aψ(x̃t, at)) · h− e−βhVθ(x̃t+h)

)]
,

(4.3)

where t ∼ TruncExp(β;T ) and xt ∼ Xπ′

t , at ∼ π′(·|t, xt) with an exploration policy π′. In
practice, however, one has to use stochastic gradient:

gθ,h :=
1

h

[
∂θVθ(x̃t)

(
Vθ(x̃t)− (rt −Aψ(x̃t, at)) · h− e−βhVθ(x̃t+h)

)]
,

gψ,h :=
1

h

[
∂ψAψ(x̃t, at)

(
Vθ(x̃t)− (rt −Aψ(x̃t, at)) · h− e−βhVθ(x̃t+h)

)]
.

(4.4)

Proposition 4.1. Assume C · I ⪯ σσ⊤ ⪯ C · I for some 0 < C ≤ C, and ∂θVθ, ∂xVθ are not
identically zero. Then the variance of stochastic gradient estimator blows up in the sense that:

lim
h→0

E[gθ,h] = lim
h→0

Gθ,h = Θ(1), lim
h→0

E[gψ,h] = lim
h→0

Gψ,h = Θ(1), (4.5)

lim
h→0

h ·Var(gθ,h) = Θ(1), lim
h→0

h ·Var(gψ,h) = Θ(1). (4.6)

In contrast, Alg. 1 utilizes L-step TD loss with (stochastic) semi-gradient (for simplicity of the
theoretical analysis, we consider hard update of target, i.e., τ = 1):

Gθ,h,L = E
[
∂θVθ(x̃t)

(
Vθ(x̃t)−

L−1∑
l=0

e−βlh[rt+lh−qψ(x̃t+lh, at+lh)]h−e−βLhVθ(x̃t+Lh)
)]
, (4.7)

gθ,h,L = ∂θVθ(x̃t)
(
Vθ(x̃t)−

L−1∑
l=0

e−βlh[rt+lh − qψ(x̃t+lh, at+lh)]h− e−βLhVθ(x̃t+Lh)
)
. (4.8)

Proposition 4.2. Under the same assumptions in Prop. 4.1, if Lh ≡ δ > 0, then the expected
gradient does not vanish in the sense that

lim
h→0

E[gθ,h, δh ] = lim
h→0

Gθ,h, δh
= Θ(1). (4.9)

In addition, the variance of stochastic gradient does not blow up:

lim
h→0

Var(gθ,h, δh
) = O(1). (4.10)

1Here we focus on a single target value network as our primary goal is to study the efficiency of deterministic
policies in continuous-time RL. Extensions with multiple target networks (Haarnoja et al., 2018b; Fujimoto
et al., 2018) can be readily incorporated.
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Algorithm 1 Continuous Time Deep Deterministic Policy Gradient
Inputs: Discretization step size h, horizon K = T/h, discount rate β, number of episodes N ,
policy net µϕ, advantage-rate net q̄ψ , value net Vθ, update frequency m, trajectory length L,
exploration noise σexplore, soft update parameter τ , learning rate η, batch size B, terminal value
constraint weight α
Learning Procedures:
Initialize ϕ, ψ, θ, target θtgt = θ, and replay bufferR
for n = 1, · · · , N do

Observe the initial state x̃0
for k = 1, · · · ,K do

Perform akh ∼ N (µϕ(x̃kh), σ
2
explore) and collect rkh, x̃(k+1)h

Store (x̃kh, akh, rkh, x̃(k+1)h) inR
if k ≡ 0 mod m then
▷ train advantage rate function and value function

Sample a batch of trajectories {x̃(i)kih:(ki+L)h, a
(i)
kih:(ki+L)h

, r
(i)
kih:(ki+L)h

}Bi=1 fromR
Define qψ(x̃, a) := q̄ψ(x̃, a)− q̄ψ(x̃, µϕ(x̃))
Compute the martingale loss

LM =
1

B

B∑
i=1

(
Vθ(x̃

(i)
kih

)−
L−1∑
l=0

e−βlh[r
(i)
(ki+l)h

−qψ(x̃(i)(ki+l)h
, a

(i)
(ki+l)h

)]h−e−βLhVθtgt(x̃(i)(ki+L)h
)
)2

(4.2)
Sample a batch of terminal states {x̃(i)Kh, r

(i)
Kh}

B
i=1 fromR

Compute the terminal value constraint LC =
1

B

B∑
i=1

(Vθ(x̃
(i)
Kh)− r

(i)
Kh)

2

Update the critic: ψ ← ψ − ∂ψ(LM + αLC), θ ← θ − η∂θ(LM + αLC)
▷ train policy

Sample a batch of states {x̃(i)kih}
B
i=1 fromR

Compute the policy loss L = − 1

B

B∑
i=1

q̄ψ(x̃
(i)
kih
, µϕ(x̃

(i)
kih

))h

Update the actor: ϕ← ϕ− η∂ϕL
Update the target: θtgt ← τθ + (1− τ)θtgt

end if
end for

end for

Remark 2 (effect of 1/h scaling). Note that in Eq. (4.7), we omit the 1/h factor in contrast to
Eq. (4.3). This modification is crucial for preventing the variance from blowing up. If we were to
remove the 1/h factor in Eq. (4.3), then according to Prop. 4.1 the expected gradient Gθ,h would
vanish as h → 0. This theoretical inconsistency reveals a fundamental drawback of one-step TD
methods in the continuous-time RL framework, which is also verified in our experiments.

Remark 3 (previous analysis of one-step TD). Jia & Zhou (2022a) discussed the issues of one-step
TD objective

min
θ

1

h2
Ex̃
(
Vθ(x̃t)− rt · h− e−βhVθ(x̃t+h)

)2
, (4.11)

showing that its minimizer does not converge to the true value function as h→ 0. However, practical
one-step TD methods do not directly optimize Eq. (4.11), but rather employ the semi-gradient update
Eq. (4.3). Consequently, the analysis in Jia & Zhou (2022a) does not fully explain the failure of
discrete-time RL algorithms under small discretization steps. In contrast, our analysis is consistent
with the actual update rule and thus offers theoretical insights that are directly relevant to the design
of continuous-time algorithms.
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5 EXPERIMENTS

The goal of our numerical experiments is to evaluate the efficiency of the proposed CT-DDPG al-
gorithm and continuous-time RL framework in terms of convergence speed, training stability and
robustness to the discretization step and dynamic noises.

Environments. We evaluate on a suite of challenging continuous-control benchmarks from Gym-
nasium (Towers et al., 2024): Pendulum-v1, HalfCheetah-v5, Hopper-v5, and Walker2d-v5, sweep-
ing the discretization step and dynamic noise levels. To model stochastic dynamics, at each simu-
lator step we sample an i.i.d. Gaussian generalized force ξ ∼ N (0, σ2I) and write it to MuJoCo’s
qfrc applied buffer (Todorov et al., 2012), thereby perturbing the equations of motion. More
details can be found in Appendix C.

Baselines. We compare against discrete-time algorithms DDPG (Lillicrap et al., 2015), SAC
(Haarnoja et al., 2018b), as well as a continuous-time algorithm with stochastic Gaussian policy:
q-learning (Jia & Zhou, 2023). In particular, for q-learning, we adopt two different settings when
learning q-function: the original one-step TD taregt (L = 1) in Jia & Zhou (2023), and a multi-step
TD extension with L > 1 as in Alg. 1. This provides a fair comparison between deterministic and
stochastic policies in continuous-time RL. We also test DAU (Tallec et al., 2019), i.e., CT-DDPG
with L = 1, to see the effects of multi-step TD. For each algorithm, we report results averaged over
at least three independent runs with different random seeds.

Figure 1: Comparison between CT-DDPG with discrete-time RL algorithms.

Results. Figs. 1 and 2 show the average return against training episodes, where the shaded area
stands for standard deviation across different runs. We observe that for most environments, our CT-
DDPG has the best performance among all baselines and the gap becomes larger as discretization
step decreases and (or) noise level increases. Specifically, we have the following observations:

• As demonstrated in Fig. 1, although discrete-time algorithms, DDPG and SAC, perform
reasonably well under the standard Gymnasium settings (top row), they degrade substan-
tially when h decreases and σ increases (middle & bottom rows). This stems from the
fact that one-step TD updates provide only myopic information under small h and noisy
dynamics, preventing the Q-function from capturing the long-term structure of the problem.

• For continuous-time RL with stochastic policy shown in Fig. 2, q-learning exhibits slow
convergence and training instability, due to the difficulty of enforcing Bellman equation

8
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constraints Eq. (3.9). Although q-learning using multi-step TD can to some extent improve
upon original q-learning (L = 1), it still remains unstable across diverse environment
settings and underperforms compared to CT-DDPG. This highlights the fundamental limi-
tations of stochastic policy in continuous-time RL.

• To further investigate the effects of multi-step TD, we also test DAU (i.e., CT-DDPG with
L = 1) in Fig. 2. It turns out that in small h and large σ regime, DAU converges more
slowly. In Fig. 3, we examine the variance to square norm ratio (NSR) of stochastic gradi-
ents in the training process. As h → 0, NSR of DAU becomes evidently larger than that
of CT-DDPG, consistent with our theories in Sec. 4.2. A large NSR leads to the instability
when training q-function and consequently impedes the convergence.

Figure 2: Comparison between continuous-time RL algorithms.

Figure 3: Noise-to-Signal Ratio of stochastic gradient when training value-net.

In summary, CT-DDPG exhibits superior performance in terms of convergence speed and stability
across most environment settings, verifying the efficiency and robustness of our method.

6 CONCLUSION

In this paper, we investigate deterministic policy gradient methods to achieve stability and efficiency
for deep RL in continuous-time environments, bridging the gap between discrete and continuous
time algorithms. We develop a rigorous mathematical framework and provide a martingale charac-
terization for DPG. We further theoretically demonstrate the issues of standard one-step TD method
in continuous-time regime for the first time. All our theoretical results are verified through extensive
experiments. We hope this work can motivate future researches on continuous-time RL.
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Ethics Statements. This research does not involve human subjects, personally identifiable infor-
mation, or sensitive data. All experiments are conducted on publicly available benchmark datasets
under their respective licenses. We believe our work contributes positively to the research commu-
nity by advancing fundamental understanding, and we encourage responsible and ethical applica-
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gales, and application to stochastic optimal control. SIAM Journal on Control and Optimization,
43(5):1676–1713, 2005.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, pp. 1861–1870. Pmlr, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018b.

Yanwei Jia and Xun Yu Zhou. Policy evaluation and temporal-difference learning in continuous
time and space: A martingale approach. Journal of Machine Learning Research, 23(154):1–55,
2022a.

Yanwei Jia and Xun Yu Zhou. Policy gradient and actor-critic learning in continuous time and space:
Theory and algorithms. Journal of Machine Learning Research, 23(275):1–50, 2022b.

Yanwei Jia and Xun Yu Zhou. q-learning in continuous time. Journal of Machine Learning Research,
24(161):1–61, 2023.

Yanwei Jia, Du Ouyang, and Yufei Zhang. Accuracy of discretely sampled stochastic policies in
continuous-time reinforcement learning. arXiv preprint arXiv:2503.09981, 2025.

Thomas G Kurtz and Richard H Stockbridge. Existence of markov controls and characterization of
optimal markov controls. SIAM Journal on Control and Optimization, 36(2):609–653, 1998.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.
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A RELATED WORK

Discretization-Invariant Algorithms. Discretization has long been recognized as a central chal-
lenge in continuous control and RL (Baird, 1994; Doya, 2000; Munos, 2006). More recently, Tal-
lec et al. (2019) showed that Q-learning–based approaches collapse as the discretization step be-
comes small and introduced the concept of the advantage rate function. Yildiz et al. (2021) tackled
this issue through a model-based approach for deterministic ODE dynamics using the Neural ODE
framework. Park et al. (2021) demonstrated that conventional policy gradient methods suffer from
variance blow-up and proposed action-repetition strategies as a remedy. While these methods mit-
igate discretization sensitivity to some extent, they are restricted to deterministic dynamics and fail
to handle stochasticity, a key feature of real-world environments.

Continuous-Time RL with Stochastic Policies. Beyond addressing discretization sensitivity, an-
other line of work directly considers continuous dynamics driven by stochastic differential equations.
Jia & Zhou (2022a;b) introduced a martingale characterization for policy evaluation and developed
an actor–critic algorithm in continuous time. Jia & Zhou (2023) studied the continuous-time ana-
logue of the discrete-time advantage function, namely the q-function, and proposed a q-learning
algorithm. Giegrich et al. (2024); Sethi et al. (2025) extend natural policy gradient methods to the
continuous-time setting, and Zhao et al. (2023) further generalize PPO (Schulman et al., 2017) and
TRPO (Schulman et al., 2015) methods to continuous time. However, all of these approaches adopt
stochastic policies, which require enforcing Bellman equation constraints that are not tractable in
deep RL frameworks. In contrast, our method leverages deterministic policies and enforces the
Bellman equation via a simple reparameterization trick, enabling stable integration with deep RL.

Theoretical Issues of Discrete-Time RL. Although many works have empirically observed that
standard discrete-time algorithms degrade under small discretization, the theoretical foundations
remain underexplored. Munos (2006); Park et al. (2021) showed that the variance of policy gradient
estimators can diverge as h → 0. Baird (1994); Tallec et al. (2019) further demonstrated that
the standard Q-function degenerates and collapses to the value function. From the perspective of
policy evaluation, Jia & Zhou (2022a) proved that the minimizer of the mean-square TD error does
not converge to the true value function. Nevertheless, most discrete-time algorithms rely on semi-
gradient updates rather than directly minimizing the mean-square TD error. To the best of our
knowledge, there has been no theoretical analysis establishing the failure of standard one-step TD
methods in the continuous-time setting.

B PROOFS

Notations. We denote byC1,2([0, T ]×Rn) the space of continuous functions u : [0, T ]×Rn → R
that are once continuously differentiable in time and twice continuously differentiable in space, and
there exists a constant C ≥ 0 such that for all (t, x) ∈ [0, T ] × Rn, |u(t, x)| + |∂tu(t, x)| ≤
C(1 + |x|2), |∂xu(t, x)| ≤ C(|1 + |x|), |∂2xxu(t, x)| ≤ C. We use P(S) to denote the collection of
all probability distributions over S. For compactness of notation, we denote by x̃t the concatenation
of time and state (t, xt). Finally, we use standard O(·),Ω(·),Θ(·) to omit constant factors.

B.1 PROOF OF THM. 3.1

The following performance difference lemma characterizes the difference of value functions with
different policies, which will be used in proving the policy gradient formula.

Proposition B.1. Suppose Asp. 1 holds. Let ϕ ∈ Rk and assume V ϕ ∈ C1,2([0, T ] × Rn). For all
(t, x) ∈ [0, T ]× Rn and ϕ′ ∈ Rk,

V ϕ
′
(t, x)− V ϕ(t, x)

= E
[ ∫ T

t

e−β(s−t)
(
H[V ϕ](s,Xϕ′

s , µϕ′(s,Xϕ′

s ))−H[V ϕ](s,Xϕ′

s , µϕ(s,X
ϕ′

s ))

)
ds

∣∣∣∣Xϕ′

t = x

]
.

(B.1)
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Proof of Prop. B.1. Observe that under Asp. 1, for each ϕ ∈ Rk, and (t, x) ∈ [0, T ]× Rn,

V ϕ(t, x) := E

[∫ T

t

e−β(s−t)r(s,Xt,x,ϕ
s , µϕ(s,X

t,x,ϕ
s ))dt+ e−β(T−s)g(Xt,x,ϕ

T )

]
, (B.2)

where (Xt,x,ϕ
s )s≥t satisfies for all s ∈ [t, T ],

dXs = b(s,Xs, µϕ(s,Xs))ds+ σ(s,Xs, µϕ(s,Xs))dWs, Xt = x. (B.3)

Fix ϕ′ ∈ Rd. Denote by Xϕ = Xt,x,ϕ and Xϕ′
= Xt,x,ϕ′

for simplicity. Then

V ϕ
′
(t, x)− V ϕ(t, x)

= E

[∫ T

t

e−β(s−t)r(s,Xϕ′

s , µϕ′(s,Xϕ′

s ))ds

]
+ e−β(T−t)E

[
g(Xϕ′

T )
]
− V ϕ(t, x)

= E

[∫ T

t

e−β(s−t)r(s,Xϕ′

s , µϕ′(s,Xϕ′

s ))ds

]
+ E

[
e−β(T−t)V ϕ(T,Xϕ′

T )
]
− V ϕ(t,Xx,ϕ′

t ),

(B.4)

where the last identity used the fact that V ϕ(T, x) = g(x) andXϕ′

t = x. As V ϕ ∈ C1,2([0, T ]×Rn),
applying Itô’s formula to s 7→ e−β(s−t)V ϕ(s,Xϕ′

s ) yields

E
[
e−β(T−t)V ϕ(T,Xϕ′

T )
]
− V ϕ(t,Xϕ′

t )

= E

[∫ T

t

e−β(s−t)L[V ϕ](s,Xϕ′

s , µϕ′(s,Xϕ′

s ))ds

]

= E

[∫ T

t

e−β(s−t)

((
L[V ϕ](s, y, µϕ′(s, y))− L[V ϕ](s, y, µϕ(s, y))

) ∣∣∣∣
y=Xϕ′

s

+ L[V ϕ](s,Xϕ′

s , µϕ(s,X
ϕ′

s ))

)
ds

]

= E

[∫ T

t

e−β(s−t)

((
L[V ϕ](s, y, µϕ′(s, y))− L[V ϕ](s, y, µϕ(s, y))

) ∣∣∣∣
y=Xϕ′

s

− r(s,Xϕ′

s , µϕ(s,X
ϕ′

s ))

)
ds

]
,

where the last identity used the PDE Eq. (3.2). This along with Eq. (B.4) proves the desired result.

Proof of Thm. 3.1. Recall that ∂ϕV ϕ(t, x) = (∂ϕ1
V ϕ(t, x), . . . , ∂ϕk

V ϕ(t, x))⊤. Hence it suffices
to prove for all ϕ′ ∈ Rk,

d

dϵ
V ϕ+ϵϕ

′
(t, x)

∣∣∣∣
ϵ=0

= E

[∫ T

t

e−β(s−t)∂aA
ϕ(s,Xϕ

s , µϕ(s,X
ϕ
s ))

⊤∂ϕµϕ(s,X
ϕ
s )ds

∣∣∣∣Xϕ
t = x

]
ϕ′.

To this end, for all ϵ ∈ [−1, 1], let Xϵ be the solution to the following dynamics:
dXs = b(s,Xs, µϕ+ϵϕ′(s,Xs))ds+ σ(s,Xs, µϕ+ϵϕ′(t,Xt))dWs, Xt = x. (B.5)

For all ϵ ∈ [−1, 1], by Prop. B.1 and the fundamental theorem of calculus,

V ϕ+ϵϕ
′
(t, x)− V ϕ(t, x)

ϵ
= E

[ ∫ T

t

e−β(s−t)
(∫ 1

0

G(s,Xϵ
s , ϕ+ rϵϕ′)dr

)
ds

]
ϕ′, (B.6)

where for all ϕ̃ ∈ Rk,

G(t, x, ϕ̃) := ∂aH[V ϕ](t, x, µϕ̃(s, x))
⊤∂ϕµϕ̃(t, x).

To show the limit of Eq. (B.6) as ϵ → 0, observe that by Asp. 2 and standard stability analysis of
Eq. (B.5) (see e.g., (Zhang, 2017, Theorem 3.2.4)), for all ϵ ∈ [−1, 1],

E
[

sup
t≤s≤T

|Xϵ
s −X0

s |2
]
≤ CE

(∫ T

0

|b(s,X0
s , µϕ+ϵϕ′(s,X0

s ))− b(s,X0
s , µϕ(s,X

0
s ))|ds

)2


+ CE

[∫ T

0

|σ(s,X0
s , µϕ+ϵϕ′(s,X0

s ))− σ(s,X0
s , µϕ(s,X

0
s ))|2ds

]
,
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which along with the growth condition in Asp. 1 and the regularity of b, σ and ϕ in Asp. 2, and the
dominated convergence theorem shows that

lim
ϵ→0

E
[

sup
t≤s≤T

|Xϵ
s −X0

s |2
]
= 0. (B.7)

Moreover, there exists C ≥ 0 such that for all ϵ ∈ [−1, 1], and A ∈ F ⊗ B([0, T ])⊗ B([0, 1]),

E
[ ∫ T

t

∫ 1

0

1Ae
−β(s−t) |G(s,Xϵ

s , ϕ+ rϵϕ′)|drds
]

≤ E
[ ∫ T

t

∫ 1

0

1Adrds

] 1
2

E
[ ∫ T

t

∫ 1

0

e−2β(s−t) |G(s,Xϵ
s , ϕ+ rϵϕ′)|2 drds

] 1
2

≤ E
[ ∫ T

t

∫ 1

0

1Adrds

] 1
2

C

(
1 + E

[
sup
t≤s≤T

|Xϵ
s |2
]) 1

2

,

where the last inequality used the growth conditions on the derivatives of the coefficients b, σ, r

and µ, and of the value function V ϕ. Using the moment condition sup
ϵ∈[−1,1]

E
[

sup
t≤s≤T

|Xϵ
s |2
]
<

∞, the random variables {(ω, s, r) 7→ e−β(s−t)G(s,Xϵ
s , ϕ + rϵϕ′) | ϵ ∈ [−1, 1]} are uniformly

integrable. Hence using Vitali’s convergence theorem and passing ϵ → 0 in Eq. (B.6) yield the
desired identity.

B.2 PROOF OF THM. 3.2

Proof. For all (t, x) ∈ [0, T ] × Rn and a ∈ Oµϕ(t,x), applying Itô’s formula to u 7→
e−β(u−t)V̂ (s,Xt,x,a

u ) yields for all 0 ≤ t < s ≤ T ,

e−β(s−t)V̂ (s,Xt,x,a
s )− V̂ (t,Xt,x,a

t ) =

∫ s

t

e−β(u−t)L[V̂ ](u,Xt,x,a
u , αu)du

+

∫ s

t

e−β(u−t)∂xV̂ (u,Xt,x,a
u )⊤σ(u,Xt,x,a

u , αu)dWu.

(B.8)
This along with the martingale condition Eq. (3.7) implies(∫ s

t

e−β(u−t)
(
L[V̂ ] + r − q̂

)
(u,Xt,x,a

u , αu)du

)
s∈[t,T ]

is a martingale, which has continuous paths and finite variation. Hence almost surely∫ s

t

e−β(u−t)
(
L[V̂ ] + r − q̂

)
(u,Xt,x,a

u , αu)du = 0, ∀s ∈ [t, T ]. (B.9)

We claim (L[V̂ ] + r − q̂)(t, x, a) = 0 for all (t, x) ∈ [0, T ] × Rn and a ∈ Oµϕ(t,x). To see it,
define f(t, x, a) := (L[V̂ ] + r − q̂)(t, x, a) for all (t, x, a) ∈ [0, T ] × Rn × A. By assumptions,
f ∈ C([0, T ] × Rn × A). Suppose there exists (t̄, x̄) ∈ [0, T ] × Rn and ā ∈ Oµϕ(t,x) such
that f(t̄, x̄, ā) ̸= 0. Due to the continuity of f , we can assume without loss of generality that
f(t̄, x̄, ā) > 0 and t̄ ∈ [0, T ). The continuity of f implies that there exist constants ϵ, δ > 0 such
that f(t, x, a) ≥ ϵ > 0 for all (t, x, a) ∈ [0, T ]× Rn ×A with max{|t− t̄|, |x− x̄|, |a− ā|} ≤ δ.
Now consider the process X t̄,x̄,ā defined by (3.8), and define the stopping time

τ := inf
{
t ∈ [t̄, T ] | max{|t− t̄|, |X t̄,x̄,ā

t − x̄|, |αt − ā|} > δ
}
.

Note that τ > t̄ almost surely, due to the sample path continuity of t 7→ X t̄,x̄,ā
t and the condition

lim
s↘t

αs = ā. This along with (B.9) implies that there exists a measure zero set N such that for all

ω ∈ Ω \ N , τ(ω) > t̄, and∫ τ(ω)

t̄

e−β(u−t̄)f
(
u,X t̄,x̄,ā

u (ω), αu(ω)
)
du = 0.

14
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However, by the definition of τ , for all t ∈ (t̄, τ(ω)), max{|t− t̄|, |X t̄,x̄,ā
t − x̄|, |αt− ā|} ≤ δ, which

along with the choice of δ implies f(t,X t̄,x̄,ā
t (ω), αt(ω)) ≥ ϵ > 0 and hence∫ τ(ω)

t̄

e−β(u−t̄)h
(
u,X t̄,x̄,ā

u (ω), αu(ω)
)
du > 0.

This yields a contradiction, and proves (L[V̂ ] + r − q̂)(t, x, a) = 0 for all (t, x, µ) ∈ [0, T ] × Rn
and a ∈ Oµϕ(t,x).

Now by Eq. (3.6), for all (t, x) ∈ [0, T ]× Rn,

(L[V̂ ] + r)(t, x, µϕ(t, x)) = 0, V̂ (T, x) = g(x).

Since V ϕ ∈ C1,2([0, T ] × Rn) satisfies the same PDE, the Feynman-Kac formula shows that
V̂ (t, x) = V ϕ(t, x) for all (t, x). This subsequently implies (L[V ϕ] + r − q̂)(t, x, a) = 0 for
all (t, x) ∈ [0, T ]× Rn and a ∈ Oµϕ(t,x).

B.3 PROOF OF PROP. 4.1

Proof. By Itô’s formula,

e−βhVθ(x̃t+h)− Vθ(x̃t)

=

∫ t+h

t

e−β(s−t)
[
∂tVθ(x̃s) + ∂xVθ(x̃s)

⊤b(x̃s, as) +
1

2
Tr(∂2xxVθ(x̃s)σσ

⊤(x̃s, as))− βVθ(x̃s)
]
ds︸ ︷︷ ︸

①

+

∫ t+h

t

e−β(s−t)∂xVθ(x̃s)
⊤σ(x̃s, as)dWs︸ ︷︷ ︸

②

.

(B.10)
Note that the last term is a martingale and thus vanishes after taking expectation. Therefore the
semi-gradient can be rewritten as

Gθ,h = E
[
∂θVθ(x̃t)

(
−① · 1

h
+ (Aψ(x̃t, at)− rt)

)]
. (B.11)

When the discretization step h goes to zero, the integral ① admits a first-order expansion, which
leads to

lim
h→0

Gθ,h = E
[
∂θVθ(x̃t)

(
Aψ(x̃t, at)− ∂tVθ(x̃t)−H(x̃t, at, ∂xVθ(x̃t), ∂

2
xxVθ(x̃t)) + βVθ(x̃t)

)]
.

(B.12)
Similarly we have

lim
h→0

Gψ,h = E
[
∂ψAψ(x̃t, at)

(
Aψ(x̃t, at)− ∂tVθ(x̃t)−H(x̃t, at, ∂xVθ(x̃t), ∂

2
xxVθ(x̃t)) + βVθ(x̃t)

)]
.

(B.13)
On the other hand, consider the conditional variance of stochastic gradient:

Var(gθ,h | Ft) =
1

h2
∂θVθ(x̃t)∂θVθ(x̃t)

⊤Var(e−βhVθ(x̃t+h)− Vθ(x̃t) | Ft). (B.14)

Note that

E[(e−βhVθ(x̃t+h)− Vθ(x̃t))2 | Ft] = E[①2 + 2 ·① ·② + ②2 | Ft], (B.15)

and E[e−βhVθ(x̃t+h)− Vθ(x̃t) | Ft] = E[① | Ft]. This yields

Var(e−βhVθ(x̃t+h)−Vθ(x̃t) | Ft) = Var(① | Ft)+E
[
②2 + 2 ·① ·② | Ft

]
≥ E

[
②2 + 2 ·① ·② | Ft

]
(B.16)

According to Itô isometry,
E[①2 | Ft] = O(h2), (B.17)
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E[②2 | Ft] = E

[∫ t+h

t

e−2β(s−t)∥∂xVθ(x̃s)⊤σ(x̃s, as)∥2ds
∣∣∣∣x̃t
]
= O(h), (B.18)

and the cross term can be controlled by Cauchy-Schwarz:

E[|① ·②| | x̃t] ≤ (E[①2 | x̃t])
1
2 · (E[②2 | x̃t])

1
2 = O(h 3

2 ) (B.19)

These estimates show that, as h → 0, the leading contribution to the variance comes from the
stochastic integral term ②. As a result, by combining Fatou’s Lemma and Eq. (B.14), we conclude
that

lim
h→0

h ·Var(gθ,h) ≥ lim
h→0

h · E[Var(gθ,h | Ft)]

≥ E
[
lim
h→0

[h ·Var(gθ,h | Ft)]
]

≥ E
[
∂θVθ(x̃t)∂θVθ(x̃t)

⊤∥∂xVθ(x̃t)⊤σ(x̃t, at)∥2
]
.

(B.20)

B.4 PROOF OF PROP. 4.2

Proof. We begin by recalling that, for any horizon Lh, Itô’s formula yields,

e−βLhVθ(x̃t+Lh)− Vθ(x̃t)

=

∫ t+Lh

t

e−β(s−t)
[
∂tVθ(x̃s) + ∂xVθ(x̃s)

⊤b(x̃s, as) +
1

2
Tr(∂2xxVθ(x̃s)σσ

⊤(x̃s, as))− βVθ(x̃s)
]
ds︸ ︷︷ ︸

③

+

∫ t+Lh

t

e−β(s−t)∂xVθ(x̃s)
⊤σ(x̃s, as)dWs︸ ︷︷ ︸

④

.

(B.21)
Now consider the case where Lh ≡ δ > 0 is fixed while h → 0. In this regime, the estimator
Gθ,h,δ/h can be expressed as

lim
h→0

Gθ,h, δh
= E

[
∂θVθ(x̃t)

(
Vθ(x̃t)−

∫ t+δ

t

e−β(s−t)[rs − qψ(x̃s, as)]ds− e−βδVθ(x̃t+δ)

)]
= Θ(1)

= E

[
∂θVθ(x̃t)

(∫ t+δ

t

[
qψ(x̃s, as)− ∂tVθ(x̃s)−H(x̃s, as, ∂xVθ(x̃s), ∂

2
xxVθ(x̃s)) + βVθ(x̃s)

]
ds

)]
= Θ(1).

(B.22)
The integral is taken over a fixed interval of length δ, and thus this expression is bounded and will
not vanish.

We next turn to the variance. Expanding the definition of gθ,h,L and using Jensen’s inequality, we
obtain
Var(gθ,h,L)

≤ 2E

[
∂θVθ(x̃t)∂θVθ(x̃t)

⊤

(
(e−βLhVθ(x̃t+Lh)− Vθ(x̃t))2 + (

L−1∑
l=0

e−βlh[rt+lh − qψ(x̃t+lh, at+lh)]h)2
)]

= O(1).
(B.23)

This is because all terms are bounded.

C EXPERIMENT DETAILS

Model architecture. Across all experiments, the policy, Q-network, and value network are im-
plemented as three-layer fully connected MLPs with ReLU activations. The hidden dimension is
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set to 400, except for Pendulum, where we use 64. To incorporate time information, we augment
the environment observations with a sinusoidal embedding, yielding x̃t = (xt, cos(

2πt
T ), sin( 2πtT )),

where T denotes the maximum horizon. For stochastic policies, we employ Gaussian policies with
mean and variance parameterized by neural networks, and fix the entropy coefficient to γ = 0.1.

Environment setup. To accelerate training, we run 8 environments in parallel, collecting 8 tra-
jectories per episode. The discount rate is set to β = 0.8, applied in the form e−βh. For MuJoCo
environments, we set terminate when unhealthy=False.

Training hyperparameters. We use the Adam optimizer with a learning rate of 3 × 10−4 for all
networks (3 × 10−3 for Pendulum), and a batch size of B = 256. The update frequency is m = 1
in the original environment and m = 5 for smaller step sizes h. The soft target update parameter is
τ = 0.005. The weight for the terminal value constraint is α = 0.002. For CT-DDPG, the trajectory
length L is sampled uniformly from [2, 10], and we use exploration noise with standard deviation
σexplore = 0.1. For q-learning, for each state x̃ in the minibatch, we sample n = 20 actions from

π(· | x̃) and compute the penalty term
( 1
n

n∑
i=1

[
qψ(x̃, ai)− γ log π(ai | x̃)

])2
.

Figure 4: Comparison between all algorithms.
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