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Abstract

We consider Bayesian inference problems where
the likelihood function is either expensive to evalu-
ate or only available via noisy estimates. This set-
ting encompasses application scenarios involving,
for example, large datasets or models whose like-
lihood evaluations require expensive simulations.
We formulate this problem within a Bayesian op-
timisation framework over a space of probability
distributions and derive an upper confidence bound
(UCB) algorithm to propose non-parametric dis-
tribution candidates. The algorithm is designed to
minimise regret, which is defined as the Kullback-
Leibler divergence with respect to the true pos-
terior in this case. Equipped with a Gaussian pro-
cess surrogate model, we show that the resulting
UCB algorithm achieves asymptotically no regret.
The method can be easily implemented as a batch
Bayesian optimisation algorithm whose point eval-
uations are selected via Markov chain Monte Carlo.
Experimental results demonstrate the method’s per-
formance on inference problems.

1 INTRODUCTION

Bayesian inference problems have been traditionally solved
via exact inference methods such as Markov chain Monte
Carlo (MCMC) (Andrieu et al., 2003) when the likelihood
function is reasonably cheap to evaluate. In these settings,
often with the aid of other information, including gradients
(Neal, 2011), MCMC methods explore posterior surfaces
by performing typically thousands of evaluations until at-
taining a suitable sample-based posterior approximation.
As a lightweight alternative, variational inference methods
(Bishop, 2007) tradeoff approximation accuracy by sample-
efficiency with methods which can reduce the number of
likelihood evaluations by orders of magnitude (Ranganath

et al., 2014). However, most state-of-the-art variational in-
ference algorithms rely on gradient information from the
probabilistic model within automatic inference frameworks
(Salvatier et al., 2016; Bingham et al., 2019).

In some application scenarios in science and engineering,
such as geophysical processes (Wellmann et al., 2010), eco-
logical systems (Beaumont, 2010) and robotics (Ramos
et al., 2019), likelihood evaluations are often expensive or
intractable due to the use of complex simulations of physical
phenomena. In the simulation of high-energy collisions in
particle physics, for example, a single event may involve
sampling of millions of random variables, making likelihood
evaluations completely intractable (Brehmer et al., 2018).

When likelihood functions are not available, one resorts
to likelihood-free inference methods, such as approximate
Bayesian computation (ABC) (Robert, 2016), conditional
density estimation (Papamakarios and Murray, 2016), syn-
thetic likelihoods (Ong et al., 2018), etc. Simulations might
still be expensive and limited by resource constraints, im-
posing challenges to traditional approaches, like ABC. Re-
cent methods address the efficiency problem by sequentially
learning approximations to the likelihood (Gutmann and
Corander, 2016; Papamakarios et al., 2019), or the posterior
directly (Greenberg et al., 2019), from simulation data. In
particular, Gutmann and Corander (2016) derive an act-
ive learning approach using Bayesian optimisation (BO)
(Shahriari et al., 2016) to propose simulation parameters.

In this paper, we address the problem of learning posterior
approximations via Bayesian optimisation. We consider set-
tings with black-box likelihood functions which might be
noisy and expensive to evaluate. Contrary to the traditional
point optimisation for BO, which only seeks extreme val-
ues, we address the problem of learning the distribution
as a whole via non-parametric, sample-based approxim-
ations. For this purpose, we derive an upper confidence
bound (UCB) algorithm to sample approximate posteriors
learnt by a Gaussian process (GP) (Rasmussen and Wil-
liams, 2006) model on the log-likelihood. Compared to
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previous approaches using GP-based methods for approxim-
ate inference (Gutmann and Corander, 2016; Acerbi, 2018;
Järvenpää et al., 2020), our method proposes a sequence
of non-parametric sample-based posterior approximations
which allow us to bound the Kullback-Leibler (KL) diver-
gence between the estimate and the true unknown posterior.
Theoretical results demonstrate that the algorithm is able to
converge with sub-linear regret bounds towards the posterior
distribution. We also provide experimental results, assess-
ing the method’s performance in practice on approximate
inference problems.

2 RELATED WORK

Bayesian optimisation approaches for black-box approx-
imate inference have recently been proposed in the literat-
ure. In the context of ABC, Gutmann and Corander (2016)
proposed learning a likelihood function from discrepancy
evaluations of simulations using a UCB criterion for simula-
tion parameters selection, with other acquisition rules later
developed (Järvenpää et al., 2017).

Adaptive Bayesian quadrature (ABQ) methods (Kanagawa
and Hennig, 2019) are also closely related to BO when
considering a search space consisting of probability distribu-
tions. Acerbi (2018) presented variational Bayesian Monte
Carlo (VBMC), an ABQ framework which sequentially
learns variational approximations to a posterior distribution
on top of a GP surrogate of the log-joint probability dens-
ity between parameters and observations. More recently,
Järvenpää et al. (2020) proposed a GP-based method to
sequentially select informative batches of parameters for
parallel likelihood evaluations. Their method selects batch
elements based on an optimal posterior approximation de-
rived from the current GP log-likelihood estimate. Although
both ABQ methods do not explicitly involve an optimisation
objective, the intermediate posterior approximations at each
iteration can be seen as a sequence of candidate solutions
optimising an implicit distributional objective.

Non-BO methods based on sequential approximations to a
posterior are also plentiful in the likelihood-free inference
literature (Papamakarios and Murray, 2016; Papamakarios
et al., 2019; Greenberg et al., 2019; Durkan et al., 2020;
Cranmer et al., 2020). These methods rely on neural density,
or density-ratio, estimators to learn surrogate posterior dens-
ities from simulated data. Although our framework can also
be applied to likelihood-free inference, we do not assume
direct access to simulated data, but only to evaluations of a
synthetic likelihood or discrepancy function.

Regarding theoretical results on posterior approximation
errors, Kanagawa and Hennig (2019) analyse the conver-
gence rate of adaptive Bayesian quadrature methods, which
applies, for example, to Acerbi (2018, 2020). However, in
this work, we are concerned with finite-time upper bounds

on the posterior approximation error, defined by the KL
divergence. We derive an algorithm which not only comes
equipped with such finite-time guarantees, but which is also
shown to achieve asymptotic optimality.

3 PROBLEM FORMULATION

Our goal is to estimate a posterior distribution over paramet-
ers θ ∈ Θ ⊂ Rd given observed data x ∈ X :

px(θ) := p(θ|x) =
p(x|θ)p(θ)

p(x)
, (1)

where we consider a likelihood p(x|θ) only available via
noisy and/or expensive evaluations, the evidence p(x) is
assumed intractable, but we have a prior p(θ).

We formulate the posterior estimation in Equation 1 as an
optimisation problem over the space P of probability distri-
butions on Θ:

q∗ ∈ argmin
q∈Q

DKL(q||px) , (2)

where Q ⊂ P is a set of probability distributions over
Θ, and DKL(q||px) ≥ 0 denotes the Kullback-Leibler
(KL) divergence between q and px, which is such that
DKL(q||px) = 0 ⇐⇒ q = px. The problem above can be
shown to be equivalent to:

q∗ ∈ argmax
q∈Q

Eθ∼q[`(θ)]− DKL(q||p) , (3)

where `(θ) := log p(x|θ) denotes the log-likelihood. The
objective function in Equation 3 is known as the evidence
lower bound (ELBO), as it lower bounds log p(x).

Finding the global optimum in Equation 3 is usually intract-
able for an arbitrary log-likelihood function ` and distribu-
tional search space Q. In addition, we also consider cases
where the estimates of ` are possibly noisy. Therefore, we
make a few regularity assumptions on the log-likelihood
function and its estimates.

Regularity assumptions: We assume ` : Θ → R lies in
a reproducing kernel Hilbert space (RKHS) (Schölkopf and
Smola, 2002). Given a positive-definite kernel k : Θ×Θ→
R, a RKHS Hk is a Hilbert space of functions with inner
product 〈·, ·〉k and norm ‖·‖k =

√
〈·, ·〉k, such that f(θ) =

〈f, k(·,θ)〉k, for any f ∈ Hk and any θ ∈ Θ. We assume k
is continuous and bounded with k(θ,θ) ≤ 1,∀θ ∈ Θ, and
that ‖`‖k ≤ b, where b > 0 is known.1

Likelihood estimates: We consider a general sequential
setting where we may not have direct access to the log-
likelihood `, but only to noisy estimates ˆ̀. In particular, we

1These assumptions are met by most of the popular kernels
and are common in the online learning literature.



assume that the approximation error:

εt := ˆ̀(θt)− `(θt) (4)

is zero-mean σε-sub-Gaussian for a given σε > 0
(Boucheron et al., 2013; Chowdhury and Gopalan, 2017).
The sub-Gaussian assumption implies unbiased log-
likelihood estimates with an error which is bounded or
whose distribution tails decay at least as fast as a Gaus-
sian. Examples include unbiased synthetic log-likelihood
models (Ong et al., 2018) and mini-batching estimates when
considering models with bounded log-likelihood functions.

Regret: Our performance analysis is based on the instant
regret of an algorithm choosing a sequence of distributions
{qt}t≥1. The instant regret at iteration t ≥ 1 is defined as:

rt := DKL(qt||px)− DKL(q∗||px) . (5)

If our class of distributions Q is flexible enough, so that
px ∈ Q, then DKL(q∗||px) = 0, setting q∗ = px, and:

rt = DKL(qt||px) . (6)

An upper bound on the cumulative regret RT :=
∑T
t=1 rt

tells us how far the candidates qt picked by the algorithm
are to the global optimum q∗. In particular, the regret for the
best candidate up to iteration T is bounded by:

min
t≤T

rt ≤
1

T
RT . (7)

Therefore, if RT grows sub-linearly with T , the term above
vanishes as T → ∞ and the choices of the algorithm get
arbitrarily close to the optimal q∗ in terms of KL divergence
with respect to the posterior px.

4 BACKGROUND

This section briefly reviews background on Gaussian pro-
cesses, Bayesian optimisation via upper confidence bounds,
and MCMC algorithms, which we apply for our results.

4.1 GAUSSIAN PROCESS MODELS

A Gaussian process with mean function m : Θ → R and
a positive-definite covariance function k : Θ × Θ → R
represents a prior over functions f : Θ → R so that,
for any finite collection of query points {θi}Ni=1 ⊂ Θ,
the vector fN = [f(θ1), . . . , f(θN )]T is Gaussian, fN ∼
N (mN ,KN ), where [KN ]ij = k(θi,θj). Given a set of
observations DN = {(θi, zi)}Ni=1, where zi = f(θi) + εi,
and εi ∼ N (0, η), the posterior over f is:

f(θ∗)|DN ∼ N (µN (θ∗), σ
2
N (θ∗)) , (8)

where:

µN (θ∗) = m(θ∗) + kN (θ∗)
T(KN + ηI)−1(zN −mN )

(9)

kN (θ,θ′) = k(θ,θ′)− kN (θ)T(KN + ηI)−1kN (θ′)
(10)

σ2
N (θ∗) = kN (θ∗,θ∗) , (11)

where kN (θ∗) := [k(θ1,θ∗), . . . , k(θN ,θ)]T.

To model log-likelihoods, we need to consider that in log-
scale low-likelihood values tend to−∞. Following previous
works (Acerbi, 2018; Järvenpää et al., 2020), we use a neg-
ative quadratic mean function and, as covariance function,
the squared-exponential kernel:

k(θ,θ′) := σ2
f exp

(
− 1

2l2
‖θ − θ′‖22

)
, θ,θ′ ∈ Θ

(12)
where l > 0 and σf > 0 are hyper-parameters (see
Rasmussen and Williams, 2006, Ch. 4), and ‖·‖2 denotes the
Euclidean 2-norm of a vector. However, our algorithm and
results are not restricted to this particular choice of kernel.

4.2 THE UPPER CONFIDENCE BOUND
ALGORITHM

The upper confidence bound (UCB) algorithm has been a
popular method in the multi-armed bandits and Bayesian
optimisation literature due to its theoretical properties and
simplicity (Abbasi-Yadkori et al., 2010; Srinivas et al., 2010;
Shahriari et al., 2016; Chowdhury and Gopalan, 2017). The
algorithm selects queries to solve a sequential optimisation
problem by maximising an upper confidence bound over the
objective function. In the case of Gaussian processes, the
algorithm selects queries by:

θt ∈ argmax
θ∈Θ

µt−1(θ) + βt−1σt−1(θ) , (13)

where βt is a parameter which can be adjusted based on the
information gain of the GP model, and µt and σ2

t define the
GP posterior mean and variance, respectively, at time t ≥ 0.
UCB algorithms enjoy bounded regret under reasonable
assumptions in a point optimisation setting (Abbasi-Yadkori
et al., 2010; Durand et al., 2018). In this paper, however, we
consider a distribution optimisation setting.

4.3 MARKOV CHAIN MONTE CARLO

MCMC constitutes a broad class of sampling-based
Bayesian inference algorithms, most of which enjoy asymp-
totic convergence guarantees (Andrieu et al., 2003). These
methods formulate sampling as a Markov process whose sta-
tionary distribution is given by the desired target distribution,
i.e. the posterior in Bayesian inference. The main building



block of the majority of current MCMC approaches is the
Metropolis-Hastings (MH) algorithm (Hastings, 1970). In
the Bayesian inference formulation, given a proposal dis-
tribution π(θ′|θ), the MH algorithm accepts or rejects a
sample θ′ given the previous θ with the following accept-
ance probability:

α(θ′|θ) := min

{
1,
p(x|θ′)p(θ′)π(θ|θ′)
p(x|θ)p(θ)π(θ′|θ)

}
. (14)

Among the most popular choices of MCMC algorithms,
we have Hamiltonian Monte Carlo (Neal, 2011) and its re-
lated self-adjusting variant, the no-U-turn sampler (NUTS)
(Hoffman and Gelman, 2014). In addition, we also have en-
semble samplers, which often deal better with multi-modal
distributions (Foreman-Mackey et al., 2013).

5 DISTRIBUTIONAL BAYESIAN
OPTIMISATION

We propose a BO algorithm for approximate Bayesian
inference problems (Equation 2) with black-box and/or
expensive-to-evaluate likelihood functions. The algorithm
iterates between estimating posterior approximations and
collecting likelihood evaluations, which are then passed on
to update an internal GP model. In its general form, the
algorithm may operate with any class of variational posteri-
ors Q. We, however, focus on the class of non-parametric
sample-based approximations via MCMC, which offer the-
oretical and practical benefits, detailed in the next sections.

The algorithm is outlined in Algorithm 1. At each itera-
tion, the algorithm selects a variational posterior by max-
imising a distributional acquisition function consisting of
an upper-confidence bound on the ELBO (cf. Equation 3).
From the variational posterior, we sample a batch of S
parameters to evaluate the log-likelihood function ` via its
estimator ˆ̀. The data from the evaluations is fed back to
update the algorithm’s internal GP model, and the cycle
repeats for a given number of T iterations. In the following,
we present the proposed distributional acquisition function
and a method to directly sample from its maximiser.

5.1 KULLBACK-LEIBLER UPPER CONFIDENCE
BOUND

As the log-likelihood `(θ) is the only unknown term in
Equation 3, a GP model on ` : Θ → R allows us to de-
rive an upper confidence bound on the ELBO. From this
observation, we define the following acquisition function:

h(q|Dt) := Eθ∼q[ut(θ)]− DKL(q||p) , t ≥ 0 , (15)

where ut(θ) := µt(θ)+βtσt(θ) corresponds to a pointwise
UCB (Srinivas et al., 2010; Durand et al., 2018), and we

Algorithm 1: KL-UCB

1 D0 := ∅
2 for t ∈ {1, . . . , T} do
3 qt ← argmaxq∈Q h(q|Dt−1)

4 Sample {θt,i}Si=1 ∼ qt
5 Evaluate zt,i = ˆ̀(θt,i), i ∈ {1, . . . , S}
6 Update GP with Dt := Dt−1 ∪ {θt,i, zt,i}Si=1

derive settings for βt > 0 in Section 6. With this acquisition
function, we select candidate distributions as:

qt ∈ argmax
q∈Q

h(q|Dt−1), t ≥ 1 . (16)

Comparing h in Equation 15 with the main ELBO formu-
lation (Equation 3), we notice that Equation 15 defines an
ELBO with respect to a surrogate posterior obtained by
taking the pointwise UCB ut as a log-likelihood function:

p̂t−1(θ) :=
p(θ) exput−1(θ)∫

Θ
p(θ′) exput−1(θ′) dθ′

, t ≥ 1 . (17)

The equation above defines a valid probability density func-
tion as long as ut is bounded, which is usually the case
for practical GP models. We formalise this result in Sec-
tion 6 (Lemma 2). Due to its connection with the KL diver-
gence, we refer to the acquisition function in Equation 15
as Kullback-Leibler upper confidence bound (KL-UCB).

5.2 OPTIMISATION OVER PROBABILITY
DISTRIBUTIONS VIA MCMC

We now address the choice of the class Q of variational
posteriors and how to sample from the optimal candidates
qt ∈ Q at each BO iteration (cf. Equation 16). As discussed
in the previous section, KL-UCB as defined in Equation 15
corresponds to an ELBO with respect to p̂t in Equation 17,
while also being an upper confidence bound on the main
ELBO in Equation 3. Therefore, for a large enough class
of distributions Q, the maximiser qt of Equation 16 is p̂t−1

itself, and we may sample directly from it, bypassing the
optimisation step in Equation 16.

To sample from the candidates qt := p̂t−1 at each BO
iteration, we need to consider that the denominator in Equa-
tion 17 involves a possibly intractable integral. We address
this issue by applying MCMC to sample, which only re-
quires the unnormalised density p(θ) exput−1(θ).

Due to its asymptotic convergence guarantees (Andrieu
et al., 2003), running MCMC with p̂t−1 as our target dis-
tribution gives us samples which converge in distribution
to p̂t−1, the optimiser of Equation 16. We may see MCMC
in this case as a form of optimisation over a space of non-
parametric probability distributions. Further discussions on



the topic of MCMC as optimisation are available in the
literature of gradient-based methods (Wibisono, 2018).

Note that we do not need to draw an infinite amount of
samples from the MCMC chain. We only need to run it so
that a batch of S < ∞ samples coming out of the chain
approximately follow p̂t, i.e. after a long enough burn-in
period, or by initialising the chain at a high-probability
region, such as a mode of p̂t (van Ravenzwaaij et al., 2018).
In our experiments, we use the EMCEE sampler (Foreman-
Mackey et al., 2013) which can deal with the multi-modality
of the UCB surface at reasonably fast mixing times.

6 THEORETICAL RESULTS

In this section, we present theoretical results on the regret
of Algorithm 1 with respect to the objective in Equation 2.
UCB’s theoretical guarantees are based on uniform concen-
tration bounds. In particular, we use the following result for
point-wise approximations.

Theorem 1 (Durand et al. (2018)). Let k(θ,θ) ≤ 1 for all
θ ∈ Θ, ‖`‖k ≤ b and εt be conditionally σε-sub-Gaussian.
Then, for any δ ∈ (0, 1], with probability at least 1 − δ,
uniformly over all t ≥ 0 and θ ∈ Θ,

|`(θ)− µt(θ)| ≤ βt(δ)σt(θ) ,

where βt(δ) = b+ σε
√

2η−1 log(|I + η−1Kt|1/2/δ).

Notice that the confidence bound in Theorem 1 is simultan-
eous over all Θ and is currently the tightest known bound
in the UCB literature. In our case, we extend the result
above to a concentration bound over the space of probability
distributions P with support on Θ.

Lemma 1. Under our regularity assumptions (cf. Section 3),
with probability at least 1− δ, δ ∈ (0, 1), we have that the
following holds for all t ≥ 0:

|Eθ∼q[`(θ)− µt(θ)]| ≤ βt(δ)Eθ∼q[σt(θ)] , ∀q ∈ P ,
(18)

where βt(δ) := b + σε
√

2η−1 log(|I + η−1KDt |1/2/δ),
KD := [k(θ,θ′)]θ,θ′∈D represents the GP covariance mat-
rix for a set of observations D, and |A| denotes the determ-
inant of a square matrix A.

Proof sketch. This result follows by an application of
Jensen’s inequality to the confidence bound in Durand et al.
(2018, Theorem 1) for GP-UCB.

The result in Lemma 1 allows us to place a high-probability
upper bound on the instant regret of Algorithm 1 when
using the acquisition function in Equation 15 and the UCB
parameter set to βt := βt(δ). In addition to the regularity
assumptions in Section 3, we need to place conditions on

the sampling process {θi}Si=1 for the bounds to hold. We
defer full proofs to the supplementary material.

The main result depends on the information gain of the GP,
which is bounded by:

γN := sup
ΘN⊂Θ:|ΘN |=N

I(zN ,gN |ΘN ) , (19)

where I(zN ,gN |ΘN ) denotes the mutual information
between zN = gN + ε′N and gN ∼ N (0,KN ), with
[KN ]ij = k(θi,θj), θi,θj ∈ ΘN and ε′N ∼ N (0, ηI). For
a compact parameter space Θ, or equivalently when deal-
ing with a compactly supported prior p(θ), the supremum
in Equation 19 corresponds to a maximum, which is re-
ferred to as the maximum information gain. For popular
choices of kernels, information gain bounds are available
in the literature, such as the squared exponential kernel,
which is O((log T )d+1) (Srinivas et al., 2010). We can now
provide the following bound on the cumulative regret of
Algorithm 1.

Theorem 2. Under the same assumptions in Lemma 1, run-
ning Algorithm 1 with h(q|Dt−1) given by Equation 15 and
βt := βt(δ), we obtain a bound on the instant regret:

rt ≤ 2βt−1(δ)Eqt [σt−1] , t ≥ 1 , (20)

and on the cumulative regret at T ≥ 1:

RT ≤ 4βT (δ)
√

(T + 2)γT ∈ O(
√
T (b
√
γT +

√
γT γST ))

(21)
which hold with probability at least 1− δ.

Proof sketch. The first result follows by applying the upper
confidence bound on ` to the regret defined in Equation 5
for an optimal choice according to Equation 16. The second
result follows a similar derivation to previous bounds in
the literature (cf. Chowdhury and Gopalan, 2017, Theorem
2).

For common choices of kernel functions, such as the squared
exponential and the Matérn kernels, the maximum inform-
ation gain has sub-linear growth (Srinivas et al., 2010).
Consequently, Theorem 2 shows that Algorithm 1 achieves
vanishing regret under these settings, which allows the al-
gorithm to find arbitrarily close approximations to q∗ within
a finite amount of time. In particular, let us consider the
setting where we run exact inference on Equation 16.

Lemma 2. For any bounded kernel k and bounded GP
mean function m, maximising h in Equation 15 at any t ≥ 1
is equivalent to:

argmax
q∈Q

h(q|Dt−1) = argmin
q∈Q

DKL(q||p̂t−1) . (22)

Lemma 2 tells us that the maximiser of h(q|Dt−1) is unique
and given by p̂t−1 when p̂t−1 ∈ Q. In fact, we can sample
from p̂t−1 via MCMC, which leads us to the final result.



Corollary 1. Under the regularity assumptions in Section 3,
with probability greater than 1− δ, δ ∈ (0, 1), we have:

∀t ≥ 0, DKL(p̂t||px) ≤ 2βt(δ)Ep̂t [σt] . (23)

In particular, for γT ∈ O(Tα) with α < 1/2, we have:

lim
T→∞

min
t≤T

DKL(p̂t||px) = 0 . (24)

This result provides a finite-sample bound on the KL di-
vergence of posterior approximations (see Appendix C for
kernel-specific bounds) and confirms that the GP-based pos-
terior approximation asymptotically approaches the true pos-
terior px for the case of popular kernels, such as the squared
exponential and the Matérn family, which lead to sub-linear
regret bounds (Srinivas et al., 2010). The result also tells
us that a sequence of MCMC samples over a UCB-based
likelihood leads us to optimal posterior approximations and
a no-regret approximate inference algorithm.

6.1 CONNECTION WITH OTHER APPROACHES

Contrast with point-based approach: In contrast with
applying UCB to learn a log-likelihood model via a point-
maximisation problem (Gutmann and Corander, 2016), The-
orem 2 establishes a regret bound on distribution choices.
The distributional regret bound is O(

√
TγT +

√
γT γST ),

essentially smaller than the regret bound of a GP-UCB al-
gorithm given the same number of likelihood evaluations
N = ST , which is O(

√
STγST + γST ) (Chowdhury and

Gopalan, 2017) by a factor dependent on the sample batch
size S, since γST ≥ γT by monotonicity. In addition,
samples from qt consider the likelihood surface as a whole
via the expectation within the ELBO, while a pointwise
UCB algorithm would be ultimately concerned with finding
the parameter of maximum likelihood.

Connection with VBMC: VBMC (Acerbi, 2018) selects
variational posteriors by maximising a lower confidence
bound on the ELBO based on GP estimates. For a GP model
on the log-likelihood2, VBMC optimises:

hVBMC(q|Dt) := Eq[µt]− DKL(q||p)− βσt(q) , (25)

where β ≥ 0 is fixed (e.g. β = 3), and σ2
t−1(q) :=∫

Θ

∫
Θ
kt−1(θ,θ′)q(θ)q(θ′) dθ dθ′corresponds to the vari-

ance of the expected log-likelihood. From the variational
posterior qVBMC

t that maximises hVBMC(q|Dt−1), VBMC
selects a sequence of points for evaluation:

θVBMC
t+i ∈ argmax

θ∈Θ
σ2
t+i−1(θ)qVBMC

t (θ) expµt+i−1(θ) ,

(26)
2The GP model in VBMC is learnt over the log-joint prob-

ability p(x,θ), which is still compatible with our setup, with the
exception that the prior is known.

where each point is chosen after updating the GP with the
evaluation at the previous point for a total of SVBMC points
(set to 5 by default). VBMC uses a class of non-parametric
variational posteriors consisting of mixtures of Gaussians
with an adaptible number of components and performs a
warm-up run to optimise GP hyper-parameters.

Equation 25 corresponds to a lower confidence bound on
the ELBO (Acerbi, 2018) in contrast to KL-UCB (cf. Equa-
tion 15), which sets an upper confidence bound. Therefore,
if the lower confidence bound in VBMC is replaced by
KL-UCB, the algorithm should have a similar distributional
regret bound to the one in Theorem 2, since the stochastic
process producing the batch does not violate the assump-
tions in Durand et al. (2018) for Theorem 1 (see also the
assumptions in Chowdhury and Gopalan (2017)).

6.2 LIMITATIONS

Our distributional Bayesian optimisation algorithm KL-
UCB comes with strong theoretical guarantees allowing
one not only to learn approximations of a posterior, but also
to quantify the error in the approximation. However, the
algorithm also comes with its own limitations. Although
not explicit in the regret bounds, the dimensionality of
the parameter space Θ affects the bounds via the depend-
ence of the maximum information gain γT on it. For in-
stance, the squared-exponential kernel (Equation 12) yields
γT ∈ O(logd+1 T ) (Srinivas et al., 2010), which is exponen-
tial in the dimension of the parameter space. In addition, the
inversion of the kernel matrix required for GP predictions
scales as O(N3) in time complexity. Therefore, our method
is more suitable for applications with low-dimensional para-
meter spaces and where we are limited to a small number of
likelihood evaluations. Sparse approximations to GPs (Gijs-
berts and Metta, 2013; Hensman et al., 2013) and advances
in BO methods for high-dimensional search spaces (Wang
et al., 2018; Mutný and Krause, 2018) may alleviate these
issues, but adapting these frameworks to this problem setup
is objective of future research.

7 EXPERIMENTS

In this section, we present empirical assessments of the pro-
posed KL-UCB algorithm to complement the theoretical
results in the previous section. We start with experiments
assessing the theoretical regret bounds in situations where
the modelling assumptions hold. We then follow with exper-
iments comparing KL-UCB against VBMC (Acerbi, 2018),
as an adaptive Bayesian quadrature baseline, in two test
cases where the log-likelihood function is not in the RKHS
defined by the GP kernel. Lastly, we present an experiment
with a likelihood-free inference problem using a single-point
UCB strategy as a baseline (Gutmann and Corander, 2016).



For all experiments, KL-UCB was configured with a stand-
ard normal prior and a squared exponential kernel. To per-
form inference over the UCB-based posterior approximation
p̂t−1, we run the ensemble-based MCMC sampler EMCEE
(Foreman-Mackey et al., 2013) set with 25 walkers to draw
each iteration’s batch of S := 5 after a burn-in period. We
set δ := 0.2 and adjust the kernel hyper-parameters accord-
ingly. Appendix E provides additional experiment details.

Results are reported in terms of the number of evaluations
of the log-likelihood. As performance metrics, we use both
the KL divergence and the Gaussian symmetrised KL diver-
gence (gsKL) used by Acerbi (2018). The latter is defined as
the symmetric KL divergence between the Gaussian distri-
butions formed by the first two moments of the approximate
and the true posterior distribution. In cases where the pos-
terior distribution is not available in closed form, we also run
MCMC and kernel density estimation to recover a reference
posterior density.

Ablation experiments in the supplementary material analyse
the effect of dimensionality in the current framework (see
Appendix D). Code and further ablation experiments are
also to be made available online.3

7.1 THEORY ASSESSMENT

We first assess how the theoretical results reflect in terms
of practical performance in settings where the regularity
assumptions are known to hold. For this experiment, we
generate log-likelihood functions in the RKHSHk:

` :=

M∑
i=1

wik(·,θi) ∈ Hk , (27)

where we sample wi ∼ N (0, 1), θi ∼ p(θ), for i ∈
{1, . . . ,M}, with a fixed M := 40.

Figure 1 presents the posterior approximation results for a
1-D RKHS log-likelihood. As seen in Figure 1a, the final
posterior approximation, which uses the GP posterior mean
as a log-likelihood, mostly matches the true posterior. The
exception is a slight under-estimation of the second, smaller
mode. This, however, is a well-known effect of using the
reverse KL, which induces a mode-seeking behaviour (Wang
and Titterington, 2005; Bishop, 2007).

In Figure 1b, the regret plot shows that the bound in The-
orem 2 is large enough to accommodate for the measured
KL divergence between the proposed distributions and the
true posterior. The regret bound is calculated based on the
formulation of βt in Theorem 1 using the norm of ` inHk.
Details about the KL divergence estimation are available in
the supplementary material (see Appendix E).

3Code repository: https://github.com/rafaol/
no-regret-approximate-inference-via-bo

(a) Approximation (b) Regret

Figure 1: Results for theory assessment experiment. Plot (a)
shows the final posterior approximation by KL-UCB (solid
line) alongside the true synthetic posterior (dashed line) for
one of the trials. Plot (b) shows the averaged cumulative
regret RT /T as a function of the number of likelihood eval-
uations. Results were averaged over 10 trials, and the shaded
area corresponds to ±1 standard deviation.

(a) KL divergence (b) gsKL

Figure 2: Performance on 2D lumpy likelihood. Results
were averaged over 5 trials. Shaded areas correspond to ±1
standard deviation.

7.2 COMPARISONS

In this section, we test KL-UCB on settings where the main
assumption ` ∈ Hk does not hold. As a related approximate
inference baseline, we use VBMC (Acerbi, 2018).

Lumpy likelihood: This likelihood function is formu-
lated as a mixture of equally weighted Gaussians:

p(x|θ) = exp `(θ) =
1

M

M∑
i=1

N (θ;θi,Σi) , (28)

where we sample θi ∼ U [0, 1]d and Σi =
diag(σ2

i,1, . . . , σ
2
i,d) with σi,j ∼ U [0.2, 0.6], j ∈

{1, . . . , d} for a fixed number of components M := 12,
following the setup in Acerbi (2018). Placing a Gaussian
prior p(θ) := N (θ; 0, σ2

pI) with σp := 0.5 on θ, the result-
ing posterior is available in closed-form as also a mixture of
Gaussians with properly adjusted means and covariances.

Figure 2 presents the results for the experiment on the lumpy
likelihood function. As we can see, KL-UCB’s performance

https://github.com/rafaol/no-regret-approximate-inference-via-bo
https://github.com/rafaol/no-regret-approximate-inference-via-bo


(a) gsKL (b) ELBO

Figure 3: Performance on experiment with circular likeli-
hood function. Results were averaged over 5 trials. Shaded
areas correspond to ±1 standard deviation.

is surpassed by that of VBMC. As this problem setting
involves a mixture of Gaussians as a likelihood, VBMC has
a natural advantage, since this algorithm uses variational
posteriors based on mixtures of Gaussians as well.

Circular likelihood: We define a circular 2-dimensional
log-likelihood function by:

`(θ) := −(‖θ − θc‖2 − ρc)2/sc , (29)

where θc := 0 denotes the circle centre, ρc := 1.5 is the
circle radius, and sc := 0.25 is a length-scale.

In Figure 3, we see the performance results for the circu-
lar likelihood. This time KL-UCB noticeably outperforms
VBMC. One of the reasons for this outcome is that to be
able to cover the narrow circle defined by the likelihood
function, VBMC needs a large number of mixture compon-
ents (reaching 50 in our tests). KL-UCB instead samples on
top of the non-parametric surface defined by the GP directly.

7.3 LIKELIHOOD-FREE INFERENCE

We applied KL-UCB to a likelihood-free inference problem.
In this experiment, we infer the parameters of a classic con-
trol environment in OpenAI Gym4: the cart-pole. We fix a
given setting for its physics parameters θreal and generate
a dataset of 10 trajectories by executing randomly sampled
actions. Summary statistics ξ were the same as Ramos et al.
(2019), which consist of state-action inner products and the
first two moments of the trajectory state-differences distribu-
tion. The discrepancy was set to ∆θ := ‖ξθ − ξreal‖22/σ2,
and we evaluate ˆ̀(θ) := −∆θ. We also placed a Gaussian
prior p(θ) := N (θ; 0, I) on the parameters.

Our GP model was configured with the Matérn kernel set
with smoothness parameter ν := 3/2 (Rasmussen and Wil-
liams, 2006). Other hyper-parameters include the kernel
length-scales, signal variance and noise variance, and were

4OpenAI Gym: https://gym.openai.com

(a) True posterior (b) KL-UCB posterior

(c) GP-UCB posterior (d) KL regret

Figure 4: Cart-pole likelihood-free inference problem. Plot
(a) shows the reference true posterior obtained by ABC.
Plot (b) shows a posterior estimated via the batch-based
KL-UCB, and plot (c) shows an estimate by the point-to-
point GP-UCB. Plot (d) shows the KL-divergence regret
of each method averaged over 5 runs, with shaded areas
corresponding to ±1 standard deviation.

adjusted based on maximum a posteriori estimates from pre-
vious runs. The GP mean function was set as the log-prior
probability density m(θ) := log p(θ).

We compared KL-UCB against GP-UCB in this experiment.
Both methods were configured with a fixed βt := 3, ∀t ≥ 0.
The main difference between the methods is that GP-UCB
sequentially selects single points for evaluations, which
maximise the pointwise UCB, while KL-UCB selects an
i.i.d. batch of points according to the UCB-based posterior
approximation. The GP-UCB approach in this case corres-
ponds to the approach by Gutmann and Corander (2016),
providing a baseline as a point-based likelihood-learning
method.

Figure 4 presents the final posterior approximations ob-
tained by KL-UCB and the KL-divergence-based regret for
each method. As a reference for the "true" posterior, we ran
rejection ABC5 with an adaptable threshold parameter to
obtain 1000 samples, and then fit a kernel density estimator
to measure the KL divergences. As the plots show, KL-UCB
was able to obtain approximations much closer to the true
posterior when compared to GP-UCB. It is worth noting that
the true posterior’s mass is highly concentrated on a narrow
region around the true parameters, making the inference
problem relatively hard for a point-by-point method.

5ABC code: https://github.com/elfi-dev/elfi

https://gym.openai.com
https://github.com/elfi-dev/elfi


In terms of regret, we measured the KL divergence between
the corresponding UCB-based posterior approximation and
the true posterior for both methods. These results are also in
Figure 4. Even though GP-UCB and KL-UCB had the same
settings for their GP models, the results show that, within
the given budget of 200 evaluations of the discrepancy func-
tion, GP-UCB was not able to obtain reasonable posterior
approximations. Its performance is also more unstable.

8 CONCLUSION

This paper presented an approach for approximate Bayesian
inference via Bayesian optimisation in settings where we
need to evaluate black-box likelihood functions. The al-
gorithm is composed of an acquisition function formulated
as an upper confidence bound over the ELBO of a vari-
ational objective. In contrast to traditional variational infer-
ence approaches, the algorithm samples the non-parametric
posterior approximation defined by a GP model over the
log-likelihood function to propose evaluation points at each
iteration. The use of a flexible non-parametric class of dis-
tributions allows us to propose a sequence of optimal distri-
butional candidates, which theoretical results have shown
to lead to a vanishing KL divergence. A set of experiments
also demonstrated the method in practice. As future work,
the method offers a few avenues for improvement, such as
possible batch design approaches (Järvenpää et al., 2020) on
top of the MCMC samples, scalability to high-dimensional
spaces and applications to general optimisation problems.
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APPENDIX

This appendix complements the main paper with proofs,
additional results and experiment details. In Appendix A,
we start with additional theoretical background. Appendix B
presents full proofs for the main theoretical results in the
paper. Appendix C provides kernel-specific theoretical up-
per bounds for the KL divergence of posterior candidates
obtained by KL-UCB. In Appendix D, we present a sensitiv-
ity analysis on dimensionality effects on KL-UCB. Finally,
in Appendix E, we conclude with further details on the
experiments setup.

A FURTHER BACKGROUND

Definition 1. Let Q and P be two probability measures
such that Q is absolutely continuous with respect to P .
The Kullback-Leibler (KL) divergence between Q and P is
defined as:

DKL(Q||P ) :=

∫
log

(
dQ

dP

)
dQ . (30)

Case Q and P are both defined on a Euclidean space Rd
and are absolutely continuous with respect to the Lebesgue
measure on this space, the equation above can be rewritten
as:

DKL(Q||P ) = DKL(q||p) :=

∫
Rd
q(θ) log

(
q(θ)

p(θ)

)
dθ ,

(31)
where q(θ) := dQ(θ)

dθ and p(θ) := dP (θ)
dθ are the probabil-

ity density functions of Q and P , respectively.

GP predictive equations: The theoretical results are
given in terms of a Gaussian process model GP(m, k) for
the log-likelihood function ` : Θ→ R which is learnt with
batches of S i.i.d. samples from a probability distribution qt
at each iteration t ∈ {1, . . . , T}. Therefore, at each iteration
t ≥ 1, the GP predictive mean and variance are given by:

µt(θ) := m(θ) + kNt(θ)T(KNt + ηI)−1(zNt −mNt)

(32)

kt(θ,θ
′) := k(θ,θ′)− kNt(θ)T(KNt + ηI)−1kNt(θ

′)
(33)

σ2
t (θ) := kt(θ,θ) , (34)

where kNt(θ) := [k(θ,θ1), . . . , k(θ,θNt)]
T, [KNt ]i,j :=

k(θi,θj), i, j ∈ {1, . . . , Nt}, and Nt := tS.

B PROOFS

We here present full proofs for the theoretical results in the
paper. We start with a few auxiliary results and then follow
with the proofs for the main results.

B.1 AUXILIARY RESULTS

Lemma 3. In our settings, the GP posterior variance is
always bounded, i.e.:

∀t ≥ 0, ‖σt‖∞ ≤ 1. (35)

Proof. As the kernel k is bounded, with k(θ,θ) ≤ 1, ∀θ ∈
Θ, the definition in Equation 34 leads to:

∀t ≥ 1, σ2
t (θ) ≤ k(θ,θ) ≤ 1, ∀θ ∈ Θ . (36)

Lemma 4. Assuming a bounded mean functionm : Θ→ R,
the GP posterior mean is bounded, i.e.:

∀t ≥ 0, ‖µt‖∞ <∞ . (37)

Proof. As defined in Equation 32, for t ≥ 1, we have:

µt(θ) := m(θ) + kNt(θ)T(KNt + ηI)−1(zNt −mNt)

≤ m(θ) + η−1kNt(θ)T(zNt −mNt)

≤ ‖m‖∞ + η−1‖kNt(θ)‖1‖zNt −mNt‖∞
≤ ‖m‖∞ + η−1t(‖zNt‖∞ + ‖m‖∞)

<∞ , ∀θ ∈ Θ ,

(38)

where we first used the fact that (KNt + ηI)−1 =
η−1(η−1KNt + I)−1 4 η−1I due to positive-definiteness,
then applied Hölder’s inequality, and finally the observation
that ‖kNt(θ)‖1 ≤ t, due to the kernel bound.

Lemma 5 (Srinivas et al. (2010, Lemma 5.3)). The inform-
ation gain for a sequence of evaluations {θi, zi}Ni=1, where
zi = f(θi) + εi, εi ∼ N (0, η), can be expressed in terms of
the predictive variances. Namely, if f ∼ GP(m, k), then:

I(zN , fN |ΘN ) =
1

2

N∑
i=1

log(1 + η−1σ2
i−1(θi)) . (39)

Lemma 6 (Chowdhury and Gopalan (2017, Lemma 4)).
Following the setting of Lemma 5, the sum of predictive
standard deviations at a sequence of evaluation points is
bounded in terms of the maximum information gain:

N∑
i=1

σi−1(θi) ≤
√

4(N + 2)γN . (40)

Lemma 7. Let A ⊂ Θ be a set of points where a function
f ∼ GP(m, k) was evaluated, so that the GP posterior
covariance function and the corresponding variance are
given by:

kA(θ,θ′) := k(θ,θ′)− k(θ,A)T(K(A) + ηI)−1k(A,θ′)

(41)

σ2
A(θ) := kA(θ,θ) , θ,θ′ ∈ Θ, (42)



where k(θ,A) := [k(θ,a)]a∈A and K(A) :=
[k(a,a′)]a,a′∈A. Then, for any given set B ⊃ A of eval-
uations of f , we have:

σ2
A(θ) ≤ σ2

B(θ), ∀θ ∈ Θ . (43)

Proof. The result follows by observing that the GP posterior
given observations at A is a prior for the GP with the new
observations at the complement C := B\A. Then we obtain,
for all θ ∈ Θ:

σ2
B(θ) := k(θ,θ)− k(θ,B)(K(B) + ηI)−1k(B,θ)

= σ2
A(θ)− kA(θ, C)(KA(C) + ηI)−1kA(C,θ)

≤ σ2
A(θ) ,

(44)

since kA(θ, C)(KA(C) + ηI)−1kA(C,θ) is non-negative.

B.2 PROOF OF LEMMA 1

We prove Lemma 1 by applying Jensen’s inequality to The-
orem 1. Specifically, consider that the following holds with
probability greater than 1− δ simultaneously over all Θ:

∀t ≥ 0, |`(θ)− µt(θ)| ≤ βt(δ)σt(θ) . (45)

With the same probability, we then have that:

|Eθ∼qt [`(θ)− µt(θ)]| ≤ Eθ∼qt [|`(θ)− µt(θ)|]
≤ βt(δ)Eθ∼qt [σt(θ)] ,

∀θ ∈ Θ ,∀t ≥ 0 ,

(46)

since the absolute value |·| is convex. Lastly, we note that the
GP in Algorithm 1 is taking batches of samples per iteration.
Therefore, we have to replace the original Kt, which holds
t observations, by KDt , which holds all the tS observations
collected up to iteration t.6 This concludes the proof.

B.3 PROOF OF THEOREM 2

We prove Theorem 2 in two parts, one for each component
of the result. In the first part we establish a bound on the in-
stant regret. We then propagate this bound to the cumulative
regret. For these derivations, we will make use of Lemma 1
and some of the auxiliary results in Section B.1.

6This replacement does not violate the conditions under
which Theorem 1 holds, as we may define a filtration Ft−1 :=
σ(Dt−1, {θt,i}Si=1), i.e., the σ-algebra generated by the random
variables in the dataset Dt−1 and the selected batch, t ≥ 1. In this
case, the noise {εt,i}Si=1 in the observations at iteration t ≥ 1 is
σε-sub-Gaussian when conditioned on Ft−1.

Proof of Theorem 2. We start by proving that, with
h(q|Dt−1) given by KL-UCB and βt := βt(δ) according to
Theorem 1, we obtain a bound on the instant regret:

rt ≤ 2βt−1(δ)Eqt [σt−1] . (47)

By Lemma 1, uniformly over all t ≥ 1 with probability at
least 1− δ, we have that:

max
q∈Q

Eq[`]− DKL(q||p) ≤ max
q∈Q

Eq[ut−1]− DKL(q||p)

= Eqt [ut−1]− DKL(qt||p) .
(48)

Applying this bound to the definition of instant regret yields
the first part of Theorem 2:

rt := DKL(qt||px)− DKL(q∗||px)

= max
q∈Q

Eq[`]− DKL(q||p)− Eqt [`] + DKL(qt||p)

≤ Eqt [ut−1]− Eqt [`]
= Eθ∼qt [µt−1(θ) + βt−1σt−1(θ)− `(θ)]

≤ 2βt−1Eθ∼qt [σt−1(θ)] ,

(49)

which holds with probability at least 1− δ.

For the second part, we apply the bound to the cumulative
regret and initally obtain:

RT :=

T∑
t=1

rt ≤ 2

T∑
t=1

βt−1Eθ̃t∼qt [σt−1(θ̃t)]

≤ 2βT

T∑
t=1

Eθ̃t∼qt [σt−1(θ̃t)]

≤ 2βTEθ̃1∼q1,...,θ̃T∼qT

[
T∑
t=1

σt−1(θ̃t)

]
,

(50)

since βt ≥ βt−1,∀t ≥ 1, and expectations are linear opera-
tions. Considering the predictive variances above, recall that,
at each iteration t ≥ 1, the algorithm selects a batch of i.i.d.
points Bt := {θt,i}Si=1, sampled from qt, where to evalu-
ate the log-likelihood function `. The predictive variance
σ2
t−1 is conditioned on all previous observations, which are

grouped by batches. We can then decompose, for any t ≥ 1:

σ2
t (θ) = σ2

t−1(θ)

− kt−1(θ,Bt)(Kt−1(Bt) + ηI)−1kt−1(Bt,θ) ,

(51)

where we use the notation introduced in Lemma 7, and:

kt(θ,θ
′) = kt−1(θ,θ′)

− kt−1(θ,Bt)(Kt−1(Bt) + ηI)−1kt−1(Bt,θ′)
(52)

k0(θ,θ′) := k(θ,θ′) . (53)



Therefore, the predictive variance of the batched algorithm
is not the same as the predictive variance of a sequential
algorithm, and we cannot direcly apply Lemma 6 to bound
the last term in Equation 50.

Lemma 7 tells us that the predictive variance given a set
of observations is less than the predictive variance given a
subset of observations. Selecting only the first point from
within each batch and applying Lemma 7, we get, for t ≥ 1:

σ2
t (θ) ≤ s2

t (θ)

:= k(θ,θ)− k(θ,Θt)(K(Θt) + ηI)−1k(Θt,θ) ,

(54)

where Θt := {θi,1}ti=1, with θi,1 ∈ Bi, i ∈ {1, . . . , t}.
Note that the right-hand side of the equation above is
simply the non-batched GP predictive variance. Further-
more, sample points within a batch are i.i.d., so that θt,1 ∼
qt and θ̃t ∼ qt are identically distributed. We can now apply
Lemma 6, yielding:

Eθ̃1∼q1,...,θ̃T∼qT

[
T∑
t=1

σt−1(θ̃t)

]

≤ Eθ̃1∼q1,...,θ̃T∼qT

[
T∑
t=1

st−1(θ̃t)

]
≤ 2
√

(T + 2)γT .

(55)

Combining this result with Equation 50, we obtain:

RT ≤ 4βT
√

(T + 2)γT ∈ O(βT
√
TγT ) . (56)

Lastly, from the definition of βt(δ), we have:

βT (δ) := b+ σε

√
2η−1 log(|I + η−1KDT |1/2/δ) , (57)

where:

log(|I + η−1KDT |1/2) = I(zNT ,gNT ) ≤ γNT = γST ,
(58)

for g ∼ GP(m, k). Therefore, the KL-UCB cumulative
regret is such that:

RT ∈ O(
√
T (b
√
γT +

√
γT γST )) , (59)

which concludes the proof.

B.4 PROOF OF LEMMA 2

Lemma 2 states that, for a bounded kernel k, maximising h
at any t ≥ 1 is equivalent to:

argmax
q∈Q

h(q|Dt−1) = argmin
q∈Q

DKL(q||p̂t−1) , (60)

where h is defined as:

h(q|Dt−1) := Eθ∼q[ut−1(θ)]− DKL(q||p) , (61)

with ut(θ) := µt(θ) + βtσt(θ), 0 ≤ βt < ∞, and µt
and σ2

t define GP posterior mean and variance at iteration
t. The proof follows by the same argument which turns
the general KL divergence minimisation problem into an
ELBO maximisation. The only part to verify is whether
p̂t−1 defines a valid probability density function.

Proof of Lemma 2. In general, let f : Θ→ R be a bounded
function on Θ ⊂ Rd, i.e. ‖f‖∞ < ∞, and p a probability
density function on Θ. Then we have that:

Ep[f ] :=

∫
Θ

f(θ)p(θ) dθ ≤ ‖f‖∞
∫

Θ

p(θ) dθ = ‖f‖∞ .

(62)
Combining Lemma 3 and Lemma 4, we have that ut is
always bounded, since:

∀t ≥ 1, ut(θ) := µt(θ) + βtσt(θ)

≤ ‖µt‖∞ + βt‖σt‖∞ <∞, ∀θ ∈ Θ .

(63)

Then the normalisation constant ζt for p̂t(θ) =
1
ζt
p(θ) exput(θ) is bounded, for:

∀t ≥ 0, ζt := Ep[exput]

=

∫
Θ

p(θ) exput(θ) dθ ≤ ‖exput‖∞

<∞ .

(64)

Now, for the lemma’s main result, we obtain:

argmax
q∈Q

Eq[ut−1]− DKL(q||p)

= argmax
q∈Q

Eq[ut−1 + log p− log q]

= argmin
q∈Q

logEp[exput−1]− Eq[ut−1 + log p− log q]

= argmin
q∈Q

∫
Θ

q(θ) log

(
q(θ)Ep[exput−1]

p(θ) exput−1(θ)

)
dθ

= argmin
q∈Q

DKL(q||p̂t−1) ,

(65)

which concludes the proof.

B.5 PROOF OF COROLLARY 1

The corollary is simply a restatement of Theorem 2 in terms
of qt = p̂t−1. In this case, the KL divergence with respect
to the optimal solution is DKL(q∗||px) = 0, since we are
considering a class of non-parametric distributions which
can recover arbitrary distributions via MCMC. By Theorem
2, we then know that:

min
t≤T

rt ≤
1

T
RT ∈ O(γSTT

−1/2) . (66)



If γST ∈ O(Tα), for some α < 1/2, so that α − 1/2 < 1,
then:

1

T
RT ∈ O(Tα−1/2) =⇒ lim

T→∞
min
t≤T

rt ≤ lim
T→∞

1

T
RT = 0 .

(67)
Replacing rt = DKL(p̂t−1||px) above concludes the proof.

Alternative proof. Another way of proving the same bound
on the KL divergence is the following. The KL divergence
from p̂t to px is bounded via Lemma 1. Namely, with prob-
ability greater than 1− δ, we have that:

DKL(p̂t||px) = Eθ∼p̂t [log p̂t(θ)− log px(θ)]

= Eθ∼p̂t [log p(θ)− µt(θ) + βtσt(θ)

− log ζt − log px(θ)]

= Eθ∼p̂t [µt(θ) + βtσt(θ)− `(θ)] + log p(x)

− log ζt

≤ 2βtEθ∼p̂t [σt(θ)] + log p(x)− log ζt .

(68)

For the second part of the last term in the right-hand side
above, we also have that:

p(x) =

∫
Θ

p(θ) exp `(θ) dθ ≤
∫

Θ

p(θ) exput(θ) dθ = ζt ,

(69)
which holds with the same probability as Equation 68. There-
fore, we conclude the proof with:

log p(x)− log ζt ≤ 0

=⇒ DKL(p̂t||px) ≤ 2βtEθ∼p̂t [σt(θ)] .
(70)

C KL DIVERGENCE BOUNDS FOR
KL-UCB WITH SPECIFIC KERNELS

Corollary 1 connects the regret bound in Theorem 2 with
the KL divergence of posterior approximations by KL-UCB
when sampling directly from the posterior surrogate induced
by UCB. In this case, we can bound the KL divergence of
the posterior approximations by KL-UCB with respect to
the posterior as:

min
t≤T

DKL(p̂t||px) ≤ RT
T

, T ≥ 1 . (71)

According to Theorem 2, we have RT ∈ O(γST
√
T ).

Therefore, to bound the KL divergence, we need kernel-
specific upper bounds for the maximum information gain
γT (Srinivas et al., 2010; Vakili et al., 2021). In particular,
we consider the case of two popular stationary kernel classes.
The first one is the squared-exponential kernel, used in our

Kernel class mint≤T DKL(p̂t||px)

Squared exponential O
(
T−1/2 logd+1(ST )

)
Matérn ν > 1/2 O

(
T

1
2ν+d ( d2−ν) log

2ν
2ν+d (ST )

)
Table 1: KL divergence bounds for KL-UCB

experiments. As previously mentioned, this kernel yields a
bound γT ∈ O

(
logd+1(T )

)
(Srinivas et al., 2010).

The second type of kernel is the Matérn class with smooth-
ness parameter ν > 1/2:

k(θ,θ′) :=
1

Γ(ν)2ν−1

(√
2νρθ,θ′

l

)ν
Bν

(√
2νρθ,θ′

l

)
,

(72)
where ρθ,θ′ := ‖θ−θ′‖2, l > 0 is a length-scale parameter
controlling the smoothness of the functions in the RKHS, Γ
is the gamma function, and Bν is the modified Bessel func-
tion of the second kind, for θ,θ′ ∈ Θ. This kernel leads to a
maximum information gain γT ∈ O

(
T

d
2ν+d log

2ν
2ν+d (T )

)
according to recent results (Vakili et al., 2021).

Table 1 presents upper bounds for the KL divergence of pos-
terior approximations by KL-UCB. As the table shows, both
kernels lead to an asymptotically vanishing KL divergence
in the approximations with respect to the true posterior in
general. An exception to asymptotic convergence, however,
is that convergence does not necessarily hold for d ≥ 2ν
in the case of the Matérn kernel, noticing the exponent in
its rate. For instance, a Matérn kernel with ν = 3/2 would
not guarantee convergence in a problem whose parameter
space has dimension d > 3. The guarantees for the squared-
exponential kernel do not suffer from this drawback, though
the rates are possibly worse due to the exponential depend-
ence on d via the logarithmic term.

In terms of approximation bounds with respect to the num-
ber of likelihood evaluations N = ST , we have a KL diver-
gence bound of Õ

(
N−1/2

)
and Õ

(
N

1
2ν+d ( d2−ν)

)
for the

squared-exponential and the Matérn kernels, respectively.
Here the Õ-notation suppresses logarithmic factors. Com-
pared to the exponential convergence rates in Kanagawa
and Hennig (2019), notice that their results are for a noise-
free setting, while we consider settings with (sub-Gaussian)
noise. In the noise-free setting, one is usually able to obtain
tighter concentration bounds for the GP approximation (see
de Freitas et al., 2012).

D DIMENSIONALITY EFFECT

In this section, we present a short analysis on the effect
of dimensionality on the regret of the KL-UCB algorithm.



Figure 5 presents the KL-UCB regret for the problem in
Section 7.1 when we increase the dimensionality of the
parameter space Θ = Rd. As the plot shows, the regret
has an exponential dependence on the dimensionality of the
parameter space. Therefore, the practitioner might need to
run the method for longer to obtain reasonable posterior
approximations or apply dimensionality reduction methods.

Figure 5: Dimensionality effect on the mean regret of KL-
UCB on the RKHS log-likelihood problem after 20 itera-
tions as a function of the dimensionality of the parameter
space. The results of 5 independent runs were combined to
produce the box plot.

E DETAILS OF THE EXPERIMENTAL
SETUP

In this section, we present further details on the experimental
setup for the empirical results in the paper. In particular, we
describe the settings for KL-UCB. For VBMC, we used an
implementation provided by its author.7

KL-UCB setup: For the GP model in KL-UCB, we used
GPyTorch (Gardner et al., 2018) with adaptations to perform
fast rank-1 Cholesky updates on the GP covariance matrix
(see Rasmussen and Williams, 2006, Algorithm 2.1). Given
the theoretical nature of this work, we did not perform on-
line hyper-parameters learning, contrary to what is usual in
other GP-based approximate inference methods (Gutmann
and Corander, 2016; Acerbi, 2018). The kernel lengthscale
was set as 0.5, a value which provided fitting GP estimates
for the generated problem scenarios. The GP was configured
as zero mean m := 0 for the RKHS-based problem in Sec-
tion 7.1, while we used the log-prior probability as the mean
function m := log p for the problems in Section 7.2. The
latter allows the GP to provide low likelihood estimates for
parameters of low prior probability, avoiding excessive ex-
ploration of the parameter space. In terms of noise settings,
observations in the RKHS problem (Section 7.1) were added
with Gaussian noise σε := 0.01‖`‖k, while the problems
with comparisons against VBMC were configured with ba-

7VBMC experiments code: https://github.com/
lacerbi/infbench

sically no noise (σε := 10−6), since this algorithm was not
originally designed to handle noise (see Acerbi, 2020, for a
recent noise-adapted version). The GP noise parameter was
correspondingly set as η := 10−2 for the RKHS problem,
and η := 10−4 for the noise-free problems. Having a small,
non-zero η avoids numerical issues with matrix inversions.
Lastly, for the setting of βt, the RKHS norm for the log-
likelihood function in Section 7.1 is available in closed form,
but for the non-RKHS functions we set b := 3 which yields
the common 3 standard deviations UCB parameter (also in
VBMC (Acerbi, 2018)) in a noiseless setting.

MCMC setup: We configured the EMCEE sampler
(Foreman-Mackey et al., 2013) with 25 walkers and a burn-
in of 400 samples. We selected the S := 5 evaluation points
in each BO iteration’s batch out of 500 samples drawn by
EMCEE. Sub-sampling from a larger batch of samples re-
duces the correlation between samples from the chain.

Estimation of KL divergence: To verify theoretical
bounds, we measured the KL divergence between KL-
UCB’s posterior approximations and the true posterior dis-
tribution, which is unknown to KL-UCB. As the posterior
distribution approximations from KL-UCB are sampled-
based MCMC estimates, we had to estimate the KL di-
vergence based on samples. We also took into account
that MCMC samples are usually correlated. To decorrel-
ate the samples, we built a kernel density estimator out of
the MCMC samples using a Gaussian kernel with the rule
by Scott (1992) for kernel bandwidth selection8 and then
sampled from this continuous density. For a large enough
number of MCMC samples (2000 for the likelihood-free
inference problem, 10000 for the circular likelihood, and
1000 for the other problems), the i.i.d. samples from the
density estimator approximately follow the stationary distri-
bution of the MCMC chain, i.e. its target posterior. We then
applied a k-nearest-neighbours method (Szabó, 2014)9 to
obtain the KL divergence estimates.

8Implementation available with the KDEpy package: https:
//github.com/tommyod/KDEpy

9We used the Python version of the ITE toolbox: https:
//bitbucket.org/szzoli/ite-in-python/

https://github.com/lacerbi/infbench
https://github.com/lacerbi/infbench
https://github.com/tommyod/KDEpy
https://github.com/tommyod/KDEpy
https://bitbucket.org/szzoli/ite-in-python/
https://bitbucket.org/szzoli/ite-in-python/
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