
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPROVING GRAPH NEURAL NETWORKS BY LEARN-
ING CONTINUOUS EDGE DIRECTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) traditionally employ a message-passing mech-
anism that resembles diffusion over undirected graphs, which often leads to ho-
mogenization of node features and reduced discriminative power in tasks such
as node classification. Our key insight for addressing this limitation is to as-
sign fuzzy edge directions—that can vary continuously from node i pointing to
node j to vice versa—to the edges of a graph so that features can preferentially
flow in one direction between nodes to enable long-range information transmis-
sion across the graph. We also introduce a novel complex-valued Laplacian for
directed graphs with fuzzy edges where the real and imaginary parts represent
information flow in opposite directions. Using this Laplacian, we propose a gen-
eral framework, called Continuous Edge Direction (CoED) GNN, for learning on
graphs with fuzzy edges and prove its expressivity limits using a generalization
of the Weisfeiler-Leman (WL) graph isomorphism test for directed graphs with
fuzzy edges. Our architecture aggregates neighbor features scaled by the learned
edge directions and processes the aggregated messages from in-neighbors and
out-neighbors separately alongside the self-features of the nodes. Since contin-
uous edge directions are differentiable, they can be learned jointly with the GNN
weights via gradient-based optimization. CoED GNN is particularly well-suited
for graph ensemble data where the graph structure remains fixed but multiple re-
alizations of node features are available, such as in gene regulatory networks, web
connectivity graphs, and power grids. We demonstrate through extensive experi-
ments on both synthetic and real datasets that learning continuous edge directions
significantly improves performance both for undirected and directed graphs com-
pared with existing methods.

1 INTRODUCTION

(a)

1

(b)

2

1

2

Figure 1: (a) When edges are undirected
information diffuses across the graph
and long range transmission of informa-
tion between nodes 1 and 2 is not pos-
sible. (b) Once the optimal edge direc-
tions are learned, information can flow
directly from node 1 to node 2.

Graph Neural Networks (GNNs) have emerged as a pow-
erful tool for learning from data that is structured as
graphs, with applications ranging from social network
analysis to molecular chemistry (Kipf & Welling, 2017;
Zhou et al., 2020; Gilmer et al., 2017). GNNs typi-
cally employ a message passing mechanism where nodes
aggregate and then transform feature information from
their neighbors at each layer, enabling them to learn node
representations that capture both local and global graph
structures. When the graph is undirected, the aggrega-
tion of node features mimics a diffusion process. Each
node’s representation becomes the averaged features of
its immediate neighbors, leading to a homogenization of
information across the graph. As depth increases, this dif-
fusion of information culminates in a uniform state where
node representations converge towards a constant value
across all the nodes, which severely limits the discrimi-
native power of GNNs, especially in tasks such as node

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

classification (Rusch et al., 2023a; Oono & Suzuki, 2020; Cai & Wang, 2020; Li et al., 2018a;
Keriven, 2022; Chen et al., 2020a; Wu et al., 2022; 2024).

Our key insight for improving the performance of GNNs is to alter the nature of information trans-
mission between nodes from diffusion to flow. To do so, we add directions to the edges of a graph so
that features can be propagated from node vi to its neighbor node vj without a reciprocal propaga-
tion of information from node vj to node vi. Unlike diffusion, where information uniformly spreads
across available paths, flow is directional and preserves the propagation of information across longer
distances within a graph, as illustrated in Figure 1. In general, the optimal information propagation
could require edges whose directions fall anywhere in the continuum of node vi pointing to node vj
to vice versa.

To capture such continuous edge directions, we propose a concept of ‘fuzzy edges,’ where the direc-
tion of an edge between any two nodes vi and vj is not a discrete but a continuous value. An edge’s
orientation can range continuously—from exclusively pointing from node vi to node vj , through a
fully bidirectional state, to exclusively pointing from node vj to node vi. Therefore, ‘fuzzy’ direc-
tion essentially controls the relative amount of information flow from node vi to node vj and the
reciprocal flow from node vj to node vi. To effectively model this directional flexibility, we intro-
duce a complex-valued graph Laplacian called a fuzzy Laplacian. In this framework, the real part of
the ij-th entry in the fuzzy Laplacian matrix quantifies the degree of information transmission from
node vj to node vi, while the imaginary part measures the flow from node vi to node vj .

Next, we introduce the Continuous Edge Direction (CoED) GNN architecture. At each layer, a
node’s neighbors’ features are scaled by the directions of their connecting edges and aggregated.
This aggregation is performed separately for incoming and outgoing edges, following Rossi et al.
(2024), resulting in distinct features for incoming and outgoing messages. Practically, this is im-
plemented by applying the fuzzy Laplacian to the node features, where the real and imaginary parts
correspond to the features aggregated from incoming neighbors and outgoing neighbors, respec-
tively. These aggregated features are then affine transformed using learnable weights and combined
with the node’s own transformed features. A nonlinear activation function is applied to obtain the
updated node features. This process is repeated for each layer. The continuous edge directions have
the added benefit that they are differentiable. During training, both the edge directions and weight
matrices are learned simultaneously using gradient-based optimization to improve the learning ob-
jective.

Importantly, our approach is fundamentally different from methods such as Graph Attentions Net-
work (GAT) (Veličković et al., 2018) or graph transformers (Dwivedi & Bresson, 2021; Rampášek
et al., 2022) that learn attention coefficients to assign weights to each edge of the graph based on the
features (and potentially the positional encoding) of the nodes connected by that edge. While such
an attention mechanism can capture asymmetric relationships by computing direction-specific atten-
tion weights based on node features, they do not learn edge directions as independent parameters. In
these models, the attention coefficient from node vi to node vj are functions of the features of vi and
vj , and will change if node features change. In contrast, our approach introduces continuous edge
directions as learnable parameters that are optimized end-to-end, independent of the node features.
As we demonstrate empirically below, by directly learning edge directions, our method goes beyond
what can be achieved through an attention mechanism, enabling long-range information flow on
graphs and improved performance.

End-to-end learning of edge directions is most effective on graph ensemble data, where the graph
structure remains fixed but multiple realizations of node features and targets (such as node labels)
are available. This effectiveness arises from the ability to optimize information flow across all
edges simultaneously without a need to mask parts of the graph for training and testing. Instead,
training and testing splits are based on different feature realizations rather than on subsets of the
graph. Graph ensemble data are increasingly common across various domains. For example, in
biology, gene-regulatory networks are constant directed graphs where nodes represent genes and
edges represent gene-gene interactions, while node features like gene expression levels vary across
different cells. Similarly, in web connectivity, the network of websites remains relatively static,
but traffic patterns change over time, providing different node feature sets on the same underlying
graph. In power grids, the network of electrical components is fixed, while the steady-state operating
points of these components vary under different conditions, yielding multiple observations on the
same graph. In all these cases, a fixed graph is paired with numerous feature variations. By applying

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

CoED GNN to these scenarios, we demonstrate that learning edge directions significantly improves
performance for both directed and undirected graphs. The main contributions of this paper are the
following:

• We introduce a principled complex-valued graph Laplacian for graphs where edge direc-
tions can vary continuously and prove that it is more expressive than existing forms of
Laplacians for directed graphs, such as the magnetic Laplacian.

• We propose an architecture called Continuous Edge Direction (CoED) GNN, which is a
general framework for learning on directed graphs with fuzzy edges. We prove that CoED
GNN is as expressive as a weak form of the Weisfeiler-Leman (WL) graph isomorphism
test for directed graphs with fuzzy edges.

• Using extensive experiments, we show that learning edge directions significantly improves
performance by applying CoED GNN to both synthetic and real graph ensemble data.

2 PRELIMINARIES

A graph is defined as a pair G = (V, E), where V = {v1, v2, . . . , vN} is a set of N nodes, and
E ⊆ V × V is a set of edges connecting pairs of nodes. Each node vi is associated with a feature
vector fi ∈ RD, where D is the dimensionality of the feature space, and collectively these feature
vectors form the node feature matrix F ∈ RN×D. Additionally, each node is assigned a prediction
target, such as a class label for classification tasks or a continuous value for regression tasks.

The connectivity of a graph is encoded in an adjacency matrix A ∈ {0, 1}N×N . If there is an
undirected edge between vi and vj , then both Aij = 1 and Aji = 1. For a directed edge, one of
Aij or Aji is 1 while the other is 0, specifying the direction of information flow. A directed edge,
Aij = 1 and Aji = 0, indicates that vj sends information to vi. Hence, we refer to vj as the in-
neighbor of vi and conversely to vi as the out-neighbor of vj . If both Aij = 0 and Aji = 0, there is
no edge between vi and vj . Accordingly, in a directed graph, we define two distinct degree matrices:
the in-degree matrix Din = diag(A1) and the out-degree matrix Dout = diag(A⊤1).

In GNNs, node features F are processed iteratively through a message-passing mechanism that
leverages the structural information of the graph G. This process involves two main steps at each
layer l:

1. Message Aggregation: For each node vi, an aggregated message m
(l)
i,N (i) is computed from the

features of its neighbors:

m
(l)
i,N (i) = AGGREGATE

(
{{(f (l−1)i , f

(l−1)
j) | j ∈ N (i)}}

)

Here, N (i) denotes the set of nodes vj that are connected to node vi by an edge.

2. Feature Update: The feature vector of node vi is then updated using the aggregated message:

f
(l)
i = UPDATE

(
f
(l−1)
i ,m

(l)
i,N (i)

)

AGGREGATE and UPDATE are functions with learnable parameters, and their specific implemen-
tations define different GNN architectures (Gilmer et al., 2017).

3 FORMULATION OF GNN ON DIRECTED GRAPHS WITH FUZZY EDGES

3.1 CONTINUOUS EDGE DIRECTIONS AS PHASE ANGLES

To describe a continuously varying edge direction between node vi and node vj , we assign an angle
θij ∈ [0, π/2] to the edge connecting vi to vj . During aggregation of features from neighbors,
features propagated from vj to vi are scaled by a factor of cos θij . Conversely, the features that vj
receives from vi are scaled by sin θij . For example, when θij = 0, we have a directed edge where
vj sends messages to vi but does not receive any messages from vi. When θij = π/4, the edge is
undirected and the same scaling is applied to the messages sent and received by vi to and from vj ,
i.e., cosπ/4 = sinπ/4 = 1/

√
2. To ensure consistency, we require that the message received by

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

vi from vj should be equivalent to the message sent by vj to vi. It follows that θji = π/2 − θij .
We define the phase matrix Θ ∈ [0, π/2]N×N to describe the directions of all the edges in a graph.
(Θ)ij is only defined if there is an edge connecting nodes vi and vj .

3.2 FUZZY GRAPH LAPLACIAN

To keep our message-passing GNN as expressive as possible, we define a Laplacian matrix that,
during the aggregation step, propagates information along directed edges but keeps the aggregated
features from in-neighbors and out-neighbors for each node distinct by assigning them to the real and
imaginary parts of a complex number, respectively. For a given Θ, we construct the corresponding
fuzzy graph Laplacian LF as follows. The diagonal entries (LF)ii are zero as we cannot define edge
directions for self-loops, and off-diagonal entries are either zero or a phase value,

(LF)ij =

{
0 if Aij = Aji = 0

exp(iθij) otherwise
(1)

Since θij and θji are related by θji = π/2− θij , it follows that LF = iL†F , where † is the conjugate
transpose. Re[LF] thus encodes all i← j edges scaled by cos θij and Im[LF] all i→ j edges scaled
by sin θij . In Appendix D, we show the fuzzy graph Laplacian admits orthogonal eigenvectors
with eigenvalues of the form a + ia with a ∈ R. Therefore, the eigenvectors of our Laplacian
provide positional encodings that are informed by the directions of the edges in addition to their
connectivities, as shown in Appendix C.
Theorem 1. A message-passing GNN whose aggregation step is performed using the fuzzy graph
Laplacian is as expressive as the weak form of the Weisfeiler-Leman (WL) graph isomorphism test
for directed graphs with fuzzy edges.

We prove this theorem in Appendix E. An alternative form of Laplacian for directed graphs is the
magnetic Laplacian (Zhang et al., 2021; He et al., 2022a), which is also complex-valued. For di-
rected graphs with fuzzy edges, the magnetic Laplacian is not as expressive as the Laplacian pro-
posed above. We provide a proof in Appendix F. Briefly, the magnetic Laplacian produces linear
combinations of in- and out- neighbor messages at each node as both the real and imaginary parts of
the aggregated features. In principle, GNNs should be able to disentangle these linear combinations
to recover the in- and out- neighbor messages. However, the linear combinations depend on the local
neighborhood of each node which is distinct from one node to another, whereas GNN parameters
are shared across all nodes. Therefore, in general, a GNN using the magnetic Laplacian loses the
ability to disentangle the in- and out- neighbor messages at each node and thus has lower expres-
sivity. The Laplacian proposed above does not suffer from this limitation since by construction the
real and imaginary values directly correspond to the in- and out- neighbor aggreagated messages,
respectively.

3.3 MODEL ARCHITECTURE: CONTINUOUS EDGE DIRECTION (COED) GNN

To ensure maximum expressivity, a message-passing mechanism on a directed graph should, for each
node, separately aggregate the features of the in-neighbors and the out-neighbors, and independently
process each of the aggregated features and the self-features to obtain an updated feature for each
node. To this end, we define in- and out- edge weight matrices as A← = Re[LF] and A→ =
Im[LF], respectively. We compute the in- and out- degree matrices as D← = diag (A←1) and
D→ = diag (A→1). Following Rossi et al. (2024), but extending it to graphs with continuous edge
directions, we define in- and out- fuzzy propagation matrices as

P← = D−1/2← A←D−1/2→ and P→ = D−1/2→ A→D−1/2← (2)

Using these matrices, we compute in- and out- messages at layer l as

m(l)
← = P←F(l−1) and m(l)

→ = P→F(l−1) (3)
which defines the AGGREGATE function.

Since self-loops are omitted from LF , we include current node features along with the two direc-
tional messages in UPDATE function and update node features as,

F(l) = σ
(
F(l−1)W

(l)
self +m(l)

←W(l)
← +m(l)

→W(l)
→ +B(l)

)
(4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

 1 2 1 3 2 3 3 4 1 2 1 3 2 3 3 4

Input graph

Initial edge directions

Learned graph

Learned edge directions

1

2

3

4
1

2

3

4

1 2 3 4

1

2

3

4

1

2

3

4

90o

45o

0o

1 2 3 4

 1 2 1 3 2 3 3 4 1 2 1 3 2 3 3 4

90o

45o

0o

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

signals targets

: model parameters

: phase angles

w

Θ

f(X1;w,Θ) = Ŷ1

f(X2;w,Θ) = Ŷ2

f(XS ;w,Θ) = ŶS

: input features

: output values

≡

≡

x

y

vs.

vs.

vs.

L
f : model

: loss

B∑

b

L
(
Ŷb, { }b

)
∇wL ∇ΘLGradient steps with and

Figure 2: Schematic of training with a graph ensemble data. The input graph is undirected (left box).
The graph ensemble data contains multiple realizations of node features and corresponding target
values, either at the node, edge, or graph level. The phase angle formulation allows continuous edge
directions to be optimized alongside the GNN parameters in an end-to-end manner (middle box).
The learned edge directions (right box) enable long range information transmission across the graph.

where σ is an activation function, and W
(l)
self/←/→ and B(l) are self/in/out weight matrices and a

bias matrix, respectively.

The features at the final layer are then transformed using a linear layer to obtain the output for a
specific learning task, e.g. node classification or node regression. We use end-to-end gradient-based
optimization to iteratively update both the phase matrix Θ and the GNN parameters W(l)

self/←/→ and
B(l) at each layer, as illustrated in Figure 2. We allow for the option to learn a different set of edge
directions at each layer, Θ(l), just as we have distinct GNN parameters at each layer.

4 RELATED WORK

The issue of feature homogenization in GNNs, known as the oversmoothing problem, has been
a significant concern. Early studies identified the low-pass filtering effect of GNNs (Defferrard
et al., 2016; Wu et al., 2019), linking it to oversmoothing and loss of discriminative power (Li
et al., 2018a; Oono & Suzuki, 2020). Proposed solutions include regularization techniques like edge
dropout (Rong et al., 2020), feature masking (Hasanzadeh et al., 2020), layer normalization (Zhao
& Akoglu, 2020), incorporating signed edges (Derr et al., 2018), adding residual connections (Chen
et al., 2020b), gradient gating (Rusch et al., 2023b), and constraining the Dirichlet energy (Zhou
et al., 2021). Dynamical systems approaches have also been explored, modifying message passing
via nonlinear heat equations (Eliasof et al., 2021), coupled oscillators (Rusch et al., 2022), and
interacting particle systems (Wang et al., 2022; Di Giovanni et al., 2023). Other methods involve
learning additional geometric structures, such as cellular sheaves (Bodnar et al., 2022).

Extending GNNs to directed graphs has been addressed through various methods. GatedGNN (Li
et al., 2016) processed messages from out-neighbors in directed graphs. Some works constructed
symmetric matrices from directed adjacency matrices and their transposes to build standard Lapla-
cians (Tong et al., 2020b; Kipf & Welling, 2017), while others (Ma et al., 2019; Tong et al., 2020a)
developed Laplacians based on random walks and PageRank (Duhan et al., 2009). MagNet (Zhang
et al., 2021) utilized the magnetic Laplacian to represent directed messages, a technique also applied
in adapting transformers to directed graphs (Geisler et al., 2023). FLODE (Maskey et al., 2023) em-
ployed asymmetrically normalized adjacency matrices within a neural ODE framework. DirGNN
(Rossi et al., 2024) separately processed the messages from in-neighbors and out-neighbors us-
ing asymmetrically normalized adjacency matrices, improving node classification on heterophilic
graphs. A similar strategy was used in Koke & Cremers (2024), replacing the adjacency matrices
with filters representing Faber polynomials. Recent graph PDE-based models (Eliasof et al., 2024;

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Zhao et al., 2023) introduced an advection term to model directional feature propagation alongside
diffusion, assigning edge weights based on computed velocities between nodes, akin to attention co-
efficients in GAT. Finally, our approach is conceptually related to He et al. (2022b) where imbalance
of incoming and outgoing messages across subsets of nodes is used to learn node embeddings for
clustering.

GNNs have been increasingly applied in domains relevant to our work. In single-cell biology, GNNs
have been used to predict perturbation responses in gene expression data (Roohani et al., 2023;
Molho et al., 2024), with datasets compiled in scPerturb (Peidli et al., 2024). In web traffic anal-
ysis, a form of spatiotemporal data on graphs, GNNs often model temporal signals using recurrent
neural networks on graphs (Li et al., 2018b; Chen et al., 2018; Sahili & Awad, 2023), with datasets
and benchmarks provided by PyTorch Geometric Temporal library (Rozemberczki et al., 2021). In
power grids, GNNs have been applied to predict voltage values (Ringsquandl et al., 2021) and solve
optimal power flow problems (Donon et al., 2020; Böttcher et al., 2023; Piloto et al., 2024), with
datasets compiled by Lovett et al. (2024).

5 EXPERIMENTS

5.1 NODE CLASSIFICATION

We first benchmarked our method for node classification task on eleven datasets of both undirected
and directed graphs covering a wide range of sizes and homophily levels. While node classification
is not the main goal of our paper, we include this analysis nonetheless to highlight the advantage
of our Laplacian over alternative forms of Laplacians for directed graphs as well as the benefit of
processing self, in-neighbor aggregated, and out-neighbor aggregated features separately. Impor-
tantly, we do not learn edge directions in this case, and hence the phase value is either 0 or π/2
for directed graphs and π/4 for undirected graphs. For comparison, we include the classical mod-
els: GCN (Kipf & Welling, 2017), SAGE (Hamilton et al., 2017), GAT (Veličković et al., 2018);
heterophily-specific model, GGCN (Yan et al., 2021); directionality-aware models: MagNet (Zhang
et al., 2021), FLODE (Maskey et al., 2023), DirGNN (Rossi et al., 2024); and a model that learns
geometric structure of graph, Sheaf (Bodnar et al., 2022). We also include a model based on a Lapla-
cian for directed graphs constructed from the transition matrix of the graph by Chung (2005), and
Cooperative GNNs (Finkelshtein et al., 2023), which classify a node as broadcasting, listening, both,
or neither based on its own and its neighbors’ features. Finally, we also include MLP to highlight the
effect of solely processing the nodes’ self-features without aggregating features across the graph.

As shown in Table 1, CoED demonstrates competitive performance across all eleven datasets, rank-
ing within the top three in terms of test accuracy for most. While all models exhibit compara-
ble results on Cora and Citeseer—which are undirected and homophilic—their performances differ
significantly on the directed, heterophilic graphs. The classical models developed for undirected
graphs particularly struggle on these datasets, with the exception of SAGE. This is because pro-
cessing only the node’s own features yields good performance, as evidenced by the MLP’s results.
In contrast, for the Squirrel and Chameleon datasets, processing directed messages along only one
direction is crucial for good performance. Only FLODE, DirGNN, and CoED exhibit strong results
on these datasets when configured accordingly. Specifically, for CoED, we introduce the α hyper-
parameter as in Rossi et al. (2024) to weigh the directional messages post aggregation, replacing
m(l)
←W(l)

← +m(l)
→W(l)

→ in Equation 4 with αm(l)
←W(l)

← + (1 − α)m(l)
→W(l)

→ . In addition, we make
the transformation of self-features optional.

Our results highlight the advantage of the fuzzy Laplacian over the magnetic Laplacian and the
Chung Laplacian. In particular, the magnetic Laplacian does not process the aggregated messages
from out-neighbors and in-neighbors separately. Instead, it combines them into both the real and
imaginary components of the aggregated feature vector, thus losing the opportunity to process the
two separately. Moreover, during the Laplacian convolution, the directed messages further mix
with self-features encoded in the real component. This results in poor performance by MagNet on
directed graphs. The real-world directed graphs are often not strongly connected and thus the cor-
responding transition matrices’ top left singular vectors are not as informative as in the undirected
cases. Since the Chung Laplacian is constructed from this singular vector, it shows relatively poor
performance on such datasets as Roman-Empire or Wisconsin compared to the other directed mod-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Roman-Empire SNAP-Patents Texas Wisconsin Arxiv-Year Squirrel Chameleon Citeseer Computers Photo Cora
Hom. level 0.05 0.07 0.11 0.21 0.22 0.22 0.23 0.74 0.78 0.81 0.81
Undirected ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

MLP 64.94±0.62 31.34±0.05 80.81±4.75 85.29±3.31 36.70±0.21 37.53±1.74 39.05±3.74 74.02±1.90 83.56±0.26 90.75±0.31 75.69±2.00
GCN 73.69±0.74 51.02±0.06 55.14±5.16 51.76±3.06 46.02±0.26 39.47±1.47 40.89±4.12 76.50±1.36 89.65±0.52 92.70±0.20 86.98±1.27
SAGE 85.74±0.67 48.43±0.21 82.43±6.14 81.18±5.56 52.94±0.14 36.09±1.99 37.77±4.14 76.04±1.30 91.20±0.29 94.59±0.14 86.90±1.04
GAT 80.87±0.30 45.92±0.22 52.16±6.63 49.41±4.09 46.05±0.51 35.62±2.06 39.21±3.08 76.55±1.23 90.78±0.13 93.87±0.11 86.33±0.48
GGCN 74.46±0.54 OOM 84.86±4.55 86.86±3.29 OOM 37.46±1.57 38.71±3.04 77.14±1.45 91.81±0.20 94.50±0.11 87.95±1.05
FLODE 74.97±0.53 OOM 77.57±5.28 80.20±3.56 OOM 38.63±1.68 42.85±3.89 78.07 ±1.62 90.88±0.23 95.93±0.20 86.44±1.17
Sheaf 77.94±0.53 OOM 85.95±5.51 89.41±4.74 48.77±0.20 39.03±1.73 41.98±3.42 77.14±1.85 90.56±0.13 95.01± 0.17 87.30±1.15

MagNet 88.07±0.27 OOM 83.3±6.1 85.7±3.2 60.29±0.27 42.7±1.5 44.5±1.1 75.26±1.63 90.30±0.27 94.54±0.19 82.63±1.80
Chung 87.35±0.53 64.77±0.23 80.54±4.65 81.79±5.42 53.01±0.45 42.46±1.77 43.47±3.64 76.08±1.11 92.57±0.16 95.47±0.14 86.03±1.63
DirGNN 91.23± 0.32 73.95±0.05 83.78 ± 2.70 85.88±2.11 64.08±0.26 44.19±2.42 46.08± 2.67 76.63±1.51 92.97±0.26 96.13±0.12 86.27± 1.45
Co-GNN 91.57±0.32 48.31±0.15 83.51±5.19 86.47±3.77 49.82±0.24 39.85±1.15 41.92±4.03 76.49±1.40 92.76±0.22 95.95±0.14 87.44± 0.85

CoED 92.17±0.29 74.67±0.02 84.59±4.53 87.84±3.70 64.59±0.20 45.50±1.62 47.27±3.62 77.14±1.57 92.88±0.15 95.83±0.12 87.02±1.01

Table 1: Comparison of baseline models and CoED (without edge direction learning) for node
classification task across different types of graphs. Top three models are colored by First, Second,
Third. The reported numbers are the mean and standard deviation of test accuracies across different
splits. The first two rows report the homophily ratios of the graphs and whether they are directed or
undirected. OOM indicates out-of-memory error.

els and instead delivers better results on datasets with undirected graphs. Sheaf also suffers on the
datasets with directed graphs despite expanding the feature dimensions via an object called a stalk,
because the sheaf Laplacian is constrained to be symmetric, thereby losing the ability to process
directed messages. Taken together, our benchmarking demonstrates that CoED’s ability to effec-
tively process self-features and separately aggregate in-neighbor and out-neighbor messages using
our fuzzy Laplacian enables it to achieve competitive performance across diverse datasets.

5.2 NODE REGRESSION ON GRAPH ENSEMBLE DATASET

Our key contribution is the joint learning of continuous edge directions alongside GNN parameters.
This approach is most effective on graph ensemble data, where the graph structure remains fixed
but multiple realizations of node features and targets exist. By learning edge directions for all edges
without a need to mask parts of the graph, our method optimizes information flow across the entire
graph. Learning the edge directions for the node classification task above, where a subset of nodes
are masked for testing, would optimize the edges connected to the training node at the expense of
those connected to the test nodes, diminishing overall performance. We empirically demonstrate the
benefits of learning continuous edge directions using both synthetic and real-world graph ensemble
datasets.

5.2.1 SYNTHETIC DATASETS

Directed flow on triangular lattice. We begin by applying CoED GNN to a node regression
problem constructed on a graph with continuous edge directions, where the target node features are
obtained by directionally message-passing the input node features over long distances across the
graph. To generate such a graph with continuous edge directions exhibiting long-range order, we
created a two-dimensional triangular lattice, assigning each node a position in the 2d plane. We
then defined a potential energy function V on this plane, consisting of one peak and one valley
(Figure 3(a)). The gradient of V yields a vector field with long-range order, which we used to
assign continuous edge directions to the edges of the triangular lattice (Figure 3(b)). Using this
graph, we performed the message passing step of Equation 4 iteratively 10 times—using random
matrices W→, W←, and Wself that were shared across all 10 iterations, starting from the initial
node features to obtain the target node values. We repeated this procedure 500 times for different
random initial node features and generated an ensemble of input node features and corresponding
target node values. During training, we provided all models with the undirected version of the
triangular lattice graph (i.e., all θij = π/4 for CoED). The goal of the learning task is to predict
the target node values from the input node features. Additionally, CoED GNN is expected to learn
the underlying ground truth continuous edge directions of the graph as part of its training. Further
details on data generation are provided in Appendix A.2.1.

Gene Regulatory Network (GRN) dynamics. Gene Regulatory Networks (GRNs) are directed
graphs where nodes represent genes and edges represent interactions between pairs of genes (Fig-
ure 3(c)). In these networks, when two genes interact, one either activates or suppresses the other.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

: gene

: knockout

(c) Gene regulatory network (GRN)

: activation

: suppression

. .
.

(d) Data generation using GRN dynamics

dc

dt
= GRN(c), ci = 0 ∀t if i ∈ {knockout genes}

(a) Potential and gradient vector field (b) Edge directions of lattice graph
x

y y

x

c i

∆
c i

Figure 3: Synthetic datasets. (a-b) Triangular lattice graph with edge directions derived from the
gradient of a 2D potential function V (shown in a), creating long-range flows across the graph. (c-d)
Gene regulatory network (GRN) represented as a directed graph where nodes are genes and edges
denote interactions. Steady-state gene expression levels are obtained from GRN dynamics, with
perturbations simulated by setting the expression levels of specific genes to zero.

We used Hill functions with randomly chosen parameters to define the dynamics of these gene-
gene interactions. We constructed a directed GRN graph with 200 nodes and randomly assigned
interactions between them. Starting from random initial expression levels, we solved the system of
nonlinear ordinary differential equations representing the GRN dynamics to obtain the steady-state
expression levels of all genes. Next, we modeled gene perturbations by setting the expression levels
of either one or two genes (the perturbed set of genes) to zero and recomputing the steady-state
expression levels for all genes using the same GRN dynamics (Figure 3(d)). We performed this pro-
cedure for all single-gene perturbations and a subset of double-gene perturbations, resulting in 1,200
different realizations. Our learning task is to predict the steady-state expression levels of all genes
following perturbation (target node values) given the initial steady-state expression levels, with the
perturbed genes set to zero (input node features). We provided baseline models with the original
graph and CoED with the undirected version of the graph. Further details of the data generation are
provided in Appendix A.2.2.

Results. As shown in Table 2, CoED achieves the best performance on both synthetic datasets
by a considerable margin. For comparison, we include several baseline models: classical models,
GCN and GAT; a transformer-based model with positional encoding, GraphGPS (Rampášek et al.,
2022); a directionality-aware model, MagNet and the model based on the Chung Laplacian; a higher-
order model, DRew (Gutteridge et al., 2023); and a combination of directionality-aware and higher-
order model, FLODE. Details of the training setup, hyperparameter search procedure, and selected
hyperparameters are provided in Appendix A.2.2.

To identify which aspects of GNNs are particularly effective for learning on graph ensemble datasets,
we analyze the baseline models’ results in detail. On the undirected lattice graph, MagNet provides
only a slight improvement over GCN, which is expected since MagNet reduces to ChebNet (Def-
ferrard et al., 2016) on undirected graphs, and GCN is a first-order truncation of ChebNet. How-
ever, in the directed GRN experiments, MagNet shows substantial improvement over GCN. We
also observe that higher-order GNNs like DRew and FLODE perform competitively on the undi-
rected lattice graph. Notably, FLODE’s instantaneous enhancement of connectivity via fractional
powers of the graph Laplacian outperforms DRew’s more gradual incorporation of higher-hop mes-
sages. However, both methods struggle on the directed GRN graph. The model based on the Chung
Laplacian demonstrates strong performance on the lattice graph but offers only a modest improve-
ment over GCN on the directed GRN. On both synthetic graphs, attention-based models—GAT and
GraphGPS—deliver strong performance, coming in just behind CoED. GraphGPS, in particular,
seems to benefit from its final global attention step, similar to how FLODE benefits from densifying
the graph. We also notice that increasing the dimension of Laplacian positional encoding does not
further enhance GraphGPS’s performance. Interestingly, models that learn edge weights via atten-
tion mechanisms outperform MagNet on the directed GRN graph. This is likely because MagNet’s
unitary evolution of complex-valued features does not resemble the actual feature propagation (i.e.,
the GRN dynamics), in addition to the shortcomings highlighted in the previous section.

We then investigated whether CoED can recover the true continuous edge directions of the
triangular lattice graph, given that the feature propagation steps during data generation closely

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

match the message-passing operation of CoED. As shown in Figure 4, CoED correctly learns the
true directions. Lastly, since both synthetic datasets are generated by propagating input features
over multiple hops, we investigated how performance scales with model depth by training CoED
and the second-best model with up to 10 layers. Figure 5 demonstrates that CoED continues to
improve as depth increases, while the performance of the other models plateau at a shallower depth.

Lattice GRN
GCN 77.56 ±0.47 69.38 ±0.62
GAT 9.41 ±0.05 12.07 ±1.50
GraphGPS 3.47 ±0.14 25.16 ±1.56
MagNet 75.06 ±0.03 43.42 ±4.34
Chung 8.03 ±0.03 62.95±0.78
DRew 28.55 ±0.02 69.92 ±0.15
FLODE 7.54±0.05 70.31 ±0.03

CoED 1.36 ±0.06 5.02 ±0.45

Table 2: Comparison of different models on the
synthetic datasets. Values are test losses reported
with a common factor of 10−3 in both columns.

Figure 4: Learned theta vs. true theta for CoED
applied to directed flow on triangular lattice syn-
thetic dataset.

(a) Test loss vs. depth on triangular lattice dataset (b) Test loss vs. depth on GRN dataset

Figure 5: Model performance as a function of depth.

5.2.2 REAL DATASETS

Single-cell Perturb-seq. Perturb-seq (Dixit et al., 2016) is a well-established experimental tech-
nique in single-cell biology that inspired the synthetic GRN experiment described earlier. In Perturb-
seq experiments, one or more genes in a cell are knocked out resulting in zero expresion—as in our
synthetic GRN dataset. The resulting changes in the expression levels of all other genes are then
measured to elucidate gene-gene interactions. For our study, we used the Replogle-gwps dataset
(Replogle et al., 2022; Peidli et al., 2024), which includes 9,867 distinct single-gene perturbations,
along with control measurements from cells without any perturbation to establish baseline gene ex-
pression levels. The learning task is again predicting the expression levels of all genes following
perturbation given the initial steady-state with the expression levels of the perturbed genes set to
zero. Since there is no ground truth gene regulatory network (GRN) available for this dataset, we
constructed an undirected k-nearest neighbors graph to connect genes with highly correlated ex-
pression patterns. All models are trained using this heuristic graph. Details of the data processing
procedure are provided in Appendix A.3.1.

Wikipedia web traffic. We also modeled the traffic flow between Wikipedia pages using the Wiki-
Math dataset, which is classified as a “static graph with temporal signals” in the PyTorch Geometric
Temporal library (Rozemberczki et al., 2021). In this dataset, each node corresponds to an article
page on a popular mathematics topic, and each directed edge represents a link from one page to
another. The node features are the daily visit counts of all pages over a period of 731 consecutive
days. The learning task is node regression: predict the next day’s visit counts across all pages given
today’s visit counts. We trained the baseline models using the true, directed graph, while CoED

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

was trained starting from the undirected version of the graph. Additional details are provided in
Appendix A.3.2.

Power grid. We applied CoED to the optimal power flow (OPF) problem using the OPF-
Data (Lovett et al., 2024) from the PyTorch Geometric library. In this dataset, a power grid is
represented as a directed graph with nodes corresponding to buses (connection points for generators
and loads) and edges representing transformers and AC lines. Input features are the operating values
of all components under specific load conditions, and the targets are the corresponding AC-OPF so-
lution values at the generator nodes. To compare different models, we used a consistent architecture
across components but substituted different model layers for message passing. For CoED, they were
again converted to undirected edges. Additional details are provided in Appendix A.3.3.

Perturb-seq Web traffic Power grid
GCN 4.13±0.08 7.07±0.03 28.56±6.08
MagNet 4.11±0.01 6.94±0.02 18.05±2.77
GAT 3.85±0.03 6.00±0.03 13.57±1.73
DirGCN 5.46±0.26 6.72±0.04 6.15±0.84
DirGAT 3.98±0.07 6.55±0.04 3.28±0.17

CoED 3.56±0.03 5.76±0.05 2.91±0.11

Table 3: Comparison of different methods on real
graph ensemble datasets. Values are test losses re-
ported with common factors of 101, 10−1, 10−3 for
Perturb-seq, web traffic, and power grid columns, re-
spectively.

Results. Table 3 reports the test per-
formances of all baseline models and
CoED on the three datasets. The base-
lines include GAT, MagNet, DirGCN, and
DirGAT. We focus on these models be-
cause attention-based approaches showed
competitive performance on the synthetic
datasets, and MagNet, which accounts for
edge directions, performed well on the di-
rected GRN dataset. Details of the training
setup, hyperparameter search procedure,
and selected hyperparameters are provided
in the Appendix.

We observe that CoED achieves the best
performance across all three datasets. On
the Perturb-seq dataset with an undirected
graph, MagNet performs similarly to GCN, while DirGCN struggles. We attribute DirGCN’s poor
performance to clashing learnable parameters: it uses two distinct weight matrices, W← and W→,
applied to identical in- and out-neighbor aggregated messages in the case of undirected graphs. For
a propagation path of L hops, this results in 2L feature transformations, comprised of different com-
binations of the two weight matrices, which together reduce the model’s ability to efficiently learn
the optimal weight matrices. In contrast, DirGAT’s attention mechanisms break the symmetry of the
undirected edges, leading to improved performance. CoED naturally addresses this issue in undi-
rected graphs by learning the edge directions. On the web traffic and power grid datasets, which
have directed graphs, we observe a similar trend. MagNet outperforms GCN due to its ability to
process directed messages. However, GAT delivers better performance than MagNet, likely because
its attention mechanism effectively captures important features. Since directed graphs create dis-
tinct feature propagation paths, DirGCN achieves substantial performance gains. DirGAT further
improves upon DirGCN by leveraging additional edge weight learning through an attention mech-
anism. CoED surpasses all these models, demonstrating the effectiveness of learning continuous
edge directions.

6 CONCLUSION

We have introduced the Continuous Edge Direction (CoED) GNN, which assigns fuzzy, continuous
directions to the edges of a graph and employs a novel complex-valued Laplacian to transform in-
formation propagation on graphs from diffusion to directional flow. Our theoretical analysis shows
that CoED GNN is more expressive than existing Laplacian-based methods and matches the ex-
pressiveness of an extended Weisfeiler-Leman test for directed graphs with fuzzy edges. Through
extensive experiments on both synthetic and real-world graph ensemble datasets—including gene
regulatory networks, web traffic, and power grids—we demonstrated that learning continuous edge
directions significantly improves performance over existing GNN models. These results highlight
CoED GNN’s effectiveness in enabling long-range information flow, offering a powerful framework
for learning on graphs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Cristian Bodnar, Francesco Di Giovanni, Benjamin Chamberlain, Pietro Liò, and Michael Bronstein.
Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns. In
Advances in Neural Information Processing Systems, volume 35, pp. 24850–24863, 2022.

Luis Böttcher, Hinrikus Wolf, Bastian Jung, Philipp Lutat, Marc Trageser, Oliver Pohl, Xiaohu Tao,
Andreas Ulbig, and Martin Grohe. Solving ac power flow with graph neural networks under
realistic constraints. In 2023 IEEE Belgrade PowerTech, pp. 1–7. IEEE, 2023.

Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv preprint
arXiv:2006.13318, 2020.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pp. 3438–3445, 2020a.

Jinyin Chen, Xuanheng Xu, Yangyang Wu, and Haibin Zheng. Gc-lstm: Graph convolution embed-
ded lstm for dynamic link prediction. In Proceedings of the 27th International Joint Conference
on Artificial Intelligence (IJCAI), pp. 219–225, 2018.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pp. 1725–1735. PMLR,
2020b.

Fan Chung. Laplacians and the cheeger inequality for directed graphs. Annals of Combinatorics, 9:
1–19, 2005.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-expressive graph trans-
former in linear time. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=hmv1LpNfXa.

Tyler Derr, Yao Ma, and Jiliang Tang. Signed graph convolutional networks. In 2018 IEEE Interna-
tional Conference on Data Mining (ICDM), pp. 929–934. IEEE, 2018.

Francesco Di Giovanni, James Rowbottom, Benjamin P. Chamberlain, Thomas Markovich, and
Michael M. Bronstein. Understanding convolution on graphs via energies. Transactions on Ma-
chine Learning Research, 2023.

Atray Dixit, Oren Parnas, Biyu Li, Jenny Chen, Charles P Fulco, Livnat Jerby-Arnon, Nemanja D
Marjanovic, Danielle Dionne, Tyler Burks, Raktima Raychowdhury, et al. Perturb-seq: dissecting
molecular circuits with scalable single-cell rna profiling of pooled genetic screens. cell, 167(7):
1853–1866, 2016.

Balthazar Donon, Rémy Clément, Benjamin Donnot, Antoine Marot, Isabelle Guyon, and Marc
Schoenauer. Neural networks for power flow: Graph neural solver. Electric Power Systems
Research, 189:106547, 2020.

Neelam Duhan, AK Sharma, and Komal Kumar Bhatia. Page ranking algorithms: a survey. In 2009
IEEE International Advance Computing Conference, pp. 1530–1537. IEEE, 2009.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

Vijay Prakash Dwivedi, Yozen Liu, Anh Tuan Luu, Xavier Bresson, Neil Shah, and Tong Zhao.
Graph transformers for large graphs. arXiv preprint arXiv:2312.11109, 2023.

Moshe Eliasof, Eldad Haber, and Eran Treister. Pde-gcn: Novel architectures for graph neural
networks motivated by partial differential equations. Advances in neural information processing
systems, 34:3836–3849, 2021.

11

https://openreview.net/forum?id=hmv1LpNfXa

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Moshe Eliasof, Eldad Haber, and Eran Treister. Feature transportation improves graph neural net-
works. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 11874–
11882, 2024.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Ben Finkelshtein, Xingyue Huang, Michael Bronstein, and Ismail Ilkan Ceylan. Cooperative graph
neural networks. arXiv preprint arXiv:2310.01267, 2023.

Simon Geisler, Yujia Li, Daniel J Mankowitz, Ali Taylan Cemgil, Stephan Günnemann, and Cosmin
Paduraru. Transformers meet directed graphs. In International Conference on Machine Learning,
pp. 11144–11172. PMLR, 2023.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Mingyu Guan, Anand Padmanabha Iyer, and Taesoo Kim. Dynagraph: dynamic graph neural net-
works at scale. In Proceedings of the 5th ACM SIGMOD Joint International Workshop on Graph
Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA), pp.
1–10, 2022.

Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew: Dy-
namically rewired message passing with delay. In International Conference on Machine Learning,
pp. 12252–12267. PMLR, 2023.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems (NeurIPS), volume 30, 2017.

Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick Duffield, Krishna
Narayanan, and Xiaoning Qian. Bayesian graph neural networks with adaptive connection sam-
pling. In International conference on machine learning, pp. 4094–4104. PMLR, 2020.

Yixuan He, Michael Perlmutter, Gesine Reinert, and Mihai Cucuringu. Msgnn: A spectral graph
neural network based on a novel magnetic signed laplacian. In Learning on Graphs Conference,
pp. 40–1. PMLR, 2022a.

Yixuan He, Gesine Reinert, and Mihai Cucuringu. Digrac: digraph clustering based on flow imbal-
ance. In Learning on Graphs Conference, pp. 21–1. PMLR, 2022b.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over) smoothing.
Advances in Neural Information Processing Systems, 35:2268–2281, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR), 2017.

C Koke and D Cremers. Holonets: Spectral convolutions do extend to directed graphs. In Interna-
tional Conference on Learning Representations (ICLR), 2024.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018a.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In International Conference on Learning Representations
(ICLR), 2018b.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph sequence neural
networks. In 4th International Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34:20887–20902, 2021.

Sean Lovett, Miha Zgubic, Sofia Liguori, Sephora Madjiheurem, Hamish Tomlinson, Sophie Elster,
Chris Apps, Sims Witherspoon, and Luis Piloto. Opfdata: Large-scale datasets for ac optimal
power flow with topological perturbations. arXiv preprint arXiv:2406.07234, 2024.

Yi Ma, Jianye Hao, Yaodong Yang, Han Li, Junqi Jin, and Guangyong Chen. Spectral-based graph
convolutional network for directed graphs. arXiv preprint arXiv:1907.08990, 2019.

Sohir Maskey, Raffaele Paolino, Aras Bacho, and Gitta Kutyniok. A fractional graph laplacian
approach to oversmoothing. In Advances in Neural Information Processing Systems, 2023.

Dylan Molho, Jiayuan Ding, Wenzhuo Tang, Zhaoheng Li, Hongzhi Wen, Yixin Wang, Julian Vene-
gas, Wei Jin, Renming Liu, Runze Su, et al. Deep learning in single-cell analysis. ACM Transac-
tions on Intelligent Systems and Technology, 15(3):1–62, 2024.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations (ICLR), 2020.

Hongwei Pei, Bingzhe Wei, Kevin Chang, Yiming Lei, and Bo Yang. Geom-gcn: Geometric graph
convolutional networks. In Proceedings of the International Conference on Learning Represen-
tations (ICLR), 2020.

Stefan Peidli, Tessa D Green, Ciyue Shen, Torsten Gross, Joseph Min, Samuele Garda, Bo Yuan,
Linus J Schumacher, Jake P Taylor-King, Debora S Marks, et al. scperturb: harmonized single-
cell perturbation data. Nature Methods, pp. 1–10, 2024.

Luis Piloto, Sofia Liguori, Sephora Madjiheurem, Miha Zgubic, Sean Lovett, Hamish Tomlinson,
Sophie Elster, Chris Apps, and Sims Witherspoon. Canos: A fast and scalable neural ac-opf solver
robust to n-1 perturbations. arXiv preprint arXiv:2403.17660, 2024.

Adolfo Piperno et al. Isomorphism test for digraphs with weighted edges. In Proceedings SEA2018.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, 2018.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at evaluation of gnns under heterophily: Are we really making progress? In The
Eleventh International Conference on Learning Representations, 2023.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Joseph M Replogle, Reuben A Saunders, Angela N Pogson, Jeffrey A Hussmann, Alexander Lenail,
Alina Guna, Lauren Mascibroda, Eric J Wagner, Karen Adelman, Gila Lithwick-Yanai, et al.
Mapping information-rich genotype-phenotype landscapes with genome-scale perturb-seq. Cell,
185(14):2559–2575, 2022.

Martin Ringsquandl, Houssem Sellami, Marcel Hildebrandt, Dagmar Beyer, Sylwia Henselmeyer,
Sebastian Weber, and Mitchell Joblin. Power to the relational inductive bias: Graph neural net-
works in electrical power grids. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, pp. 1538–1547, 2021.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In International Conference on Learning Repre-
sentations (ICLR), 2020.

Yusuf Roohani, Kexin Huang, and Jure Leskovec. Predicting transcriptional outcomes of novel
multigene perturbations with gears. Nature Biotechnology, pp. 1–9, 2023.

Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan
Günnemann, and Michael M Bronstein. Edge directionality improves learning on heterophilic
graphs. In Learning on Graphs Conference, pp. 25–1. PMLR, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Maria Sinziana Aste-
fanoaei, Oliver Kiss, Ferenc Beres, Nicolas Collignon, and Rik Sarkar. Pytorch geometric tem-
poral: Spatiotemporal signal processing with neural machine learning models. In Proceedings of
the 30th ACM International Conference on Information & Knowledge Management (CIKM), pp.
4564–4573, 2021. doi: 10.1145/3459637.3482014.

T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael Bron-
stein. Graph-coupled oscillator networks. In International Conference on Machine Learning, pp.
18888–18909. PMLR, 2022.

T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
graph neural networks. arXiv preprint arXiv:2303.10993, 2023a.

T. Konstantin Rusch, Benjamin P. Chamberlain, Michael W. Mahoney, Michael M. Bronstein, and
Siddhartha Mishra. Gradient gating for deep multi-rate learning on graphs. In International
Conference on Learning Representations (ICLR), 2023b.

Zahraa Al Sahili and Mariette Awad. Spatio-temporal graph neural networks: A survey. arXiv
preprint arXiv:2301.10569, 2023.

Henan Sun, Xunkai Li, Zhengyu Wu, Daohan Su, Rong-Hua Li, and Guoren Wang. Breaking the
entanglement of homophily and heterophily in semi-supervised node classification. In 2024 IEEE
40th International Conference on Data Engineering (ICDE), pp. 2379–2392. IEEE, 2024.

Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David S Rosenblum, and Andrew Lim. Di-
graph inception convolutional networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2020a.

Zekun Tong, Yuxuan Liang, Changsheng Sun, David S. Rosenblum, and Andrew Lim. Directed
graph convolutional network. arXiv preprint arXiv:2004.13970, 2020b.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Yuelin Wang, Kai Yi, Xinliang Liu, Yu Guang Wang, and Shi Jin. Acmp: Allen-cahn message pass-
ing with attractive and repulsive forces for graph neural networks. In The Eleventh International
Conference on Learning Representations, 2022.

F Alexander Wolf, Philipp Angerer, and Fabian J Theis. Scanpy: large-scale single-cell gene ex-
pression data analysis. Genome biology, 19:1–5, 2018.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Xinyi Wu, Zhengdao Chen, William Wang, and Ali Jadbabaie. A non-asymptotic analysis of over-
smoothing in graph neural networks. arXiv preprint arXiv:2212.10701, 2022.

Xinyi Wu, Amir Ajorlou, Zihui Wu, and Ali Jadbabaie. Demystifying oversmoothing in attention-
based graph neural networks. Advances in Neural Information Processing Systems, 36, 2024.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Shen Yan, Zeyuan Allen Xu, An Gu, Yufeng Sun, Charu Aggarwal, and Neil Shah. Two sides of
the same coin: Heterophily and oversmoothing in graph convolutional neural networks. In Pro-
ceedings of the 30th ACM International Conference on Information and Knowledge Management
(CIKM), pp. 1812–1821, 2021.

Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn. Magnet:
A neural network for directed graphs. Advances in neural information processing systems, 34:
27003–27015, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Kai Zhao, Qiyu Kang, Yang Song, Rui She, Sijie Wang, and Wee Peng Tay. Graph neural
convection-diffusion with heterophily. In Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, pp. 4656–4664, 2023.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in GNNs. In International
Conference on Learning Representations (ICLR), 2020.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. AI open, 1:57–81, 2020.

Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi, and Xia Hu. Dirichlet
energy constrained learning for deep graph neural networks. Advances in Neural Information
Processing Systems, 34:21834–21846, 2021.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL DETAILS

A.1 NODE CLASSIFICATION

In Table 1, MLP, GCN, SAGE, GAT, GGCN, and Sheaf’s results on Texas, Wisconsin, Citeseer,
and Cora are taken from Bodnar et al. (2022); MLP, GCN, MagNet, and DirGNN’s results on
Roman-Empire, SNAP-Patents, and Arxiv-Year from Rossi et al. (2024); SAGE and GAT’s re-
sults on Roman-Empire, and GCN, SAGE, and GAT’s results on the filtered versions of Squirrel and
Chameleon from Platonov et al. (2023); GCN, SAGE, GAT, and GGCN’s results on AM-Computers
and AM-Photo, and GGCN’s result on Roman-Empire from Deng et al. (2024), SAGE and GAT’s
results on SNAP-Patents from Dwivedi et al. (2023); MagNet’s result on Texas and Wisconsin from
the original paper (Zhang et al., 2021) and the filtered versions of Squirrel and Chameleon from (Sun
et al., 2024); Flode’s results on Roman-Empire, Citeseer, and Cora from the original paper (Maskey
et al., 2023); Co-GNN’s results on Roman-Empire and Cora from the original paper (Finkelshtein
et al., 2023); GAT’s result on Arxiv-Year from Lim et al. (2021). We trained CoED and baseline
models to fill the remaining entries in the table. We describe the training procedures below. Texas,
Wisconsin, Citeseer, and Cora datasets were downloaded using PyTorch Geometric library (Fey
& Lenssen, 2019) with split=‘geom-gcn’ argument to use the 10 fixed 48%/32%/20% train-
ing/validation/test splits provided by (Pei et al., 2020). We downloaded AM-Computers and AM-
Photo datasets from the same library but used the 60%/20%/20%-split file provided in the repository
of Deng et al. (2024). Since the original Squirrel and Chameleon datasets (Pei et al., 2020) have re-
dundant nodes, we used the filtered versions with directed graphs provided in the repository of
Platonov et al. (2023). For Roman-Empire, SNAP-Patents, and Arxiv-Year datasets, we used the
dataloading pipeline provided in the repository of Rossi et al. (2024). All referenced results used the
same splits as in our experiments.

Training. We evaluated the validation accuracy at each epoch, incrementing a counter if the value
did not improve and resetting it to 0 when a new best validation accuracy was achieved. Train-
ing was early-stopped when the counter reached a patience of 200. Unless otherwise mentioned,
we used the default hyperparameter settings of the respective models. We used the ReLU ac-
tivation function and the ADAM optimizer in all experiments. Across all models, we searched
over the following hyperparmeters: hidden dimension ∈ [16, 256], learning rate ∈ [5e-4, 2e-2],
weight decay ∈ [0, 1e-2], dropout rate ∈ [0, 0.7], and the number of layers ∈ [2, 5]. We addi-
tionally searched over model-specific hyperparameters: the weight between in-/out-neighbor ag-
gregated messages α ∈ {0, 0.5, 1}, jumping knowledge (jk) ∈ {None, ‘cat’, ‘max’}, and layer-
wise feature normalization (norm) ∈ {True,False} for DirGNN, Chung, and CoED; self-feature
transform ∈ {True,False}, self-loop value ∈ {0, 1} for Chung and CoED; convolution type
∈ {‘GCN’, ‘SAGE’, ‘GAT’} for DirGNN; the order of Chebyshev polynomial K ∈ {1, 2}, the
global directionality q ∈ [0, 0.25], and self-loop value ∈ {0, 1} for MagNet; the initial temperature
for Gumbel-softmax τ0 ∈ {0, 0.1}, the number of environment network layers ∈ [1, 4], the hid-
den dimension of environment network ∈ [16, 128], the number of action network layers ∈ {1, 2},
the hidden dimensions of action network {4, 8}, layer norm ∈ {True,False}, skip connection
∈ {True,False}, model type in ∈ {‘Sum GNN’, ‘Mean GNN’, ‘GCN’} ; and the number of lay-
ers ∈ [1, 3], the number of both encoder and decoder layers ∈ {1, 2}, and self-loop value ∈ {0, 1}
for FLODE. For FLODE, the number of layers refers to the number of forward Euler steps, and we
solved the heat equation with a minus sign, which was the default setup for node classification tasks.
If the self-loop value is 1, the self-feature is combined with neighbors’ features in the AGGREGATE
function. For CoED and Chung model on Roman-Empire, SNAP-Patents, and Arxiv-Year datasets,
we only searched over the type of jumping knowledge ∈ {‘cat’, ‘max’}, setting all other hyperpa-
rameters as reported in Rossi et al. (2024). For Sheaf, we searched over stalk dimension ∈ [3, 8],
hidden dimension ∈ [8, 64], the number of layers ∈ [2, 8], sheaf weight decay from the same weight
decay range, the number of decoder layer ∈ {1, 2}, and using both low-pass and high-pass filters
∈ {True,False}. We report in Table 1 the mean accuracy and standard deviation over the 10
test splits using the best hyperparameters presented below. All experiments were performed on two
NVIDIA RTX 6000 Ada Generation GPUs with 48GB of memory and one NVIDIA A100 Tensor
Core GPU with 80GB, and it took roughly three weeks of training to produce the results. We re-
port OOM when a model with the minimum hyperparameter configuration fails to process data on a
48GB GPU.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

layers # hidden lr wd dropout self-loop α norm jk self-feature

Roman-Empire 5 256 1e-2 0 0.2 0 0.5 False max True
SNAP-Patents 5 32 1e-2 0 0 0 0.5 True cat True
Texas 2 64 2e-2 5e-4 0.5 0 0.5 False None True
Wisconsin 2 128 2e-2 1e-3 0.5 0 0.5 False None True
Arxiv-Year 6 256 5e-3 0 0 0 0.5 False max False
Squirrel 3 64 1e-2 5e-3 0 0 0.5 False cat False
Chameleon 2 64 1e-2 2e-3 0 0 0.5 False cat False
Citeseer 2 256 2e-3 0 0.7 0 0.5 False None True
AM-Computers 2 512 5e-3 0 0.7 1 0 False None False
AM-Photo 3 128 1e-3 0 0.7 1 0.5 False None True
Cora 2 128 5e-4 1e-4 0.5 1 0 False None False

Table A.1: Selected hyperparameters CoED.

env/act layers # env/act hidden τ0 conv type lr wd dropout layer norm skip

SNAP-Patents 2 / 1 32 / 4 0 GCN 1e-2 0 0 True False
Texas 3 / 1 64 / 4 0.1 GCN 2e-2 1e-3 0.5 False True
Wisconsin 4 / 2 64 / 4 0.1 GCN 2e-2 5e-4 0.5 False True
Arxiv-Year 3 / 1 128 / 8 0.1 GCN 1e-3 0 0 True True
Squirrel 2 / 1 64 / 4 0.1 Mean GCN 5e-3 0 0 False False
Chameleon 2 / 1 64 / 4 0.1 Mean GCN 5e-3 0 0 False False
Citeseer 4 / 1 64 / 4 0 GCN 1e-2 0 0.7 True True
AM-Computers 4 / 2 64 / 4 0 GCN 5e-3 0 0 True False
AM-Photo 3 / 2 64 / 8 0 GCN 5e-3 0 0.5 True True

Table A.2: Selected Hyperparameters for Co-GNN.

layers # hidden conv type lr wd dropout α norm jk

Texas 2 256 DirSAGE 2e-2 5e-4 0.5 0.5 False None
Wisconsin 3 256 DirSAGE 1e-2 1e-4 0.5 0.5 False None
Squirrel 4 64 DirGCN 1e-2 5e-3 0 0.5 False cat
Chameleon 2 64 DirGCN 1e-2 2e-3 0 0.5 False cat
Citeseer 2 128 DirSAGE 5e-3 1e-3 0.5 0.5 False None
AM-Computers 3 256 DirSAGE 1e-3 0 0.5 0.5 True None
AM-Photo 4 128 DirSAGE 1e-3 0 0.5 0.5 True None
Cora 2 64 DirGCN 5e-3 5e-4 0.5 0 False None

Table A.3: Selected hyperparameters for DirGNN.

layers # hidden lr wd dropout α norm jk self-feature

Roman-Empire 5 256 1e-2 0 0.2 0.5 False cat True
SNAP-Patents 5 32 1e-2 0 0 0.5 True cat True
Texas 3 64 1e-2 1e-3 0 0.5 True None True
Wisconsin 2 32 1e-2 1e-4 0.5 0.5 False None True
Arxiv-Year 6 256 5e-3 0 0 0.5 False cat False
Squirrel 2 32 5e-3 5e-3 0 0.5 False cat False
Chameleon 2 128 2e-2 1e-3 0 0.5 False cat False
Citeseer 2 64 1e-3 1e-4 0.5 0 False None True
AM-Computers 3 256 1e-3 0 0 0 True None True
AM-Photo 4 256 5e-3 1e-4 0 0 True None True
Cora 2 32 5e-4 0 0.5 0 False None True

Table A.4: Selected hyperparameters for Chung.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

layers # hidden lr wd dropout K q

Citeseer 3 256 1e-3 0 0.5 2 0
AM-Computers 5 256 1e-3 1e-4 0.5 2 0
AM-Photo 5 256 2e-3 0 0.7 3 0
Cora 1 32 1e-2 0 0.5 2 0

Table A.5: Selected hyperparameters for MagNet.

layers # hidden type # stalk lr wd sheaf wd dropout high/low-pass filter # encoder layers

Roman-Empire 6 16 Diagonal 3 2e-3 1e-2 0 0.7 False/True 2
Arxiv-Year 8 16 Diagonal 4 1e-2 0 0 0 True/False 1
Squirrel 2 8 Orthogonal 6 1e-3 0 0 0 Ture/False 1
Chameleon 2 16 Diagonal 6 1e-2 0 0 0 True/False 1
AM-Computers 4 32 General 6 1e-2 0 0 0 True/False 1
AM-Photo 4 16 Diagonal 8 1e-2 0 0 0 True/False 1

Table A.6: Selected hyperparameters for Sheaf.

layers # hidden # encoder/decoder layers lr wd dropout self-loop

Texas 1 128 1 / 1 1e-2 0 0 0
Wisconsin 1 128 1 / 1 5e-3 0 0.5 0
Squirrel 1 16 1 / 1 2e-2 1e-2 0.5 1
Chameleon 1 256 1 / 1 1e-2 5e-3 0.5 1
AM-Computers 1 32 1 / 2 5e-3 0 0 1
AM-Photo 1 64 2 / 1 5e-3 5e-3 0.5 1

Table A.7: Selected hyperparameters for FLODE.

layers # hidden lr wd dropout

MLP (Squirrel) 3 64 1e-3 1e-4 0.5
MLP (Chameleon) 4 128 1e-2 0 0.7
MLP (AM-Computers) 2 256 5e-3 1e-4 0
MLP (AM-Photo) 2 256 5e-3 1e-4 0
SAGE (Arxiv-Year) 4 128 1e-3 1e-4 0
GGCN (Squirrel) 2 32 5e-3 1e-4 0.7
GGCN (Chameleon) 4 64 1e-2 5e-3 0.7

Table A.8: Selected hyperparameters for MLP, SAGE, and GGCN.

A.2 GRAPH ENSEMBLE EXPERIMENT WITH SYNTHETIC DATASETS

A.2.1 DATA GENERATION AND TRAINING SETUP FOR THE DIRECTED FLOW TRIANGULAR
LATTICE GRAPH

Data generation. To obtain the triangular lattice graph described in the main text, we first designed
a potential function V on [−2, 2]2 plane with a peak (source) and a valley (sink). We used quadratic
potentials, located at µ1 = (−1, 1) and µ2 = (1,−1) with stiffness matrices,

K1 = K2 =

(
1 0
0 1

)

With magnitudes a1 = 1 and a2 = −1, the potential function V (x) is parameterized as,

V (x) = a1(x− µ1)
⊤K1(x− µ1) + a2(x− µ2)

⊤K2(x− µ2)

We then generated a triangular lattice on the 2d plane and considered this lattice as a graph Glattice,
where the vertices of the lattice serve as the nodes of the graph, and the edges of the lattice form the
edges of the graph. In this way, each node vi ∈ Vlattice has an associated spatial position xi on the 2d
plane. We computed ∆Vij = V (xj)− V (xi) for all (vi, vj) ∈ Elattice. All ∆Vij values were shifted

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

and scaled to the range [0, π/2] to obtain the θij , which is an approximate version of the gradient
direction of the potential. In the resulting lattice graph, an edge points towards the node with the
lower potential energy.

We then assigned to each node a 10-dimensional random feature vector sampled independently
from the standard multivariate normal distribution, and normalized them to have a unit-norm, and
repeated the process 500 times to generate an ensemble of node features. To generate corresponding
target values, we propagated features using Equation 4 with message-passing matrices P→ and P←
computed from Θ of the lattice graph as described in Equation 2 and the entries of the 10×10 weight
matrices W→, W←, and Wself sampled independently from the standard normal distribution and
shared across all 10 iterations. Instead of applying an activation function, we normalized the features
mself +m→ +m← to have unit norm. We used the features after 10 iterations of message passing
as the target values. We divided these 500 instances of feature-target pairs using 60%/20%/20%
random training/validation/test split.

Training. We used a batch size of 16 for training with random shuffling at each epoch and a full
batch for both validation and testing. We evaluated the validation MSE at each epoch, increment-
ing a counter if the value did not improve and resetting it to 0 when a new best validation MSE
was achieved. Training was early-stopped when the counter reached a patience of 20. We used
neither dropout nor weight decay, as we aim to learn an exact mapping from node features to tar-
get values for regression, as opposed to a noise-robust node embedding for classification. We used
the ReLU activation function in all models, except for ELU in GAT, and used ADAM optimizer
for all experiments. Across all models, we searched over the following hyperparmeters: the num-
ber of layers ∈ [2, 4], hidden dimension ∈ [16, 64], learning rate ∈ [1e-3, 1e-2]. We additionally
grid-searched over model-specific hyperparameters: the number of attention heads ∈ {1, 4, 8} and
skip connection (sc) ∈ {True,False} for GAT; attention type ∈ {‘multihead’, ‘performer’}, at-
tention heads ∈ {1, 4, 8}, encoding type ∈ {‘eigenvector’, ‘electrostatic’}, the dimension of eigen-
vector encoding ∈ [2, 5, 10, 20] and self-loop value ∈ {0, 1} for GraphGPS; the order of Cheby-
shev polynomial K ∈ {1, 2} and self-loop value ∈ {0, 1} for MagNet; α ∈ {0, 0.5, 0.1} for
Chung; multi-hop aggregation mechanism ∈ {‘sum’, ‘weight’} for DRew; the number of both en-
coder and decoder MLP layers ∈ {1, 2, 3}, and self-loop value ∈ {0, 1} for FLODE; self-feature
transform ∈ {True,False}, learning rate for Θ ∈ [1e-3, 1e-2], and layer-wise (lw) Θ learning
∈ {True,False} for CoED. For GraphGPS, we used GINE as a convolution layer and provided 1
as an edge attribute. Computing structural encoding via random walk resulted in an all-zero vector
since the degree of node is 3 across all nodes except at the boundary in our lattice graph. We thus
opted to use the electrostatic function encoding provided in the original paper as an alternative to
structural encoding. For MagNet, we optimized q along with the model parameters during training.
We supplied the undirected version of the lattice graph by setting all θij values to π/4 and used
self-feature transform with self-loop value set to 0. We did not use layer-wise feature normalization.
Table 2 reports the mean accuracy and standard deviation on the test data from the top 5 out of 7
training runs with different initializations using the best hyperparameters shown below. All exper-
iments were performed on two NVIDIA RTX 6000 Ada Generation GPUs with 48GB of memory
and it took about 3 days of training time to generate the results.

Model # layers # hidden lr self-loop sc # attn. heads attn. type enc. type K α aggr. # enc. layers # dec. layer self-feature lr Θ lw Θ

GCN 2 16 1e-3 - - - - - - - - - - - - -
GAT 4 32 1e-3 - True 4 - - - - - - - - - -
GraphGPS 4 64 1e-3 0 - 4 multihead eigenvector (dim=5) - - - - - - - -
MagNet 4 64 1e-3 1 - - - - 2 - - - - - -
Chung 4 64 1e-3 0 - - - - - 0.5 - - - - - -
DRew 3 64 5e-3 - - - - - - - weight - - - - -
FLODE 4 64 1e-2 0 - - - - - - - 1 3 - - -
CoED 4 64 1e-3 - - - - - - - - - - True 1e-3 False

Table A.9: Hyperparameters selected for node regression on the synthetic lattice graph.

A.2.2 DATA GENERATION AND TRAINING SETUP FOR THE GRN DYNAMICS EXPERIMENT

Data generation. We prepared a directed adjacency matrix A for a graph with 200 nodes by sam-
pling each entry of the matrix independently from a Bernoulli distribution with success probability
0.03. We interpreted an edge Aij as indicating that the gene represented by the node vj is regulating
the gene represented by the node vi. We then randomly chose half of the edges as activating edges
and the other half as suppressing edges. The scalar feature value of each node is the expression level

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

of a gene, measured as concentration ci. In order to simulate the gene regulatory network dynamics
where genes are either up- or down- regulating connected genes, we sampled the magnitudes of
activation γact

ij and suppression γsup
ij from a uniform distribution with the support [0.5, 1.5]. We ad-

ditionally sampled half-saturation constants Kij , which control how quickly ci changes in response
to cj , from a uniform distribution with support [0.25, 0.75]. Lastly, we sampled the initial concen-
trations independently from a uniform distribution with support [0.1, 10] for each gene, and ran the
GRN dynamics as described by,

dci
dt

=
∑

j∈N (i)

(
γact
ij F

act(cj ,Kij) + γsup
ij F sup(cj ,Kij)

)
− ci (5)

for 250 time steps with dt = 0.05 to reach a steady state for c. The summation in the above
equation is over all genes that either activate or repress gene i. F act(cj ,Kij) = c2j/(K

2
ij + c2j) and

F sup(cj ,Kij) = K2
ij/(K

2
ij+c2j), which are the Hill functions defining up- and down- regulations of

gene i by gene j, respectively. From this steady state, we mimicked the gene knockout experiment
in biology by setting the concentration values of a chosen set of genes to zero and running the GRN
dynamics for additional 100 time steps, by which time genes reached new steady-state values. We
performed a single-gene knockout for all 200 genes and a double-gene knockout for 1000 randomly
selected pairs of genes. We defined node features as the original steady state with the values of
knockout genes set to zero and the corresponding target values as the new steady-state values reached
from this state. This procedure generates an ensemble of 1200 feature-target pairs for each node
for the synthetic GRN graph. We used all 200 single gene knockout results as training data, and
randomly selected 200 and 800 double gene knockout results for validation and testing, respectively.

Training. For each knockout result, we used all nodes for regression except those corresponding
to the knocked out genes. We used a batch size of 8 for training with random shuffling at each
epoch, and a full batch for both validation and testing. We evaluated the validation loss at every
epoch, and implemented the same counting scheme as in the directed flow experiment to early-stop
the training with a patience of 50. We searched over the number of layers ∈ [2, 5], hidden dimension
∈ {16, 32}, and learning rate ∈ [5e-4, 5e-3], and otherwise conducted the same hyperparameter
search as described in the lattice experiment, using the same training setup. Table 2 reports the mean
accuracy and standard deviation on the test data from the top 5 out of 7 training runs with different
initializations using the best hyperparameters shown below. All experiments were performed on
two NVIDIA RTX 6000 Ada Generation GPUs with 48GB of memory and it took about 3 days of
training time to generate the results.

Model # layers # hidden lr self-loop sc # attn. heads attn. type enc. type K α aggr. # enc. layers # dec. layer self-feature lr Θ lw Θ

GCN 3 32 5e-4 - - - - - - - - - - - - -
GAT 5 32 2e-3 - True 8 - - - - - - - - - -
GraphGPS 5 32 5e-3 0 - 4 multihead eigenvector (dim=10) - - - - - - - -
MagNet 5 32 5e-3 1 - - - - 2 - - - - - - -
Chung 5 32 1e-3 - - - - - - 0.5 - - - True
DRew 3 32 5e-4 - - - - - - - weight - - - - -
FLODE 5 32 5e-3 1 - - - - - - - 1 1 - - -
CoED 5 32 1e-3 - - - - - - - - - - True 1e-2 True

Table A.10: Hyperparameters selected for node regression on the synthetic GRN graph.

A.3 GRAPH ENSEMBLE EXPERIMENT WITH REAL DATASETS

A.3.1 PREPROCESSING, DATA GENERATION, AND TRAINING SETUP FOR SINGLE-CELL
PERTURBATION EXPERIMENTS

Preprocessing. We downloaded Replogle-gwps dataset from scPerturb database (Peidli et al.,
2024) and followed the standard single-cell preprocessing routine using Scanpy software (Wolf
et al., 2018), selecting for the top 2000 most variable genes. This involved running the
following four functions: filter cells function with min counts=20000 argument,
normalize per cell function, filter genes function with min cells=50 argument,
highly variable genes function with n top genes=2000, flavor=‘seurat v3’,
and layer=‘counts’ arguments. Afterwards, we discarded genes that were not part of the top
2000 most variable genes. These 2000 genes define nodes. We did not log transform the expres-
sion values and used the normalized expression values obtained from these preprocessing steps for
all downstream tasks. Out of 9867 genes that were perturbed in the original dataset, 958 of them

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

were among the top 2000 most variable genes. Note that perturbed genes should have near zero
expression values since the type of perturbation in the original experiment was gene knockout via a
technique called CRISPRi. Therefore, we disregarded perturbed genes if the perturbations did not
result in more than 50% of cells with zero expression values for each respective gene. This prepro-
cessing step identifies 824 effective gene perturbations. Note that there are multiple measurements
per perturbation.

Data generation for node regression. In perturbation experiments, the expression values are mea-
sured ‘post-perturbation’ (equivalent to ci +∆ci in Figure 3(d) of the main text). Consequently, we
do not have access to their ‘pre-interaction’ expression levels (equivalent to ci with a perturbed
gene’s value set to 0). To pair each post-perturbation expression values to its putative pre-interaction
state, we randomly sampled a control measurement and set the expression value of the perturbed
gene to 0. These pairs of pre-interaction and post-perturbation expressions define the ensemble of
features and targets. Since the number of measurements vary per perturbation, we standardized
the dataset diversity by downsampling the feature target pairs to 2 per perturbation. We split each
dataset based on perturbations, grouping all cells subject to the same perturbation together. We per-
formed 60/10/30 training/validation/test splits and computed k-nearest neighbors gene-gene graph
with k = 3 using the training split. We checked that this graph roughly corresponds to creating an
edge between genes whose Pearson correlation coefficient is higher than 0.5. We also confirmed
that this graph represents a single connected component.

Training. As in the GRN example, we used all nodes (i.e., genes) for regression except for those
corresponding to a knocked-out gene. We used a batch size of 16 for training with random shuffling
at each epoch, and a full batch for both validation and testing. We evaluated the validation loss at
every epoch, and implemented the same counting scheme as in the synthetic dataset experiments to
early-stop the training with a patience of 30. Since the models’ performances generally improved as
their depths and hidden dimension increased, we used 4 layers and a hidden dimension of 32 across
all models (to streamline the comparison). We searched over learning rate ∈ {1e-3, 5e-3, 1e-2} for
all models, the order of Chebyshev polynomial K ∈ {1, 2} for MagNet; the number of attention
heads ∈ {1, 4, 8} for both GAT and DirGAT; addtionally, skip connection (sc) ∈ {True,False}
for GAT; self-feature transform ∈ {True,False}, learning rate for Θ ∈ {5e-4, 1e-3, 5e-3, 1e-2}
and layer-wise Θ learning ∈ {True,False} for CoED. We learned q in MagNet. Table 3 reports
the mean accuracy and standard deviation on the test data from the top 5 out of 7 training runs with
different initializations using the best hyperparameters shown below. All experiments were per-
formed on two NVIDIA RTX 6000 Ada Generation GPUs with 48GB memory and approximately
one day of training time was spent for generating the results.

Model lr K sc # attn. heads self-feature lr Θ lw Θ

GCN 5e-3 - - - - -
MagNet 1e-3 2 - - - -
GAT 1e-3 - True 4 - - -
DirGCN 5e-3 - - - - -
DirGAT 1e-3 - 1 - - -
CoED 1e-3 - - False 5e-4 False

Table A.11: Hyperparameters selected for node regression on the Perturb-seq data.

A.3.2 TRAINING SETUP FOR WEB TRAFFIC EXPERIMENTS

We downloaded WikiMath dataset from PyTorch Geometric Temporal library (Rozemberczki et al.,
2021) with the default time lag value of 8. We followed the same temporal split from the paper
where 90% of the snapshots were used for training and 10% of the forecasting horizons were used
for testing.

Training. The input features and target values are shaped as N × 8 and N × 1, respectively.
Since we consider a pair of the two consecutive snapshots as input and the corresponding target,
we disregarded the first 7 snapshots (i.e., feature dimensions) and used only the node values (i.e.,
visit counts of Wikipedia articles) of the last snapshot for prediction for testing. For training, we
utilized all 8 snapshots, generating 8 predictions. MSE loss for the predictions from the first 7
snapshots were each evaluated with the next 7 snapshots as target values. This procedure is similar

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

to the ‘incremental training mode’ used to train time-series based models (Rozemberczki et al.,
2021; Eliasof et al., 2024; Guan et al., 2022). We used a full batch for both training and testing.
We evaluated test loss at each step, and implemented the same counting scheme used above to
early-stop training with a patience value of 50. We used 2 layers with a hidden dimension of 16
across all models. We searched over learning rate ∈ {1e-3, 5e-3, 1e-2, 2e-2} for all models and also
over the same model-specific hyperparameters discussed in the Perturb-seq experiments except the
number of attention heads, which was limited to 2 due to memory constraints. We learned q for
MagNet. Table 3 reports the mean accuracy and standard deviation on the test data from the top 5
out of 7 training runs with different initializations using the best hyperparameters shown below. All
experiments were performed on two NVIDIA RTX 6000 Ada Generation GPUs with 48GB memory
and approximately 16 hours of training time was spent for generating the results.

Model lr K sc # attn. heads self-feature lr Θ lw Θ

GCN 1e-2 - - - - -
MagNet 5e-3 1 - - - -
GAT 1e-2 - True 2 - - -
DirGCN 2e-2 - - - - -
DirGAT 5e-2 - 1 - - -
CoED 5e-3 - - True 1e-2 False

Table A.12: Hyperparameters selected for node regression on the WikiMath data.

A.3.3 TRAINING SETUP FOR POWER GRID EXPERIMENTS

We downloaded a power grid graph with 2000 nodes from PyTorch Geometric library, compiled via
OPFData (Lovett et al., 2024). We selected the ‘fulltop’ topology option to obtain the information
of the entire graph, opposed to ‘N-1’ perturbation option which masks parts of the graphs. We
randomly sampled 300 graphs and split them into 200 training set, 50 validation set, and 50 test
set. Power grids are heterogeneous graphs. Refer to Figure 1 of Piloto et al. (2024) for detailed
overview of the different components. Importantly, generators, loads, and shunts (‘subnodes’) are
all connected to buses (‘nodes’) via edges, and buses are connected to one another via two types
of edges, transformers and AC lines. Thus, the load profile across the graph informs the generator
subnodes via the bus-to-bus edges. We describe the architectural design choices that we made to
accomplish this task while facilitating effective model comparison.

Model. The primary goal is to ensure information flow into those buses connected to generators.
We thus substituted different model layers to process messages over the two types of bus-to-bus
edges while keeping the rest of the architecture unchanged. The processing steps are:

1. Transform node/subnode features and edge features using an MLP.

2. For each bus node, integrate the features of its subnodes into its own features via Graph-
Conv (i.e., W1xi +W2

∑
j∈N (i) eji · xj).

3. Incorporate edge features into node features using GINE.

4. Iterate message-passing among bus nodes

5. Decode the features of bus nodes into generator operating point values.

We varied the message-passing mechanism in step 4 by applying the different Aggregate and Update
functions of each of the models that we analyzed.

Training. Following the example training routine outlined in Lovett et al. (2024), we trained mod-
els to predict generator active and reactive power outputs and evaluated MSE loss against those
values in the AC-OPF solutions. We did not incorporate AC-OPF constraints, as the focus of the
experiments was to compare the message-passing capabilities of CoED with other models. We refer
to Böttcher et al. (2023); Piloto et al. (2024) for predicting AC-OPF solutions that satisfy constraints.
We used a batch size of 16 during training with random shuffling applied at each epoch. We evalu-
ated the validation loss at every epoch and early-stopped the training with the same counting scheme
with a patience of 50. We iterated the step 4 above 3 times (i.e., 3 layers) and used 32 hidden di-
mension. We searched over learning rate ∈ {5e-4, 1e-3, 2e-3, 5e-3}, and otherwise the same set of

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

hyperparameters considered in the Perturb-seq experiments. We learned q for MagNet. Table 3 re-
ports the mean accuracy and standard deviation on the test data from the top 5 out of 7 training runs
with different initializations using the best hyperparameters shown below. All training were per-
formed on two NVIDIA RTX 6000 Ada Generation GPUs with 48GB memory and approximately
one day of training time was spent for generating the results.

Model lr K sc # attn. heads self-feature lr Θ lw Θ

GCN 5e-3 - - - - -
MagNet 1e-3 2 - - - -
GAT 2e-3 - False 4 - - -
DirGCN 1e-3 - - - - -
DirGAT 1e-3 - 8 - - -
CoED 5e-4 - - False 5e-3 True

Table A.13: Hyperparameters selected for node regression on the AC-OPF data.

B TIME AND SPACE COMPLEXITY

Let V and E denote the numbers of nodes and edges, and let H denote hidden dimension, which we
assume stays constant for two consecutive layers. At minimum, the message-passing mechanism
outlined in 2 results in the time complexity that scales as O(EH + V H2), where the first term
corresponds to aggregating features with dimension H and the second term stems from the matrix-
matrix multiplication of node features and a weight matrix. The space complexity is O(E + H2)
due to the edges and the weight matrix.

With the sparse form of the phase matrix Θ, CoED incurs an additional O(E) term both in the time
complexity from computing fuzzy propagation matrices P←/→ and in the space complexity due to
storing Θ. Unless layer-wise Θ learning is employed, this computation happens once and thus only
adds minimal overhead. The layer-wise Θ learning adds an O(EL) term to the total time and space
complexities over L layers. For comparison, however, we note that computing S-head attentions
incurs anO(EH) term (or evenO(EHS) term if feature dimension is not divided by S) in the time
complexity and an O(ES) term in the space complexity per layer.

C POSITIONAL ENCODING USING THE FUZZY LAPLACIAN

Graph Laplacians can be used to assign a positional encoding to each node of a graph based on
the connectivity patterns of the nodes of the graph. Using the fuzzy Laplacian, we can extend
positional encoding to include variations in directions of the edges surrounding a node in addition
to the connectivity pattern of the graph. To demonstrate the utility of the eigenvectors of the fuzzy
Laplacian for positional encoding, we visualize the eigenvectors of the Laplacian computed from the
triangular lattice graph (which has a trivial connectivity pattern as shown above by the random walk
structural encoding being trivially zero) supplemented with two different sets of edge directions.
In the first case, we obtained edge directions from the gradient of source-sink potential function
described in A.2.1. These edge directions are visualized in Figure 3(b) of the main text. In the
second case, we obtained the edge directions for the same triangular lattice graph, from the following
solenoidal vector field,

F (x) =
(
sin(πx) cos(πy),− cos(πx) sin(πy)

)

which does not have sources or sinks but instead features a cyclic flow. To assign edge directions
using the solenoidal vector field, we computed θij as the angle between the unit vector pointing
from vi to vj and the vector evaluated at the midpoint of an edge, i.e., F

(
(x2 − x1)/2

)
. All θij

were scaled to range from 0 to π/2. As shown in Figure C.1(a-e), the real part of the eigenvector
distinguishes the peak and valley from the region in between, whereas the phase of the eigenvector
distinguish the peak from the valley. Similarly in Figure C.1(f-j), the real part of the eigenvector
highlights the regions adjacent to the cyclic flows. The magnitude of the eigenvector picks out the
centers of the four solenoids in the middle. Taken together, the eigenvectors of the fuzzy Laplacian
contain positional information based on the directions of the edges as demonstrated here for the
same graph but with different edge directions.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(b) Real part for source-sink
 graph

(c) Imaginary part for source-sink
 graph

(d) Phase for source-sink graph (e) Magnitude for source-sink
 graph

(g) Real part for solenoidal
 vector field

(h) Imaginary part for solenoidal
 vector field

(i) Phase for solenoidal vector
 field

(j) Magnitude for solenoidal
 vector field

(a) Gradient vector field

(f) Solenoidal vector field

Figure C.1: Visualization of the eigenvector, corresponding to the eigenvalue with largest magnitude,
of the fuzzy Laplacian of the triangular lattice whose edge directions are taken from the source-sink
potential function described in the main text (top row) and the solenoidal vector field described in
this section (bottom row). The original vector fields are shown in the left-most figures. The real and
imaginary components, as well as the magnitude and phase, of the eigenvector encode positional
information at each node about the direction of the edges surrounding that node.

D MATHEMATICAL PROPERTIES OF THE FUZZY LAPLACIAN

We propose a new graph Laplacian matrix for directed graphs which generalizes to the case of
directed graphs with fuzzy edges, where an edge connecting two nodes A and B can take on any
intermediate value between the two extremes of pointing from A to B and pointing from B to A. We
will show that our Laplacian exhibits two useful properties: 1. The eigenvectors of our Laplacian
matrix are orthogonal and therefore can be used as the positional encodings of the nodes of the
graph. 2. For any node of the graph, our Laplacian aggregates information from neighbors that send
information to the node separately from the neighbors that receive information from the node and
is therefore as expressive as a weak form of the Weisfeiler-Leman (WL) graph isomorphism test for
directed graphs with fuzzy edges that we define below.

D.1 DIRECTED GRAPHS WITH FUZZY EDGES

We define a directed graph with fuzzy edges as follows. Our definition builds on the standard
definition of a graph.

A graph G is an ordered pair G := (V, E) comprising a set V of vertices or nodes together with a set
E of edges. Each edge is a 2-element subset of V .

• V: A finite, non-empty set of vertices

V = {v1, v2, . . . , vn}

• E : A set of edges, each linking two vertices in V
E = {(vi, vj) | vi, vj ∈ V}

To incorporate fuzzy directions to the edges, we define a new attribute for each edge.

• µ: A function defining the direction of each edge

µ : (vi, vj)→ [0, 1]

such that for each edge (vi, vj) ∈ E, µ(vi, vj) = x implies µ(vj , vi) =
√
1− x2.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

In this model, each edge is associated with a scalar x that represents its direction. The value x is
a real number in the interval [0, 1]. If for an edge (vi, vj), µ(vi, vj) = x, then it must hold that
µ(vj , vi) =

√
1− x2, capturing the edge in both directions.

For example, if µ(vi, vj) = 1 then the edge is an arc (directed edge) connecting node vi to node vj .
If µ(vi, vj) = 0 then the edge is an arc connecting node vj to node vi. If µ(vi, vj) = 1/

√
2 then the

edge is a bidirectional edge connecting node vi to node vj and node vj to node vi.

For a scalar-directed edge graph G = (V, E , µ), the adjacency matrix A is a square matrix of dimen-
sion |V| × |V|. The entry Aij of the matrix is defined as follows:

Aij =

{
µ(vi, vj), if (vi, vj) ∈ E

0, otherwise

In this setting, µ(vi, vj) captures the direction of the edge from vi to vj . It follows that if an edge is

present between nodes vi and vj then Aji =
√
1−A2

ij .

Therefore, the adjacency matrix captures not only the presence of edges but also their direction
according to the function µ.

D.2 FUZZY LAPLACIAN MATRIX

For a scalar-directed edge graph G = (V, E , µ) with adjacency matrix A, we define its Fuzzy Lapla-
cian matrix LF as follows:

The diagonal entries of LF are zero:
(LF)ii = 0

The off-diagonal elements are

(LF)ij =

{
0 if Aij = Aji = 0

eiθij otherwise
(6)

where θij is selected such that:
cos(θij) = Aij

In other words, the real part of eiθij is equal to the corresponding adjacency matrix entry Aij . We
require that 0 ≤ θij ≤ π/2. It follows that θji = π/2− θij .

The Fuzzy Laplacian LF satisfies the property:

LF = iL∗F

To confirm this, note that e−iθij = cos(−θij) + i sin(−θij) = cos(θij) − i sin(θij). Therefore,
(LF)ji = sin(θij) + i cos(θij) = ie−iθij , and thus LF = iL∗F .

The fuzzy Laplacian takes the following form,

LF =




0 · · · · · ·
...

. . . eiθij

... ie−iθij
. . .


 (7)

Here, eiθij and ie−iθij are sample off-diagonal elements corresponding to the edge (vi, vj) in the
graph.

D.3 PROPERTIES OF FUZZY LAPLACIAN MATRIX LF

In this section, we will show that the Fuzzy Laplacian matrix LF has eigenvalues of the form a+ia,
where a ∈ R, and orthogonal eigenvectors.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

D.3.1 EIGENVALUES OF THE FORM a+ ia

LF has eigenvalues of the form a+ ia with a ∈ R.

Proof:

Let λ be an eigenvalue of LF , and let w be the corresponding eigenvector. Then:

LFw = λw ⇒ w∗L∗F = λ∗w∗ ⇒ w∗L∗Fw = λ∗w∗w

⇒ −iw∗LFw = λ∗w∗w ⇒ −iλw∗w = λ∗w∗w ⇒ −iλ = λ∗

where we used L∗F = −iLF to go to the second line. The last identity holds only when λ = a+ ia
where a is a real number.

D.3.2 ORTHOGONAL EIGENVECTORS

To prove that LF has orthogonal eigenvectors, we need to show that if w and v are eigenvectors
corresponding to distinct eigenvalues λ1 and λ2 respectively, then w and v are orthogonal.

Proof:

Let LFw = λ1w and LFv = λ2v.

v∗LFw = λ1v
∗w ⇒ iv∗L∗Fw = λ1v

∗w ⇒ iλ∗2v
∗w = λ1v

∗w ⇒ λ2v
∗w = λ1v

∗w

where we used λ = iλ∗ derived above for the last step. Therefore, λ2v
∗w = λ1v

∗w. Since
λ1 ̸= λ2, it must be that v∗w = 0, i.e., w and v are orthogonal.

Because the eigenvectors of the Fuzzy Laplacian matrix LF are orthogonal, they can be used as the
positional encoding of the nodes of the graph.

E EXPRESSIVITY OF NEURAL NETWORKS USING THE FUZZY LAPLACIAN

E.1 GRAPH ISOMORPHISM FOR DIRECTED GRAPHS WITH FUZZY EDGES

First, we extend the standard definition of graph isomorphism to the case of directed graphs with
fuzzy edges following a similar approach as in Piperno et al. (2018).

We only consider graph with a finite number of nodes. Therefore, the set of all edge weights form a
countable set with finite cardinality.

Two directed fuzzy graphs G = (VG , EG , µG) and H = (VH, EH, µH) are said to be isomorphic if
there exists a bijection f : VG → VH such that, for every pair of vertices u, v in VG , the following
conditions hold:

1. (u, v) is an edge in EG if and only if (f(u), f(v)) is an edge in EH for all vertices u and v in VG .

2. For every edge (u, v) in EG that maps to edge (f(u), f(v)) in EH, the corresponding weights
satisfy:

µG(u, v) = µH(f(u), f(v))

E.2 WEISFEILER-LEMAN TEST FOR ISOMORPHISM OF DIRECTED GRAPHS WITH FUZZY
EDGES

Next, we extend the Weisfeiler-Leman (WL) graph isomorphism test to determine whether two
directed graphs with fuzzy edges are isomorphic or not according to the extended definition of
graph isomorphism stated above.

WL test is a vertex refinement algorithm that assigns starting features to each node of the graph. The
algorithm then aggregates all the features of each node’s neighbors and hashes the aggregated labels
alongside the node’s own label into a unique new label. At each iteration of the algorithm, the list of
labels are compared across the two graphs. If they are different, the two graphs are not isomorphic.
If the labels are no longer updated at each iteration, the two graphs can potentially be isomorphic.

We extend the WL test to directed graphs with fuzzy edges in two ways. Importantly, for all the
proofs that follow, we will assume that the graph has a finite number of nodes.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

The strong form of WL test for fuzzy directed graphs:

Given a directed graph with fuzzy edges G = (V, E , µ), the strong form of the WL test calculates a
node coloring C(t) : V → {1, 2, . . . , k}, a surjective function that maps each vertex to a color. At
the first iteration, C(0) = 0. At all subsequent iterations,

C(t)(i) = Relabel(C(t−1)(i), {{(µij , C
(t−1)
j) : j ∈ N(i)}}), (8)

where (µij , C
(t−1)
j) is tuple comprised of the weight of the edge from node i to node j and C

(t−1)
j ,

the color of node j in the previous iteration. To simplify notation, we will write µij to denote the
weight of the edge connecting nodes i and j instead of µ(vi, vj) from now on. N(i) denotes the
set of all neighbors of node i. Function Relabel is an injective function that assigns a unique new
color to each node based on the node’s color in the previous iteration and the tuples formed from its
neighbors colors and the value of the edges connecting the node to those neighbors.

From the definition above, it follows that a graph neural network Γ : G → Rd that aggregates and
updates the node features as follows

h
(k)
i = ϕ(h

(k−1)
i , f({{(µij , h

(k−1)
j) : j ∈ N(i)}})), (9)

will map two graphs G1 and G2 to different vectors in Rd if the above strong form of the graph
coloring test deems that the two graphs are not isomorphic. In the above equation, hk

v is the hidden
representation (or feature) of node i at the kth layer. ϕ and f are injective functions with f acting
on multisets of tuples of the edge weights and hidden representation of the neighbors of node i.

The proof of above statement is a trivial extension of the proof of Theorem 3 in (Xu et al., 2018).
Briefly, the multiset of the features of the neighbors of node i can be converted from a multiset of
tuples of the form {{(µij , h

(k−1)
j) : j ∈ N(i)}} to a multiset of augmented features of the neighbors

{{h̃(k−1)
j : j ∈ N(i)}} where h̃

(k−1)
j = (µij , h

(k−1)
j). Because µij form a set of finite cardinality,

the augmented feature space h̃(k−1)
j is still a countable set and the same proof as in (Xu et al., 2018)

can be applied.

The weak form of WL test for fuzzy directed graphs:

We introduce a weaker form of the WL test for directed graphs with fuzzy edges where a given node
cannot distinguish between its neighboring nodes that have the same color based on the weights of
the edges that they share. Rather, the node aggregates the weights of all outgoing and incoming
edges of its neighbors of a given color.

The weak form of the algorithm is as follows. At the first iteration, C(0) = 0. At all subsequent
iterations,

C(t)(i) = Relabel
(
C(t−1)(i),

{
(∑

j∈N(i)

δ(C
(t−1)
j − c)µij ,

∑

j∈N(i)

δ(C
(t−1)
j − c)µji, c

)
: c ∈ C

(t−1)
N(i) }

)
, (10)

The term
∑

j∈N(i) δ(C
(t−1)
j − c)µij is summing over the edge weights µij of all neighbors of i that

have color c. The tuple now also contains a similar that sums over the edge weights pointing from
node j to node i, µji for all neighbors of the same color. As stated above, the edge weights are

related, namely, µji =
√
1− µ2

ij . The color of the node i at the previous iteration alongside the set
of tuples containing the sum of incoming edge weights from neighbors of a given color, the sum of
outgoing edge weights to the neighbors of a given color, and the color of those neighbors are inputs
to the injective function Relabel, which assigns a unique color to node i for the next iteration.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure E.1: Examples of two neighborhoods of a node i are shown on the left and right. The strong
form of the WL test for directed graphs with fuzzy edges can distinguish these two neighborhoods.
The weak form of the WL test, however, cannot do so because the sum of the weights of the edges
connecting node i to green-colored neighbors is 0.9 in both cases.

Theorem. Let Γ : G → Rd be a graph neural network that updates node features as follows,

h
(k)
i = MLP (k)


h

(k−1)
i ,ℜ


 ∑

j∈N(i)

(LF)ijh
(k−1)
j


 ,ℑ


 ∑

j∈N(i)

(LF)ijh
(k−1)
j




 , (11)

where MLP (k) is a multi-layer perceptron. The last two terms of the MLP input are the real and
imaginary parts of the aggregated features of the neighbors of node i,

∑
j∈N(i)(LF)ijh

(k−1)
j . With

sufficient number of layers, the parameters of Γ can be learned such that it is as expressive as the
weak form of the WL test, in that Γ maps two graphs G1 and G2 that the weak form of WL test
decides to be non-isomorphic to different embeddings in Rd.

Proof. First, we claim that there exists a GNN of the form:

h
(k)
i = ϕ


f(h

(k−1)
i),

∑

j∈N(i)

µijf(h
(k−1)
j),

∑

j∈N(i)

µjif(h
(k−1)
j)


 , (12)

that is as expressive as the weak form of the WL test. We will prove this by induction.

Note that F (i) =
∑

j∈N(i) µijf(h
(k−1)
j) and G(i) =

∑
j∈N(i) µjif(h

(k−1)
j) are only injective up

to the sum of the incoming and outgoing weights for a given type of neighbor (see Figure E.1 for an
example). This is because the weak form of the WL test only accounts for the sum of the weights of
outgoing and incoming edges to neighboring nodes of a given color. This is different from previous
work that dealt with undirected graphs (Xu et al., 2018) or graphs with directed but unweighted
edges (Rossi et al., 2024).

Let’s denote with X the multiset of the colors of all neighbors of node i after a given number of
iterations of the color refinement algorithm. Equivalently, we can consider the multiset of all the
features of the neighboring nodes of i after a given number of iteration of the GNN algorithm.

Because our graphs have a finite number of nodes, X is bounded. For graphs without directed
edges or weighted edges, it can be shown (see Lemma 5 of (Xu et al., 2018)) that there always
exists an injective function f such that F (x) =

∑
x∈X f(x) is injective for all multisets X , i.e. if

F (X) = F (Y) for two multisets X and Y then X = Y . This result can be easily extended to
regular directed graphs without weighted edges by considering the neighbors with incoming edges
separately from the neighbors with outgoing edges (Rossi et al., 2024). For such graphs, a function f
exists such that the tuple (

∑
x∈X→ f(x),

∑
x∈X← f(x)) is only the same for two nodes if they have

identical neighborhoods. X→ and X← denotes the multiset of features of the neighboring nodes
that are connected to i using an outgoing edge and incoming edge respectively.

Let’s proceed with our proof by induction. At the first iteration, k = 0, all the nodes have the same
color corresponding to the same trivial feature (e.g. scalar 0). Functions F (i) and G(i) then simply
sum the weights of the outgoing and incoming edges of node i respectively and use their values to

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

assign updated feature h
(1)
i . This is identical to the procedure that the weak WL algorithm is using

to assign new colors to the nodes at its first iteration. Therefore, nodes that would be assigned a
given color under the WL color refinement algorithm at its first iteration will also be assigned the
same updated feature vector h(1)

i .

Assume that our claim hold for iteration k − 1. This mean that all the nodes that the weak WL
color refinement assigns to different colors are also assigned different features h(k−1)

i by the GNN.
Following the weak WL test, at iteration k, we need to sum the incoming and outgoing edges across
all the neighbors with the same h

(k−1)
j . An example of an f that allows this is one-hot encoding of

all features. There always exists a number N ∈ N such that the features h(k−1)
i across all nodes i of

the graph can be one-hot encoded in an N dimensional vector. It follows,

∑

j∈N(i)

µijf(h
(k−1)
j) =


 ∑

j∈N(i)

δ(h
(k−1)
j − h)µij



h∈H(k−1)

N(i)

, (13)

where H
(k−1)
N(i) is the set of all the features h(k−1)

j of nodes j that are neighbors of node i. A similar
expression can be written for the sum over the incoming weights µji. Thus, at iteration k the GNN
will assign distinct features to all nodes that are also assigned a distinct color at iteration k of the
weak WL color refinement algorithm.

To complete the proof, we note that because µji =
√

1− µ2
ij , we can reparameterize the edge

weights as µij = cos(θij) and µji = sin(θij) with 0 ≤ θij ≤ π/2. Eq. 12 can be rewritten as:

h
(k)
i = ϕ


f(h

(k−1)
i),ℜ


 ∑

j∈N(i)

(LF)ijf(h
(k−1)
j)


 ,ℑ


 ∑

j∈N(i)

(LF)ijf(h
(k−1)
j)




 , (14)

Finally, we use universal approximation theorem of multilayer perceptrons (Hornik et al., 1989) to
model both the ϕ computation at layer k and the f computation for the next layer, k + 1. Namely
MLP (k) denotes f (k+1) ◦ ϕ(k). Taken together, the GNN in Eq. 11 is as expressive as the weak
form of the WL color refinement algorithm for directed graphs with fuzzy edges.

F MAGNETIC LAPLACIAN IS NOT AS EXPRESSIVE AS THE FUZZY
LAPLACIAN.

F.1 MAGNETIC LAPLACIAN

A commonly used Laplacian for directed graphs is the Magnetic Laplacian. To construct the Mag-
netic Laplacian, we start with the asymmetric adjacency matrix of the graph and symmetrize it.
Note that we are using the conventional definition of adjacency matrix in this section and not the
fuzzy definition used above. The adjacency matrix A for a directed graph is a binary matrix, where
Aij = 1 represents the presence of a directed edge from vertex vi to vertex vj and Aij = 0 represents
the absence of such an edge.

The symmetrized adjacency matrix S is defined as:

Sij =
1

2
(Aij +Aji).

To capture the direction of the edges, a phase matrix is defined as,

Θ
(q)
ij = 2πq(Aij −Aji). (15)

The Hermitian adjacency matrix is defined as the element-wise product of the above two matrices,

H(q) = S ⊙ exp(iΘ(q)).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

H(q) has some useful properties in capturing the directionality of the edges of the graph. For ex-
ample, for q = 1/4, if there is an edge connecting j to k but no edge connecting k to j then
H

(q)
jk = i/2 and H

(q)
kj = −i/2. Although this encoding of edge direction is useful, the fact that both

incoming and outgoing edges are purely imaginary (only different up to a sign) means that in gen-
eral it is impossible to distinguish features aggregated from neighbors that are connected to a node
through outgoing edges from those connected through incoming edges. The fuzzy Laplacian LF ,
however, trivially distinguishes features from outgoing neighbors from those of incoming neighbors
by keeping one set real and the other imaginary. We will expand on the implication of this for the
expressivity of graph neural networks constructed using these two approaches below.

F.2 LIMITATIONS OF THE MAGNETIC LAPLACIAN

Conventionally, a magnetic Laplacian is defined by subtracting H(q) from the degree matrix, LM =
D −H(q). If such a Laplacian matrix is used to aggregate information of the nodes of the graph,
the features of a node itself are combined with the features of its neighboring nodes. For directed
graphs, there are two categories of neighboring nodes, those connected to a node i with outgoing
edges from i (Aij = 1 and Aji = 0) and those connected to node i with incoming edges (Aji = 1
and Aij = 0). Of course, it is possible for a neighboring node to be both an outgoing and incoming
neighbor, in which case Aji = Aij = 1.

Features from these two categories of neighbors, alongside the feature of the node itself, form three
distinct categories that in general must be kept distinct for maximum expressivity (Rossi et al.,
2024). Using a complex Laplacian for aggregating the features across the nodes allows a simple
mechanism for distinguishing two categories (corresponding to the real and imaginary parts of the
resulting complex features) but not all three. To get around this limitation, we keep the self-feature
of every node distinct from the aggregated features of its neighbors and concatenate it with the
aggregated feature prior to applying the multi-layer perceptron to update the features from one layer
to the next. Therefore, to maximize the expressivity of the magnetic Laplacian, we set the diagonal
terms of the Laplacian matrix to zero, and define the magnetic Laplacian simply as LM = H(q).

Lemma. For simple directed graphs without fuzzy edges, using the magnetic Laplacian LM in the
graph neural network of Eq. 11 in the place of the fuzzy Laplacian LF ,

h
(k)
i = MLP (k)


h

(k−1)
i ,ℜ


 ∑

j∈N(i)

(LM)ijh
(k−1)
j


 ,ℑ


 ∑

j∈N(i)

(LM)ijh
(k−1)
j




 , (16)

does not decrease the expressivity of the graph neural network in that both networks are as expres-
sive as the weak form of the WL graph isomorphism test.

Lemma. To prove this statement, we will show that the MLP can learn a linear combination of its
input that would it make it equivalent to the graph neural network defined in Eq. 11. This is because
when q = 1/8, the real and imaginary parts of the aggregated features of the neighboring nodes are
linear combinations of the features of the outgoing and incoming neighbors.

The fuzzy Laplacian LF directly separates the features of outgoing and incoming neighbors in
the real and imaginary components of the aggregated features respectively. Define F→(i) =

ℜ
[∑

j∈N(i)(LF)ijh
(k−1)
j

]
and F←(i) = ℑ

[∑
j∈N(i)(LF)ijh

(k−1)
j

]
as the features aggregated

from the outgoing and incoming neighbors respectively. With q = 1/8, we have,

ℜ


∑

j

(LM)ijh
(k−1)
j


 =

1

2
√
2
(F→(i) + F←(i))

ℑ


∑

j

(LM)ijh
(k−1)
j


 =

1

2
√
2
(F→(i)− F←(i))

The MLP layer then in the graph neural network of Eq.16 simply needs to learn a linear combination
of its second and third concatenated inputs to become equivalent to the graph neural network of
Eq.11. Therefore, the two graph neural networks are equally as expressive.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Next, we extend the definition of the magnetic Laplacian to directed graphs with fuzzy edges, defined
above, which have weighted edges that indicate intermediate values of directionality between the two
extremes of the edge pointing form node i to node j and the edge pointing from node j to node i.
We implemented these intermediate values in the fuzzy Laplacian by assigning a weight µij to each

edge. Although not necessary in general, we further assumed that µji =
√
1− µ2

ij . This constraint

allowed us to think of each edge weight as an angle θij = arccos(µij) which we then used to define
the fuzzy Laplacian matrix (Eq.7).

To extend the magnetic Laplacian to directed graphs with fuzzy edges, we can assign a different
value for q (Eq. 15) to each edge. To keep the notation comparable to that of the fuzzy Laplacian, we
instead assign a separate angle θij to each edge and define the magnetic Laplacian as, (LM)ij = eiθij

for j > i if there is an edge between the nodes i and j, Sij ̸= 0. To ensure that magnetic Laplacian
remains Hermitian, L∗M = LM , we require that (LM)ji = e−iθij , which defines the θij values for
j < i. It follows that θji = −θij .

LM =




0 · · · · · ·
...

. . . eiθij

... e−iθij
. . .




It remains to be shown how we can assign the θij values from the µij in a self-consistent way.

Theorem. For directed graphs with fuzzy edges, the graph neural network constructed using the
magnetic Laplacian LM , Eq. 16, is not as expressive as the weak form of the WL graph isomorphism
test, and therefore not as expressive as the graph neural network defined using the fuzzy Laplacian
LF , Eq. 11.

Proof. The Fuzzy Laplacian matrix conveniently captures the outgoing and incoming weights of the
edges from one node to another, (LF)ij = cos(θij) + i sin(θij). Namely, ℜ(LF)ij = cos(θij) is
the outgoing weight µij of node i to node j and ℑ(LF)ij = sin(θij) is in the incoming weight from
node j to node i, µji. Importantly, the outgoing weight from node i to node j, µij , is the same as the
incoming weight from node i to node j. Similarly, the incoming weight from node j to node i, µji

is the same as the outgoing weight from node j to node i. These relationships are directly captured
in the fuzzy Laplacian because (LF)ji = sin(θij) + i cos(θij).

Let’s consider how we can construct the magnetic Laplacian LM from µij . The weight of the edge

from i to j is µij . The weight from j to i is µij =
√

1− µ2
ij .

From our definition above, (LM)ij = cos(θij) + i sin(θij) and (LM)ji = cos(θij)− i sin(θij). To
relate θij to µij we note that the ratio of outgoing and incoming weights for node i is µij/µji and
for node j is µji/µij . Because these two quantities are reciprocals of each other, we can define

ln
µij

µji
= tan(2θij).

We chose the tan function on the right hand side because tan(−2θij) = − tan(2θij). Moreover,
the log-ratio on the left hand side of above equation can take on any value from−∞ to∞. The right
hand side can take on a similar range of values if we allow−π/4 ≤ θij ≤ π/4. The specific form of
this function does not matter as long it is an odd function that spans the specified domain and range.

Assume that each node of the graph has a trivial scalar feature equal to 1 (the first iteration of the
WL test). The magnetic Laplacian applied to this graph to aggregate the features of the neighbors
of node i gives,

ℜ


∑

j

(LM)ij


 =

∑

j

cos


1

2
arctan


ln µij√

1− µ2
ij






ℑ


∑

j

(LM)ij


 =

∑

j

sin


1

2
arctan


ln µij√

1− µ2
ij






31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure F.1: The functions used to map the edge weights µij to the θij values of the magnetic Lapla-
cian. cos(θij) is plotted on the left. sin(θij) is plotted in the middle. sin(θij) versus cos(θij) is
plotted on the right.

The above functions for a single value of µij are plotted in Figure F.1. Importantly, these functions
are not an injective function of all possible neighborhoods of node i. Consider the case of a node i
that has 5 neighbors with µij values that result in cos(θij) = 0.8 and sin(θij) = 0.6, and another
set of 5 neighbors with µij values that result in cos(θij) = 0.8 and sin(θij) = −0.6. It follows

that ℜ
[∑

j(LM)ij

]
= 8 and ℑ

[∑
j(LM)ij

]
= 0. The same values would have been obtained if

node i had a neighborhood comprised of 8 neighbors with µij values such that cos(θij) = 1 and
sin(θij) = 0. Therefore, the magnetic Laplacian cannot distinguish distinct neighborhoods and is
not as expressive as the weak form of the WL test.

In practice, the more important limitation of the magnetic Laplacian is that it aggregates neigh-
borhood information that results in linear combinations of the outgoing and incoming features to a
node. In contrast, the fuzzy Laplacian by construct always keeps these contributions separate in the
real and imaginary parts of the aggregated feature vector. In many applications, we would like to
access the self-feature of the node and the incoming and outgoing aggregated features of its neigh-
bors separately. The fuzzy Laplacian is thus a better choice. It could be argued that the MLP of a
graph neural network can learn to disentangle the linear combinations of the outgoing and incoming
features aggregated by the magnetic Laplacian. In general, however, this is not possible by the types
of the graph neural networks that we considered here. This is because the parameters are MLP are
the same for all the nodes of the graph. The linear combinations, however, depend on the specific
weights µij connecting node i to its neighboring nodes j. Therefore, in general, the MLP will
not be able to learn to disentangle the linear combinations of the incoming and outgoing features
aggregated by the magnetic Laplacian.

G CONTRASTING COED GNN WITH GRAPH ATTENTION NETWORK (GAT)

Graph Attention Network (GAT) (Veličković et al., 2018), similar to CoED GNN, effectively learns
edge weights prior to aggregating the features across neighboring nodes. Importantly, the learned
edge weights are not necessarily symmetric. In the classic formulations of GAT, the attention
weight from node i to j (αij) depends on the concatenation of their feature vectors (ui||uj) and
the shared learnable parameter a: eij = LeakyReLU(aT [ui||uj]). Similarly, the attention weight
from j to i (αji) is computed as: eji = LeakyReLU(aT [uj ||ui]). Since ui||uj ̸= uj ||ui, the
raw attention scores eij and eji will generally differ. Even if a symmetric function is used to com-
pute the attention weight, the attention coefficients αij are computed using a softmax function:
αij =

exp(eij)∑
k∈N(i) exp(eik)

. This normalization is performed separately for the neighbors of i and j, so
even if eij were equal to eji, the normalization step would generally make αij ̸= αji. Therefore, it
might appear that GATs can learn arbitrary asymmetric edge weights, much like CoED’s continuous
edge directions.

The key difference between CoED GNN and attention-based models is that CoED GNN does not
rely on node features to learn continuous edge directions. Instead, the continuous edge directions are
learned directly as part of optimizing for the given learning task. Consider the toy problem illustrated
in Figure G.1. In this example, nodes in a linear-chain graph are assigned random input features that

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure G.1: A toy problem of learning to shift node features by one node in the clockwise direction
for a circularized linear chain of nodes. In this hypothetical regression problem, the input are the
original node features and the output are the node features shifted by one. The node features ui are
independently and identically distributed and therefore completely uninformative for determining
the direction in which node features should be sent. The training data is an ensemble of the same
linear-chain graph with different realizations of the node features. Any method that relies on node
features to propagate the features (such as GAT) will fail at this task. CoED GNN, however, can
learn the optimal edge directions for this task (shown on the right).

are independently and identically distributed. The output feature for each node is generated by
shifting the input features along the chain in the clockwise direction by one hop. A training dataset
consists of multiple realizations of the graph, each with different input and output node features, for
a node regression task. GAT fails to correctly propagate the features across the graph in this setup
because the node features are entirely uninformative. Consequently, it cannot learn meaningful edge
weights from the node features to perform the regression task. In contrast, CoED GNN successfully
learns the optimal edge directions required to accomplish this task. The failure of GAT on directed
graphs with random features has also been empirically demonstrated in the stochastic block model
experiments in Zhang et al. (2021).

In many tasks, it is necessary to learn distinct edge directions in different parts of a graph, even when
the node features are identical. The GAT framework cannot achieve this because it relies solely on
node features to compute edge weights. In contrast, CoED directly learns continuous edge direc-
tions by optimizing them specifically for the task. To illustrate this, we compare GAT and CoED
on a synthetic triangular lattice node regression task, as described in the main text, using node fea-
tures derived from CIFAR images (Figure G.2). In this scenario, many nodes share nearly identical
features, such as those representing blue sky pixels in an image. GAT fails to learn the correct edge
directions under these conditions, while CoED successfully identifies the optimal directions for the
task (Figure G.3).

Tables 2 and 3 in the main text empirically demonstrate that CoED GNN outperforms GAT on
both synthetic and real-world datasets. The superior performance of CoED GNN may stem from
the consistency of edge directions: the outgoing message from node i to node j must match the
incoming message from node j to node i. This consistency can be enforced in GAT by requiring
that αij = 1 − αji. To test this hypothesis, we constructed a modified GAT model enforcing this
requirement and applied it to the synthetic node regression task of directed flow on a triangular
lattice graph, as described in the main text. To clarify the comparison, instead of using random
features, we assigned CIFAR image pixel values as features for each node. Edge weights between
nodes i and j were determined using the GAT formulation: αij = LeakyReLU(aT [ui∥uj]), where
a is a learnable parameter. Importantly, we enforced the constraint αji = 1 − αij . As shown in
Figure G.3, this modified GAT model, even with self-consistent edge weights, fails to learn the node
regression task, much like the conventional GAT formulation. In contrast, CoED GNN successfully
learns optimal edge directions and accurately predicts the output values.

Finally, we provide empirical evidence that CoED GNN can mitigate oversmoothing and facilitate
long-range information transmission across graphs. In undirected graphs, information diffuses rather
than flows because when node i passes a message to node j, node j simultaneously passes a mes-
sage back to node i. This bidirectional exchange causes the diversity of node features to diminish
rapidly as they converge to the averaged features across all nodes. Learning optimal edge directions

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Original Image Lattice Node Features

Original Image Lattice Node Features Original Image Lattice Node Features

Original Image Lattice Node Features

Figure G.2: Examples of triangular lattice graphs with node features derived from CIFAR image
pixel values. The CIFAR image is shown on the left, and the corresponding lattice-mapped node
features is depicted on the right. In practice, the feature of each node is a 3 dimensional vector of
RGB values. As described in the main text, output node features are generated by propagating these
input features through the directed triangular lattice for 10 hops. The node regression task involves
predicting these output node features from the input node features.

(b) CoED vs. the baseline models(a) Comparison of baseline models with learnable
 edge attributes

Figure G.3: Left: Mean Squared Error (MSE) loss as a function of model depth for GAT, the self-
consistent GAT formulation (SC-GAT), and Cooperative GNN (Co-GNN) applied to the node re-
gression task on a triangular lattice graph with node features derived from CIFAR images. Right:
Same as left, but including results from CoED GNN. CoED GNN is the only model that demon-
strates consistent performance improvement with increasing depth.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

(a) Triangular lattice (undirected) (b) Synthetic GRN (directed)

Figure G.4: Dirichlet energy of node features computed after applying the graph Laplacian over
multiple iterations (number of convolutions shown on the x-axis) for both the original graph Lapla-
cian and the Laplacian constructed using the learned edge directions from CoED. Results for the
triangular lattice graph with CIFAR-derived node features are shown on the left, and results for
synthetic GRN data are shown on the right. The slower decay of Dirichlet energy when using the
Laplacian with learned edge directions indicates that CoED mitigates the oversmoothing problem.

addresses this issue by enabling directed information flow, preventing uniform diffusion (see Figure
1).

To demonstrate this empirically, we applied CoED GNN to the synthetic triangular lattice graph
problem, where node features are derived from CIFAR image pixels as described earlier. Figure
G.3 compares the performance of CoED GNN and a baseline GAT model as a function of model
depth. CoED GNN’s performance improves with increasing depth, whereas GAT’s performance
saturates, showing that CoED GNN’s learned edge directions alleviate the oversmoothing problem.
This trend was also observed in Figure 4 with the random features. To further illustrate this, we
computed the Dirichlet energy of node features by applying the graph Laplacian multiple times
to simulate information flow over increasing numbers of hops. As shown in Figure G.4, when
the original graph Laplacian is used, the Dirichlet energy decreases rapidly, indicating that node
features are converging to the same value. In contrast, using the Laplacian of the directed graph with
learned edge directions results in a slower decrease in Dirichlet energy, showing that oversmoothing
is mitigated by directed information flow.

H VISUALIZATION OF THE LEARNED EDGE DIRECTIONS

To illustrate the edge directions learned by CoED, we visualized the phase angles of edges in a real-
world single-cell Perturb-seq dataset (see main text for details). As shown in Figure H.1, the initial
edge directions are undirected, with all phases set to π/4. After training, CoED uncovers a complex
structure of continuous edge directions, capturing the gene-gene interactions that connect the nodes
(genes) in the graph.

I RUNTIME ANALYSIS

We conducted the runtime analysis to evaluate the computational efficiency of CoED in comparison
to other representative baseline models. All models were configured with three layers and 64 hidden
dimensions. We measured the forward and backward pass times on three graphs of increasing size.
Table I.1 reports the runtime of the models on datasets used for the node classification task, where
edge directions are not learned. In this case, CoED’s computational overhead stems from computing
the in- and out-propagation matrices, P←/→, once at the initial layer. Consequently, its runtime is
comparable to DirGCN, which employs a similar architecture.

Table I.2 presents the runtime for the batches of triangular lattice graph ensemble data. When in-
cluding backpropagation for phase angles, CoED’s backward pass time is approximately twice that

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

(a) Edge direction before training (b) Edge directions after training

Figure H.1: Visualization of the Perturb-seq data graph before and after applying CoED to learn edge
directions. Initially, all edges are undirected. CoED assigns continuous edge directions, revealing a
complex and structured pattern. For clarity, a subset of genes is visualized, with the i-j element of
the matrix representing the phase angle assigned to each edge using our fuzzy Laplacian formulation.

of DirGCN. If unique edge directions are learned at each layer, CoED computes different propa-
gation matrices at every layer. While this increases the forward pass time, the backward pass time
remains unchanged since the backpropagation contributions from intermediate layers are subleading
compared to the backpropagation to the initial layer.

Dataset GCN GAT MagNet DirGCN CoED

Forward Backward Forward Backward Forward Backward Forward Backward Forward Backward

CORA 4.8 8.3 25.3 62.9 89.3 120.6 14.3 17.6 14.1 21.9
Roman-Empire 16.9 37.2 218.9 646.1 300.1 331.5 30.0 48.7 34.5 66.1
Arxiv-Year 450.4 985.0 3379.2 10354.7 5058.2 7792.1 458.8 838.9 690.4 1231.4

Table I.1: Runtime of the forward and backward passes in ther node classification task. Times
are reported in milliseconds. We set the number of layers to 3 and the hidden dimensions to 64
for all models. Note that we do not compute gradients with respect to phase angles Θ in this case.
Cora, Roman-Empire, and Arxiv-Year respectively have 2708, 22662, and 169343 nodes and 10556,
44363, and 1166243 edges.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Batch Size GCN GAT MagNet GraphGPS DirGCN DirGAT CoED CoED (layerwise)

Forward Backward Forward Backward Forward Backward Forward Backward Forward Backward Forward Backward Forward Backward Forward Backward

4 2.5 5.0 15.4 35.2 14.4 22.5 14.1 31.3 4.4 6.1 26.1 59.7 5.9 11.0 6.8 12.4
32 11.0 24.6 123.3 362.8 81.1 128.7 103.6 285.5 20.9 24.1 226.4 754.8 20.4 50.0 44.5 52.8
256 105.0 254.4 1352.1 4644.2 964.2 1426.6 1101.0 3140.0 266.8 234.2 2261.2 9423.2 174.9 533.8 545.8 542.9

Table I.2: Runtime of the forward and backward passes in the node regression task with graph
ensemble dataset. Times are reported in milliseconds. All models have 3 layers with 64 hidden
dimensions. The backward pass of CoED now involves gradients with respect to the phase angles.
At 4, 32, and 256 batch sizes, there are 1796, 14368, and 114944 nodes and 5048, 40384, and
323072 edges, respectively.

37

	Introduction
	Preliminaries
	Formulation of GNN on Directed Graphs with Fuzzy Edges
	Continuous edge directions as phase angles
	Fuzzy Graph Laplacian
	Model Architecture: Continuous Edge Direction (CoED) GNN

	Related Work
	Experiments
	Node classification
	Node regression on graph ensemble dataset
	Synthetic datasets
	Real Datasets

	Conclusion
	Experimental details
	Node classification
	Graph ensemble experiment with synthetic datasets
	Data generation and training setup for the directed flow triangular lattice graph
	Data generation and Training setup for the GRN dynamics experiment

	Graph Ensemble experiment with real datasets
	Preprocessing, Data generation, and training setup for single-cell perturbation experiments
	Training setup for web traffic experiments
	Training setup for power grid experiments

	Time and Space Complexity
	Positional encoding using the fuzzy Laplacian
	Mathematical properties of the fuzzy Laplacian
	Directed graphs with fuzzy edges
	Fuzzy Laplacian Matrix
	Properties of Fuzzy Laplacian Matrix LF
	Eigenvalues of the Form a + ia
	Orthogonal Eigenvectors

	Expressivity of Neural Networks using the Fuzzy Laplacian
	Graph isomorphism for directed graphs with fuzzy edges
	Weisfeiler-Leman test for isomorphism of directed graphs with fuzzy edges

	Magnetic Laplacian is not as expressive as the fuzzy Laplacian.
	Magnetic Laplacian
	Limitations of the magnetic Laplacian

	Contrasting CoED GNN with Graph Attention Network (GAT)
	Visualization of the learned edge directions
	Runtime analysis

