

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INDUCED COVARIANCE FOR CAUSAL DISCOVERY IN LINEAR SPARSE STRUCTURES

Anonymous authors

Paper under double-blind review

ABSTRACT

Causal models seek to unravel the cause-effect relationships among variables from observed data, as opposed to mere mappings among them, as traditional regression models do. This paper introduces Sparse Linear Causal Discovery (SLCD), a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships. In such scenarios, the causal links represented by directed acyclic graphs (DAGs) can be encapsulated in a structural matrix. The proposed approach identifies the correct structural matrix by evaluating how well it reconstructs the data and how closely it satisfies the imposed statistical constraints. This method does not rely on independence tests or graph fitting procedures, making it suitable for scenarios with limited training data. Simulation results on synthetically generated datasets with known linear sparse causal structures show that SLCD consistently outperforms the PC, GES, BIC exact search, and LiNGAM-based methods, achieving average improvements of 35% in precision and 41.5% in recall. Moreover, on the real-world Sachs dataset, SLCD further surpasses these methods in the low-sample-size setting.

1 INTRODUCTION

Causal learning is an approach used to extract and understand cause-and-effect relationships from data. This approach seeks to uncover the fundamental structures that determine how data are related (Shaska & Mitra, 2025). This structural understanding is at a deeper level than that observed in statistical learning, which is focused on learning various mappings among data (Schölkopf & von Kügelgen, 2022). Discovering causal relations plays a crucial role in the scientific method (Camps-Valls et al., 2023). A comprehensive causal model of a phenomenon could describe the observed data and consistently make predictions. The advantage of this type of learning over statistical learning, which identifies mere associations between variables, lies in its generalization and robustness to distribution changes (Schölkopf et al., 2021). Furthermore, causal relations may be transferable to other problems, which constitutes an additional benefit (Schölkopf et al., 2021).

Several approaches have been proposed for causal discovery (Pearl & Verma, 1995; Spirtes et al., 2001; Shimizu et al., 2006; 2011; Meek, 1997; Chickering, 2002; Yuan & Malone, 2013). These methods are generally classified into two categories (Schölkopf & von Kügelgen, 2022): constraint-based and score-based methods. In constraint-based methods, conditional independencies among variables are tested, and the inferred relations are represented using a DAG that best reflects them. Notable examples of such algorithms include inductive causation (IC) (Pearl & Verma, 1995), Spirtes-Glymour-Scheines (SGS) (Spirtes et al., 2001), Peter-Clark (PC) (Spirtes et al., 2001) and linear non-Gaussian acyclic model (LiNGAM) based methods (Shimizu et al., 2006) and (Shimizu et al., 2011). IC and SGS algorithms examine the conditional independencies between each pair of variables conditioned on any subset of the remaining variables and use this information for forming the causal graph. This approach can be computationally intensive due to the large number of subsets. The PC algorithm mitigates this challenge by initiating the search from a complete graph and systematically removing edges, sequentially testing the conditional independencies of each pair and their neighbors. Although the PC algorithm reduces computational cost, it still depends on conditional independence tests, which are computationally demanding and require substantial data, particularly in high-dimensional settings, to produce reliable results. Unlike the previously mentioned methods that rely heavily on conditional independence tests, LiNGAM-based approaches assume non-Gaussianity and linearity in the data. By leveraging these assumptions, LiNGAM aims

054 to identify the causal graph. Although alleviating the challenge of conditional tests, non-Gaussianity
 055 is a limiting assumption.
 056

057 Alternatively, score-based methods use a scoring function to evaluate graphical representations. Possi-
 058 ble graphs are tested against the data, and the graph with the highest score is selected. Some of the
 059 prominent methods in this category are greedy equivalent search (GES) (Meek, 1997; Chickering,
 060 2002), and Bayesian information criterion (BIC) exact search (Yuan & Malone, 2013). The primary
 061 drawback of these methods (Meek, 1997; Chickering, 2002; Yuan & Malone, 2013) is the expo-
 062 nential growth of the possible graphs as the number of variables (nodes of the graph) increases, which
 063 results in higher computation demands.
 064

065 Another line of work in causal discovery is *causal representation learning* (Schölkopf et al., 2021;
 066 Varıcı et al., 2024). In this setting, data are assumed to be generated from high-level latent variables,
 067 which are mapped through transformations to the observed data. The objective is to identify both the
 068 relations among the latent variables and the transformations that connect them to the observed data.
 069 This is carried out in such a way that the resulting representation remains consistent with causal
 070 interventions.
 071

072 However, these approaches do not adequately address scenarios with limited data, where conditional
 073 independence tests often fail to yield reliable results. Moreover, causal representation learning typi-
 074 cally requires access to both the dataset and its intervened versions, which can be a significant
 075 limitation. Therefore, despite the emergence of several methods for causal discovery, there remains
 076 no algorithm well-suited for situations involving small datasets and the absence of feasible interven-
 077 tions.
 078

079 The primary contribution of this paper is the development of a novel causal discovery algorithm
 080 designed for linear sparse structures. The key contributions are as follows:
 081

- We propose *Sparse Linear Causal Discovery (SLCD)*, a new algorithm that recovers the structural matrix that encapsulates causal graph information by leveraging induced covariance, data reconstruction, rank, and diagonal structure, specifically for settings where variable relationships can be effectively modeled as sparse linear dependencies.
- We characterize the covariance constraints induced by linear causal dependencies (*induced covariance*). Similar identities have been noted previously in the special case of jointly Gaussian variables (Sullivant et al., 2010); here, we provide a distribution-free formulation.
- We extend the induced covariance framework to accommodate nonlinear causal structures.
- We provide a theoretical analysis of structural matrices that satisfy both induced covariance and reconstruction constraints, establishing results on local uniqueness and sensitivity.
- Through experiments on synthetically generated datasets with known linear sparse causal structures, we show that the proposed method outperforms established causal discovery approaches, achieving on average a 35% improvement in precision and a 41.5% improvement in recall. In addition, experiments on the real-world Sachs dataset (Sachs et al., 2005) demonstrate that the proposed method also surpasses baseline approaches in low-sample-size settings.

094 The rest of the paper is organized as follows. Section 2 provides a brief overview of the causal
 095 learning framework. Section 3 outlines the problem statement and associated challenges, while
 096 Section 4 introduces the proposed approach (SLCD). Section 5 discusses the generalization of SLCD
 097 to settings with nonlinear causal relations. Section 6 presents the theoretical analysis of structural
 098 matrices that satisfy both induced covariance and reconstruction constraints. Section 7 presents and
 099 analyzes the simulation results, and Section 8 concludes the paper.
 100

101 2 PRELIMINARIES

103 To state the problem, we first review the concept of a structural causal model (SCM), a popular
 104 method for causal relations modeling (Schölkopf & von Kügelgen, 2022). In this framework, a set
 105 of random variables $\mathcal{Y} = \{y_1, y_2, \dots, y_n\}$ is represented as the vertices of a directed acyclic graph
 106 (DAG), and the following relations hold:
 107

$$y_i = f_i(\mathcal{P}_i, u_i) \quad \forall i \in \{1, 2, \dots, n\}, \quad (1)$$

108 with f_i being a deterministic function, $\mathcal{P}_i \subset \mathcal{Y}$ (parents) represents the set of variables that influence
 109 y_i , and u_i is exogenous noise, an unobserved external factor (Schölkopf et al., 2021). In the graphical
 110 SCM representation, a directed edge exists from each member of \mathcal{P}_i to y_i for $i \in \{1, 2, \dots, n\}$. The
 111 process of causal discovery involves identifying f_i and \mathcal{P}_i for all $n \in \{1, 2, \dots, n\}$.
 112

113 3 PROBLEM STATEMENT

115 Let $\mathbf{x} = [x_1, x_2, \dots, x_n]^T \in \mathbb{R}^n$ be a vector that contains all the random variables for which causal
 116 relationships are to be discovered. These variables fall into two categories: independent (causal)
 117 variables, each of which has no parents, and dependent (effect) variables, which are influenced by
 118 the causal variables through the SCM. We define \mathcal{D} as the set of indices for dependent variables.
 119 According to the SCM, each x_i for $i \in \mathcal{D}$ is a function of a subset of independent variables \mathcal{P}_i ,
 120 which are considered the parents of x_i . We assume that the functions f_i for all $i \in \{1, 2, \dots, n\}$
 121 are linear and that $|\mathcal{P}_i| \leq \tau$, where $|\cdot|$ denotes set cardinality and τ is a model parameter. We also
 122 assume that no exogenous noise is present; that is, the values of the dependent variables are fully
 123 determined once the values of their parent variables are known, a situation that arises naturally in
 124 many problems across domains such as physics and biology (Li et al., 2024; Yang et al., 2022).

125 Under these assumptions, we can represent x_i as follows:

$$126 \quad x_i = \mathbf{d}_i^T \mathbf{x}, \quad (2)$$

127 where $\mathbf{d}_i \in \mathbb{R}^n$ is a vector with no more than τ non-zero elements, corresponding to the independent
 128 variables upon which x_i depends. Given this notation, the relationship for all variables can be
 129 expressed as

$$131 \quad \mathbf{x} = \mathbf{D}\mathbf{x}, \quad (3)$$

132 where $\mathbf{D} \in \mathbb{R}^{n \times n}$ is a matrix constructed from the vectors $\mathbf{d}_i, \forall i \in \{1, 2, \dots, n\}$ as its rows. The
 133 matrix \mathbf{D} contains all pertinent information on the causal structure of this model, and an accurate
 134 estimation of \mathbf{D} reveals the underlying causal relations.

135 In practice, there is often limited or no prior knowledge about the underlying structure of the data,
 136 and only the dataset itself is available. We use $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m] \in \mathbb{R}^{n \times m}$ to represent the
 137 given dataset, where each $\mathbf{x}_i \in \mathbb{R}^n$ is a sample. Applying (3), we have

$$138 \quad \mathbf{X} = \mathbf{D}\mathbf{X}. \quad (4)$$

139 The primary objective is to determine the causal structure (\mathbf{D}) from \mathbf{X} . Our goal is to develop a
 140 procedure to estimate \mathbf{D} without using conditional independence tests, making it suitable when the
 141 number of data samples are limited, especially in high-dimensional data.

143 3.1 CHALLENGES

145 In the estimation of \mathbf{D} , several challenges must be addressed. Based on the previous discussion, it
 146 can be inferred that \mathbf{D} must satisfy the condition expressed in (3). However, as demonstrated in the
 147 following example, this condition alone is insufficient for uniquely determining the causal structure.

148 **Example 1.** Suppose data is created as follows

$$150 \quad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}. \quad (5)$$

153 This structure suggests that x_1 and x_2 are independent variables (as they are not linear combinations
 154 of any other variables), while x_3 is the sum of x_1 and x_2 . When only the data is available and the
 155 objective is to satisfy the condition given in (3), the solution may not be unique. For example, the
 156 identity matrix ($\mathbf{I} \in \mathbb{R}^{3 \times 3}$) and the following matrix also satisfies (3) for the aforementioned setup:

$$158 \quad \begin{bmatrix} 0 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \quad (6)$$

161 This example illustrates that observational data alone is insufficient to uniquely determine the causal
 162 relations. In general, when only observational data are available, and no additional assumptions

162 are imposed, multiple causal graphs can generate the same data (Spirtes et al., 2001). Furthermore,
 163 this example shows how causal discovery differs from a regression problem. While both solutions
 164 may be acceptable in the context of regression, only one solution reveals the underlying causal
 165 structure. In other words, what separates this approach from a linear algebra regression is that we
 166 are not looking for any solution of (3) but the one that describes the associations according to the
 167 underlying causal structural matrix.

168 4 INDUCED COVARIANCE-BASED CAUSAL DISCOVERY

171 To address the challenges discussed above, it is beneficial to explore certain properties the causal
 172 structural matrix \mathbf{D} . The structure of \mathbf{D} can provide valuable insights into the relations among
 173 variables. Any k^{th} row of the structural matrix \mathbf{D} , whose elements are all equal to zero except for
 174 the element in column k , which is equal to 1, corresponds to an independent random variable. Since
 175 all variables are linear combinations of the independent variables, the rank of \mathbf{D} is equal to the
 176 number of independent variables. This observation suggests that the structure of \mathbf{D} can be used for
 177 narrowing down the number of potential solutions for \mathbf{D} .

178 To further constrain the possible solutions for \mathbf{D} , the following theorem establishes a connection
 179 between the statistical properties of the data and the structural matrix (Sullivant et al., 2010). More
 180 specifically, it shows that selecting a specific value for the variable \mathbf{D} , uniquely determines the value
 181 of the covariance matrix of the data, indicating that \mathbf{D} imposes a constraint on the covariance matrix.

182 **Theorem 1.** Let $\mathbf{D} \in \mathbb{R}^{n \times n}$ denote the causal structural matrix that describes the dependencies
 183 among the cause and effect variables stacked in the zero-mean random vector $\mathbf{x} = [x_1, x_2, \dots, x_n]^T \in \mathbb{R}^n$, that is $\mathbf{x} = \mathbf{D}\mathbf{x}$. Then the covariance matrix of \mathbf{x} is given by $\mathbf{D}\boldsymbol{\sigma}\mathbf{D}^T$, in
 184 which $\boldsymbol{\sigma} \in \mathbb{R}^{n \times n}$ is diagonal, with diagonal element $\sigma_{ii} = \text{Var}(x_i)$ for every $i \in \{1, 2, \dots, n\}$.

187 *Proof.* Since the components of \mathbf{x} have zero mean, we have $\text{Cov}(x_i, x_j) = \mathbb{E}[x_i x_j]$, for all $i, j \in$
 188 $\{1, 2, \dots, n\}$. Under the assumed linear structure, we have

$$189 \quad x_i = \mathbf{d}_i^T \mathbf{x}, \quad x_j = \mathbf{d}_j^T \mathbf{x},$$

191 where \mathbf{d}_i^T and \mathbf{d}_j^T denote the i -th and j -th rows of \mathbf{D} , respectively. Then we have

$$193 \quad \text{Cov}(x_i, x_j) = \mathbb{E}[x_i x_j] = \mathbb{E}[\mathbf{d}_i^T \mathbf{x} \mathbf{d}_j^T \mathbf{x}]. \quad (7)$$

194 Since the only nonzero elements in $\mathbf{d}_i^T \mathbf{x} \mathbf{d}_j^T \mathbf{x}$ occurs when both \mathbf{d}_j and \mathbf{d}_i have non-zero elements
 195 in the same positions, i.e., sharing the same independent (causal) variable, we have

$$197 \quad \mathbb{E}[x_i, x_j] = \mathbf{d}_i^T \boldsymbol{\sigma} \mathbf{d}_j. \quad (8)$$

198 By applying the same procedure to all (i, j) pairs, the theorem is proven. \square

200 This theorem restricts the solutions of (3) by imposing that the correct solution must not only satisfy
 201 (3) but also fulfill the condition $\boldsymbol{\Sigma} = \mathbf{D}\boldsymbol{\sigma}\mathbf{D}^T$, where $\mathbf{D}\boldsymbol{\sigma}\mathbf{D}^T$ is the induced covariance by \mathbf{D} and
 202 $\boldsymbol{\Sigma} \in \mathbb{R}^{n \times n}$ is the covariance matrix of data, which can be estimated directly from data.

204 By using the properties of \mathbf{D} and its implications on the structure of data, we can formulate the
 205 following optimization problem for structure recovery:

$$206 \quad \begin{aligned} & \arg \min_{\mathbf{D}} \{\text{rank}(\mathbf{D}) + \lambda \text{Tr}(\mathbf{D})\} \\ & \text{subject to} \quad \mathbf{X} = \mathbf{D}\mathbf{X}, \\ & \quad \boldsymbol{\Sigma} = \mathbf{D}\boldsymbol{\sigma}\mathbf{D}^T, \\ & \quad \|\mathbf{d}_i^T\|_0 \leq \tau \quad \forall i \in \{1, 2, \dots, n\}. \end{aligned} \quad (9)$$

212 In this formulation, $\mathbf{D} \in \mathbb{R}^{n \times n}$ represents the structural matrix, while $\mathbf{X} = [x_1, x_2, \dots, x_m] \in$
 213 $\mathbb{R}^{n \times m}$ is the dataset. The covariance matrix of the data is represented by $\boldsymbol{\Sigma} \in \mathbb{R}^{n \times n}$, and $\boldsymbol{\sigma} \in \mathbb{R}^{n \times n}$
 214 is a diagonal matrix whose diagonal entries correspond to those of $\boldsymbol{\Sigma}$. The term \mathbf{d}_i^T represents the
 215 i -th row of \mathbf{D} . The operator $\|\cdot\|_0$ returns the number of non-zero elements in a vector. Additionally,
 τ controls the number of independent variables, and λ serves as a scaling parameter. The $\text{rank}(\mathbf{D})$

term prevents the model from becoming overly complicated, and $\text{tr}(\mathbf{D})$ discourages the solution from being close to the \mathbf{I} , which implies all variables are independent.

Rank (the number of non-zero singular values) requires combinatorial calculation, which makes the problem intractable. To address this challenge, the idea proposed in (Mohimani et al., 2009) is used, which approximates $\|\cdot\|_0$ as:

$$\|x\|_0 \approx 1 - e^{-\frac{x^2}{\sigma^2}}. \quad (10)$$

By combining these ideas, the final problem formulation is

$$\begin{aligned} \arg \min_{\mathbf{D}} & \left\{ \sum_{i=1}^n \left(1 - e^{-\frac{s_i^2}{\sigma^2}} \right) + \lambda \sum_{i=1}^n \left(1 - e^{-\frac{d_{i,i}^2}{\sigma^2}} \right) \right\} \\ \text{subject to } & \mathbf{X} = \mathbf{D}\mathbf{X}, \\ & \Sigma = \mathbf{D}\sigma\mathbf{D}^T, \\ & \|\mathbf{d}_i^T\|_0 \leq \tau \quad \forall i \in \{1, 2, \dots, n\}, \end{aligned} \quad (11)$$

where $s_i, \forall i \in \{1, 2, \dots, n\}$ are the singular values of \mathbf{D} .

To present the final algorithm for obtaining the solution of (11), it is necessary to consider $\|\mathbf{d}_i^T\|_0 \leq \tau \quad \forall i \in \{1, \dots, n\}$, which also requires combinatorial calculations. To handle that, we propose solving the following optimization problem:

$$\begin{aligned} \arg \min_{\mathbf{D}} & \left\{ \sum_{i=1}^n \left(1 - e^{-\frac{s_i^2}{\sigma^2}} \right) + \lambda \sum_{i=1}^n \left(1 - e^{-\frac{d_{i,i}^2}{\sigma^2}} \right) \right\} \\ \text{subject to } & \mathbf{X} = \mathbf{D}\mathbf{X}, \\ & \Sigma = \mathbf{D}\sigma\mathbf{D}^T, \end{aligned} \quad (12)$$

and for each row of the resulting \mathbf{D} , we retain only the τ entries with the largest absolute values. This process is iterated N times.

Due to noise effects on data, (12) might not have a solution, therefore, some relaxation on the constraint might be required. This is done as follows:

$$\begin{aligned} \arg \min_{\mathbf{D}} & \left\{ \sum_{i=1}^n \left(1 - e^{-\frac{s_i^2}{\sigma^2}} \right) + \lambda \sum_{i=1}^n \left(1 - e^{-\frac{d_{i,i}^2}{\sigma^2}} \right) \right\} \\ \text{subject to } & \|\mathbf{X} - \mathbf{D}\mathbf{X}\|_F^2 \leq \epsilon_1, \\ & \|\Sigma - \mathbf{D}\sigma\mathbf{D}^T\|_F^2 \leq \epsilon_2, \end{aligned} \quad (13)$$

where ϵ_1 and ϵ_2 can be tuned to achieve the best result.

Solving (11) requires an initial estimate for \mathbf{D} , and the final value of the objective function depends on this initial estimate. To obtain the optimal solution, we propose executing the algorithm multiple times, each with a distinct random initialization. The solution that yields the lowest value of the objective function is then retained as the final result. The SLCD algorithm pseudocode is presented in appendix A.

5 SLCD, BEYOND LINEARITY

The proposed framework can be further extended to scenarios in which the SCMs governing the causal relations are nonlinear. The idea relies on the Taylor series expansion of the governing function. Suppose $x_i = h(\mathbf{x})$, where x_i is the i^{th} entry of \mathbf{x} and is causally related to \mathbf{x} through the deterministic function $h : \mathbb{R}^n \rightarrow \mathbb{R}$. Assuming $h \in C^\infty(\mathbb{R}^n)$ (the set of infinitely differentiable functions on \mathbb{R}^n), the Taylor series expansion implies that x_i can be expressed as a polynomial in the entries of \mathbf{x} . Based on this observation, the following theorem establishes the induced covariance for this scenario.

270 **Theorem 2.** Suppose $\mathbf{x} = g(\mathbf{x})$, where $\mathbf{x} \in \mathbb{R}^n$ is a vector of random variables and $g : \mathbb{R}^n \rightarrow \mathbb{R}^n$
 271 represents the causal relations such that $g_i \in C^\infty(\mathbb{R}^n)$ for all $i \in \{1, 2, \dots, n\}$. Then, \mathbf{x} can
 272 be represented as $\mathbf{x} = \sum_{i=1}^{\infty} \mathbf{D}_i \mathbf{x}^i$, where $\mathbf{D}_i \in \mathbb{R}^{n \times n}$ denotes the coefficient matrices for all
 273 $i \in \{1, 2, \dots, n\}$, and $\mathbf{x}^i = (x_1^i, \dots, x_n^i)^T$ is the vector obtained by raising each entry of \mathbf{x} to the
 274 i -th power. The covariance matrix of \mathbf{x} is then given by

$$\Sigma = \sum_{i=1}^{\infty} \sum_{i=j}^{\infty} \mathbf{D}_i \boldsymbol{\sigma}_{ij} \mathbf{D}_j^T, \quad (14)$$

275 where $\boldsymbol{\sigma}_{ij}$ is a diagonal matrix with its l th diagonal elements be $\mathbb{E}[x_l^i x_l^j]$ for all $l \in \{1, 2, \dots, n\}$.

276 The proof is deferred to Appendix C.1. Similar to the linear case discussed previously, Theorem 2
 277 provides a way to formulate an optimization problem with a constraint stronger than simply min-
 278 imizing the reconstruction error, i.e., regression. To formulate the optimization problem for the
 279 nonlinear case, let $\mathbf{X} \in \mathbb{R}^{n \times m}$ be the dataset containing m samples. One can then determine the
 280 coefficient matrices that satisfy the following equations:

$$\mathbf{X} = \sum_{i=1}^{\infty} \mathbf{D}_i \mathbf{X}^i, \quad (15)$$

$$\Sigma = \sum_{i=1}^{\infty} \sum_{i=j}^{\infty} \mathbf{D}_i \boldsymbol{\sigma}_{ij} \mathbf{D}_j^T, \quad (16)$$

281 where \mathbf{X}^i denotes the elementwise i -th power of \mathbf{X} , Σ is the covariance matrix of the data, and $\boldsymbol{\sigma}_{ij}$
 282 is a diagonal matrix whose l th diagonal entry is given by $\mathbb{E}[x_l^i x_l^j]$ for all $l \in \{1, 2, \dots, n\}$.

283 6 INDUCED-COVARIANCE: THEORETICAL ANALYSIS

284 In this section, a theoretical analysis of the proposed method is presented by examining the behavior
 285 of solutions that satisfy both the reconstruction and induced covariance constraints. The analysis
 286 focuses on the local properties of these solutions, in particular on whether they correspond to isolated
 287 points or manifolds, as well as on their sensitivity to the perturbations in the covariance matrix.

288 **Theorem 3** (Local Uniqueness of Solutions). Let $F(\mathbf{D}) = \Sigma - \mathbf{D} \boldsymbol{\sigma} \mathbf{D}^T$, where $\Sigma \in \mathbb{R}^{n \times n}$ is the
 289 covariance matrix of the data and $\boldsymbol{\sigma} \in \mathbb{R}^{n \times n}$ is its diagonal part. Let $\mathbf{X} \in \mathbb{R}^{n \times m}$ be the data matrix,
 290 and define $\mathcal{S} = \{\Delta \in \mathbb{R}^{n \times n} : \Delta \mathbf{X} = 0\}$. Assume that \mathbf{D}^* satisfies $F(\mathbf{D}^*) = \mathbf{0}$ and $\mathbf{D}^* \mathbf{X} = \mathbf{X}$,
 291 and suppose that no nonzero $\Delta \in \mathcal{S}$ makes $\mathbf{D}^* \boldsymbol{\sigma} \Delta^T$ skew-symmetric. Then there exists $r > 0$ such
 292 that any \mathbf{D} with $F(\mathbf{D}) = \mathbf{0}$, $\mathbf{D} \mathbf{X} = \mathbf{X}$, and $\|\mathbf{D} - \mathbf{D}^*\|_F < r$ must satisfy $\mathbf{D} = \mathbf{D}^*$.

293 The proof is provided in Appendix C.2. This theorem establishes that, under suitable conditions on
 294 $\mathbf{D}^* \boldsymbol{\sigma} \Delta^T$, the solutions of $F(\mathbf{D}) = \mathbf{0}$ subject to $\mathbf{D} \mathbf{X} = \mathbf{X}$ is locally unique. Next, the following
 295 theorem analyzes the sensitivity of the solutions of $F(\mathbf{D}) = \mathbf{0}$ to perturbations of the covariance
 296 matrix.

297 **Theorem 4** (Sensitivity Under Covariance Perturbations). Let $F(\mathbf{D}) = \Sigma - \mathbf{D} \boldsymbol{\sigma} \mathbf{D}^T$, where $\Sigma \in \mathbb{R}^{n \times n}$
 298 is the covariance matrix of data and $\boldsymbol{\sigma} \in \mathbb{R}^{n \times n}$ is its diagonal part. Suppose \mathbf{D}^* satisfies
 299 $F(\mathbf{D}^*) = \mathbf{0}$ and $\mathbf{D}^* \mathbf{X} = \mathbf{X}$, where $\mathbf{X} \in \mathbb{R}^{n \times m}$ is the data matrix. Define $\mathcal{S} = \{\Delta \in \mathbb{R}^{n \times n} \mid \Delta \mathbf{X} = \mathbf{0}\}$. Assume that no nonzero $\Delta \in \mathcal{S}$ makes $\mathbf{D}^* \boldsymbol{\sigma} \Delta^T$ skew-symmetric. Let c denote the
 300 smallest singular value of $\mathbf{D}^* \boldsymbol{\sigma} \Delta^T + \Delta \boldsymbol{\sigma} \mathbf{D}^{*\top}$ restricted to \mathcal{S} . Consider now a perturbed covariance
 301 matrix $\Sigma + \Delta \Sigma$, and let \mathbf{D} satisfy the perturbed equation

$$\Sigma + \Delta \Sigma - \mathbf{D} \boldsymbol{\sigma} \mathbf{D}^T = \mathbf{0}.$$

302 If $\|\Delta \Sigma\|_F < \frac{c^2}{4\|\boldsymbol{\sigma}\|_2}$, then \mathbf{D} cannot satisfy

$$\frac{c - \sqrt{c^2 - 4\|\boldsymbol{\sigma}\|_2 \|\Delta \Sigma\|_F}}{2\|\boldsymbol{\sigma}\|_2} < \|\mathbf{D} - \mathbf{D}^*\|_F < \frac{c + \sqrt{c^2 - 4\|\boldsymbol{\sigma}\|_2 \|\Delta \Sigma\|_F}}{2\|\boldsymbol{\sigma}\|_2}.$$

303 The proof is provided in Appendix C.3. This theorem establishes a non-feasible region for the
 304 distance between the perturbed and unperturbed solutions of the induced covariance equation.

Figure 1: Structure estimation error for various datasets and various hyperparameters.

Figure 2: Reconstruction error for various datasets and various hyperparameters.

If there exist values of $\Delta \in \mathcal{S} \setminus \{\mathbf{0}\}$ such that $D^* \sigma \Delta^T$ is skew-symmetric, then the nearby solutions may not be isolated; that is, there may exist manifolds of solutions along those directions. This necessitates additional restrictions on the solutions to distinguish these directions, making the use of regularization essential in such cases. For this reason, SLCD penalizes the solutions based on their rank and trace in order to further enforce constraints that yield isolated solutions.

7 SIMULATION RESULTS AND ANALYSIS

This section presents the results of our simulation studies, conducted on both synthetic and real-world datasets. The synthetic datasets are generated from a known causal structure matrix, and the evaluation examines how accurately the proposed method recovers this underlying structure. For real-world validation, we use the Sachs dataset (Sachs et al., 2005) and assess the ability of the method to identify the corresponding causal pathways. For benchmarking, we evaluate our approach against the PC, GES, LiNGAM-ICA, LiNGAM-Direct, and BIC exact search causal discovery methods.

For comprehensive reporting, we evaluate following metrics: the data reconstruction error, the recovery error of the causal matrix, the recovery error of the covariance matrix, precision (proportion of the number of correct estimated links to the total number of estimated links), and recall (proportion of the number of correct estimated links to the total number of links in the true graph). Let $\hat{D} \in \mathbb{R}^{n \times n}$ be the estimated matrix obtained from the proposed algorithm, and $X \in \mathbb{R}^{n \times m}$ represent the training data. The reconstruction error is then defined as:

Dataset	IV count*	x_1	x_2	x_3	Other Entries
Dataset 1	1	U(-2.5, 2.5)	$2x_1$	$0.4x_1$	-
Dataset 2	2	U(-2.5, 2.5)	U(-2.5, 2.5)	$0.3x_1$	$[x_4] = [1 \ 2] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
Dataset 3	2	U(-2.5, 2.5)	U(-2.5, 2.5)	$x_1 + 3x_2$	$\begin{bmatrix} x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 0 \\ 0 & 2 & 0.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$
Dataset 4	3	U(-2.5, 2.5)	U(-2.5, 2.5)	N(0,4)	$\begin{bmatrix} x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0.3 \\ 2 & 3 & 0 \\ 0 & 2 & 0.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$
Dataset 5	3	U(-2.5, 2.5)	U(-2.5, 2.5)	N(0,4)	$\begin{bmatrix} x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0.5 \\ 0 & 1 & 2 \\ 1 & 0 & 3 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

Table 1: Dataset Information. * IV count refers to the number of independent variables in each dataset.

Method	Precision (%)	Recall (%)	F_1 (%)
PC	44	24	31
GES	36	29	32
LiNGAM-ICA	29	41	34
LiNGAM-Direct	29	47	36
SLCD	42	47	44

Table 2: Performance comparison on the Sachs dataset when only 10% of the samples are used for each algorithm. SLCD parameters: $\lambda = 5 \times 10^{-5}$, $\sigma = 0.01$, $\tau = 2$.

$$\frac{1}{nm} \|\mathbf{X} - \hat{\mathbf{D}}\mathbf{X}\|_F^2. \quad (17)$$

We define the true structural matrix as $\mathbf{D} \in \mathbb{R}^{n \times n}$ and, thus, the recovery error of structural matrix will be:

$$\frac{1}{n^2} \|\mathbf{D} - \hat{\mathbf{D}}\|_F. \quad (18)$$

Let $\Sigma \in \mathbb{R}^{n \times n}$ represent the true covariance matrix of the original data with $\Sigma \in \mathbb{R}^{n \times n}$, then the recovery error of the covariance matrix is defined as

$$\frac{1}{n^2} \|\Sigma - \hat{\mathbf{D}}\sigma\hat{\mathbf{D}}^T\|_F, \quad (19)$$

in which, σ is a diagonal matrix with diagonal elements of Σ .

7.1 SYNTHETIC DATA

For simulation on synthetic data, five distinct datasets were generated, henceforth referred to as Dataset 1, Dataset 2, Dataset 3, Dataset 4, and Dataset 5. Each dataset comprises 1000 samples. Table 1 provides detailed information on the generation process for each dataset. The variables x_i , where $i \in \{1, 2, \dots, 7\}$, represent the elements of the data vector $\mathbf{x} = [x_1, x_2, \dots, x_7]^T$. The presence of a '-' symbol in place of a variable indicates its absence from the corresponding dataset, reflecting the varying dimensionality across datasets. The table indicates the data distribution from which the samples of independent variables are drawn. For dependent variables, the table specifies the linear combinations used to generate them.

$U(a, b)$ represents the uniform distribution of data in the $[a, b]$ interval. $N(\mu, \sigma^2)$ represents a Gaussian random variable with mean μ and variance σ^2 . By constructing the datasets in this manner, the variables exhibit the linear sparse relations that SLCD is specifically designed to handle. This

Figure 3: Covariance matrix estimation error for various datasets and various hyperparameters.

Method	Precision (%)	Recall (%)	F_1 (%)
PC	55	35	43
GES	20	24	22
LiNGAM-ICA	21	53	30
LiNGAM-Direct	31	65	42
SLCD	32	53	40

Table 3: Performance comparison on the Sachs dataset when all of the samples are used for each algorithm. SLCD parameters: $\lambda = 0.01$, $\sigma = 1$, $\tau = 2$.

approach also enables the evaluation of algorithm performance across various data dimensions. Additionally, the datasets include independent variables with different data distributions, allowing for the assessment of algorithm robustness under diverse distributional scenarios. It is important to note that for the dependent variables, each linear combination results in a convolution of the data distributions, further contributing to the variability in the distributions of the dataset's variables.

Figures 1 through 3 display the algorithm's simulation results on performance metrics for various hyperparameter settings. The results reveal moderate sensitivity to hyperparameters, with effective recovery of the underlying structure when parameters are chosen appropriately. The figures also indicate a broad range of satisfactory parameters, demonstrating the method's robustness. The detailed performance of SLCD in recovering the structural matrix of each dataset for the hyperparameter pair $(\sigma, \lambda) = (0.3, 5)$ is presented in Table 5 in the Appendix B. It shows that the method successfully recovers the structural matrix of all datasets, with the exception of Dataset 1.

Table 4 presents the simulation results of SLCD in comparison with several well-known causal discovery algorithms. The results indicate that SLCD outperforms the other methods by an average of 35% in precision and 41.5% in recall across Datasets 2 through 5. While all methods exhibit challenges with Dataset 1, SLCD consistently demonstrates superior performance in the remaining datasets.

SLCD demonstrates suboptimal performance on Dataset 1. This can be attributed to the structure of Dataset 1, wherein only one independent variable exists, and all other variables are scalar multiples thereof. This configuration does not provide sufficient information to unambiguously identify the independent variable, as any of the variables could potentially fulfill this role. This ambiguity introduces uncertainty into the algorithm, potentially leading to diverse solutions. However, as the structural complexity increases with the introduction of additional independent variables, the informational content of the data becomes more robust, facilitating more accurate recovery of the underlying causal structure.

Method	PC	GES	LG ICA	LG Direct	BIC Search	SLCD
Precision (%)	33	50	0	33	0	0
Recall (%)	100	50	0	50	0	0
Number of Correct link estimation	2	1	0	1	0	0
Dataset 1						
Method	PC	GES	LG ICA	LG Direct	BIC Search	SLCD
Precision (%)	50	60	25	0	75	100
Recall (%)	66	100	33	0	100	100
Number of Correct link estimation	2	3	1	0	3	3
Dataset 2						
Method	PC	GES	LG ICA	LG Direct	BIC Search	SLCD
Precision (%)	37	43	0	0	43	100
Recall (%)	60	60	0	0	60	100
Number of Correct link estimation	3	3	0	0	3	5
Dataset 3						
Method	PC	GES	LG ICA	LG Direct	BIC Search	SLCD
Precision (%)	100	100	20	10	67	100
Recall (%)	100	100	33	17	100	100
Number of Correct link estimation	6	6	2	1	6	6
Dataset 4						
Method	PC	GES	LG ICA	LG Direct	BIC Search	SLCD
Precision (%)	30	75	8	13	54	100
Recall (%)	37	75	12	25	100	100
Number of Correct link estimation	3	6	1	2	6	8
Dataset 5						

Table 4: Performance comparison of PC, GES, LG ICA (LINGAM IC), LG Direct (LINGAM Direct), BIC Exact Search, and SLCD algorithms.

7.2 REAL-WORLD DATASET

Tables 2 and 3 present the performance of the competing methods on the Sachs dataset under different sample-size conditions, evaluated in terms of precision, recall, and F_1 score (the harmonic mean of precision and recall). These experiments are designed to assess how each method performs when different amounts of data are available.

Table 2 reports the results when only 10% of the dataset is provided to each algorithm. In this setting, the sample subset is selected uniformly at random from the full dataset and used as the input for each method. As the results indicate, SLCD achieves the highest performance under this limited-data regime, largely because it does not rely on conditional independence tests, which typically require larger sample sizes to produce reliable outcomes.

Table 3 shows the results obtained when the full dataset is used. In this case, SLCD performs competitively with the baseline methods. Although SLCD is designed for linear sparse structures, the results suggest that it retains a degree of adaptability even when the underlying system, such as the Sachs dataset, does not fully conform to a linear model.

8 CONCLUSION

This paper proposes an algorithm for causal discovery within a linear sparse structure, leveraging properties of the causal structure matrix, specifically its rank, which reflects the number of independent variables, and the notion of induced covariance. Simulation studies confirm the algorithm's effectiveness across diverse configurations. Our next direction is to refine the independence criteria. While induced covariance was useful, it does not fully ensure independence across all the scenarios. Addition of stronger constraints can further enhance this framework. This extension would enhance the algorithm's versatility and reliability across a wider range of applications and data types.

540

THE USE OF LARGE LANGUAGE MODELS (LLMs) STATEMENT

541

542 Large language models were used exclusively for language refinement, including proofreading and
 543 grammatical correction.

544

545 REPRODUCIBILITY STATEMENT

546

547 To ensure reproducibility, we provide the pseudocode of the proposed algorithm in Appendix A.
 548 The complete implementation code and the datasets used in our experiments are available in the
 549 supplementary material. In addition, proofs of the theorems are presented either in the main text or
 in Appendix C.

550

551

552 REFERENCES

553

Gustau Camps-Valls, Andreas Gerhardus, Urmi Ninad, Gherardo Varando, Georg Martius, Emili
 Balaguer-Ballester, Ricardo Vinuesa, Emiliano Diaz, Laure Zanna, and Jakob Runge. Discovering
 causal relations and equations from data. *Physics Reports*, 1044:1–68, 2023.

554

555

David Maxwell Chickering. Optimal structure identification with greedy search. *Journal of machine
 learning research*, 3(Nov):507–554, 2002.

556

557

Loka Li, Haoyue Dai, Hanin Al Ghothani, Biwei Huang, Jiji Zhang, Shahar Harel, Isaac Bentwich,
 Guangyi Chen, and Kun Zhang. On causal discovery in the presence of deterministic relations.
Advances in Neural Information Processing Systems, 37:130920–130952, 2024.

558

559

Christopher Meek. *Graphical Models: Selecting causal and statistical models*. PhD thesis, Carnegie
 Mellon University, 1997.

560

561

Hosein Mohimani, Massoud Babaie-Zadeh, and Christian Jutten. A fast approach for overcomplete
 sparse decomposition based on smoothed ℓ^0 norm. *IEEE Transactions on Signal Processing*, 57
 (1):289–301, 2009. doi: 10.1109/TSP.2008.2007606.

562

563

Judea Pearl and Thomas S Verma. A theory of inferred causation. In *Studies in Logic and the
 Foundations of Mathematics*, volume 134, pp. 789–811. Elsevier, 1995.

564

565

Karen Sachs, Omar Perez, Dana Pe’er, Douglas A Lauffenburger, and Garry P Nolan. Causal
 protein-signaling networks derived from multiparameter single-cell data. *Science*, 308(5721):
 523–529, 2005.

566

567

Bernhard Schölkopf and Julius von Kügelgen. From statistical to causal learning. In *Proceedings of
 the International Congress of Mathematicians*, pp. 1, 2022.

568

569

Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
 Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. *Proceedings of
 the IEEE*, 109(5):612–634, 2021.

570

571

Joni Shaska and Urbashi Mitra. Causal link discovery with unequal edge error tolerance. *IEEE
 Transactions on Signal Processing*, 73:2848–2861, 2025. doi: 10.1109/TSP.2025.3585825.

572

573

Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, Antti Kerminen, and Michael Jordan. A linear
 non-gaussian acyclic model for causal discovery. *Journal of Machine Learning Research*, 7(10),
 2006.

574

575

Shohei Shimizu, Takanori Inazumi, Yasuhiro Sogawa, Aapo Hyvärinen, Yoshinobu Kawahara,
 Takashi Washio, Patrik O Hoyer, Kenneth Bollen, and Patrik Hoyer. Directlingam: A direct
 method for learning a linear non-gaussian structural equation model. *Journal of Machine Learn-
 ing Research-JMLR*, 12(Apr):1225–1248, 2011.

576

577

Peter Spirtes, Clark Glymour, and Richard Scheines. *Causation, prediction, and search*. MIT press,
 2001.

578

Seth Sullivant, Kelli Talaska, and Jan Draisma. Trek separation for gaussian graphical models. 2010.

594 Burak Varıcı, Emre Acartürk, Karthikeyan Shanmugam, Abhishek Kumar, and Ali Tajer. Score-
 595 based causal representation learning: Linear and general transformations. *arXiv preprint*
 596 *arXiv:2402.00849*, 2024.

598 Yuqin Yang, Mohamed S Nafea, AmirEmad Ghassami, and Negar Kiyavash. Causal discovery in
 599 linear structural causal models with deterministic relations. In *Conference on Causal Learning*
 600 and Reasoning, pp. 944–993. PMLR, 2022.

601 Changhe Yuan and Brandon Malone. Learning optimal bayesian networks: A shortest path perspec-
 602 tive. *Journal of Artificial Intelligence Research*, 48:23–65, 2013.

606 A ALGORITHM PSEUDOCODE

608 The SLCD pseudocode:

610 **Algorithm 1** Sparse Linear Causal Discovery (SLCD) Algorithm.

611 **Inputs:**

612 $\mathbf{X} \in \mathbb{R}^{n \times m}$, $N, M, \lambda, \sigma, \tau$

613 **for** $t = 1 : M$ **do**

614 **Initialize:**

615 $\mathbf{D}_0 \in \mathbb{R}^{n \times n}$: randomly

616 **if** ($t == 1$) **then**

617 $J_{min} \leftarrow J(\mathbf{D}_0)$

618 $\mathbf{D}_{opt} \leftarrow \mathbf{D}_0$

619 **end if**

620 **for** $k = 1 : N$ **do**

621 $\mathbf{D} \leftarrow \text{Solve (12)} \text{ (e.g. fmincon (MATLAB))}$

622 **if** $J_{min} > J(\mathbf{D})$ **then**

623 $J_{min} \leftarrow J(\mathbf{D})$

624 $\mathbf{D}_{opt} \leftarrow \mathbf{D}$

625 **end if**

626 **end for**

627 **return** \mathbf{D}_{opt}

631 B STRUCTURAL RECOVERY RESULTS OF SLCD ACROSS DIFFERENT 632 DATASETS

634 Table 5 shows the recovered structural matrix using SLCD as well as the ground truth structural
 635 matrix for each dataset with $(\sigma, \lambda) = (0.3, 5)$.

638 C PROOFS

640 C.1 PROOF OF THEOREM 2

642 Let $\mathbf{x} \in \mathbb{R}^n$ be a random vector with the following causal structure:

$$643 \quad \mathbf{x} = \sum_{i=1}^{\infty} \mathbf{D}_i \mathbf{x}^i, \quad (20)$$

644 where \mathbf{x}^i is the vector obtained by elementwise raising of \mathbf{x} to the i -th power, and \mathbf{D}_i is the corre-
 645 sponding coefficient matrix.

Dataset	Structure matrix	Estimated structure matrix	(σ, λ)
Dataset 1	$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0.4 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0.5 & 4.4 \times 10^{-7} \\ 2 & 1 & 1.1 \times 10^{-6} \\ -1.2 \times 10^{-7} & 0.2 & 0 \end{bmatrix}$	(0.3, 5)
Dataset 2	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0.3 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & -8.8 \times 10^{-4} & 0 \\ 0 & 1 & -3.3 \times 10^{-4} & 0 \\ 0.3 & 0 & -2.7 \times 10^{-4} & 0 \\ 1.002 & 1.999 & 0 & 0 \end{bmatrix}$	(0.3, 5)
Dataset 3	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0.999 & 0.0497 & 0 & 0 & 0 \\ 0 & 1.000 & 0 & 0 & 0.0102 \\ 0.976 & 3.049 & 0 & 0 & 0 \\ -0.0147 & 1.999 & 0 & 0 & 0 \\ 1.990 & 1.099 & 0 & 0 & 0 \end{bmatrix}$	(0.3, 5)
Dataset 4	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0.3 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0.5 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0.999 & -0.009 & 0 & 0 & 0 & 0 \\ 0.016 & 0.999 & 0 & 0 & 0 & 0 \\ -0.432 & 0 & 0.997 & 0 & 0 & 0 \\ 0.987 & 0 & 0.3019 & 0 & 0 & 0 \\ 2.048 & 2.982 & 0 & 0 & 0 & 0 \\ 0 & 1.995 & 0.483 & 0 & 0 & 0 \end{bmatrix}$	(0.3, 5)
Dataset 5	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0.5 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0.997 & 0.0525 & 0 & 0 & 0 & 0 \\ -0.082 & 0.994 & 0 & 0 & 0 & 0 \\ 0.057 & 0 & 0.998 & 0 & 0 & 0 \\ 1.025 & 0 & 0.491 & 0 & 0 & 0 \\ 0 & 0.956 & 2.024 & 0 & 0 & 0 \\ 1.168 & 0 & 2.986 & 0 & 0 & 0 \\ 0 & 0.975 & 1.025 & 0 & 0 & 0 \end{bmatrix}$	(0.3, 5)

Table 5: True structural matrix and the output of SLCD.

To calculate the covariance matrix of the data, we need to compute $\mathbb{E}[x_i x_j]$. Using equation 20, we have

$$\mathbb{E}[x_i x_j] = \mathbb{E} \left[\left(\sum_{l=1}^{\infty} \mathbf{d}_i^{(l)T} \mathbf{x}^l \right) \left(\sum_{k=1}^{\infty} \mathbf{d}_j^{(k)T} \mathbf{x}^k \right) \right], \quad (21)$$

where $\mathbf{d}_i^{(l)T}$ and $\mathbf{d}_j^{(k)T}$ are the i^{th} and j^{th} rows of the matrix \mathbf{D}_l and \mathbf{D}_k , respectively.

Applying this procedure to all pairs of entries, we obtain

$$\Sigma = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \mathbf{D}_i \boldsymbol{\sigma}_{ij} \mathbf{D}_j^T, \quad (22)$$

where $\boldsymbol{\sigma}_{ij}$ is a diagonal matrix whose l^{th} diagonal element is $\mathbb{E}[x_i^l x_j^l]$ for all $l \in \{1, 2, \dots, n\}$.

C.2 PROOF OF THEOREM 3

Let $F(\mathbf{D})$, Σ , $\boldsymbol{\sigma}$, and \mathbf{X} be as in Theorem 3. Suppose \mathbf{D}^* satisfies both $F(\mathbf{D}) = \mathbf{0}$ and $\mathbf{D}^* \mathbf{X} = \mathbf{X}$. Let \mathbf{D} be another solution of $F(\mathbf{D}) = \mathbf{0}$ satisfying $\mathbf{D}\mathbf{X} = \mathbf{X}$, and define $\Delta = \mathbf{D} - \mathbf{D}^*$. Then $\Delta\mathbf{X} = \mathbf{0}$. We expand

$$\begin{aligned} F(\mathbf{D}) &= F(\mathbf{D}^* + \Delta) = \Sigma - (\mathbf{D}^* + \Delta)\boldsymbol{\sigma}(\mathbf{D}^* + \Delta)^T \\ &= \Sigma - \mathbf{D}^* \boldsymbol{\sigma} \mathbf{D}^{*T} - (\mathbf{D}^* \boldsymbol{\sigma} \Delta^T + \Delta \boldsymbol{\sigma} \mathbf{D}^{*T}) - \Delta \boldsymbol{\sigma} \Delta^T \end{aligned}$$

Using $F(\mathbf{D}^*) = \mathbf{0}$ gives

$$F(\mathbf{D}) = -(\mathbf{D}^* \boldsymbol{\sigma} \Delta^T + \Delta \boldsymbol{\sigma} \mathbf{D}^{*T}) - \Delta \boldsymbol{\sigma} \Delta^T = -\mathcal{L}(\Delta) - \mathcal{Q}(\Delta),$$

where

$$\mathcal{L}(\Delta) = \mathbf{D}^* \boldsymbol{\sigma} \Delta^T + \Delta \boldsymbol{\sigma} \mathbf{D}^{*T}, \quad \mathcal{Q}(\Delta) = \Delta \boldsymbol{\sigma} \Delta^T.$$

702 Since $F(\mathbf{D}) = \mathbf{0}$, we obtain
 703

$$704 \quad 705 \quad \mathcal{L}(\Delta) + \mathcal{Q}(\Delta) = \mathbf{0}, \quad \Delta \mathbf{X} = \mathbf{0}. \quad (23)$$

706 Define the subspace
 707

$$708 \quad \mathcal{S} = \{ \Delta \in \mathbb{R}^{n \times n} \mid \Delta \mathbf{X} = \mathbf{0} \}.$$

709 By assumption, no nonzero $\Delta \in \mathcal{S}$ makes $\mathbf{D}^* \boldsymbol{\sigma} \Delta^T$ skew-symmetric. This implies that
 710

$$710 \quad \mathcal{L}(\Delta) = \mathbf{0}, \quad \Delta \in \mathcal{S} \implies \Delta = \mathbf{0}.$$

711 Thus \mathcal{L} is injective on \mathcal{S} , and consequently there exists $c > 0$ such that
 712

$$713 \quad \|\mathcal{L}(\Delta)\|_F \geq c \|\Delta\|_F, \quad \forall \Delta \in \mathcal{S}. \quad (24)$$

715 For the quadratic term we use submultiplicativity:

$$716 \quad 717 \quad \|\mathcal{Q}(\Delta)\|_F = \|\Delta \boldsymbol{\sigma} \Delta^T\|_F \leq \|\boldsymbol{\sigma}\|_2 \|\Delta\|_F^2, \quad \forall \Delta \in \mathcal{S}. \quad (25)$$

718 Combining (23), (24), and 25 yields
 719

$$720 \quad c \|\Delta\|_F \leq \|\mathcal{L}(\Delta)\|_F = \|\mathcal{Q}(\Delta)\|_F \leq \|\boldsymbol{\sigma}\|_2 \|\Delta\|_F^2,$$

721 and hence
 722

$$723 \quad \|\Delta\|_F \geq \frac{c}{\|\boldsymbol{\sigma}\|_2}.$$

724 This establishes that no other solution lies within the ball $\{ \mathbf{D} : \|\mathbf{D} - \mathbf{D}^*\|_F < r \}$ of radius
 725 $r = \frac{c}{\|\boldsymbol{\sigma}\|_2}$ around \mathbf{D}^* . Hence \mathbf{D}^* is isolated and locally unique.
 726

727 C.3 PROOF OF THEOREM 4

729 *Proof.* Recall that $F(\mathbf{D}) = \boldsymbol{\Sigma} - \mathbf{D} \boldsymbol{\sigma} \mathbf{D}^T$ and that \mathbf{D}^* satisfies $F(\mathbf{D}^*) = \mathbf{0}$ and $\mathbf{D}^* \mathbf{X} = \mathbf{X}$. Let
 730 the covariance matrix be perturbed as $\boldsymbol{\Sigma} \mapsto \boldsymbol{\Sigma} + \Delta \boldsymbol{\Sigma}$, and let \mathbf{D} satisfy the perturbed relation
 731

$$732 \quad \boldsymbol{\Sigma} + \Delta \boldsymbol{\Sigma} - \mathbf{D} \boldsymbol{\sigma} \mathbf{D}^T = \mathbf{0}, \quad \mathbf{D} \mathbf{X} = \mathbf{X}.$$

733 Define $\Delta = \mathbf{D} - \mathbf{D}^*$ and
 734

$$734 \quad \mathcal{S} = \{ \Delta \in \mathbb{R}^{n \times n} \mid \Delta \mathbf{X} = \mathbf{0} \}.$$

735 Then $\Delta \in \mathcal{S}$, and expanding $F(\mathbf{D})$ gives
 736

$$737 \quad \mathbf{0} = \boldsymbol{\Sigma} + \Delta \boldsymbol{\Sigma} - \mathbf{D} \boldsymbol{\sigma} \mathbf{D}^T = \boldsymbol{\Sigma} + \Delta \boldsymbol{\Sigma} - (\mathbf{D}^* + \Delta) \boldsymbol{\sigma} (\mathbf{D}^* + \Delta)^T \\ 738 \quad = \underbrace{\boldsymbol{\Sigma} - \mathbf{D}^* \boldsymbol{\sigma} \mathbf{D}^{*T}}_0 - \underbrace{(\mathbf{D}^* \boldsymbol{\sigma} \Delta^T + \Delta \boldsymbol{\sigma} \mathbf{D}^{*T})}_{\mathcal{L}(\Delta)} - \underbrace{\Delta \boldsymbol{\sigma} \Delta^T}_{\mathcal{Q}(\Delta)} + \Delta \boldsymbol{\Sigma}.$$

740 Hence
 741

$$742 \quad \mathcal{L}(\Delta) + \mathcal{Q}(\Delta) = \Delta \boldsymbol{\Sigma}, \quad \Delta \mathbf{X} = \mathbf{0}. \quad (26)$$

743 As in the proof of Theorem 3, the assumption that no nonzero $\Delta \in \mathcal{S}$ makes $\mathbf{D}^* \boldsymbol{\sigma} \Delta^T$ skew-
 744 symmetric implies that \mathcal{L} is injective on \mathcal{S} . Consequently, there exists $c > 0$ such that
 745

$$746 \quad \|\mathcal{L}(\Delta)\|_F \geq c \|\Delta\|_F, \quad \forall \Delta \in \mathcal{S}, \quad (27)$$

747 where
 748

$$749 \quad 750 \quad c = \inf_{\substack{\Delta \in \mathcal{S} \\ \|\Delta\|_F=1}} \|\mathcal{L}(\Delta)\|_F.$$

751 For the quadratic term, submultiplicativity yields
 752

$$753 \quad \|\mathcal{Q}(\Delta)\|_F = \|\Delta \boldsymbol{\sigma} \Delta^T\|_F \leq \|\boldsymbol{\sigma}\|_2 \|\Delta\|_F^2, \quad \forall \Delta \in \mathcal{S}. \quad (28)$$

754 Combining (26) and 28 gives
 755

$$c \|\Delta\|_F \leq \|\mathcal{L}(\Delta)\|_F = \|\Delta \boldsymbol{\Sigma} - \mathcal{Q}(\Delta)\|_F \leq \|\Delta \boldsymbol{\Sigma}\|_F + \|\mathcal{Q}(\Delta)\|_F \leq \|\Delta \boldsymbol{\Sigma}\|_F + \|\boldsymbol{\sigma}\|_2 \|\Delta\|_F^2. \quad (29)$$

756 Let $r = \|\Delta\|_F$. Then from 29, r satisfies the quadratic inequality
 757

$$758 \quad \|\sigma\|_2 r^2 - c r + \|\Delta\Sigma\|_F \geq 0. \quad (30)$$

759 If the discriminant $c^2 - 4\|\sigma\|_2 \|\Delta\Sigma\|_F$ is negative, the inequality imposes no constraint on r . If
 760

$$761 \quad \|\Delta\Sigma\|_F < \frac{c^2}{4\|\sigma\|_2},$$

764 then (30) implies that r cannot lie strictly between the two real roots. That is, $\|D - D^*\|_F = r$
 765 cannot satisfy

$$766 \quad \frac{c - \sqrt{c^2 - 4\|\sigma\|_2 \|\Delta\Sigma\|_F}}{2\|\sigma\|_2} < r < \frac{c + \sqrt{c^2 - 4\|\sigma\|_2 \|\Delta\Sigma\|_F}}{2\|\sigma\|_2}.$$

767 \square

770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809