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ABSTRACT

Causal models seek to unravel the cause-effect relationships among variables from
observed data, as opposed to mere mappings among them, as traditional regres-
sion models do. This paper introduces Sparse Linear Causal Discovery (SLCD),
a novel causal discovery algorithm designed for settings in which variables ex-
hibit linearly sparse relationships. In such scenarios, the causal links represented
by directed acyclic graphs (DAGs) can be encapsulated in a structural matrix.
The proposed approach identifies the correct structural matrix by evaluating how
well it reconstructs the data and how closely it satisfies the imposed statistical
constraints. This method does not rely on independence tests or graph fitting pro-
cedures, making it suitable for scenarios with limited training data. Simulation
results on synthetically generated datasets with known linear sparse causal struc-
tures show that SLCD consistently outperforms the PC, GES, BIC exact search,
and LiNGAM-based methods, achieving average improvements of 35% in pre-
cision and 41.5% in recall. Moreover, on the real-world Sachs dataset, SLCD
further surpasses these methods in the low-sample-size setting.

1 INTRODUCTION

Causal learning is an approach used to extract and understand cause-and-effect relationships from
data. This approach seeks to uncover the fundamental structures that determine how data are related
(Shaska & Mitra, 2025). This structural understanding is at a deeper level than that observed in
statistical learning, which is focused on learning various mappings among data (Schölkopf & von
Kügelgen, 2022). Discovering causal relations plays a crucial role in the scientific method (Camps-
Valls et al., 2023). A comprehensive causal model of a phenomenon could describe the observed data
and consistently make predictions. The advantage of this type of learning over statistical learning,
which identifies mere associations between variables, lies in its generalization and robustness to
distribution changes (Schölkopf et al., 2021). Furthermore, causal relations may be transferable to
other problems, which constitutes an additional benefit (Schölkopf et al., 2021).

Several approaches have been proposed for causal discovery (Pearl & Verma, 1995; Spirtes et al.,
2001; Shimizu et al., 2006; 2011; Meek, 1997; Chickering, 2002; Yuan & Malone, 2013). These
methods are generally classified into two categories (Schölkopf & von Kügelgen, 2022): constraint-
based and score-based methods. In constraint-based methods, conditional independencies among
variables are tested, and the inferred relations are represented using a DAG that best reflects them.
Notable examples of such algorithms include inductive causation (IC) (Pearl & Verma, 1995),
Spirtes-Glymour-Scheines (SGS) (Spirtes et al., 2001), Peter-Clark (PC) (Spirtes et al., 2001) and
linear non-Gaussian acyclic model (LINGAM) based methods (Shimizu et al., 2006) and (Shimizu
et al., 2011). IC and SGS algorithms examine the conditional independencies between each pair of
variables conditioned on any subset of the remaining variables and use this information for form-
ing the causal graph. This approach can be computationally intensive due to the large number of
subsets. The PC algorithm mitigates this challenge by initiating the search from a complete graph
and systematically removing edges, sequentially testing the conditional independencies of each pair
and their neighbors. Although the PC algorithm reduces computational cost, it still depends on
conditional independence tests, which are computationally demanding and require substantial data,
particularly in high-dimensional settings, to produce reliable results. Unlike the previously men-
tioned methods that rely heavily on conditional independence tests, LiNGAM-based approaches
assume non-Gaussianity and linearity in the data. By leveraging these assumptions, LiNGAM aims
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to identify the causal graph. Although alleviating the challenge of conditional tests, non-Gaussianity
is a limiting assumption.

Alternatively, score-based methods use a scoring function to evaluate graphical representations. Pos-
sible graphs are tested against the data, and the graph with the highest score is selected. Some of the
prominent methods in this category are greedy equivalent search (GES) (Meek, 1997; Chickering,
2002), and Bayesian information criterion (BIC) exact search (Yuan & Malone, 2013). The primary
drawback of these methods (Meek, 1997; Chickering, 2002; Yuan & Malone, 2013) is the exponen-
tial growth of the possible graphs as the number of variables (nodes of the graph) increases, which
results in higher computation demands.

Another line of work in causal discovery is causal representation learning (Schölkopf et al., 2021;
Varıcı et al., 2024). In this setting, data are assumed to be generated from high-level latent variables,
which are mapped through transformations to the observed data. The objective is to identify both the
relations among the latent variables and the transformations that connect them to the observed data.
This is carried out in such a way that the resulting representation remains consistent with causal
interventions.

However, these approaches do not adequately address scenarios with limited data, where conditional
independence tests often fail to yield reliable results. Moreover, causal representation learning typ-
ically requires access to both the dataset and its intervened versions, which can be a significant
limitation. Therefore, despite the emergence of several methods for causal discovery, there remains
no algorithm well-suited for situations involving small datasets and the absence of feasible interven-
tions.

The primary contribution of this paper is the development of a novel causal discovery algorithm
designed for linear sparse structures. The key contributions are as follows:

• We propose Sparse Linear Causal Discovery (SLCD), a new algorithm that recovers the
structural matrix that encapsulates causal graph information by leveraging induced covari-
ance, data reconstruction, rank, and diagonal structure, specifically for settings where vari-
able relationships can be effectively modeled as sparse linear dependencies.

• We characterize the covariance constraints induced by linear causal dependencies (induced
covariance). Similar identities have been noted previously in the special case of jointly
Gaussian variables (Sullivant et al., 2010); here, we provide a distribution-free formulation.

• We extend the induced covariance framework to accommodate nonlinear causal structures.
• We provide a theoretical analysis of structural matrices that satisfy both induced covariance

and reconstruction constraints, establishing results on local uniqueness and sensitivity.
• Through experiments on synthetically generated datasets with known linear sparse causal

structures, we show that the proposed method outperforms established causal discovery
approaches, achieving on average a 35% improvement in precision and a 41.5% improve-
ment in recall. In addition, experiments on the real-world Sachs dataset (Sachs et al., 2005)
demonstrate that the proposed method also surpasses baseline approaches in low-sample-
size settings.

The rest of the paper is organized as follows. Section 2 provides a brief overview of the causal
learning framework. Section 3 outlines the problem statement and associated challenges, while
Section 4 introduces the proposed approach (SLCD). Section 5 discusses the generalization of SLCD
to settings with nonlinear causal relations. Section 6 presents the theoretical analysis of structural
matrices that satisfy both induced covariance and reconstruction constraints. Section 7 presents and
analyzes the simulation results, and Section 8 concludes the paper.

2 PRELIMINARIES

To state the problem, we first review the concept of a structural causal model (SCM), a popular
method for causal relations modeling (Schölkopf & von Kügelgen, 2022). In this framework, a set
of random variables Y = {y1, y2, . . . yn} is represented as the vertices of a directed acyclic graph
(DAG), and the following relations hold:

yi = fi(Pi, ui) ∀i ∈ {1, 2, . . . , n}, (1)
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with fi being a deterministic function, Pi ⊂ Y (parents) represents the set of variables that influence
yi, and ui is exogenous noise, an unobserved external factor (Schölkopf et al., 2021). In the graphical
SCM representation, a directed edge exists from each member of Pi to yi for i ∈ {1, 2, . . . , n}. The
process of causal discovery involves identifying fi and Pi for all n ∈ {1, 2, . . . , n}.

3 PROBLEM STATEMENT

Let x = [x1, x2, . . . , xn]
T ∈ Rn be a vector that contains all the random variables for which causal

relationships are to be discovered. These variables fall into two categories: independent (causal)
variables, each of which has no parents, and dependent (effect) variables, which are influenced by
the causal variables through the SCM. We define D as the set of indices for dependent variables.
According to the SCM, each xi for i ∈ D is a function of a subset of independent variables Pi,
which are considered the parents of xi. We assume that the functions fi for all i ∈ {1, 2, . . . , n}
are linear and that |Pi| ≤ τ , where | · | denotes set cardinality and τ is a model parameter. We also
assume that no exogenous noise is present; that is, the values of the dependent variables are fully
determined once the values of their parent variables are known, a situation that arises naturally in
many problems across domains such as physics and biology (Li et al., 2024; Yang et al., 2022).

Under these assumptions, we can represent xi as follows:

xi = dT
i x, (2)

where di ∈ Rn is a vector with no more than τ non-zero elements, corresponding to the independent
variables upon which xi depends. Given this notation, the relationship for all variables can be
expressed as

x = Dx, (3)
where D ∈ Rn×n is a matrix constructed from the vectors di, ∀i ∈ {1, 2, . . . , n} as its rows. The
matrix D contains all pertinent information on the causal structure of this model, and an accurate
estimation of D reveals the underlying causal relations.

In practice, there is often limited or no prior knowledge about the underlying structure of the data,
and only the dataset itself is available. We use X = [x1,x2, . . .xm] ∈ Rn×m to represent the
given dataset, where each xi ∈ Rn is a sample. Applying (3), we have

X = DX. (4)

The primary objective is to determine the causal structure (D) from X . Our goal is to develop a
procedure to estimate D without using conditional independence tests, making it suitable when the
number of data samples are limited, especially in high-dimensional data.

3.1 CHALLENGES

In the estimation of D, several challenges must be addressed. Based on the previous discussion, it
can be inferred that D must satisfy the condition expressed in (3). However, as demonstrated in the
following example, this condition alone is insufficient for uniquely determining the causal structure.
Example 1. Suppose data is created as follows[

x1

x2

x3

]
=

[
1 0 0
0 1 0
1 1 0

][
x1

x2

x3

]
. (5)

This structure suggests that x1 and x2 are independent variables (as they are not linear combinations
of any other variables), while x3 is the sum of x1 and x2. When only the data is available and the
objective is to satisfy the condition given in (3), the solution may not be unique. For example, the
identity matrix (I ∈ R3×3) and the following matrix also satisfies (3) for the aforementioned setup:

[
0 −1 1
0 1 0
0 0 1

]
. (6)

This example illustrates that observational data alone is insufficient to uniquely determine the causal
relations. In general, when only observational data are available, and no additional assumptions
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are imposed, multiple causal graphs can generate the same data (Spirtes et al., 2001). Furthermore,
this example shows how causal discovery differs from a regression problem. While both solutions
may be acceptable in the context of regression, only one solution reveals the underlying causal
structure. In other words, what separates this approach from a linear algebra regression is that we
are not looking for any solution of (3) but the one that describes the associations according to the
underlying causal structural matrix.

4 INDUCED COVARIANCE-BASED CAUSAL DISCOVERY

To address the challenges discussed above, it is beneficial to explore certain properties the causal
structural matrix D. The structure of D can provide valuable insights into the relations among
variables. Any kth row of the structural matrix D, whose elements are all equal to zero except for
the element in column k, which is equal to 1, corresponds to an independent random variable. Since
all variables are linear combinations of the independent variables, the rank of D is equal to the
number of independent variables. This observation suggests that the structure of D can be used for
narrowing down the number of potential solutions for D.

To further constrain the possible solutions for D, the following theorem establishes a connection
between the statistical properties of the data and the structural matrix (Sullivant et al., 2010). More
specifically, it shows that selecting a specific value for the variable D, uniquely determines the value
of the covariance matrix of the data, indicating that D imposes a constraint on the covariance matrix.
Theorem 1. Let D ∈ Rn×n denote the causal structural matrix that describes the depen-
dencies among the cause and effect variables stacked in the zero-mean random vector x =
[x1, x2, . . . , xn]

T ∈ Rn, that is x = Dx. Then the covariance matrix of x is given by DσDT , in
which σ ∈ Rn×n is diagonal, with diagonal element σii = Var(xi) for every i ∈ {1, 2, . . . , n}.

Proof. Since the components of x have zero mean, we have Cov(xi, xj) = E[xixj ], for all i, j ∈
{1, 2, . . . , n}. Under the assumed linear structure, we have

xi = dT
i x, xj = dT

j x,

where dT
i and dT

j denote the i-th and j-th rows of D, respectively. Then we have

Cov(xi, xj) = E[xixj ] = E[dT
i xd

T
j x]. (7)

Since the only nonzero elements in dT
i xd

T
j x occurs when both dj and di have non-zero elements

in the same positions, i.e., sharing the same independent (causal) variable, we have

E[xi, xj ] = dT
i σdj . (8)

By applying the same procedure to all (i, j) pairs, the theorem is proven.

This theorem restricts the solutions of (3) by imposing that the correct solution must not only satisfy
(3) but also fulfill the condition Σ = DσDT , where DσDT is the induced covariance by D and
Σ ∈ Rn×n is the covariance matrix of data, which can be estimated directly from data.

By using the properties of D and its implications on the structure of data, we can formulate the
following optimization problem for structure recovery:

argmin
D
{rank(D) + λTr(D)}

subject to X = DX,

Σ = DσDT ,

∥dT
i ∥0 ≤ τ ∀i ∈ {1, 2, . . . , n}.

(9)

In this formulation, D ∈ Rn×n represents the structural matrix, while X = [x1,x2, . . .xm] ∈
Rn×m is the dataset. The covariance matrix of the data is represented by Σ ∈ Rn×n, and σ ∈ Rn×n

is a diagonal matrix whose diagonal entries correspond to those of Σ. The term dT
i represents the

i-th row of D. The operator ∥ ·∥0 returns the number of non-zero elements in a vector. Additionally,
τ controls the number of independent variables, and λ serves as a scaling parameter. The rank(D)
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term prevents the model from becoming overly complicated, and tr(D) discourages the solution
from being close to the I , which implies all variables are independent.

Rank (the number of non-zero singular values) requires combinatorial calculation, which makes the
problem intractable. To address this challenge, the idea proposed in (Mohimani et al., 2009) is used,
which approximates ∥.∥0 as:

∥x∥0 ≈ 1− e−
x2

σ2 . (10)

By combining these ideas, the final problem formulation is

argmin
D
{

n∑
i=1

(1− e−
s2i
σ2 ) + λ

n∑
i=1

(1− e−
d2
(i,i)

σ2 )}

subject to X = DX,

Σ = DσDT ,

∥dT
i ∥0 ≤ τ ∀i ∈ {1, 2, . . . , n},

(11)

where si, ∀i ∈ {1, 2, . . . , n} are the singular values of D.

To present the final algorithm for obtaining the solution of (11), it is necessary to consider ∥dT
i ∥0 ≤

τ ∀i ∈ {1, . . . , n}, which also requires combinatorial calculations. To handle that, we propose
solving the following optimization problem:

argmin
D
{

n∑
i=1

(1− e−
s2i
σ2 ) + λ

n∑
i=1

(1− e−
d2
(i,i)

σ2 )}

subject to X = DX,

Σ = DσDT ,

(12)

and for each row of the resulting D, we retain only the τ entries with the largest absolute values.
This process is iterated N times.

Due to noise effects on data, (12) might not have a solution, therefore, some relaxation on the
constraint might be required. This is done as follows:

argmin
D
{

n∑
i=1

(1− e−
s2i
σ2 ) + λ

n∑
i=1

(1− e−
d2
(i,i)

σ2 )}

subject to ∥X −DX∥2F ≤ ϵ1,

∥Σ−DσDT ∥2F ≤ ϵ2,

(13)

where ϵ1 and ϵ2 can be tuned to achieve the best result.

Solving (11) requires an initial estimate for D, and the final value of the objective function depends
on this initial estimate. To obtain the optimal solution, we propose executing the algorithm multiple
times, each with a distinct random initialization. The solution that yields the lowest value of the
objective function is then retained as the final result. The SLCD algorithm pseudocode is presented
in appendix A.

5 SLCD, BEYOND LINEARITY

The proposed framework can be further extended to scenarios in which the SCMs governing the
causal relations are nonlinear. The idea relies on the Taylor series expansion of the governing func-
tion. Suppose xi = h(x), where xi is the ith entry of x and is causally related to x through the
deterministic function h : Rn → R. Assuming h ∈ C∞(Rn) (the set of infinitely differentiable
functions on Rn), the Taylor series expansion implies that xi can be expressed as a polynomial in
the entries of x. Based on this observation, the following theorem establishes the induced covariance
for this scenario.

5
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Theorem 2. Suppose x = g(x), where x ∈ Rn is a vector of random variables and g : Rn → Rn

represents the causal relations such that gi ∈ C∞(Rn) for all i ∈ {1, 2, . . . , n}. Then, x can
be represented as x =

∑∞
i=1 Dix

i, where Di ∈ Rn×n denotes the coefficient matrices for all
i ∈ {1, 2, . . . , n}, and xi = (xi

1, . . . , x
i
n)

T is the vector obtained by raising each entry of x to the
i-th power. The covariance matrix of x is then given by

Σ =

∞∑
i=1

∞∑
i=j

DiσijD
T
j , (14)

whereσij is a diagonal matrix with its lth diagonal elements be E[xi
lx

j
l ] for all l ∈ {1, 2, . . . , n}.

The proof is deferred to Appendix C.1. Similar to the linear case discussed previously, Theorem 2
provides a way to formulate an optimization problem with a constraint stronger than simply min-
imizing the reconstruction error, i.e., regression. To formulate the optimization problem for the
nonlinear case, let X ∈ Rn×m be the dataset containing m samples. One can then determine the
coefficient matrices that satisfy the following equations:

X =

∞∑
i=1

DiX
i, (15)

Σ =

∞∑
i=1

∞∑
i=j

DiσijD
T
j , (16)

where Xi denotes the elementwise i-th power of X , Σ is the covariance matrix of the data, and σij

is a diagonal matrix whose lth diagonal entry is given by E[xi
lx

j
l ] for all l ∈ {1, 2, . . . , n}.

6 INDUCED-COVARIANCE: THEORETICAL ANALYSIS

In this section, a theoretical analysis of the proposed method is presented by examining the behavior
of solutions that satisfy both the reconstruction and induced covariance constraints. The analysis
focuses on the local properties of these solutions, in particular on whether they correspond to isolated
points or manifolds, as well as on their sensitivity to the perturbations in the covariance matrix.
Theorem 3 (Local Uniqueness of Solutions). Let F (D) = Σ −DσDT , where Σ ∈ Rn×n is the
covariance matrix of the data and σ ∈ Rn×n is its diagonal part. Let X ∈ Rn×m be the data matrix,
and define S = {∆ ∈ Rn×n : ∆X = 0}. Assume that D∗ satisfies F (D∗) = 0 and D∗X = X ,
and suppose that no nonzero ∆ ∈ S makes D∗σ∆T skew-symmetric. Then there exists r > 0 such
that any D with F (D) = 0, DX = X , and ∥D −D∗∥F < r must satisfy D = D∗.

The proof is provided in Appendix C.2. This theorem establishes that, under suitable conditions on
D∗σ∆T , the solutions of F (D) = 0 subject to DX = X is locally unique. Next, the following
theorem analyzes the sensitivity of the solutions of F (D) = 0 to perturbations of the covariance
matrix.
Theorem 4 (Sensitivity Under Covariance Perturbations). Let F (D) = Σ −DσD⊤, where Σ ∈
Rn×n is the covariance matrix of data and σ ∈ Rn×n is its diagonal part. Suppose D∗ satisfies
F (D∗) = 0 and D∗X = X , where X ∈ Rn×m is the data matrix. Define S = {∆ ∈ Rn×n |
∆X = 0 }. Assume that no nonzero ∆ ∈ S makes D∗σ∆⊤ skew-symmetric. Let c denote the
smallest singular value of D∗σ∆⊤+∆σD∗⊤ restricted to S. Consider now a perturbed covariance
matrix Σ+∆Σ, and let D satisfy the perturbed equation

Σ+∆Σ−DσD⊤ = 0.

If ∥∆Σ∥F < c2

4∥σ∥2
, then D cannot satisfy

c−
√
c2 − 4∥σ∥2 ∥∆Σ∥F

2∥σ∥2
< ∥D −D∗∥F <

c+
√

c2 − 4∥σ∥2 ∥∆Σ∥F
2∥σ∥2

.

The proof is provided in Appendix C.3. This theorem establishes a non-feasible region for the
distance between the perturbed and unperturbed solutions of the induced covariance equation.
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Figure 1: Structure estimation error for various datasets and various hyperparameters.
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Figure 2: Reconstruction error for various datasets and various hyperparameters.

If there exist values of ∆ ∈ S\{0} such that D∗σ∆T is skew-symmetric, then the nearby solutions
may not be isolated; that is, there may exist manifolds of solutions along those directions. This
necessitates additional restrictions on the solutions to distinguish these directions, making the use of
regularization essential in such cases. For this reason, SLCD penalizes the solutions based on their
rank and trace in order to further enforce constraints that yield isolated solutions.

7 SIMULATION RESULTS AND ANALYSIS

This section presents the results of our simulation studies, conducted on both synthetic and real-
world datasets. The synthetic datasets are generated from a known causal structure matrix, and
the evaluation examines how accurately the proposed method recovers this underlying structure.
For real-world validation, we use the Sachs dataset (Sachs et al., 2005) and assess the ability of the
method to identify the corresponding causal pathways. For benchmarking, we evaluate our approach
against the PC, GES, LiNGAM-ICA, LiNGAM-Direct, and BIC exact search causal discovery meth-
ods.

For comprehensive reporting, we evaluate following metrics: the data reconstruction error, the re-
covery error of the causal matrix, the recovery error of the covariance matrix, precision (proportion
of the number of correct estimated links to the total number of estimated links), and recall (pro-
portion of the number of correct estimated links to the total number of links in the true graph).
Let D̂ ∈ Rn×n be the estimated matrix obtained from the proposed algorithm, and X ∈ Rn×m

represent the training data. The reconstruction error is then defined as:
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Dataset IV count* x1 x2 x3 Other Entries
Dataset 1 1 U(-2.5, 2.5) 2x1 0.4x1 -

Dataset 2 2 U(-2.5, 2.5) U(-2.5, 2.5) 0.3x1 [x4] = [1 2]

[
x1

x2

]
Dataset 3 2 U(-2.5, 2.5) U(-2.5, 2.5) x1 + 3x2

[
x4

x5

]
=

[
2 3 0
0 2 0.5

] [x1

x2

x3

]

Dataset 4 3 U(-2.5, 2.5) U(-2.5, 2.5) N(0,4)

[
x4

x5

x6

]
=

[
1 0 0.3
2 3 0
0 2 0.5

][
x1

x2

x3

]

Dataset 5 3 U(-2.5, 2.5) U(-2.5, 2.5) N(0,4)

x4

x5

x6

x7

 =

1 0 0.5
0 1 2
1 0 3
0 1 1

[
x1

x2

x3

]

Table 1: Dataset Information. * IV count refers to the number of independent variables in each
dataset.

Method Precision (%) Recall (%) F1 (%)
PC 44 24 31

GES 36 29 32
LiNGAM-ICA 29 41 34

LiNGAM-Direct 29 47 36
SLCD 42 47 44

Table 2: Performance comparison on the Sachs dataset when only 10% of the samples are used for
each algorithm. SLCD parameters: λ = 5× 10−5, σ = 0.01, τ = 2.

1

nm
∥X − D̂X∥2F . (17)

We define the true structural matrix as D ∈ Rn×n and, thus, the recovery error of structural matrix
will be:

1

n2
∥D − D̂∥F . (18)

Let Σ ∈ Rn×n represent the true covariance matrix of the original data with Σ ∈ Rn×n, then the
recovery error of the covariance matrix is defined as

1

n2
∥Σ− D̂σD̂T ∥F , (19)

in which, σ is a diagonal matrix with diagonal elements of Σ.

7.1 SYNTHETIC DATA

For simulation on synthetic data, five distinct datasets were generated, henceforth referred to as
Dataset 1, Dataset 2, Dataset 3, Dataset 4, and Dataset 5. Each dataset comprises 1000 samples.
Table 1 provides detailed information on the generation process for each dataset. The variables
xi, where i ∈ {1, 2, . . . , 7}, represent the elements of the data vector x = [x1, x2, . . . , x7]

T . The
presence of a ’-’ symbol in place of a variable indicates its absence from the corresponding dataset,
reflecting the varying dimensionality across datasets. The table indicates the data distribution from
which the samples of independent variables are drawn. For dependent variables, the table specifies
the linear combinations used to generate them.

U(a, b) represents the uniform distribution of data in the [a, b] interval. N(µ, σ2) represents a Gaus-
sian random variable with mean µ and variance σ2. By constructing the datasets in this manner,
the variables exhibit the linear sparse relations that SLCD is specifically designed to handle. This

8
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Figure 3: Covariance matrix estimation error for various datasets and various hyperparameters.

Method Precision (%) Recall (%) F1 (%)
PC 55 35 43

GES 20 24 22
LiNGAM-ICA 21 53 30

LiNGAM-Direct 31 65 42
SLCD 32 53 40

Table 3: Performance comparison on the Sachs dataset when all of the samples are used for each
algorithm. SLCD parameters: λ = 0.01, σ = 1, τ = 2.

approach also enables the evaluation of algorithm performance across various data dimensions. Ad-
ditionally, the datasets include independent variables with different data distributions, allowing for
the assessment of algorithm robustness under diverse distributional scenarios. It is important to
note that for the dependent variables, each linear combination results in a convolution of the data
distributions, further contributing to the variability in the distributions of the dataset’s variables.

Figures 1 through 3 display the algorithm’s simulation results on performance metrics for various
hyperparameter settings. The results reveal moderate sensitivity to hyperparameters, with effective
recovery of the underlying structure when parameters are chosen appropriately. The figures also in-
dicate a broad range of satisfactory parameters, demonstrating the method’s robustness. The detailed
performance of SLCD in recovering the structural matrix of each dataset for the hyperparameter pair
(σ, λ) = (0.3, 5) is presented in Table 5 in the Appendix B. It shows that the method successfully
recovers the structural matrix of all datasets, with the exception of Dataset 1.

Table 4 presents the simulation results of SLCD in comparison with several well-known causal
discovery algorithms. The results indicate that SLCD outperforms the other methods by an average
of 35% in precision and 41.5% in recall across Datasets 2 through 5. While all methods exhibit
challenges with Dataset 1, SLCD consistently demonstrates superior performance in the remaining
datasets.

SLCD demonstrates suboptimal performance on Dataset 1. This can be attributed to the structure
of Dataset 1, wherein only one independent variable exists, and all other variables are scalar multi-
ples thereof. This configuration does not provide sufficient information to unambiguously identify
the independent variable, as any of the variables could potentially fulfill this role. This ambigu-
ity introduces uncertainty into the algorithm, potentially leading to diverse solutions. However, as
the structural complexity increases with the introduction of additional independent variables, the
informational content of the data becomes more robust, facilitating more accurate recovery of the
underlying causal structure.

9
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Method PC GES LG ICA LG Direct BIC Search SLCD
Precision (%) 33 50 0 33 0 0

Recall (%) 100 50 0 50 0 0
Number of Correct link estimation 2 1 0 1 0 0

Dataset 1
Method PC GES LG ICA LG Direct BIC Search SLCD

Precision (%) 50 60 25 0 75 100
Recall (%) 66 100 33 0 100 100

Number of Correct link estimation 2 3 1 0 3 3
Dataset 2

Method PC GES LG ICA LG Direct BIC Search SLCD
Precision (%) 37 43 0 0 43 100

Recall (%) 60 60 0 0 60 100
Number of Correct link estimation 3 3 0 0 3 5

Dataset 3
Method PC GES LG ICA LG Direct BIC Search SLCD

Precision (%) 100 100 20 10 67 100
Recall (%) 100 100 33 17 100 100

Number of Correct link estimation 6 6 2 1 6 6
Dataset 4

Method PC GES LG ICA LG Direct BIC Search SLCD
Precision (%) 30 75 8 13 54 100

Recall (%) 37 75 12 25 100 100
Number of Correct link estimation 3 6 1 2 6 8

Dataset 5

Table 4: Performance comparison of PC, GES, LG ICA (LINGAM IC), LG Direct (LINGAM Di-
rect), BIC Exact Search, and SLCD algorithms.

7.2 REAL-WORLD DATASET

Tables 2 and 3 present the performance of the competing methods on the Sachs dataset under differ-
ent sample-size conditions, evaluated in terms of precision, recall, and F1 score (the harmonic mean
of precision and recall). These experiments are designed to assess how each method performs when
different amounts of data are available.

Table 2 reports the results when only 10% of the dataset is provided to each algorithm. In this setting,
the sample subset is selected uniformly at random from the full dataset and used as the input for each
method. As the results indicate, SLCD achieves the highest performance under this limited-data
regime, largely because it does not rely on conditional independence tests, which typically require
larger sample sizes to produce reliable outcomes.

Table 3 shows the results obtained when the full dataset is used. In this case, SLCD performs
competitively with the baseline methods. Although SLCD is designed for linear sparse structures,
the results suggest that it retains a degree of adaptability even when the underlying system, such as
the Sachs dataset, does not fully conform to a linear model.

8 CONCLUSION

This paper proposes an algorithm for causal discovery within a linear sparse structure, leveraging
properties of the causal structure matrix, specifically its rank, which reflects the number of inde-
pendent variables, and the notion of induced covariance. Simulation studies confirm the algorithm’s
effectiveness across diverse configurations. Our next direction is to refine the independence criteria.
While induced covariance was useful, it does not fully ensure independence across all the scenarios.
Addition of stronger constraints can further enhance this framework. This extension would enhance
the algorithm’s versatility and reliability across a wider range of applications and data types.

10
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THE USE OF LARGE LANGUAGE MODELS (LLMS) STATEMENT

Large language models were used exclusively for language refinement, including proofreading and
grammatical correction.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide the pseudocode of the proposed algorithm in Appendix A.
The complete implementation code and the datasets used in our experiments are available in the
supplementary material. In addition, proofs of the theorems are presented either in the main text or
in Appendix C.
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A ALGORITHM PSEUDOCODE

The SLCD pseudocode:

Algorithm 1 Sparse Linear Causal Discovery ( SLCD) Algorithm.

Inputs:
X ∈ Rn×m, N , M , λ, σ, τ

for t = 1 : M do
Initialize:
D0 ∈ Rn×n : randomly
if (t == 1) then

Jmin ← J(D0)
Dopt ←D0

end if
for k = 1 : N do

D ← Solve (12) (e.g. fmincon (MATLAB))
if Jmin > J(D) then

Jmin ← J(D)
Dopt ←D

end if
end for

end for
return Dopt

B STRUCTURAL RECOVERY RESULTS OF SLCD ACROSS DIFFERENT
DATASETS

Table 5 shows the recovered structural matrix using SLCD as well as the ground truth structural
matrix for each dataset with (σ, λ) = (0.3, 5).

C PROOFS

C.1 PROOF OF THEOREM 2

Let x ∈ Rn be a random vector with the following causal structure:

x =

∞∑
i=1

Dix
i, (20)

where xi is the vector obtained by elementwise raising of x to the i-th power, and Di is the corre-
sponding coefficient matrix.

12
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Dataset Structure matrix Estimated structure matrix (σ, λ)

Dataset 1

[
1 0 0
2 1 0
0.4 1 0

]  0 0.5 4.4× 10−7

2 1 1.1× 10−6

−1.2× 10−7 0.2 0

 (0.3, 5)

Dataset 2

 1 0 0 0
0 1 0 0
0.3 1 0 0
1 2 0 0


 1 0 −8.8× 10−4 0

0 1 −3.3× 10−4 0
0.3 0 −2.7× 10−4 0
1.002 1.999 0 0

 (0.3, 5)

Dataset 3


1 0 0 0 0
0 1 0 0 0
1 3 0 0 0
0 2 0 0 0
2 1 0 0 0




0.999 0.0497 0 0 0
0 1.000 0 0 0.0102

0.976 3.049 0 0 0
−0.0147 1.999 0 0 0
1.990 1.099 0 0 0

 (0.3, 5)

Dataset 4


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0.3 0 0 0
2 3 0 0 0 0
0 2 0.5 0 0 0




0.999 −0.009 0 0 0 0
0.016 0.999 0 0 0 0
−.0432 0 0.997 0 0 0
0.987 0 0.3019 0 0 0
2.048 2.982 0 0 0 0
0 1.995 0.483 0 0 0

 (0.3, 5)

Dataset 5



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0.5 0 0 0 0
0 1 2 0 0 0 0
1 0 3 0 0 0 0
0 1 1 0 0 0 0





0.997 .0525 0 0 0 0
−0.082 0.994 0 0 0 0 0
0.057 0 0.998 0 0 0 0
1.025 0 0.491 0 0 0 0
0 0.956 2.024 0 0 0 0

1.168 0 2.986 0 0 0 0
0 0.975 1.025 0 0 0 0

 (0.3, 5)

Table 5: True structural matrix and the output of SLCD.

To calculate the covariance matrix of the data, we need to compute E[xixj ]. Using equation 20, we
have

E[xixj ] = E

[( ∞∑
l=1

d
(l)T
i xl

)( ∞∑
k=1

d
(k)T
j xk

)]
, (21)

where d
(l)T
i and d

(k)T
j are the ith and jth rows of the matrix Dl and Dk, respectively.

Applying this procedure to all pairs of entries, we obtain

Σ =

∞∑
i=1

∞∑
j=1

DiσijD
T
j , (22)

where σij is a diagonal matrix whose lth diagonal element is E[xi
lx

j
l ] for all l ∈ {1, 2, . . . , n}.

C.2 PROOF OF THEOREM 3

Let F (D), Σ, σ, and X be as in Theorem 3. Suppose D∗ satisfies both F (D) = 0 and D∗X = X .
Let D be another solution of F (D) = 0 satisfying DX = X , and define ∆ = D −D∗. Then
∆X = 0. We expand

F (D) = F (D∗ +∆) = Σ− (D∗ +∆)σ(D∗ +∆)T

= Σ−D∗σD∗T − (D∗σ∆T +∆σD∗T )−∆σ∆T

Using F (D∗) = 0 gives

F (D) = −
(
D∗σ∆T +∆σD∗T )−∆σ∆T = −L(∆)−Q(∆),

where
L(∆) = D∗σ∆T +∆σD∗T , Q(∆) = ∆σ∆T .

13
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Since F (D) = 0, we obtain

L(∆) +Q(∆) = 0, ∆X = 0. (23)

Define the subspace
S = {∆ ∈ Rn×n |∆X = 0 }.

By assumption, no nonzero ∆ ∈ S makes D∗σ∆T skew-symmetric. This implies that

L(∆) = 0, ∆ ∈ S =⇒ ∆ = 0.

Thus L is injective on S, and consequently there exists c > 0 such that

∥L(∆)∥F ≥ c ∥∆∥F , ∀∆ ∈ S. (24)

For the quadratic term we use submultiplicativity:

∥Q(∆)∥F = ∥∆σ∆T ∥F ≤ ∥σ∥2 ∥∆∥2F , ∀∆ ∈ S. (25)

Combining (23), (24), and 25 yields

c ∥∆∥F ≤ ∥L(∆)∥F = ∥Q(∆)∥F ≤ ∥σ∥2 ∥∆∥2F ,

and hence
∥∆∥F ≥

c

∥σ∥2
.

This establishes that no other solution lies within the ball {D : ∥D − D∗∥F < r } of radius
r = c

∥σ∥2
around D∗. Hence D∗ is isolated and locally unique.

C.3 PROOF OF THEOREM 4

Proof. Recall that F (D) = Σ −DσD⊤ and that D∗ satisfies F (D∗) = 0 and D∗X = X . Let
the covariance matrix be perturbed as Σ 7→ Σ+∆Σ, and let D satisfy the perturbed relation

Σ+∆Σ−DσD⊤ = 0, DX = X.

Define ∆ = D −D∗ and
S = {∆ ∈ Rn×n |∆X = 0 }.

Then ∆ ∈ S, and expanding F (D) gives

0 = Σ+∆Σ−DσD⊤ = Σ+∆Σ− (D∗ +∆)σ(D∗ +∆)⊤

= Σ−D∗σD∗⊤︸ ︷︷ ︸
0

−
(
D∗σ∆⊤ +∆σD∗⊤)︸ ︷︷ ︸

L(∆)

−∆σ∆⊤︸ ︷︷ ︸
Q(∆)

+∆Σ.

Hence
L(∆) +Q(∆) = ∆Σ, ∆X = 0. (26)

As in the proof of Theorem 3, the assumption that no nonzero ∆ ∈ S makes D∗σ∆⊤ skew-
symmetric implies that L is injective on S. Consequently, there exists c > 0 such that

∥L(∆)∥F ≥ c ∥∆∥F , ∀∆ ∈ S, (27)

where
c = inf

∆∈S
∥∆∥F=1

∥L(∆)∥F .

For the quadratic term, submultiplicativity yields

∥Q(∆)∥F = ∥∆σ∆⊤∥F ≤ ∥σ∥2 ∥∆∥2F , ∀∆ ∈ S. (28)

Combining (26) and 28 gives

c ∥∆∥F ≤ ∥L(∆)∥F = ∥∆Σ−Q(∆)∥F ≤ ∥∆Σ∥F+∥Q(∆)∥F ≤ ∥∆Σ∥F+∥σ∥2 ∥∆∥2F . (29)
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Let r = ∥∆∥F . Then from 29, r satisfies the quadratic inequality

∥σ∥2 r2 − c r + ∥∆Σ∥F ≥ 0. (30)

If the discriminant c2 − 4∥σ∥2 ∥∆Σ∥F is negative, the inequality imposes no constraint on r. If

∥∆Σ∥F <
c2

4 ∥σ∥2
,

then (30) implies that r cannot lie strictly between the two real roots. That is, ∥D −D∗∥F = r
cannot satisfy

c−
√
c2 − 4∥σ∥2 ∥∆Σ∥F

2 ∥σ∥2
< r <

c+
√
c2 − 4∥σ∥2 ∥∆Σ∥F

2 ∥σ∥2
.
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