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ABSTRACT

Causal models seek to unravel the cause-effect relationships among variables from
observed data, as opposed to mere mappings among them, as traditional regres-
sion models do. This paper introduces Sparse Linear Causal Discovery (SLCD), a
novel causal discovery algorithm designed for settings in which variables exhibit
linearly sparse relationships. In such scenarios, the causal links represented by
directed acyclic graphs (DAGs) can be encapsulated in a structural matrix. The
proposed approach leverages the structural matrix’s ability to reconstruct data and
the statistical properties it imposes on the data to identify the correct structural
matrix. This method does not rely on independence tests or graph fitting pro-
cedures, making it suitable for scenarios with limited training data. Simulation
results demonstrate that the SLCD outperforms the well-known PC, GES, BIC
exact search, and LINGAM-based methods in recovering linearly sparse causal
structures by an average of 35% in precision and 41.5% in recall across all tested
datasets.

1 INTRODUCTION

Causal learning is an approach used to extract and understand cause-and-effect relationships from
data. This approach seeks to uncover the fundamental structures that determine how data are re-
lated [Shaska & Mitra (2025)). This structural understanding is at a deeper level than that observed
in statistical learning, which is focused on learning various mappings among data|Scholkopf & von
Kiigelgen| (2022)). Discovering causal relations plays a crucial role in the scientific method (Camps-
Valls et al.| (2023). A comprehensive causal model of a phenomenon could describe the observed
data and consistently make predictions. The advantage of this type of learning over statistical learn-
ing, which identifies mere associations between variables, lies in its generalization and robustness
to distribution changes Scholkopf et al.|(2021). Furthermore, causal relations may be transferable to
other problems, which constitutes an additional benefit Scholkopf et al.[(2021)).

Several approaches have been proposed for causal discovery |Pearl & Vermal (1995); |Spirtes et al.
(2001)); Shimizu et al.| (2006} 2011); Meek| (1997); [Chickering (2002); [Yuan & Malone| (2013).
These methods are generally classified into two categories [Scholkopf & von Kiigelgen| (2022):
constraint-based and score-based methods. In constraint-based methods, conditional independencies
among variables are tested, and the inferred relations are represented using a DAG that best reflects
them. Notable examples of such algorithms include inductive causation (IC) Pearl & Vermal(1995),
Spirtes-Glymour-Scheines (SGS) [Spirtes et al.| (2001), Peter-Clark (PC) [Spirtes et al.| (2001) and
linear non-Gaussian acyclic model (LINGAM) based methods [Shimizu et al.| (2006) and |Shimizu
et al.[{(2011). IC and SGS algorithms examine the conditional independencies between each pair of
variables conditioned on any subset of the remaining variables and use this information for form-
ing the causal graph. This approach can be computationally intensive due to the large number of
subsets. The PC algorithm mitigates this challenge by initiating the search from a complete graph
and systematically removing edges, sequentially testing the conditional independencies of each pair
and their neighbors. Although the PC algorithm reduces computational cost, it still depends on
conditional independence tests, which are computationally demanding and require substantial data,
particularly in high-dimensional settings, to produce reliable results. Unlike the previously men-
tioned methods that rely heavily on conditional independence tests, LINGAM-based approaches
assume non-Gaussianity and linearity in the data. By leveraging these assumptions, LINGAM aims
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to identify the causal graph. Although alleviating the challenge of conditional tests, non-Gaussianity
is a limiting assumption.

Alternatively, score-based methods use a scoring function to evaluate graphical representations. Pos-
sible graphs are tested against the data, and the graph with the highest score is selected. Some of
the prominent methods in this category are greedy equivalent search (GES) Meek| (1997); |Chick-
ering| (2002), and Bayesian information criterion (BIC) exact search [Yuan & Malone| (2013). The
primary drawback of these methods|Meek|(1997); |Chickering| (2002); |Yuan & Malone|(2013) is the
exponential growth of the possible graphs as the number of variables (nodes of the graph) increases,
which results in higher computation demands.

Another line of work in causal discovery is causal representation learning |Scholkopf et al.| (2021));
Varici et al.[(2024)). In this setting, data are assumed to be generated from high-level latent variables,
which are mapped through transformations to the observed data. The objective is to identify both the
relations among the latent variables and the transformations that connect them to the observed data.
This is carried out in such a way that the resulting representation remains consistent with causal
interventions.

However, these approaches do not adequately address scenarios with limited data, where conditional
independence tests often fail to yield reliable results. Moreover, causal representation learning typ-
ically requires access to both the dataset and its intervened versions, which can be a significant
limitation. Therefore, despite the emergence of several methods for causal discovery, there remains
no algorithm well-suited for situations involving small datasets and the absence of feasible interven-
tions.

The primary contribution of this paper is the development of a novel causal discovery algorithm
designed for linear sparse structures. The key contributions are as follows:

* We propose Sparse Linear Causal Discovery (SLCD), a new algorithm that recovers the
structural matrix that encapsulates causal graph information by leveraging induced covari-
ance, data reconstruction, rank, and diagonal structure, specifically for settings where vari-
able relationships can be effectively modeled as sparse linear dependencies.

* We introduce the concept of induced covariance, a statistical property implied by causal
structures, and provide its formal mathematical characterization.

¢ We extend the induced covariance framework to accommodate nonlinear causal structures.

* We provide a theoretical analysis of structural matrices that satisfy both induced covariance
and reconstruction constraints, establishing results on local uniqueness and sensitivity.

* We demonstrate through experiments that the proposed method outperforms established
causal discovery approaches, achieving on average a 35% improvement in precision and a
41.5% improvement in recall across all tested datasets.

The rest of the paper is organized as follows. Section 2] provides a brief overview of the causal
learning framework. Section [3] outlines the problem statement and associated challenges, while
Sectiond]introduces the proposed approach (SLCD). Section[5]discusses the generalization of SLCD
to settings with nonlinear causal relations. Section [6] presents the theoretical analysis of structural
matrices that satisfy both induced covariance and reconstruction constraints. Section[7| presents and
analyzes the simulation results, and Section [8[concludes the paper.

2 PRELIMINARIES

To state the problem, we first review the concept of a structural causal model (SCM), a popular
method for causal relations modeling [Scholkopt & von Kiigelgen| (2022)). In this framework, a set
of random variables {y1,y2, . . . Y } is represented as the vertices of a directed acyclic graph (DAG),
and the following relations hold:

yz:fz(Puuz) VZ€{17277n}a (])
with f; being a deterministic function, P; (parents) represents the set of variables that influence
y;, and u; is an unexplained noise random variable |Scholkopf et al.| (2021). In the graphical SCM

representation, a directed edge exists from each member of P; to y; for i € {1,2,...,n}. The
process of causal discovery involves identifying f; and P; foralln € {1,2,...,n}.
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3 PROBLEM STATEMENT

Letx = [x1,%2,...,2,]T € R™ be a vector that contains all the random variables for which causal
relationships are to be discovered. We define Z as the set of indices for independent variables and D
as the set of indices for dependent variables. According to the SCM model, each x; fori € Dis a
function of a subset of independent variables P;, which are considered the parents of z;. We assume
that functions f;,Vi € {1,2,...,n} are linear and |P;| < 7, where |.| represents the cardinality of a
set and 7 is a model parameter. Under these assumptions, we can represent x; as follows:

z; =dl x, )

where d; € R is a vector with fewer than 7 non-zero elements, corresponding to the independent
variables upon which x; depends. Given this notation, the relationship for all variables can be
expressed as

x = Dz, 3)

where D € R™*™ is a matrix constructed from the vectors d;,Vi € {1,2,...,n} as its rows. The
matrix D contains all pertinent information on the causal structure of this model, and an accurate
estimation of D reveals the underlying causal relations.

In practice, there is often limited or no prior knowledge about the underlying structure of the data,

and only the dataset itself is available. We use X = [z1,@2,... %] € R™ ™ to represent the
given dataset, where each &; € R" is a sample. Applying (3), we have
X =DX. 4)

The primary objective is to determine the causal structure (D) from X . Estimation of D does not
involve conditional independence tests, making it suitable when the number of data samples are
limited, especially in high-dimensional data.

3.1 CHALLENGES

In the estimation of D, several challenges must be addressed. Based on the previous discussion, it
can be inferred that D must satisfy the condition expressed in (3)). However, as demonstrated in the
following example, this condition alone is insufficient for uniquely determining the causal structure.

Example 1. Suppose data is created as follows

T 1 0 0] [z
H - [o i o] H | ®
I3 1 1 0 I3

This structure suggests that 21 and x5 are independent variables (as they are not linear combinations
of any other variables), while x3 is the sum of 1 and 5. When only the data is available and the
objective is to satisfy the condition given in (3, the solution may not be unique. For example, the
identity matrix (I € R3*3) and the following matrix also satisfies (3):

0 -1 1
lo 1 0] . (6)
0 0 1

This is a common problem in causal discovery as multiple graphs can describe the same data|Spirtes
et al.[(2001)). This example also illustrates how causal discovery differs from a regression problem.
While both solutions may be acceptable in the context of regression, only one solution reveals the
underlying causal structure. In other words, what separates this approach from a linear algebra
regression is that we are not looking for any solution of (3) but the one that describes the associations
according to cause-and-effect relations.

4 INDUCED COVARIANCE-BASED CAUSAL DISCOVERY

To address the challenges discussed above, it is beneficial to explore certain properties D, which
represents the causal relations.
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The structure of D can provide valuable insights into the relations among variables. Any k™ row of
the structural matrix D, whose all elements are all equal to zero except for the element in column
k, which is equal to 1, corresponds to an independent random variable. Since all variables are
linear combinations of these variables, the rank of D corresponds to the number of independent
variables. This observation suggests that the structure of D can be used to infer the statistical
relationships between the variables. This property is particularly useful for narrowing down the
number of potential solutions for D.

To further constrain the possible solutions for D, the following theorem establishes a connection
between the statistical properties of the data and the structural matrix. More specifically, it shows
that selecting a specific value for variable D, uniquely determines the value of the covariance matrix
of the data, indicating that D imposes a constraint on the covariance matrix resulting in induced
covariance.

Theorem 1. Consider D € R™*" to be a matrix that represents a linear causal structure governing
the zero mean variables = [r1,2,...,2,]7 € R"™. The covariance matrix of these variables
is given by Do D7, in which & € R"*" is a diagonal matrix with diagonal elements being the
variance of variables .

Proof. Let E be the expected value operator. To prove this theorem, we derive an expression for
E[x;, z;] where x; and z; are two components of the random vector . Based on the causal structure,
the following holds

Ti = d;fp:c, @)
z;=d, (8)

in which dzT and df are the rows ¢ and j of the structural matrix D. Thus,
Elz, ;] = E[d] zd] z). ©)

Since the only nonzero elements in d xd]  occurs when both d; and d; have non-zero elements
in the same positions, then

Elzi,z;] = d] od] . (10)
By applying the same procedure to all (i, j) pairs, the theorem is proven. O
This theorem restricts the solutions of (3)) by imposing that the correct solution must not only satisfy

but also fulfill the condition ¥ = Do DT, where Do D7 is the induced covariance by D and
3 € R™*™ is the covariance matrix of data, which can be estimated directly from data.

By using the properties of D and its implications on the structure of data, we can formulate the
following optimization problem for structure recovery:

arg min{rank(D) + ATr(D)}
D

subjectto X = DX,

(1)
> = Do D7,
ldFllo=7 Vie{1,2,...,n}.
In this formulation, D € R™*™ represents the structural matrix, while X = [x1,@2,...xT:] €

R™*™ js the dataset. The covariance matrix of the data is represented by ¥ € R"*™, and o € R™"*"
is a diagonal matrix whose diagonal entries correspond to those of 3. The term d] represent row
1 of D. The operator || - ||o returns the number of non-zero elements in a vector. Additionally, 7
controls the number of independent variables, and A serves as a scaling parameter. The rank(D)
term prevents the model from becoming overly complicated, and tr(D) discourages the solution
from being close to the I, which implies all variables are independent.

Rank (the number of non-zero singular values) requires combinatorial calculation, which makes the
problem untractable. To address this challenge, the idea proposed in Mohimani et al.|(2009) is used,
which approximate ||.||o as:

N

x

zllo~1—e o= 12)
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By combining these ideas, the final problem formulation is

" _fia
JHAY (1—e )}
i=1

M

Bl

n
arg min{Z(l —e s
b o

m‘*‘

subjectto X = DX, (13)
> = Do D7,
|d o =7 Vie{l,2,...,n}
where s;,Vi € {1,2,...,n} are the singular values of D.

To present the final algorithm for obtaining the solution of , it is necessary to consider ||dl || =
T Vi € {1,...,n}, which also requires combinatorial calculations. To handle that, we propose
solving the following optimization problem:

N

n 42 n d2i‘7j
arg min{Z(l —e 7))+ )\Z(l — 67%)}
b4 i1
subjectto X = DX,
> = DoD7,

and for each row of the resulting D, we retain only the 7 entries with the largest absolute values.
This process is iterated N times.

m‘@

(14)

Due to noise effects on data, @]) might not have a solution, therefore, some relaxation on the
constraint might be required. This is done as follows:

2
i 4G

arg min{Z(l —e 7))+ )\Z(l —e o2 )}
b =1 i=1
subjectto || X — DX||% < ey,
||E - DO'DTH% < €2,

where €1 and €5 can be tuned to result in the best result.

5)

Solving requires an initial estimate for D, and the final value of the objective function depends
on this initial estimate. To obtain the optimal solution, we propose executing the algorithm multiple
times, each with a distinct random initialization. The solution that yields the lowest value of the
objective function is then retained as the final result. The SLCD algorithm pseudocode is presented

in appendix [A]
5 SLCD, BEYOND LINEARITY

The proposed framework can be further extended to scenarios in which the SCMs governing the
causal relations are nonlinear. The idea relies on the Taylor series expansion of the governing func-
tion. Suppose x; = h(x), where z; is the i entry of = and is causally related to « through the
deterministic function » : R” — R. Assuming h € C*°(R™) (the set of infinitely differentiable
functions on R™), the Taylor series expansion implies that x; can be expressed as a polynomial in
the entries of . Based on this observation, the following theorem establishes the induced covariance
for this scenario.

Theorem 2. Suppose z = g(x), where € R™ is a vector of random variables and g : R” — R”

represents the causal relations such that g; € C*°(R"™) for all ¢ € {1,2,...,n}. Then, x can
be represented as x = Z;’il D;x?, where D; € R™*" denotes the coefficient matrices for all
i€{1,2,...,n},and x* = (x%,...,2%)7 is the vector obtained by raising each entry of x to the
i-th power. The covariance matrix of z is then given by
oo o0
=YY Do;D], (16)
i=1 i=j

lth

whereo;; is a diagonal matrix with its /™ diagonal elements be E[ziz]] forall [ € {1,2,...,n}.
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The proof is deferred to Appendix [C.1] Similar to the linear case discussed previously, Theorem 2]
provides a way to formulate an optimization problem with a constraint stronger than simply min-
imizing the reconstruction error, i.e., regression. To formulate the optimization problem for the
nonlinear case, let X € R™*™ be the dataset containing m samples. One can then determine the
coefficient matrices that satisfy the following equations:

X = f:DiXi, a7
i=1
3= iipmjpf, (18)

i=1 i=j
where X denotes the elementwise i-th power of X, X is the covariance matrix of the data, and o

lth

is a diagonal matrix whose [" diagonal entry is given by E[m}zf] foralll € {1,2,...,n}.

6 INDUCED-COVARIANCE: THEORETICAL ANALYSIS

In this section, a theoretical analysis of the proposed method is presented by examining the behavior
of solutions that satisfy both the reconstruction and induced covariance constraints. The analysis
focuses on the local properties of these solutions, in particular on whether they correspond to isolated
points or manifolds, as well as on their sensitivity to variations in the data, with special attention to
changes in the covariance matrix.

Theorem 3. Let F(D) = ¥ — Do DT, where ¥ € R™*" is the covariance matrix of the data
and o € R™*" is the diagonal matrix whose entries are the diagonal elements of ¥. Suppose D*
is a solution of F'(D) = 0 that satisfies D* X = X, where X € R"*™ denotes the data matrix.
Define S = {A € R"™™" | AX = 0}. If there exists no A € S\ {0} such that D*a AT is
skew-symmetric, then there exists a radius 7 > 0 such that, for any solution D of F/(D) = 0 with
DX = X and | D* — D|| < r, it necessarily follows that D = D*.

The proof is provided in Appendix [C.2] This theorem establishes that, under suitable conditions on
D*o AT along the tangent directions of the feasible solutions (i.e., those satisfying AX = 0), the
solution of F'(D) = 0 is locally unique. In other words, there exist no other solutions of F'(D) = 0
satisfying DX = X within a ball of radius r centered at D*. Next, the following theorem analyzes
the sensitivity of the solutions of F/(D) = 0 to perturbations of the data covariance matrix.

Theorem 4. Let F(D) = ¥ — Do D™, where ¥ € R™*" is the covariance matrix of the data
and o € R™*" is the diagonal matrix whose entries are the diagonal elements of ¥. Suppose D*
is a solution of F'(D) = 0 satisfying D*X = X, where X € R"*™ denotes the data matrix.
Define S = {A € R™*" | AX = 0}. If there exists no A € S\ {0} such that D*a A” is skew-
symmetric, then consider D as a solution of ¥ + AX — Do DT = 0, where AX is a perturbation

in the covariance matrix of the data. If ||AX|| F <
c— /2 —4]o[l2[ AZ[|r
2fler ]l

where c is the smallest singular value of D*c AT + AgD*” on S.

then the following inequality cannot hold:

c+/—4]lo:[AZ]|r
2fler ]l ’

_?
4lofl2’

<|ID - D*||r < (19)

The proof is provided in Appendix This theorem establishes a non-feasible region for the
distance between the perturbed and unperturbed solutions of the induced covariance equation.

If there exist values of A € S\ {0} such that D*a A7 is skew-symmetric, then the nearby solutions
may not be isolated; that is, there may exist manifolds of solutions along those directions. This
necessitates additional restrictions on the solutions to distinguish these directions, making the use of
regularization essential in such cases. For this reason, SLCD penalizes the solutions based on their
rank and trace in order to further enforce constraints that yield isolated solutions.

7 SIMULATION RESULTS AND ANALYSIS

This section presents the results of our simulation studies. We compare our method with PC, GES,
LINGAM IC, LINGAM Direct and BIC exact search for performance evaluation. For comprehen-
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Figure 1: Structure estimation error for various datasets and various hyperparameters.
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Figure 2: Reconstruction error for various datasets and various hyperparameters.

sive reporting, we evaluate following metrics: the data reconstruction error, the recovery error of the
causal matrix, the recovery error of the covariance matrix, precision (porportion of the number of
correct estimated links to the total number of estimated links), and recall (porportion of the number

of correct estimated links to the total number of links in the true graph). Let D € R™ " be the
estimated matrix obtained from the proposed algorithm, and X € R™*™ represent the training data.
The reconstruction error is then defined as:

1 .
%HX - DX|%. (20)

We define the true structural matrix as D € R™*" and, thus, the recovery error of structural matrix
will be:

1 A
31D~ Dlr. @

Let 3 € R™*"™ represent the true covariance matrix of the original data with ¥ € R™*", then the
recovery error of the covariance matrix is defined as

1 PR
5= DoD|r, (22)

in which, o is a diagonal matrix with diagonal elements of 3.
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Dataset | IV countﬂ T To T3 Other Entries

Dataset 1 I U(-2.5,25) 201 0.4z, -

Dataset 2 2 U(-2.5,2.5) | U(-2.5,25) | 0.32; [z =[1 2] 2
] [2 3 o] ™
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z] L 0 05]
x5 01 2 !

Dataset 5 3 U(-2.5,2.5) | U(-2.5,2.5) N(0,4) o, =11 0 3 To
z7] o 1 1|

Table 1: Datasets Information.

Covariance Matrix Recovery Error
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Figure 3: Covariance matrix estimation error for various datasets and various hyperparameters.

For simulation purposes, five distinct datasets were generated, henceforth referred to as Dataset 1,
Dataset 2, Dataset 3, Dataset 4, and Dataset 5. Each dataset comprises 1000 samples. Table |I|
provides detailed information on the generation process for each dataset. The variables x;, where
i € {1,2,...,7}, represent the elements of the data vector & = [z, ¥, ..., 27|’. The presence of
a ’-” symbol in place of a variable indicates its absence from the corresponding dataset, reflecting
the varying dimensionality across datasets. The table indicates the data distribution from which the
samples of independent variables are drawn. For dependent variables, the table specifies the linear

combinations used to generate them.

U (a, b) represents the uniform distribution of data in the [a, b] interval. N (u, o) represents a Gaus-
sian random variable with mean y and variance o2. By constructing the datasets in this manner,
the variables exhibit the linear sparse relations that SLCD is specifically designed to handle. This
approach also enables the evaluation of algorithm performance across various data dimensions. Ad-
ditionally, the datasets includes independent variables with different data distributions, allowing for
the assessment of algorithm robustness under diverse distributional scenarios. It is important to
note that for the dependent variables, each linear combination results in a convolution of the data
distributions, further contributing to the variability in the distributions of the dataset’s variables.

Figures [T through [3] display the algorithm’s simulation results on performance metrics for various
hyperparameter settings. The results reveal moderate sensitivity to hyperparameters, with effective
recovery of the underlying structure when parameters are chosen appropriately. The figures also in-
dicate a broad range of satisfactory parameters, demonstrating the method’s robustness. The detailed
performance of SLCD in recovering the structural matrix of each dataset for the hyperparameter pair
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# PC | GES | LGIC | LG Direct | BIC Search | SLCD
Precision 0.33 0.5 0 0.33 0 0
Recall 1 0.5 0 0.5 0 0
Number of Correct link estimation 2 1 0 1 0 0
Dataset 1
# PC | GES | LGIC | LG Direct | BIC Search | SLCD
Precision 0.5 0.6 0.25 0 0.75 1
Recall 0.66 1 0.33 0 1 1
Number of Correct link estimation 2 3 1 0 3 3
Dataset 2
# PC | GES | LGIC | LG Direct | BIC Search | SLCD
Precision 0.37 | 0.43 0 0 043 1
Recall 0.6 0.6 0 0 0.6 1
Number of Correct link estimation 3 3 0 0 3 5
Dataset 3
# PC | GES | LGIC | LG Direct | BIC Search | SLCD
Precision 1 1 0.2 0.1 0.67 1
Recall 1 1 0.33 0.17 1 1
Number of Correct link estimation 6 6 2 1 6 6
Dataset 4
# PC | GES | LGIC | LG Direct | BIC Search | SLCD
Precision 03 | 0.75 0.08 0.13 0.54 1
Recall 0.37 | 0.75 0.12 0.25 1 1
Number of Correct link estimation 3 6 1 2 6 8
Dataset 5

Table 2: Performance comparison of PC, GES, LG IC (LINGAM IC), LG Direct (LINGAM Direct),
BIC Exact Search, and SLCD algorithms.

(o,A) = (0.3,5) is presented in Table[3|in the Appendix [B] It shows that the method successfully
recovers the structural matrix of all datasets, with the exception of Dataset 1.

Table [2] presents the simulation results of SLCD in comparison with several well-known causal
discovery algorithms. The results indicate that SLCD outperforms the other methods by an average
of 35% in precision and 41.5% in recall across Datasets 2 through 5. While all methods exhibit
challenges with Dataset 1, SLCD consistently demonstrates superior performance in the remaining
datasets.

SLCD demonstrate suboptimal performance on Dataset 1. This can be attributed to the structure
of Dataset 1, wherein only one independent variable exists, and all other variables are scalar multi-
ples thereof. This configuration does not provide sufficient information to unambiguously identify
the independent variable, as any of the variables could potentially fulfill this role. This ambigu-
ity introduces uncertainty into the algorithm, potentially leading to diverse solutions. However, as
the structural complexity increases with the introduction of additional independent variables, the
informational content of the data becomes more robust, facilitating more accurate recovery of the
underlying causal structure.

8 CONCLUSION

This paper proposes an algorithm for causal discovery within a linear sparse structure, leveraging
properties of the causal structure matrix, specifically its rank, which reflects the number of inde-
pendent variables, and the notion of induced covariance. Simulation studies confirm the algorithm’s
effectiveness across diverse configurations. Our next direction is to refine the independence criteria.
While induced covariance was useful, it does not fully ensure independence across all the scenarios.
Addition of stronger constraints can further enhance this framework. This extension would enhance
the algorithm’s versatility and reliability across a wider range of applications and data types.
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THE USE OF LARGE LANGUAGE MODELS (LLMS) STATEMENT

Large language models were used exclusively for language refinement, including proofreading and
grammatical correction.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide the pseudocode of the proposed algorithm in Appendix [A]
The complete implementation code and the datasets used in our experiments are available in the
supplementary material. In addition, proofs of the theorems are presented either in the main text or
in Appendix [C|
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A  ALGORITHM PSEUDOCODE

The SLCD pseudocode:
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Algorithm 1 Sparse Linear Causal Discovery ( SLCD) Algorithm.

Inputs:
X eRY™n™ N, M, \ o, T
fort=1:Mdo
Initialize:
Dy € R™ ™ : randomly
if (t ==1) then
Dopt — DO
end if
fork=1:Ndo
D « Solve (e.g. fmincon (MATLAB))
if Jin > J(D) then
Dopt «— D
end if
end for
end for
return D,

Dataset Structure matrix Estimated structure matrix (o, M)
1 0 0 0 0.5 44x1077
Dataset 1 [ 2 1 0] 2 1 1.1x10°6 0.3,5)
04 1 0 —12x1077 0.2 0
1 0 0 O 1 0 —88x107% 0
0O 1 0 0 0 1 —33x107* 0
Dataset 2 [0.3 10 0] 03 0 —27x107% 0 ©.3,5)
1 2 0 0 1.002 1.999 0 0
1 0 0 0 0] [ 0.999 0.0497 0 O 0
01 0 0 O 0 1.000 0 0O 0.0102
Dataset 3 1 3 0 00 0.976 3.049 0 0 0 (0.3, 5)
0 2 0 0 O —0.0147 1999 0 0 0
2 1 0 0 0] 1990 1099 0 0 0 |
1 0 0 0 0 O 0.999 —0.009 0 0 0O
o1 0 0 0 O 0.016 0.999 0 0 0 0
00 1 0O0O0 —.0432 0 0997 0 0 O
Dataset4 | 17 5 03 0 0 0 0987 0 03019 0 o of | ©3>
23 0 0 0 0 2.048 2.982 0 0 0 O
0 2 05 0 0 O 0 1995 0483 0 0 O
1 0 0 0 0 0 O 0.997  .0525 0 0 0 0
01 0 0 O0O0TO —0.082 0.994 0 0 0 0O
00 1 0O0O0TO 0.057 0 0998 0 0 0 O
Dataset 5 1 0 05 0 0 O O 1.025 0 0491 0 0 O O (0.3,5)
01 2 0O0O0O0 0 0956 2.024 0 0 0 O
10 3 00 0 O 1.168 0 298 0 0 0 O
o1 1 0 0 0 O 0 0975 1.025 0 0 O O

Table 3: True structural matrix and the output of SLCD.

B STRUCTURAL RECOVERY RESULTS OF SLCD ACROSS DIFFERENT

DATASETS

Table [3] shows the recovered structural matrix usign SLCD as well as the ground truth structural

matrix for each dataset with (o, \) = (0.3, 5).
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C PROOFS

C.1 PROOF OF THEOREM[Z]

Let £ € R™ be a random vector with the following causal structure:
oo
T = Z Dz, (23)
i=1
where z is the vector obtained by elementwise raising of x to the i-th power, and Dj is the corre-

sponding coefficient matrix.

To calculate the covariance matrix of the data, we need to compute E[z;z;]. Using equation 23| we

have . .
Elz,z;] =E l( Z dgl)Twl) (Z d§k)ka>1 : (24)

=1 k=1
where dl(.l)T and dg»k)T are the i and j™ rows of the matrix D; and Dy, respectively.

Applying this procedure to all pairs of entries, we obtain

£=2.> DioyDJ, (25)
i=1j=1
where o is a diagonal matrix whose [ diagonal element is E[z}z7] forall [ € {1,2,...,n}.

C.2 PROOF OF THEOREM[3]

Suppose F(D) = X — Do D' and D* is a solution of F/(D) = 0 that satisfies D* X = X. Let D
be another solution of F'(D) = 0 satisfying DX = X, and define A = D — D*. Then AX =0
and

F(D)=F(D*+A)=%—(D*+ A)o(D*+A)T (26)
=Y - D*oD'" — (D'cAT + AcD*") - Ac AT 27)
N————— N—_——
0 L£(A) o(A)
=-L(A) - Q(A) (28)
=0, (29)

which yields the identity
L(A)+9(A)=0, AX =0. (30)

Let S = {A € R™" | AX = 0}. By assumption, for no A € S\ {0}, D*0 AT is skew-
symmetric, which implies that £(A) = 0 on S, only happens if A = 0. This results in the existence
of a positive constant ¢ defined as

c=jof [I£(A)]F. (31)
Al F=1
Hence, forall A € S,
[£(A)|[F > cl|Allp. (32)
Using norm inequalities for Q(A), we have
19(A)lr = |AcAT|r < |lo|l2[|Al7, VAES. (33)
Combining these results with equation 30| gives
clAllr < I£(A)|lF = [Q(A)F < o2 [|AlIZ, (34)
which leads to .
lAllF > . (35)
o]l

This final inequality establishes a positive lower bound for |A||r = ||D — D*||r, indicating that
any two feasible solutions must be separated by at least m which implies that the solution is

isolated and locally unique.
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C.3 PROOF OF THEOREM[4]

Suppose F(D) = ¥ — Do DT and D* is a solution of F/(D) = 0 that satisfies D* X = X. Let
the data covariance matrix be perturbed as ¥ — ¥ 4+ AX. Assume D is the solution of F'(D) with
the perturbed covariance matrix, i.e.,

Y+ AXY - DoD” =0,
and satisfies DX = X. LetS = {A e R"*" | AX =0}. Then D — D* = A €S, and

0=X+AY — DoD” (36)
=3 +AX — (D" + A)a(D* + A)T (37)
=Y -D*oD'" — (D*'6c A" + AcD*") - AcAT +AY, (38)
0 L£(A) Q(A)
which gives
LA)+Q(A) =A%, AX =0. (39)

Following the procedure in the nonexistence of any A € S\ {0} making D*0c AT skew-
symmetric implies the following inequalities

I£(A)F = clAllr, YAES, (40)
12A)r < ol llAlf VA ES, 41
where
e=inf [L(A)]F. 42)
lAllp=1

Then we have
L(A) =AY - Q(A), AX =0, (43)
I1£(A)[|F = [AZ = Q(A)]lF, (44)
I1£(A)][r < [AZ][r +[[Q(A)]F, 45)
cllallr < LA)F < IAZ]F + 1 QA)|F < IAZ]F + [lofl2 Al (46)
clAllp < [AZ|F + o]z [| Al 47)

Let r = ||Al|p. Then the quadratic inequality
lorflor® — er + [|AZ | > 0 (48)

holds. If the discriminant of equation 48} ¢ — 4[| ||2||AZ|

. . 2 . L
no real roots and imposes no bounds on r. However, if ||AX|p < T[T, then equatlon implies
that r cannot lie between the two real roots, i.e.,

c— /2 —4|o|:|AX] F c+ /2 —4|o|:|AX] F
<r<
2ol 2ol

F, s less than zero, the inequality has

(49)

is infeasible.
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