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Abstract

Recent advances in artificial intelligence reveal
the limits of purely predictive systems and call
for a shift toward causal and collaborative reason-
ing. Drawing inspiration from the revolution of
Grothendieck in mathematics, we introduce the
relativity of causal knowledge, which posits struc-
tural causal models (SCMs) are inherently imper-
fect, subjective representations embedded within
networks of relationships. By leveraging category
theory, we arrange SCMs into a functor category
and show that their observational and interven-
tional probability measures naturally form convex
structures. This result allows us to encode non-
intervened SCMs with convex spaces of probability
measures. Next, using sheaf theory, we construct
the network sheaf and cosheaf of causal knowl-
edge. These structures enable the transfer of causal
knowledge across the network while incorporating
interventional consistency and the perspective of
the subjects, ultimately leading to the formal, math-
ematical definition of relative causal knowledge.

1 INTRODUCTION

“The Book of Why” [23] elects causality as the key to over-
coming the limit of purely predictive artificial intelligence
(AI). This argument recently found mathematical support
in the work of Richens and Everitt [27], who gave evidence
that robustness to distributional shifts of AI agents is condi-
tioned on the learning of an approximate subjective causal
model. The structural causal model (SCM) framework [21]
is a gold standard for modeling cause-effect relationships
in complex systems. Informally, a (probabilistic) SCM is
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made by causal variables and variable-specific sources of
noise, together with structural equations – to be read as as-
signments, like in physics – determining how each variable
is causally influenced by others (e.g., the test score of a
student depends on hours of study, motivation, and some
randomness). An SCM induces the so-called “ladder of cau-
sations” [23]: 4 the associational layer related to factual
information (seeing), � the interventional layer related to
the effects of actions (doing), and j the counterfactual
layer related to imagine the effect of an action, given that
something else occurred (retrospection). The ultimate goal
of causal AI is to empower AI systems with such a ladder of
causation for robust and trustworthy decision-making. This
work pushes in the same direction.
Motivation. We are driven by a philosophically simple yet
technically unexplored concept: any causal model is an im-
perfect and subjective representation of the world, and it
cannot be severed from the network of relations the sub-
ject is immersed in. As such, our work somehow starts
where Richens and Everitt [27] end, as they provided a (spe-
cific) formalization of the subjectiveness of causal models
without, however, formalizing their dependency on the sub-
ject’s relationships. In philosophy, this concept has been
extensively debated: manipulability theories view causes
as “handles” for effecting change, tying them to subjective
agency [35]; pluralist approaches suggest multiple, context-
dependent concepts of causation [26]; the actor-network
theory of Latour and others posits that everything in the
social and natural worlds exists in constantly shifting net-
works of relationships, and nothing exists outside those
relationships [17]. A motivating example for our work is
agentic AI, a frontier paradigm pushing for autonomous AI
agents – the subjects – to collaborate in solving complex
tasks. However, in our work, the notion of “subject” takes
on a broader meaning and could represent, for example, the
resolution by which a phenomenon is studied; the sensor
that detects pollutants in a specific geographical area, differ-
ent from that of other sensors; the trading book of a bank
seen as a proxy for investment strategy. In all of the above
cases, we advocate that each subject likely – and, arguably,
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hopefully – develops a subjective SCM, these SCMs are
interconnected, and their interplay can benefit the subject
and the entire network. Inherently, this paradigm, which we
term relativity of causal knowledge and whose core object
is relative causal knowledge (RCK), is tied to the concept
of perspective: subjects cannot interact by detaching from
their world representation. In our framework, asking for a
unique “true” causal description of a system is an ill-posed
question, as the very same notion of causality is inherently
relative. However, it is important to highlight that the rela-
tivity of causal knowledge is different from the relativism
(in its philosophical meaning) of causal knowledge: we do
not undermine the meaning of things, we question its de-
scription as a monolithic object.
Related Works. RCK has its roots in category theory [18]
and sheaf theory [31], and is inspired by Grothendieck’s
notion of relativism in the context of mathematics [20].
Grothendieck revolutionized the understanding of math-
ematical structures by shifting the focus from individual
objects to the relationships between them, as expressed
through morphisms. This perspective led to a flexible, con-
textual view of mathematical spaces. We draw a parallel
to Grothendieck’s paradigm shift by treating SCMs as in-
herently contextual and interconnected rather than isolated
entities. Just as Grothendieck’s use of sheaf theory facili-
tates local-to-global transitions in mathematics, we employ
network sheaves–first-order cellular sheaves [5]– to inves-
tigate how causal knowledge, i.e., a set of interventional
and observational probability measures, is transferred and
transformed across different subjects and their perspectives.
Previous work focused on a functorial characterization of
SCM through mappings between the causal structure and
the (discrete) distributions of causal variables [15]. Con-
versely, we provide a category-theoretic treatment of SCMs
– and related interventions – focusing on morphisms between
probability spaces, linking the SCM to the category of con-
vex spaces of probability measures [9]. Similar definitions
to Definitions 1 and 2 appear in the concurrent work [7].
Relations among SCMs have been investigated over time.
The transportability problem [22, 2] addresses the transfer
of causal knowledge from one environment (the source) to
another (the target) under assumptions on (i) the knowledge
of the underlying causal structure, typically represented by
causal graphs, and (ii) the types and targets of interven-
tion. In causal transfer learning [37, 29, 19], several studies
tackle the challenge of transferring causal knowledge from
source domains to enhance performance in a target domain
(i.e., domain adaptation). Next, equivalence of SCMs [3, 33]
aims at identifying equivalent (sub)structures to provide
insights into how different systems share common causal
relationships. Particularly relevant to our work is the the-
ory of causal abstraction (CA) [30, 4]. CA formalizes the
mappings between SCMs describing the same system at dif-
ferent levels of granularity. In this paper, we will work under
the α-abstraction framework proposed by Rischel [28]. The

Figure 1: The relativity of causal knowledge states that
causal knowledge (CK) is subjective and interconnected
rather than objective and isolated. Multiple subjects
of/in the same system will develop multiple and differ-
ent instances of CK describing the system. Informally,
CK can be seen as a set of probability measures corre-
sponding to 4 seeing, � doing, and imagining j. The
CK CKρ of subject ρ is fully accessible exclusively by
ρ. As such, another subject σ can only access the rel-
ative causal knowledge (RCK) CKρ,σ, i.e., the CK of ρ
from the perspective of σ. There is a link τ between ρ
and σ, i.e., they can communicate, if their CK admits a
common interventionally consistent CA acting as back-
bone space. As such, the RCK CKρ,σ is obtained by first
transporting CKρ on τ , obtaining a more abstract CKρ,τ ,
and then CKρ,τ on σ. Interestingly, subjects that are not
directly connected can still access some RCK if there is a
path of links among them, but it would be first “filtered”
by the perspective of all the other subjects on the path.
We elegantly implement RCK using a category-theoretic
approach resulting in novel mathematical objects: The
network sheaf and cosheaf of causal knowledge.

latter is convenient to us since interventional consistency
(IC) is neatly separated from the definition of the CA.
Contributions. A number of results are established to pose
the formal definition of RCK. First, we introduce the cate-
gory of SCMs, viz. SCM(I,Prob), whose objects are SCMs
– expressed as functors – and morphisms are natural trans-
formations. We further characterize hard [21] and soft [8]
interventions in the latter category, proving that the set of en-
tailed observational and interventional probability measures
is closed under a convex combination operation (cf. Theo-
rem 1). Second, aiming at IC, we recast the α-abstraction in
SCM(I,Prob), proving that IC CA morphism corresponding



to endogenous variables is valid in the category of convex
spaces of probability measures, viz. CSprob (cf. Theorem 2).
Hence, we establish the existence of a functor encoding non-
intervened SCMs into objects in CSprob, representing the
SCMs’ causal knowledge. Third, leveraging the encoding
functor, we define network sheaf and cosheaf of causal
knowledge, finally posing the formal definition of RCK.
Impact. Our proposed network sheaves and cosheaves are
particular instances of more general network sheaves and
cosheaves in CSprob. Our work ultimately emphasizes their
relevance to applications in (but not limited to) AI/ML. In
particular, RCK and network sheaf and cosheaf of causal
knowledge represent new objects to be investigated, adding
to the cellular sheaves valued in Abelian categories, such as
those on vector spaces, and Hilbert spaces [5, 12], and the
non-Abelian case of sheaves of lattices [10]. Overall, our
work opens three major areas of research: cohomology the-
ory, Hodge(-like) theory, and learning theory for network
sheaves and cosheaves of causal knowledge.
Notation. Sets and collections are uppercase calligraphic,
A. The set of integers from 1 to n is [n]. Given a scalar a,
we denote by ā = 1− a. A set U equipped with a σ-algebra
Υ gives a measurable space (U ,Υ). A measurable space
(U ,Υ) together with a probability measure µ, i.e., such that
µ(U) = 1, gives a probability space (U ,Υ, µ). Given two
measurable spaces (U ,Υ) and (V,Ω), a measurable map
φ : U → V , and a probability measure µ over (U ,Υ),
we denote by φ(µ) := µ ◦ φ−1 the pushforward measure
over (V,Ω). The domain of a function is D[]. The indicator
function is IA (A), 1 if A ∈ A, 0 otherwise.
Remark 1 A less technical but comprehensive description
together with practical examples can be found in Appendix
E. This description is designed to be useful either before or
after the reader has parsed the main body of the paper.

2 CATEGORICAL SCM AND CAUSAL
KNOWLEDGE

Category theory [18] is a branch of pure mathematics
that studies abstract structures and their relationships
through objects and morphisms, focusing on how they
compose and interact. A category C is composed of
objects having a certain structure (e.g., measurable spaces,
vector spaces) and arrows (morphisms) between them
preserving the structure (e.g., measurable maps, linear
maps) and satisfying certain axioms (cf. Definition 12).
Objects and morphisms form the collections C0 and C1,
respectively. Given C, the opposite category Cop has the
same objects as C and the same, but reversed, arrows.
Taking the subcollections S0 ⊆ C0 and S1 ⊆ C1 we can
form a subcategory of C. Given two categories C and D,
we can have an arrow between them, namely a functor
F : C → D. Functors define mappings between categories
in a consistent way (cf. Definition 14). Notably, functors

cannot destroy relations existing in C when mapping to
D. Given two functors F and G from C to D, we can
have an arrow η : F → G between them called natural
transformation, which is a peculiar arrow as it is invariant
w.r.t. morphisms between the mapped objects in target
category D (cf. Definition 15). Functors can be arranged in
categories whose objects are functors and morphisms are
natural transformations. More details in Appendix A.
We look at the probabilistic SCM over continuous random
variables, denoted by M, as a subjective and imperfect
world representation. We consider the Markovian setting
[21], thus M entails a directed acyclic graph (DAG), viz.,
GM . The nodes of GM correspond to the endogenous
variables X , that is, the causal variables on which we
can intervene on. The edges of GM are determined by
structural functions F := {f1, . . . , fn} determining the
value of each causal variable Xi, i ∈ [n], in terms of a set of
parents, viz. Pi ⊆ X \{Xi}, and a node-specific exogenous
variable, Zi ∈ Z . Denote by ZAi ⊆ Z \ {Zi} the set
of exogenous variables corresponding to the ancestors
of Xi, where Ai ⊆ [n] \ {i}. F induces a set of mixing
functions M := {m1, . . . ,mn}, such that the values of the
endogenous random variables are equivalently expressed as
xi = mi ({zj}j∈Ai , zi), ∀ i ∈ [n].
Accordingly, we can define M as a triple
⟨(U , Υ, ζ), (V, Ω, χ) ,M⟩ made of the probability
space of the exogenous (U , Υ, ζ), the probability space
of the endogenous (V, Ω, χ), and measurable mixing
functions M.
Definition 1 (Measure-theoretic SCM) A Markovian SCM
M is a triple ⟨(U , Υ, ζ), (V, Ω, χ) ,M⟩ where:

• (U , Υ, ζ) is a probability space associated with exoge-
nous variables Z . Specifically, it consists of the product
probability measure ζ = ζ1×. . .×ζn on the product mea-
surable space (U , Υ) = (U1× . . .×Un, Υ1⊗ . . .⊗Υn).
The probability measure is such that, for each W1 ∈
Υ1, . . . , Wn ∈ Υn, we have

ζ1×. . .×ζn(W1×. . .×Wn) = ζ1(W1)×. . .×ζn(Wn) ;
(1)

• (V, Ω, χ) is a probability space associated with en-
dogenous variables X consisting of a joint probability
measure χ on the product measurable space (V, Ω) =
(V1 × . . .× Vn, Ω1 ⊗ . . .⊗ Ωn);

• M := {m1, . . . ,mn} is a collection of measurable mix-
ing functions allowing us to recursively rewrite the causal
assignments only in terms of the exogenous variables. Ac-
cordingly, the joint probability measure χ factorizes as

χ =
n×

i=1

mi

(
µi

(
Ui × UAi

))
; (2)

where (i) UAi = ×j∈Ai
Uj; (ii) µi is a prob-

ability measure on the product measurable space(
Ui × UAi , Υi ⊗ΥAi

)
, with ΥAi =

⊗
j∈Ai

Υj .



Appendix B provides an example for the case of linear
SCM with additive noise. An important property of M that
holds for the main classes of Markovian SCMs, such as
additive noise and post-nonlinear models [25, Chapter 4],
is invertibility (cf. Appendix C). We will leverage such a
property to prove that the proposed SCM(I,Prob) preserves
expressiveness. At this point, we can leverage Definition 1
to give a functorial definition of M. Consider the following
categories, I and Prob, respectively. The former is a small
category made only of two objects, a source node and a
target node, and a unique arrow from the source to the target
node. Specifically, I has shape • → •. The latter category
instead has as objects probability spaces and as morphisms
measurable maps. The functorial representation follows by
viewing M as an arrow between I and Prob, assigning (i) to
the source node in I the probability space associated with
exogenous variables; (ii) to the target node the probability
space associated with endogenous variables; and (iii) to the
only arrow in I the collection of measurable maps M.
Definition 2 (Category-theoretic SCM) An SCM is a functor
M : I → Prob defined as follows

I Prob

I

I ′

(U , Υ, ζ)

(V, Ω, χ)

M

M

(3)

Please, refer to Appendix B for an example in the case of
linear SCM with additive noise. At this point, we can define
a category of SCMs whose objects are functors as in Defi-
nition 2, and whose morphisms are natural transformation
between the functors.
Definition 3 The category of SCMs, namely SCM(I,Prob),
consists of (i) functors M : I → Prob as objects; and (ii)
natural transformations η : M → M′ as morphisms, such
that:

• for each I in I, a measurable map ηI : M(I) → M′(I) in
Prob, called component at I;

• for the unique morphism f : I → I ′ in I, the following
commutes:

M(I) M(I ′)

M′(I) M′(I ′)

Mf=M

ηI ηI′

M′f =M′

Exogenous Endogenous

(4)

In Equation (4), we added dashed rectangles to remark that
the functor images (i) on the left correspond to the probabil-
ity spaces of the exogenous variables of M and M′; (ii) on

the right, to probability spaces of the endogenous variables.
The knowledge of an SCM allows us to run interventions
to act or to simulate “new worlds”, that is, obtain new post-
interventional distributions. This enables the second and
third layers of the ladder of causation [23] described in Sec-
tion 1. In our work, we consider hard and soft interventions.
A hard intervention do

(
{Xi = xi}Xi∈X̃

)
, where X̃ ⊆ X ,

replaces each assignment function fi corresponding to
Xi ∈ X̃ with the constant xi, thus generating a new post-
interventional SCM, viz. MH. We associate a hard inter-
vention with a collection FH such that fH

i = xi, for all
Xi ∈ X̃ ; and fH

j = fj , for all Xj ∈ X \ X̃ . Graphi-
cally, a hard intervention mutilates GM by removing the
incoming edges of the variables in X̃ . Consequently, ac-
cording to the truncated product formula [21], an interven-
tion entails a post-interventional distribution P (X | H) =∏

j∈X\X̃ P (Xj | Pi, Zi) (evaluated at {Xi = xi}).
In SCM(I,Prob), the post-interventional SCM is the functor
mapping (i) the source node in I to (U , Υ, ζ), as done by
M; (ii) the target node to (V, Ω, χ)H, where χj degenerates
to a point measure Ixj

(Xj); (iii) and the unique arrow in
I to the measurable maps MH := {mH

1 , . . . ,mH
n }. The

components of MH are (i) constant functions mH
i = xi for

Xi ∈ X , and (ii) mH
j = mH

j (Zj ∪ ZÃj ) where ZÃj is the
set of exogenous corresponding to the ancestors of Xj that
are not screened by the intervention (cf. Appendix B). At
this point, in the same spirit of the truncation formula above,
the post-interventional probability measure reads as

χH = ×
Xj∈X\X̃

mH
j

(
µj

(
Uj × U Ãj

))
. (5)

Running hard interventions on SCMs is not always possible,
and in certain cases, this way of intervening is unethical [8].
Therefore, a more general notion of intervention has been
considered over the past. Indeed, the mutilation of the DAG
is not the only possible informative intervention. Rather,
we can be interested in simply modifying the causal mech-
anisms, without removing any incoming causal relations.
Such a family of interventions is called soft.
The soft intervention generates a post-interventional MS by
substituting F with FS , where each fi associated with the
intervened variables Xi ∈ X̃ is replaced by another function
f̃i, and the rest is unchanged. Hence, the soft intervention
can change the functional form of an SCM. In principle,
soft interventions can potentially add new causal relations.
However, in our work, we consider only soft interventions
that do not alter the parent set of the endogenous variables.
At this point, FS induces a new collection of mixing func-
tions MS := {mS

1 , . . . ,m
S
n} (cf. Appendix B), such that

the post-interventional probability measure reads as

χS = ×
Xi∈X

mS
i

(
µi

(
Ui × UAi

))
. (6)

The resulting MS is an object in SCM(I,Prob) mapping (i)
the source node in I to (U , Υ, ζ), as done by M; (ii) the



target node to (V, Ω, χ)S , where χS follows Equation (6);
and (iii) the unique arrow in I to the measurable map MS .
An important point we must ensure is that the proposed
category-theoretic SCM formulation preserves the expres-
siveness: given either a hard or soft intervention I, we have
a suitable morphism in SCM(I,Prob) from M to MI . This
is ensured by the following.
Lemma 1 [Interventions in SCM(I,Prob) ] Given (i) M
as in Definition 2; and (ii) the collection of measurable
maps FI := {f i

1, . . . , f
i
n}; an intervention in SCM(I,Prob)

is a natural transformation ηI := ⟨IdM(I), I⟩, with I =
MI ◦M−1 such that the following holds

M(I) M(I ′)

MI(I) MH(I ′)

M

IdM(I) I

MI

=⇒ MI = I ◦M . (7)

Proof. See appendix D.

The proof leverages the fact that the hard intervention acts
only on the endogenous, thus the component ηII mapping
M(I) to MI(I) is simply the identity IdM(I). Then, for
the second component ηII′ , we leverage invertibility of M
mentioned above. The commutation in Equation (7) follows
by construction. Equation (7) highlights that our proposed
SCM(I,Prob), is as rich as the canonical SCM framework.
Specifically, starting from a non-intervened SCM M, we can
obtain all possible observational and interventional states of
the causal model M through the application of all the possi-
ble hard and soft interventions since Lemma 1 guarantees
the existence of corresponding measurable maps I.
Remark 2 By leveraging the invertibility of M, Lemma 1
preserves expressiveness not only at the level of probability
measures, but also with respect to the values of exogenous
and endogenous variables. This is a stronger result, as in-
terventional consistency concerns only the distributional
level. In fact, SCM(I,Prob) retains the expressiveness of
canonical SCMs also in terms of counterfactual consistency.
If counterfactual consistency is relaxed, a more general re-
sult on the existence of the morphism I can be established
via Brenier’s polar factorization theorem [34, Chapter 3],
without requiring the invertibility of M, as shown in [7].
Definition 4 (Causal knowledge) The causal knowledge
CK (M) entailed by M is the subcategory of SCM(I,Prob)
whose objects are M together with its intervened states
{MI} generated by the application of all the possible inter-
ventions {I}, and whose morphisms are the natural trans-
formations ηI between these objects in SCM(I,Prob).

Consequently, CK (M) corresponds to (i) a product distribu-
tion over the exogenous variables together with the identity

morphism, representing the component ηII of the natural
transformations; and (ii) the set of probability measures
over the endogenous as given in Equations (2), (5) and (6)
together with the morphisms H and S, representing the
natural transformation component ηII′ . Consider now two
different non-intervened SCMs, namely M and M′, and
their corresponding CK (M) and CK (M′), respectively. Ad-
ditionally, suppose that M and M′ are not isolated entities;
rather, they are immersed in a certain network where other
non-intervened SCMs exist. We are interested in relating
CK (M) and CK (M′) within the network in a way that is
both causally and category-theoretically consistent. From
now on, we will focus on the endogenous layer, since exoge-
nous variables are latent. Hence, when we say CK (M), with
slight abuse of notation we refer to the observational and
interventional probability measures over the endogenous.

3 ENCODING CAUSAL KNOWLEDGE
WITH CONVEX SPACES

Let us consider the measurable space (V, Ω) associated with
the endogenous variables, where Ω is a σ-algebra over V .
The set of probability measures on (V, Ω), namely ∆(V,Ω)

is a convex space, subset of the vector space RΩ. Following
[9], we define the latter convex space as follows.
Lemma 2 [Convex space of probability measures,
⟨∆(V,Ω), ccλ⟩] The convex space of probability measures,
namely ⟨∆(V,Ω), ccλ⟩, is given by the set ∆(V,Ω) of proba-
bility measures χ on (V, Ω) together with a convex combi-
nation operation defined by

ccλ(χ1, χ2)(O) := λχ1(O) + λ̄χ2(O) , (8)

for all O ∈ Ω, with λ ∈ [0, 1].

Proof. See appendix D.

Convex spaces ⟨∆(V,Ω), ccλ⟩ are the objects of the category
of convex spaces of probability measures, namely CSprob,
that we introduce below.
Lemma 3 The category CSprob has convex spaces
⟨∆(V,Ω), ccλ⟩ as objects, and affine measurable maps – i.e.,
measurable maps commuting with ccλ – as morphisms.

Proof. See appendix D.

It turns out that CK (M) is closed w.r.t. the convex combina-
tion operation in Lemma 2.
Theorem 1 Every convex combination of probability mea-
sures corresponding to a causal knowledge CK (M) is a
valid soft-interventional probability measure for CK (M).

Proof. See appendix D.



Hence, in light of Theorem 1, it is legitimate to question
whether we can establish a functorial encoding of M in a
convex space. If on objects, the encoding seems straightfor-
ward, on morphisms, we have to be careful. Indeed, given
M and M′, the natural transformation η in Definition 3 tells
us nothing about the existence of natural transformations be-
tween the intervened states of M and M′. If the latter natural
transformations do not exist in SCM(I,Prob), an encoding
functor will fail in mapping η to an affine morphism be-
tween the convex spaces corresponding to M and M′, since
such a morphism does not exist in CSprob. Conversely, if
the intervened states of M and M′ are related by a natural
transformation in SCM(I,Prob), meaning that they are IC,
the affine morphism will exist in CSprob.
The latter observation naturally links our work to the the-
ory of causal abstraction (CA), electing CA as the neces-
sary formalism for relating causal knowledge. Specifically,
in the following, we build upon the α-abstraction intro-
duced by [28]. Given a micro-level M and a macro-level
M′, an α-abstraction is a triple α := ⟨R, a, α⟩ where (i) R
is a set of endogenous variables in M that are abstracted
to the macro-level (ii) structurally via the surjective map
a : R → X ′, and (iii) functionally by α : D[R] → D[X ′].
Here, for each X ′

i ∈ X ′, we have a surjective function map-
ping the values of the micro-level to the macro-level, viz.
αX′

i
: D[a−1 (X ′

i)] → D[X ′
i]. Given an α-abstraction be-

tween M and M′, we say that α is IC if, for any intervention
I on the endogenous X ′

I ⊆ X ′ and for any set of targets
T ′ ⊆ X ′ \ X ′

I , we can obtain the values in D[T ′] starting
from those in D[a−1(X ′

I)] in two alternative ways: (i) by
computing the values in D[a−1(T ′)] at the micro-level, then
abstracting via αT ′ ; or (ii) by abstracting via αX ′

I
to D[X ′

I ]
and then computing the values in D[T ′] at the macro-level.
The α-abstraction manifests in SCM(I,Prob) as a natural
transformation between the micro-level M and the macro-
level M′. As highlighted in Definitions 2 and 3, our category-
theoretic formalism highlights the role of the exogenous.
Accordingly, we need to consider the exogenous to properly
extend the α-abstraction to SCM(I,Prob). Specifically, a
and α have two components, the first for the exogenous, and
the second for the endogenous, as formalized below.
Definition 5 (α-abstraction in SCM(I,Prob)) Given micro-
and macro-level SCMs, M and M′, respectively, an
α-abstraction is a tuple α = ⟨R,Q, a, α⟩, where: (i)
R ⊆ X is a set of relevant endogenous variables; (ii)
Q ⊆ Z is a set of relevant exogenous variables given by
the union of the set of exogenous corresponding to the en-
dogenous in R and those corresponding to their ancestors;
(iii) a = ⟨aZ , aX ⟩ is a pair of surjective functions mapping
sets, aZ : Q → Z ′ and aX : R → X ′, respectively; (iv)
α = ⟨αZ , αX ⟩ is a natural transformation composed of
measurable functions mapping probability spaces, αZ for
the exogenous and αX for the endogenous, respectively.

In addition, interventional consistency translates into com-
mutation of diagrams in SCM(I,Prob). Here, we look at an

intervention on the endogenous X ′
I ∈ X ′ on the macro-level

model M′ as a collection of measurable maps, as given in
Lemma 1, and denote it by I ′. Similarly for the correspond-
ing intervention on the micro-level variables a−1

X (X ′
I) ∈ X ,

denoted by I. To aid visualization, we use (i) violet for
micro-level M layer, (ii) gray for macro-level M′ layer, and
(iii) orange for the α-abstraction.
Definition 6 (IC α-abstraction in SCM(I,Prob)) An
α-abstraction is IC in SCM(I,Prob) if, for all the
interventions ηI

′
= ⟨IdM′(I), I ′⟩ on the macro-level

model M′, the faces of the following diagram commute

M(I) M(I ′)

M′(I) M′(I ′)

M

αZ αX

M′

MI(I) MI(I
′)

M′
I′(I) M′

I′(I ′)

MI

αZ αX

M′
I′

IdM(I) I

IdM′(I) I ′

Starting from Definition 6, exploiting Theorem 1, we obtain
the following.
Theorem 2 The component αX of α within an IC
α-abstraction commutes with ccλ, thus is affine.

Proof. See appendix D.

At this point, denoted by NI(I,Prob) the subcategory of
SCM(I,Prob) whose objects are non-intervened SCMs, and
morphisms are IC α-abstraction. Exploiting Theorem 1 and
Theorem 2, we have the following.
Theorem 3 There exists an IC encoding functor E :
NI(I,Prob) → CSprob mapping (i) each non-intervened
M := ⟨(U , Υ, ζ), (V, Ω, χ) ,M⟩ to the convex spaces of
probability measures ∆(V,Ω), and (ii) an IC α-abstraction
between M and M′ with its endogenous component αX .

Proof. See appendix D.

4 THE NETWORK SHEAF AND
COSHEAF OF CAUSAL KNOWLEDGE

The last step toward our proposed relativity of causal knowl-
edge is representing causal knowledge over the endogenous
within a network. To this aim, each node within the network
is attached to the causal knowledge entailed by a certain
SCM via Theorem 3. Looking at a single node ρ, we inter-
pret it as the perspective of the causal knowledge on itself.
Then, when two nodes ρ and σ are connected by an edge,
say τ : ρ ∼ σ, they are related by a shared IC α-abstraction



living on the edge τ . The causal knowledge at ρ can be trans-
ported via τ to σ giving life to the relative causal knowledge
(RCK): the causal knowledge of ρ from the perspective of σ.
To make this point clearer, consider two AI agents with
their subjective causal models Mρ and Mσ about a certain
phenomenon. By Theorem 3, we can map Mρ and Mσ to
the corresponding causal knowledge, viz. CKρ ≡ CK (Mρ)
and CKσ ≡ CK (Mσ). The causal model Mρ admits an IC
causal abstraction, viz. Mτ . The same abstraction holds for
Mσ. Acting on Mτ as well, the encoding functor provides
us with a convex space CKτ which can be interpreted as
a backbone space on which the CKρ and CKσ can relate
each other. In particular, the AI agents use the backbone
space to embed the causal knowledge of the other into their
own. Intuitively, consider that the AI agent ρ projects via an
abstraction morphism an observational/interventional prob-
ability measure onto the backbone space CKτ , matching an
abstracted measure χρ,τ . The latter can be observed by the
AI agent σ, who embed χρ,τ in its own causal knowledge
obtaining the relative χρ,σ, namely the causal probability
measure entailed by Mρ from the perspective of Mσ .
Using the categorical foundations laid in Sections 2 and 3,
we formalize RCK through the network sheaf and cosheaf
of causal knowledge, the latter being the dual construction
of the former. Here, the “dual” nomenclature is used with a
slight abuse of notation to mimic the jargon used in Abelian
categories [5, 12]. These mathematical objects consist of (i)
a network, (ii) convex spaces encoding causal knowledge on
nodes and edges, and (iii) mappings to move from nodes to
edges in the case of the sheaf and vice-versa for the cosheaf.
First, we introduce the network as a topological object. Re-
call that the network is shaped by the existence of an IC CA
between SCMs. Such a network is shared by the network
sheaf and cosheaf.
Definition 7 (Network) A (finite) network G := (N , E)
consists of: (i) nodes ρ ∈ N homeomorphic to a point (0-
dimensional open ball), and (ii) edges τ ∈ E homeomorphic
to an open interval (1-dimensional open ball). The closure
of each edge is the edge itself plus the two nodes at its
boundaries, whereas the node has its closure as there are
no lower-dimensional constituents of the network. The face
incidence relation induces a partial order (Π,⊴) on the set
of nodes and edges, that is, ρ ⊴ τ if and only if ρ (node)
belongs to the closure of τ (edge).

Second, the convex spaces of probability measures are ob-
jects in CSprob. For the network sheaf, they are dubbed
stalks and are given by the causal knowledge on the network
constituents encoded by the functor E. Consider τ : ρ ∼ σ.
The stalk at ρ is the image E(Mρ) in CSprob of the SCM
Mρ; similarly for σ. The stalk at τ instead is the image
E(Mτ ) in CSprob of the causal abstraction shared by ρ
and σ, viz. Mτ . The role of the CA is key to relating the
causal knowledge at ρ and σ as it provides a backbone space
where the causal knowledge can be compared. For the net-
work cosheaf instead, the convex spaces are dubbed costalks.

Consider again τ : ρ ∼ σ. The costalk at τ , viz. Ê(Mτ ),
coincides with E(Mτ ). The costalk at ρ instead is a convex
space of probability measures Ê(Mρ), embedded in E(Mρ)
as specified in the sequel.
Third, the mappings manifest as morphisms in the target
category, viz. CSprob. Specifically, in the case of the net-
work sheaf, we project E(Mρ) onto E(Mτ ) via the IC
CA map, hereinafter restriction map and denoted by αρ⊴τ

X .
Conversely, in the case of the network cosheaf, we embed
E(Mτ ) into E(Mρ) obtaining Ê(Mρ) via an affine measur-
able map βρ⊴τ

X , hereinafter extension map. At this point, we
can formally define the embedded costalk of causal knowl-
edge as the convex space Ê(Mρ) = ⟨∆̂(V,Ω)ρ , ccλ⟩, where
the set of probability measures ∆̂(V,Ω)ρ ⊆ ∆(V,Ω)ρ is

∆̂(V,Ω)ρ := {χ̂ρ on (V,Ω)ρ : αρ⊴τ
X (χ̂ρ) = χτ} , (9)

Please notice that Equation (9) and Theorem 2 guarantee
that Ê(Mρ) admits E(Mτ ) as an IC CA. We deliberately
use the verbs “to project” and “to embed” to remark that in
the node-edge transition formalized by the network sheaf,
some of the causal knowledge idiosyncratic to the node
is not transported into the backbone space; therefore, in
the reverse edge-node transition formalized by the network
cosheaf, it is only possible to integrate the transported causal
knowledge into the causal knowledge of the node, with no
guarantee of perfect reconstruction. This concept is essential
for us to properly define the transfer of probability measures
on the network. At this point, we are ready to define the
network sheaf and cosheaf of causal knowledge.
Definition 8 (Network sheaf of causal knowledge) Given a
network G := (N , E) with face incidence poset (Π,⊴), a
network sheaf valued in CSprob is a functor F : (Π,⊴) →
CSprob assigning (i) to each node ρ and edge τ in (Π,⊴)
stalks consisting of convex spaces of probability measure,
E(Mρ) and E(Mτ ), respectively; (ii) to each node-edge
incidence relation a restriction map αρ⊴τ

X : E(Mρ) →
E(Mτ ) being the affine endogenous component within an
IC α-abstraction between Mρ and Mτ .
Definition 9 (Network cosheaf of causal knowledge) Given
a network G := (N , E) with face incidence poset (Π,⊴), a
network cosheaf valued in CSprob is a functor F̂ : (Π,⊴
)op → CSprob assigning (i) to each node ρ and edge τ in
(Π,⊴)op costalks consisting of convex spaces of probability
measure, Ê(Mρ) and Ê(Mτ ) ≡ E(Mτ ), respectively; (ii) to
each node-edge incidence relation an extension map βρ⊴τ

X :

Ê(Mτ ) → Ê(Mρ).

The network sheaf and cosheaf fulfill two complementary
functions: the former transports causal knowledge from
the nodes to a backbone space where such knowledge can
be compared; the latter distributes causal knowledge from
the backbone space to the network nodes. Definitions 8
and 9 are particular cases of more general network sheaf
and cosheaf in CSprob, in which every causal-related re-



quirements on the (co)stalks and the (extension)restriction
maps are dropped. For the network sheaf, we refer to a 0-
cochain as a collection of (interventional or observational)
probability measures, one for each node. The value of the
0-cochain at the node ρ is χρ. Additionally, the 1-cochain
is a collection of probability measures on the edges, repre-
senting the IC CA of those on the nodes. Hence, an induced
value of the 1-cochain at the edge τ incident to a node ρ
is the pushforward probability measure χτ = αρ⊴τ

X (χρ).
We denote the space of 0- and 1-cochains by C0(G;F ) and
C1(G;F ), respectively. An object of interest in sheaf the-
ory [5] is the global section of the network sheaf. Loosely
speaking, it is a consistent assignment of data to each node
of the network that does not break local rules.
Definition 10 (Global section) Consider F as in Definition 8.
A global section χ of F is a choice χρ in E(Mρ) for each
node ρ of G such that χτ = αρ⊴τ

X (χρ), for all ρ ⊴ τ . The
space of global sections of F is denoted by Γ(G;F ).

Intuitively, in our RCK, a global section manifests itself as
a collection of as many consistent (non-)interventions as the
number of connected components of the network G. Specif-
ically, consider a single connected component: according
to our modeling, each pair of nodes connected by an edge
admits a shared IC CA. Hence, choosing a consistent (non-
)intervention for each node would result in a global section
vanishing a certain notion of distance – i.e., any suitable
information-theoretic metric and ϕ-divergence – between
the projected probability measures onto the edges. This is a
direct consequence of the interventional consistency inher-
ently ensured by the restriction maps.
Regarding the network cosheaf F̂ , the 1-chain agrees with
the 1-cochain of F , that is, a collection of probability mea-
sures representing the IC CA of those on the nodes. The
0-chain is a collection of probability measures, one for each
node, satisfying the projection requirement in Equation (9).
We denote by C0(G; F̂ ) and C1(G; F̂ ) the spaces of 0- and
1-chains of F̂ . Ultimately, we can pose the formal definition
of relative causal knowledge:

Definition 11 (Relative Causal Knowledge) Given a
network G := (N , E), network sheaf and cosheaf
of causal knowledge on G, F and F̂ , respectively,
and two nodes ρ1 and σk connected by a path of
k edges τi : ρi ∼ σi, with i ∈ [k], the relative
causal knowledge is the causal knowledge at ρ1 from
the perspective of σk filtered by the shared, abstract,
causal knowledge on the edges τi, i ∈ [k] (i.e., path-
dependent). Specifically,

CKρ1,σk := {

χρ1,σk =βσk⊴τk
X ◦αρk⊴τk

X ◦. . .◦βσ1⊴τ1
X ◦αρ1⊴τ1

X (χρ) ,

χρ ∈ E(Mρ)} . (10)

We end the section with a working example on the transfer
of causal knowledge. Further discussion and exemplification
of RCK is provided in Appendix E.

Setup. Consider a network with three nodes and two edges,
forming a chain. We assign to the leftmost node the causal
knowledge of subject A, viz. CKA. Similarly, we attach
to the central and rightmost nodes the causal knowledge
of subject B and C, viz. CKB and CKC . The endoge-
nous variables for the subjects are A = {A1, A2, A3},
B = {B1, B2, B3, B4, B5}, C = {C1, C2, C3}, compos-
ing non-intervened SMCs MA, MB , and MC . Each subject
does not have any information about the SCMs of the others.
MA and MB admit a shared CA MX living on the shared
edge, consisting of a single causal variable X for simplicity.
Specifically, for A the CA structure is {A1, A2} → X; for B
is {B1, B2, B3} → X . MB and MC admit a shared CA MY ,
given by a single causal variable Y . Here, for B the struc-
ture is {B3, B4, B5} → Y ; for C is {C1, C2} → Y . For
convenience, consider the restriction and extension maps,
viz. αρ⊴τ

X and βρ⊴τ
X to be linear (i.e., matrices). For A, we

denote the restriction by FA⊴X ∈ R1×3 and the exten-
sion by F̂A⊴X ∈ R3×1. Similarly, for B we have FB⊴X ,
FB⊴Y in R1×5 as restrictions and F̂B⊴X , F̂B⊴Y in R5×1

as extensions. Finally, for C we have FC⊴X ∈ R1×3 and
F̂C⊴X ∈ R3×1. Zero entries in the restriction and extension
matrices manage the fact that some variables are not relevant
to CA, a.k.a. non-constructive abstraction.

Relative Causal Knowledge. The subjects perform certain
tasks through individual soft-intervened SCMs, entailing
the soft-intervened probability measures χA

S = N(0,ΣA
S ),

χB
S = N(0,ΣB

S ), and χC
S = N(0,ΣC

S ). The collection of
these measures constitutes a valuation of the node stalks
of the network sheaf, i.e., a 0-cochain. When projected
onto the edges via the above CAs, the 0-cochain entails
the 1-cochain, that is, a collection of probability measures
for the edges X and Y . Then, Definition 11 specifies
for instance how B and C see A (i.e., χA

S ) from their
perspectives. Specifically, the relative soft-intervened
measures are:
(i) for B, χA,B

S = N(0, F̂B⊴XFA⊴XΣA
SF

A⊴X⊤
F̂B⊴X⊤

)

= N(0,ΣA,B
S );

(ii) for C, χA,C
S = N(0, F̂C⊴Y FB⊴Y ΣA,B

S FB⊴Y ⊤
F̂C⊴Y ⊤

)

= N(0,ΣA,C
S ).

Global section. A key point of our framework is the possi-
bility of investigating the global agreement among subjects
in terms of causal knowledge. Such a global agreement gives
rise to the global section in Definition 10. In the working ex-
ample, we have a global section when the soft-interventions
performed by the subjects are such that
FA⊴XΣA

SF
A⊴X⊤

= FB⊴XΣB
SF

B⊴X⊤
(section on X)

and
FB⊴Y ΣB

SF
B⊴Y ⊤

= FC⊴Y ΣC
SF

C⊴Y ⊤
(section on Y ).



5 DISCUSSION

Conceptually, the relativity of causal knowledge can drive
a paradigm shift in how causality is typically understood
in AI/ML. By stripping causality of its oracular and abso-
lute meaning, the relativity of causal knowledge situates
it within a different ontological setting, where truth is not
monolithic but emerges inevitably and relatively from a
set of relationships. This is mathematically formalized by
the path-dependent RCK in Equation (10). Our framework
paves the way to multiple intriguing areas of reasearch, piv-
otal to fully characterize RCK and make it applicable.
Learning Theory. We developed our theoretical framework
with an underlying intuition: RCK could be a better frame-
work to empower AI/ML with the ladder of causation [23].
A learning theory is needed for this. It is surely of interest
to develop a statistical theory for models that can ingest net-
work sheaves and cosheaves of causal knowledge to solve
downstream learning tasks. In many cases, the restriction
and expansion maps – the formal instance of “perspective”
– are given, e.g., privacy requirements of the subjects in
an agentic network or communication constraints in a sen-
sor network. However, when they are not available, the
problem of (co)sheaf inference, i.e., learning them in a data-
driven fashion given the network connectivity, is fundamen-
tal. An even harder problem is (co)sheaf discovery, i.e.,
jointly learning the restriction, extension maps, and network
connectivity. Interestingly, both for inference and discovery,
the learning losses and models are useful to induce a partic-
ular notion of perspective, that could be fairness-, safety-,
information-, or trustworthiness-driven, just to name a few.
Cohomology Theory. CSprob is not an Abelian category,
as it is not additive, i.e., there is no natural way to “add”
two affine maps to get another affine map such that all
group axioms are globally satisfied. Consequently, defining
a cochain complex – and thus a cohomology theory – on net-
work sheaves of causal knowledge is nontrivial. Developing
such a theory would yield rich algebraic invariants that offer
global insights into the network structure. These invariants
would be instrumental in revealing when and why multi-
ple sheaves of CK share a common structure. Practically,
a cohomology theory could help us understand how and
why different networks of subjects, each developing causal
knowledge about different phenomena, exhibit similarities.
Hodge Theory. The Hodge theorem [11] shows that the
kernel of the Laplacian on a Riemannian manifold recovers
its de Rham cohomology. Combinatorial versions of the
Hodge theory have been developed for cellular sheaves of
inner-product spaces (e.g., vector spaces and Hilbert spaces),
building on suitable properties of the adjoint maps [12]. Un-
fortunately, porting these arguments to the CSprob category
is nontrivial. In this context, a Hodge(-like) theory could
be instrumental in defining diffusion-type operators and de-
veloping spectral theories [12] for RCK. Practically, having
a Hodge theory might help us understand which are the

dynamics that lead to global sections in Definition 10 and
why, providing insights on when and why RCK aligns.

6 CONCLUSION

In this paper, we introduced the relativity of causal knowl-
edge. We established the formal definition of relative
causal knowledge (RCK) via a category-theoretic treatment
for SCMs, their interventions, and related α-abstractions.
Within the relativity of the causal knowledge paradigm,
SCMs are inherently imperfect, subjective representations
embedded within networks of relationships. By encoding
causal knowledge in convex spaces of probability measures
and constructing network sheaves and cosheaves, we en-
abled the transfer of causal knowledge in an interventionally
consistent manner while considering diverse perspectives
across the network. Our work opens exciting research av-
enues in cohomology, Hodge(-like), and learning theory for
RCK, paving the way for context-aware, robust AI systems.
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A ESSENTIAL MATERIAL ON CATEGORY THEORY

Below are fundamental definitions and examples that are instrumental in providing the necessary background on category
theory. For a comprehensive overview of category theory see resources such as [18, 24].
Definition 12 (Category) A category C consists of

• A collection C0 whose elements are called objects of C;
• A collection C1 whose elements are called morphisms of C;

such that:

• Each morphism f : X → Y has assigned two objects of the category called source and target, respectively;
• Each object X has a distinguished identity morphism IdX : X → X;
• Given f : X → Y and g : Y → Z, than it exists g ◦ f = h : X → Z.

These structures satisfy the following axioms:

• (Unitality) ∀f : X → Y, f ◦ IdX = f and IdY ◦ f = f ;
• (Associativity) Given f , g, and h such that the compositions are defined, then h ◦ (g ◦ f) = (h ◦ g) ◦ f .
Example 1 The following are some notable examples of categories:

• Indicate with (P,⩽) a partial order set. (P,⩽) can be viewed as the category whose objects are the elements p ∈ P and
morphisms are order relations p ≤ p′. Notice that there is at most one morphism between two objects;

• VectR is the category whose objects are real vector spaces and morphisms are linear maps;
• HilbR is the category whose objects are real complete Hilbert spaces, that is, real vector spaces equipped with an inner

product structure and closed under the norm topology. Morphisms are bounded linear maps f : X → Y , that is, ∃ b ∈ R+

such that ∥f(x)∥ ≤ b∥x∥, ∀x ∈ X . Every morphism f : X → Y between Hilbert spaces admits an adjoint f⋆ such that,
∀x ∈ X and y ∈ Y , ⟨y, f(x)⟩ = ⟨f⋆(y), x⟩. We also have (f⋆)⋆ = f .

Starting from Definition 12 we can define the notion of subcategory.
Definition 13 Given a category C, a subcategory S of C consists of the following data:

• A subcollection S0 of C0 such that ∀S, IdS is in S;
• A subcollection S1 of C1 such that ∀ f and g for which the composition is defined in C, the composite h = g ◦ f is in S.
Example 2 (preHilbR) The category of real vector spaces with an inner product preHilbR is a subcategory of VectR.
Specifically, objects are real vector spaces equipped with an inner product structure. Morphisms are bounded linear maps
f : X → Y , that is, ∃ b ∈ R+ such that ∥f(x)∥ ≤ b∥x∥, ∀x ∈ X . Every morphism f : X → Y between inner product
vector spaces admits an adjoint f⋆ such that, ∀x ∈ X and y ∈ Y , ⟨y, f(x)⟩ = ⟨f⋆(y), x⟩. We also have (f⋆)⋆ = f .
preHilbR is similar to HilbR, the difference is that in HilbR the vector spaces are also complete.
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Definition 14 (Functor) Consider C and D categories. A functor F : C → D consists of the following data:

• For each object X ∈ C0, an object F (X) ∈ D0;
• For each object morphism C1 ∋ f : X → Y , a morphism D1 ∋ F (f) : F (X) → F (Y );

such that the following axioms hold:

• (Unitality) ∀X ∈ C0, F (IdX)=IdF (X). In other words, the identity in C is mapped into the identity in D.
• (Compositionality) ∀f and g ∈ C1 such that the composition is defined, then F (g ◦ f) = F (g) ◦ F (f). In other words,

the composition in C is mapped into the composition in D.

To ease the notation, in the sequel, we use Fσ and F f to denote F (σ) and F (f), respectively.
Definition 15 (Natural transformation) Consider two categories C and D, and two functors between them, namely F : C → D
and G : C → D. A natural transformation α : F → G consists of the following data:

• For each object X ∈ C0, a morphism αX : FX → GX in D called the component of α at X;
• For each morphism f : X → X ′ in C, the following diagram commutes:

FX FX′

GX GX′

F f

αX αX′

Gf

(11)

A natural transformation can be thought of as a consistent system of arrows between two functors. The naturality of α means
that it is invariant with respect to maps between the images of two functors.

B EXAMPLES

This appendix is devoted to provide practical examples about the formalism introduced in Section 2. Consider Z =
{Z1, Z2, Z3} and X = {X1, X2, X3} as exogenous and endogenous variables of the following linear SCM with additive
noise M: 

X1 = Z1 = m1(Z1) ,

X2 = c21X1 + Z2 = c21Z1 + Z2 = m2(Z1, Z2) ,

X3 = c32X2 + Z3 = c32c21Z1 + c32Z2 + Z3 = m3(Z1, Z2, Z3) ;

(12)

where Zi ∼ N(0, 1) and Zi ⊥ Zj , i, j ∈ [3] and i ̸= j. Additionally, let the probability space associated with the exogenous
to be (Rn,B(Rn), N(03, I3)), where B(Rn) is the Borel σ-algebra of Rn. We can equivalently express M as X = MZ,
where

M =

 1 0 0
c21 1 0

c32c21 c32 1

 . (13)

We call the matrix M the mixing matrix. See Lemma E.1 in D’Acunto et al. [6] for a proof of the existence of M.

At this point, according to Definition 1, the components of the measure-theoretic M are: (i) (Rn,B(Rn), N(03, I3)) for the
exogenous; (ii) M as mixing; and (iii) (Rn,B(Rn), N(0,MM⊤)) for the endogenous. In detail, the endogenous measure
is the pushforward of N(0, I3) given M. Using the notation in the paper for pushforward measures, each Xi follows
mi(µ(Zi ∪ ZAi)) = mi(N(0, I|Ai|+1)) = N(0, [M]i,:[M]⊤i,:).

Starting from the measure-theoretic SCM, according to Definition 2, the category-theoretic representation of M is the functor
mapping I to (Rn,B(Rn), N(03, I3)), I ′ to (Rn,B(Rn), N(0,MM⊤)), and the arrow between I and I ′ to M.

At this point, let us consider hard and soft interventions. Starting with the former, we consider the hard intervention



do(X2 = c). Accordingly, Equation (12) becomes
X1 = Z1 = mH

1 (Z1) ∼ N(0, 1) ,

X2 = c (constant),
X3 = c32c+ Z3 = d+ Z3 = mH

3 (Z3) ∼ N(d, 1) .

(14)

Starting from Equation (14), the hard-intervened SCM MH in SCM(I,Prob) is the functor mapping I to
(Rn,B(Rn), N(03, I3)), I ′ to (Rn,B(Rn), N(0, 1)×δc×N(d, 1)), and the arrow between I and I ′ to MH = {mH

1 , c,mH
3 }.

Consider now a soft intervention on X2 which modifies c21 → cS21. Recall that we do not consider soft interventions that
modify the parent set of the intervened variable. Accordingly, Equation (12) becomes

X1 = Z1 = mS
1 (Z1) ,

X2 = cS21X1 + Z2 = cS21Z1 + Z2 = mS
2 (Z1, Z2) ,

X3 = c32X2 + Z3 = c32c
S
21Z1 + c32Z2 + Z3 = mS

3 (Z1, Z2, Z3) ;

(15)

For convenience, represent MS as

MS =

 1 0 0
cS21 1 0

c32c
S
21 c32 1

 . (16)

At this point, the soft-intervened SCM MS in SCM(I,Prob) is the functor mapping I to (Rn,B(Rn), N(03, I3)), I ′ to
(Rn,B(Rn), N(0,MSM

⊤
S )), and the arrow between I and I ′ to MS .

Finally, we exemplify the category-theoretic representation of the above interventions in SCM(I,Prob). The inverse M−1

exists by definition of the mixing matrix M itself. Specifically, it is equal to I3 − C, where C is the matrix of causal
coefficients corresponding to Equation (12). Using Lemma 1, in SCM(I,Prob) (i) the hard intervention corresponds to the
natural transformation ηH = ⟨Id(Rn,B(Rn),N(03,I3)),H = MH ◦M−1⟩; and (ii) the soft intervention corresponds to the
natural transformation ηS = ⟨Id(Rn,B(Rn),N(03,I3)),S = MS ◦M−1⟩.

C ON THE INVERTIBILITY ASSUMPTION

Here we illustrate that invertibility of M holds for the main classes of Markovian SCMs.

Additive Noise Model. In this case, considering n causal variables, the structural equations read as

Xi = fi(Pi) + Zi, ∀ i ∈ [n] . (17)

It is immediate to obtain that the components of M−1 : V → U are m−1
i = Xi − fi(Pi), ∀ i ∈ [n].

Post-nonlinear Model. In this case, the structural equations read as

Xi = gi(fi(Pi) + Zi), ∀ i ∈ [n] ; (18)

where gi is invertible [36, 16]. It is immediate to obtain that the components of M−1 : V → U are m−1
i = g−1

i (Xi)−fi(Pi),
∀ i ∈ [n].

Location-scale Noise Models. In this case, the structural equations are [14]

Xi = fi(Pi) + hi(Pi)Zi, ∀ i ∈ [n] ; (19)

where fi : VPi → R and hi : VPi → R+ is strictly positive. It is immediate to obtain that the components of M−1 : V → U
are m−1

i = (Xi − fi(Pi)) /hi(Pi), ∀ i ∈ [n].

D PROOFS

Lemma 1 [Interventions in SCM(I,Prob) ] Given (i) M as in Definition 2; and (ii) the collection of measurable maps
FI := {f i

1, . . . , f
i
n}; an intervention in SCM(I,Prob) is a natural transformation ηI := ⟨IdM(I), I⟩, with I = MI ◦M−1

such that the following holds



M(I) M(I ′)

MI(I) MH(I ′)

M

IdM(I) I

MI

=⇒ MI = I ◦M . ((7))

Proof. Let us start from the exogenous component. Since the intervention I, that could be either soft or hard, acts only on
the endogenous variables, the probability space corresponding to the exogenous part remains unchanged. That is, for the
object M(I) we simply have

ηII := IdM(I) . (20)

This means that for any measure µ on the exogenous, the pushforward along ηII is exactly µ.

Now, let us consider the endogenous component and recall the collections FH and FS in Section 2. If the intervention is
hard, than we represent it as the collection FI := FH. If soft, with FI := FS . The collection FI entails a new collection of
mixing functions; specifically (i) MH for the hard intervention case, (ii) MS for the soft one (cf. Section 2). At this point,
by invertibility of M, Equation (7) trivially follows by setting the second component ηII′ equal to I = MI ◦M−1.

Lemma 2 [Convex space of probability measures, ⟨∆(V,Ω), ccλ⟩] The convex space of probability measures, namely
⟨∆(V,Ω), ccλ⟩, is given by the set ∆(V,Ω) of probability measures χ on (V, Ω) together with a convex combination operation
defined by

ccλ(χ1, χ2)(O) := λχ1(O) + λ̄χ2(O) , (8)

for all O ∈ Ω, with λ ∈ [0, 1].

Proof. According to Def. 3.1 in [9], we have to demonstrate that ccλ(χ1, χ2) satisfies: (i) cc0(χ1, χ2) = χ2, (ii)
cc0(χ1, χ1) = χ1; (iii) ccλ(χ1, χ2) = ccλ̄(χ2, χ1); and ccλ(ccµ(χ1, χ2), χ3) = ccλ̃(χ1, ccµ̃(χ2, χ3)) where:

λ̃ = λµ, µ̃ =

{
λµ̄
λ̄µ

, if λµ ̸= 1 ,

arbitrary, if λ = µ = 1 .
(21)

Since the convex set ∆(V,Ω) is a subset of a vector space, the previous properties follow from the axioms of vector space.

Lemma 3 The category CSprob has convex spaces ⟨∆(V,Ω), ccλ⟩ as objects, and affine measurable maps – i.e., measurable
maps commuting with ccλ – as morphisms.

Proof. From Definition 3.2 in [9] we have that convex spaces as in Lemma 2 together with morphisms commuting with
ccλ form a category. Hence we have to demonstrate that affine measurable maps commute with ccλ. Recall that a map
f : ∆(V,Ω) → ∆(V′,Ω′) is affine if for every χ1, χ2 ∈ ∆(V,Ω) and every λ ∈ [0, 1] it satisfies f (ccλ(χ1, χ2)) =
ccλ (f(χ1), f(χ2)) . Hence, by definition, any affine measurable map necessarily commutes with ccλ.

Theorem 1 Every convex combination of probability measures corresponding to a causal knowledge CK (M) is a valid
soft-interventional probability measure for CK (M).

Proof. Consider M = ⟨(U , Υ, ζ), (V, Ω, χ) ,M⟩, λ ∈ [0, 1], and w.l.o.g. the probability measures χS1
and χS2

entailed
by two (measurable) soft interventions ηS1 and ηS2 run on M. Hence, the convex combination

χS3
= ccλ(χS1

, χS2
) = λχS1

+ λ̄χS2
(22)



is a proper soft-interventional probability measure entailed by MS3 = {mS3
1 , . . . ,mS3

n } according to Equation (6), where
mS3

i = λmS1
i + λ̄mS2

i . Indeed we have

λχS1
+ λ̄χS2

= ×
Xi∈X

(
λmS1

i

(
µi

(
Ui × UAi

))
+

+ λ̄mS2
i

(
µi

(
Ui × UAi

)) )
= ×

Xi∈X

(
λmS1

i + λ̄mS2
i

) (
µi

(
Ui × UAi

))
= ×

Xi∈X
mS3

i

(
µi

(
Ui × UAi

))
= χS3

.

(23)

Also, recall that a convex combination of measurable functions is still measurable. Starting from Equations (2), (5) and (7),
it is straightforward to see that the same holds also when we consider observational and hard-interventional measures within
the convex combination.

Theorem 2 The component αX of α within an IC α-abstraction commutes with ccλ, thus is affine.

Proof. Consider two SCMs M and M′ related by an IC α-abstraction as in definition 6, and interventions I ′
1 and I2′ on M′,

either hard or soft, corresponding to interventions I1 and I2 on M. Then, given I ′
3 convex combination of I ′

1 and I2′, we
have

χ′
I′
3
= αX (χI3)

(a)
= αX

(
λχI1 + λ̄χI2

)
(b)
= λχ′

I′
1
+ λ̄χ′

I′
2
= χ′

I′
3
.

(24)

where in (a) we apply Theorem 1, and in (b) the linearity of the pushforward.

Theorem 3 There exists an IC encoding functor E : NI(I,Prob) → CSprob mapping (i) each non-intervened M :=
⟨(U , Υ, ζ), (V, Ω, χ) ,M⟩ to the convex spaces of probability measures ∆(V,Ω), and (ii) an IC α-abstraction between M
and M′ with its endogenous component αX .

Proof. The mapping on objects is well-defined since Theorem 1 guarantees that convex combinations of probability
measures associated with observational and interventional states of M are valid soft-interventional probability measures. On
morphisms, Theorem 2 implies that αX is a proper morphism in CSprob. Interventional consistency is inherited because in
NI(I,Prob) every morphism is an IC α-abstraction.

E FURTHER DISCUSSION AND EXEMPLIFICATION OF RCK

A Paradigm Shift. Our work provides a novel conceptual foundation for interpreting causality. Each subject infers causal
knowledge from personal experience and can only see the world through its own perspective. Although the subjectiveness of
causality has already been partially explored by Richens and Everitt [27] and, very recently, Bareinboim [1], we move further
by making causality not only subjective but also relational. Consequently, asking for a unique “true” causal description of
a system is an ill-posed question, as the very same notion of causality is inherently relative in our framework. However,
it is important to highlight that the relativity of causality is different from the relativism (in its philosophical meaning) of
causality: we do not undermine the meaning of things, we question its description as a monolithic object. In our setting,
global causal traits of the system emerge only when there is local agreement throughout the network–the global sections
of the sheaf of causal knowledge. This parallels how certain physical quantities in physics remain invariant across all
reference frames, while other quantities remain inherently relative. But still, the relative treatment better fits the notion of
physical reality we are able to describe. Consider a sudden drop in a company’s stock price. Different agents (the subjects)
in the financial system (the network sheaf) propose distinct explanations (their CK): equity analysts blame shifting market
sentiment; management highlights an unfavorable earnings report; institutional investors worry about looming regulatory
risks; retail shareholders point to negative social media coverage fueling panic selling. However, viewed within the broader
network, the interplay of these perspectives (the RCK) discloses a nuanced mix of market sentiment, regulatory uncertainty,
company-specific fundamentals, and social influence—no single narrative fully explains the drop. A unified description



Figure 2: In the top figure, we depict the classical, non-relative approach to causality: a subject interacts with a
system that is assumed to be completely describable by an underlying “true” SCM M. We refer to the (convex) space
of all the interventional and observational probability measures entailed by M as the “true” Causal Knowledge
CK(M). In this classical setting, the system and M are thus in a bijection, the other subjects are assumed to be part of
the system, and the observer subject interacts with the system following (or inferring) CK(M). The Relativity of Causal
Knowledge fundamentally challenges this paradigm by making causality subjective and relational, i.e., by breaking
the bijection between the system and a “true” SCM, and isolating the subjects from the system while allowing them
to interact with each other. The novel, core mathematical object implementing our relative paradigm is the Network
(Co)Sheaf of Causal Knowledge, which can be informally thought of as a graph on whose nodes and edges are attached
certain convex spaces, called stalks, that can interact through certain mappings, called restriction and extension maps.
In our relative setting, as we show in the bottom left figure, the system can be pictured as a spherical planet, and the
subjects as satellites orbiting around it. Each subject can only observe the planet from certain angles–its perspective–,
positioning it on a specific orbit. The orbits represent then the subjective Causal Knowledge of the subjects–CK(Mρ)
and CK(Mσ)–, i.e., the (convex) spaces of all the interventional and observational probability measures entailed
by the subjective SCMs that the subjects use to describe the underlying system–Mρ and Mσ. In sheaf jargon, each
subject is a node, and each space CK(M·) is a node stalk. As such, a point χρ ∈ CK(Mρ) on the orbit of a subject ρ
is a specific probability measure. In sheaf jargon, a collection of points, one per each subject’s orbit –{χρ, χσ}– is
a 0-cochain. Two subjects ρ and σ can communicate if their SCMs Mρ and Mσ admit a shared abstraction, i.e., a
backbone space τ . In this case, ρ and σ can map their 0-cochain values χρ and χσ to more abstract representations
in the backbone space αρ◁τ

X (χρ) and ασ◁τ
X (χσ) through surjective mappings αρ◁τ

X and ασ◁τ
X , respectively. “More

abstract” here means a coarse-grained but interventionally consistent representation, telling us essentially the same
story about (subjective) cause-and-effect, but at different levels of detail. In sheaf jargon, ρ and σ are connected by an
edge τ , the backbone space is an edge stalk, and the mappings are the restriction maps. Therefore, a collection of more
abstract representations {αρ◁τ

X (χρ) , ασ◁τ
X (χσ)} is a 1-cochain. It is now clear that, in our relative setting, global

traits of the underlying system only emerge by studying network-level invariants. Among them, “local agreement”
of the subjects is particularly important. In sheaf jargon, local agreement refers to global sections, i.e., 0-cochains
whose values are mapped, per each edge, to the same more abstract value– αρ◁τ

X (χρ) = ασ◁τ
X (χσ). As we show in the

bottom right figure, a probability measure χρ ∈ CK(Mρ) in the CK of a subject ρ can be mapped to a (usually less
informative) probability measure χρ,σ ∈ CK(Mρ) of another subject σ, connected to ρ through an edge τ , by first
applying a restriction map αρ◁τ

X and then an extension map βσ◁τ
X , i.e., χρ,σ = βσ◁τ

X (αρ◁τ
X (χρ)). The Relative Causal

Knowledge CKρ,σ of a subject ρ from the perspective of σ is then the subspace CKρ,σ ⊆ CK(Mσ) being the image of
βσ◁τ
X (αρ◁τ

X (·)). In the general case, RCK is definable for any pair of subjects for which there exists a connecting path
in the underlying network, not only for subjects directly connected by an edge (see Definition 11).



emerges only when there is local agreement across the entire network (the global sections of the sheaf of causal knowledge).
See Figure 2 for a simple but comprehensive description of our framework.

The Role of Causal Abstractions. A subject cannot simply share all of its CK with some other subject because that would
lead to an inherently inconsistent notion of perspective and, thus, of relativity. Think about physics: if we move from one
reference frame to another, we don’t just use the same measurements, but we transform them to make them consistent in
the new frame. The notion of perspective is crucial in our framework because it is useful to model a variety of possible
elements in a network of subjects: privacy or fairness constraints, maximizing mutual information, or “simply” modeling
the impossibility of a human being to analyze a system if not through their own eyes. In practice, this translates into the
uselessness of communicating CK whose distributions have different support on different random variables w.r.t. to the
causal knowledge of the receiver subject, which would not know how to use it (see the toy example below). Therefore, the
abstractions are a convenient yet rigorous way to model a “shared discourse space” among subjects to enable communication.
In this sense, an abstraction is a backbone space: if the subjects operate on different random variables, abstraction and
interventional consistency are arguably the best ways to provide them with a rigorous communication medium.

A Clarification on the Meaning of Cochains. A network comprises three subjects σ, ρ, and γ, each of them injecting into
the network three soft-intervened probability measures from their own CK. These measures represent their current causal
representation of the world. As stated in the main body and in Figure 2, the collection of these three probability measures
forms a 0-cochain, i.e., a valuation of the node stalks of the network sheaf. In other words, the value of the 0-cochain at each
node is just an object (a probability measure) of the node stalk (the node’s CK). Via the restriction maps, the 0-cochain
entails a 1-cochain on the edges, i.e., the collection of the abstracted probability measures. Although the subjects share a
common CA, the abstracted probability measures might disagree on the edge stalk due to their different understanding of
the world at that moment. Then, when a subject, say ρ, embeds onto its own node stalk, the abstract probability measure
of subjects σ and γ from the edge stalks, it individuates different probability measures belonging to its CK. The latter
represents the understanding of the world of σ and γ expressed in terms of the causal variables of subject ρ. Subject ρ can
combine its understanding with those of σ and γ to accomplish its task, leveraging the closure over convex combinations of
the CK (Theorem 1). A global section can then be seen as a 0-cochain whose values, for each pair of nodes connected by an
edge, are mapped to the same 1-cochain value by the restriction maps.

A Toy Example. Suppose there is some underlying system and consider two subjects ρ and σ. The former observes some
random variables X,Z, and Y , and knows that these random variables are related by a structural causal model (SCM) with
DAG X → Z → Y . In particular, ρ knows the joint distribution of these variables and also their joint distribution under
every possible intervention–that is, ρ’s CK. This SCM is compatible with a more abstract SCM whose random variables
are U and M , and that has DAG U → M . “More abstract” here means that there exist surjective mappings porting X,Z
and Y into U and M . The more abstract SCM is interventionally consistent, i.e., if we pick a variable in the initial SCM,
set it to a specific value (an intervention), and do the corresponding intervention in the more abstract model, they both tell
us essentially the same story about cause-and-effect, but at different levels of detail. Now, suppose σ observes variables
P,W, T, L and knows they are related by an SCM with DAG P → W → T → L. This second SCM is also compatible
with the same more abstract SCM with DAG U → M . Additionally, σ can access ρ’s CK only through this shared abstract
representation and vice versa. If σ and ρ are connected by an edge τ , then the Relative CK (RCK) of ρ from the perspective
of σ is the result of first applying the restriction map to port the CK of ρ on τ , and then porting that more abstract realization
of the CK of ρ to σ by applying the extension map. In the general case, RCK is definable for any pair of subjects for which
there exists a connecting path in the underlying network, not only for subjects directly connected by an edge. Moreover, if
more than one possible path connects two subjects, the RCK is path-dependent (see Definition 11).

Is RCK Needed? As a little mental exercise to highlight the need for our relative treatment of causality, let us forget for
a moment our framework and suppose that there exists a protocol for communicating the entire CK from ρ to σ and vice
versa. In this case, σ receives a certain state (a cochain value) of the CK over {X,Y, Z} from ρ but, in order to utilize this
information, σ needs to translate this information onto {P,W, T, L}. As such, any protocol needs a translation step. The
need for this translation step is an informal necessary condition for proving the need of a relative description of causality,
beyond our personal philosophical perspective. Consequently, any protocol that uses causal abstraction as the translation
step would be a specific instance of our framework. This statement holds true even in more nuanced corner cases: consider
again ρ and σ but now suppose that both share the same causal model over the same set of random variables, say {X,Y, Z}.
Consider again the protocol above. This time σ receives from ρ a certain state of its own causal model according to the
perspective of ρ in that context. Then, σ can directly combine the ρ ’s perspective with its own and accomplish the assigned
task. This situation is allowed within our proposed framework. In particular, it is equivalent to set (i) the causal abstraction
as a causal model over three random variables {U, V,W} entailing rotated versions of the probability measures of both ρ



and σ, (ii) the restriction maps as rotation matrices, and (iii) the extension maps as the transpose of such rotation matrices.
The trivial example is when the restrictions and extensions are rotations with a null angle, i.e., the identity.

A Practical and Brief Example in Decentralized Agentic AI. In the context of AI, think about the latent spaces of two
autonomous AI agents: they cannot communicate their internal current causal representations (the current 0-cochain) without
aligning the latent spaces, i.e., without mapping one latent space into the other. Assume that the latent space of the first agent
is a realization of a convex space of probability measures over Rd and its current causal representation is a point in this space
(its current 0-cochain value), and that the latent space of the second agent is a realization of a convex space of probability
measures over Rn, with n ̸= d, and its current causal representation is a point in this space (its current 0-cochain value).
The subjects clearly cannot compare or exchange their current causal representations without any additional alignment step.
Consider, however, the simplest scenario: linear alignment, where both restriction and extension maps are represented as
matrices. In this case, the alignment matrix can be viewed as the product of a restriction matrix and an extension matrix.
Notably, this factorization aligns closely with the approach commonly employed in low-rank adaptation methods (e.g.,
LoRA [13]). Please notice that this is the case even if the agents communicate in natural language, as they would need
to be able to explain to each other how to relate their internal causal representations. At this point, it should be clear as
well that the internal current causal representation of one agent can be entirely transmitted to the other agent without any
transformation only if the two latent spaces coincide. As a consequence, please notice that the restriction and extension
maps are not only useful to allow subjects to communicate, but they can also encode how they should communicate (the
perspective). This is why we say that they can be designed to enforce privacy, fairness, or whatever other criterion of interest.
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