
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

POC-SLT: PARTIAL OBJECT COMPLETION WITH SDF
LATENT TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

3D geometric shape completion hinges on representation learning and a deep
understanding of geometric data. Without profound insights into the three-
dimensional nature of the data, this task remains unattainable. Our work addresses
this challenge of 3D shape completion given partial observations by proposing
a transformer operating on the latent space representing Signed Distance Fields
(SDFs). Instead of a monolithic volume, the SDF of an object is partitioned into
smaller high-resolution patches leading to a sequence of latent codes. The ap-
proach relies on a smooth latent space encoding learned via a variational autoen-
coder (VAE), trained on millions of 3D patches. We employ an efficient masked
autoencoder transformer to complete partial sequences into comprehensive shapes
in latent space. Our approach is extensively evaluated on partial observations from
ShapeNet and the ABC dataset where only fractions of the objects are given. The
proposed POC-SLT architecture compares favorably with several baseline state-
of-the-art methods, demonstrating a significant improvement in 3D shape comple-
tion, both qualitatively and quantitatively.

1 INTRODUCTION

The 3D measurements from scanners or sensors can be used to assemble virtual objects or entire
worlds. This can be used not only for visualizations but also for reasoning about the world, e.g., in
self-driving cars. In general, with optical sensors, it is only possible to measure 3D surfaces that are
visible to the sensor from within its range of motion (if any). Even after combining all observations
taken from different angles, gaps remain in the observed surface. One can usually not observe an
object from all directions, e.g., from below the surface it is standing on. Similarly, one might only
be able to take pictures from the front of an object but may not be able to peek behind it.

In this work, we present a new method for partial object completion using a transformer in the style
of Masked Auto Encoders (MAE) (He et al., 2022) operating in latent SDF space. For a unknown
or masked regions, it is supposed to fill in a plausible shape that connects well with the given
geometry. The method consumes and produces shapes represented as Signed Distance Fields (SDF)
on volumetric patches. Similar to Stable Diffusion (Rombach et al., 2022), the incomplete shapes
are first encoded into a smooth, compressed latent space representation using our dedicated Patch
Variational Autoencoder (P-VAE). For high-resolution models, the entire shape is represented as a
sequence of latent codes generated by the P-VAE on volumetric patches. Completion is performed
in latent space and the completed shape is decoded back to an SDF using the decoder of the P-VAE
on each patch. Note that our SDF-Latent-Transformer is a Masked Autoencoder. It therefore solves
the task directly in a single inference step without a transformer decoder.

Shape completion requires a strong prior for real-world shapes in order to estimate the most likely
shapes for incomplete inputs. We trained our P-VAE and SDF-Latent-Transformer on ShapeNet-
CoreV1 (Chang et al., 2015) with all 55 categories. We further fine-tuned the transformer on a
subset of the ABC dataset (Koch et al., 2019) with 100K meshes.

By thoroughly evaluating our methods on shape completion tasks, we demonstrate superior quality
compared to state of the art. Our key contributions to the field are: i) A comprehensive Patch
Variational Autoencoder (P-VAE) to compress SDF shapes into sequences of codes in a smooth
latent space. ii) A SDF-Latent-Transformer trained as Masked Autoencoder completes input shapes
within milliseconds in a single inference step. iii) Upon acceptance, we will release code and model

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

checkpoints and make the training data sets available. For the P-VAE, it consists of 2.6 million 323

patches and for the SDF-Latent-Transformer of 1283 SDFs for all objects in ShapeNetCoreV1.

Ours is the first SDF-based method trained and evaluated on all of ShapeNet (≈50k meshes) and
a 100k subset of ABC. This is an order of magnitude more than previous SDF-based approaches,
at higher resolution, while using consumer-grade GPUs. MAEs are used in many domains by now
but are usually a means to pretrain a powerful encoder, whose strong representation can be used
for downstream tasks. We however directly use the training objective as a shortcut to get instant
completion. This only works due to the robustness and strong geometric prior in our latent space.

2 RELATED WORK

We review related point-based, occupancy-based, and SDF-based 3D completion methods and meth-
ods inspiring our deep-learning architecture.

Point-based Shape Completion. 3D Shape completion tackles the task of reconstructing 3D ob-
jects from partial observations in the form of 2D images, sometimes with depth information, or 3D
point clouds. Areas occluded during capture need to be filled in to form a complete object.

PointNet and its variations (Qi et al., 2017a;b) have pioneered the direct processing of 3D coor-
dinates with neural networks, catalyzing research in numerous downstream tasks, including point
cloud completion, as for example PCN (Yuan et al., 2018). PCN uses PointNet in an encoder-
decoder framework and integrates a FoldingNet (Yang et al., 2018) to transpose 2D points onto a 3D
surface by simulating the deformation of a 2D plane. Following PCN, a plethora of other methods
have emerged (Tchapmi et al., 2019; Huang et al., 2020; Xie et al., 2020; Liu et al., 2019), aiming
to enhance point cloud completion with higher resolution and increased robustness.

PointTR (Yu et al., 2021) was one of the first approaches which used transformers (Vaswani et al.,
2017) for point cloud completion. They derive the point proxies from a fixed count of furthest
point sampled representatives, which are turned into a feature vector using a DGCNN (Wang et al.,
2019). Completion is done by a geometry-aware transformer, which is queried for missing point
proxies. The missing points are extracted from the predicted proxies using a FoldingNet (Yang et al.,
2018). The completed points are finally merged with the input point cloud. AdaPointTR (Yu et al.,
2023) addresses discontinuity issues and is more robust to noisy input. SeedFormer (Zhou et al.,
2022) completes a sparse set of patch seeds from an incomplete input and upsamples the seeds to a
complete point cloud. The seeds are sparse 3D positions enriched by a transformer with semantic
information about the local neighborhood. SnowFlakeNet (Xiang et al., 2021) solves this decoding
task with a SkipTransformer-based architecture, which repeatedly splits and refines low-resolution
points. LAKe-Net (Tang et al., 2022) first localizes aligned keypoints to generate a surface skeleton
mesh which aids in producing a complete point cloud. AnchorFormer (Chen et al., 2023) extracts
global features and predicts key ”anchor” points which are combined with a subset of input points
and then upsampled into a dense mesh. VRPCN (Pan et al., 2021) models the shape from the partial
input as probability distributions, which are sampled and then refined by a hierarchical encoder-
decoder network. This is related to our approach as we also use a Variational Auto Encoder (VAE)
to compress the shape in latent space. LION (Zeng et al., 2022) introduced a flexible latent diffusion
model for point clouds also using a VAE to map point cloud features into latent space. The features
and diffusion model are constructed from Point-Voxel CNNs.

Occupancy-based Shape Completion. Occupancy Networks (Mescheder et al., 2019) introduced
a functional, implicit representation of 3D shapes via their occupancy. These methods can be queried
for arbitrary 3D locations and will return whether the queried position is inside or outside of the
represented object. Meshes can quickly be recovered from this representation using the MISE al-
gorithm (Mescheder et al., 2019). Peng et al. (2020) extend this to a convolutional method and
represent entire scenes by storing and interpolating latent representations in 2D/3D grids. Chibane
et al. (2020) combine local and global information using multi-scale feature grids in IF-Nets.

These methods focus on identifying and representing 3D objects seen in images and adding detail
to uniformly low-resolution point cloud and voxel input.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ShapeFormer (Yan et al., 2022) compactly encodes shapes into a sparse grid of vector-quantized
deep implicit functions (VQDIF). Partial inputs are completed by an autoregessive transformer op-
erating on a sequence of location and patch index pairs. 3DILG (Zhang et al., 2022) uses an irregu-
lar grid of latent codes for shape representation and completes partial inputs with an autoregressive
transformer. 3DShape2VecSet (Zhang et al., 2023) derives multiple global vectors for shape repre-
sentation using cross-attention between input points and sampled query points. The (variationally)
auto-encoded shape is then completed using latent-space diffusion. The output occupancy is queried
by cross-attention between a dense point cloud and the global vectors.

The input to these methods is typically a point cloud generated from a single camera view. Occluded
parts need to be inferred from the partial point cloud. In many cases, the input still covers large parts
of the object, exposing global information about the shape, while our method completes objects
from a small subset of complete patches.

SDF-based Shape Completion. SDFs represent 3D shapes implicitly as continuous 3D scalar
functions which describe the distance of any 3D point to the closest surface. The surface is given by
the zero-level-set while in- or outside areas are identified by the sign. This ensures that objects rep-
resented by SDFs are always watertight. In contrast, meshes are often non-manifold since they are
commonly created to ”look right” on screen, rather than to represent the volume of solid geometry.
While SDFs could be modeled in any functional basis, we use regular 3D grids.

There are only few approaches related to shape completion on SDFs in the literature. For SDF
representation and class-related shape generation, DeepSDF (Park et al., 2019) proposes to use an
AutoDecoder (Tan & Mavrovouniotis, 1995) to jointly optimize a compressed latent representation
of an SDF and the decoder to extract the full SDF from the latent representations. Due to the
fully connected layer, the approach has limited resolution. Our approach instead splits the SDF
into patches, which are encoded with a rigorously trained VAE (Kingma & Welling, 2013). Those
patches can be assembled to very highly detailed shapes. We experimented with using a similar
AutoDecoder optimization scheme to refine latent codes for our frozen decoder but found that the
optimized latent codes complicate subsequent shape completion tasks (Appendix A.1).

To represent entire scenes, LIG (Jiang et al., 2020) autoencodes TSDF patches and operates on
oriented points during test time. They divide the scene into multi-scale patch-grids and use trilinear
interpolation to produce seamless results. Similar to their work, we divide objects into patches and
also found medium patch-sizes to be most effective: Patches need to be small enough to generalize
across objects but large enough to represent interesting geometric features.

AutoSDF and SDFusion (Mittal et al., 2022; Cheng et al., 2023) focus on multi-modal shape gener-
ation and completion in latent space, e.g. from an input image, point clouds, or depth maps. Both
approaches use Vector Quantized Variational Auto Encoders (VQ-VAEs) (van den Oord et al., 2017;
Razavi et al., 2019) to patchwise compress SDF shapes to a compact latent space. SDFusion then
uses a latent diffusion model, while AutoSDF employs an autoregressive transformer to generate
or complete shapes sequentially. AutoSDF (Mittal et al., 2022) is in many regards similar to our
approach. The main differences are: i) the choice of a VAE over a VQ-VAE to avoid quantization
errors. ii) Larger patches with 323 grid points over the 83 grid points used by AutoSDF. iii) Our
transformer is trained as Masked Auto Encoder (MAE) (He et al., 2022) while the AutoSDF Trans-
former is trained autoregressively. This drastically changes how the model can be used as our ap-
proach does not require a sequential generation. iv) Our approach is trained on SDF grids with a
resolution of 1283 and trained on the full ShapeNetCoreV1 (Chang et al., 2015) and refined on the
ABC datasets (Koch et al., 2019) instead of the SDF resolution of 643 on a 13-category subset of
SapeNetCoreV1 for AutoSDF.

PatchComplete (Rao et al., 2022) and DiffComplete (Chu et al., 2023) both complete 323 Trun-
cated SDF input using multi-scale features. While PatchComplete uses an attention mechanism,
DiffComplete uses diffusion and also allows combination of multiple inputs. Both methods learn
strong priors that generalize well to new inputs, albeit at comparably low resolution. While our
method works on a subset of clean SDF patches to extend partial geometry, these methods work on
the 3D-EPN (Dai et al., 2017) dataset, containing noisy, low-resolution partial SDFs generated from
a single camera view.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Variational Autoencoders (VAE) (Kingma & Welling, 2013) are networks that learn latent rep-
resentations of input data. Unlike standard autoencoders, they learn a probability distribution over
the latent space. This generates a smooth latent space which allows manipulation and computations
in latent space. Inspired by Stable Diffusion (Rombach et al., 2022), we train a VAE to encode the
323 SDF patches into a smooth latent space. We call this network Patch Variational Autoencoder
(P-VAE). A full 1283 SDF grid is therefore represented by only 64 latent tokens. This makes any
further processing very efficient and scalable.

Transformers (Vaswani et al., 2017) are a network architecture for sequence-to-sequence tasks.
It uses attention as the core mechanism to identify pairwise relationships between elements in a se-
quence. They have revolutionized Natural Language Processing and are the foundation of all current
Large Language Models. Transformers can however process any sequence of data. In Dosovitskiy
et al. (2020), images are split into a sequence of patches, which is then processed by transformers.
The approach in He et al. (2022) masks out some of those patches and train to fill in the masked-
out patches. Similarly, we split the SDF grid into patches and encode them into a sequence of
latent codes. We mask out parts of the latent codes that contain unknown geometry and use our
SDF-Latent-Transformer to complete the missing patches.

...

64 patches

1283
P-VAE

Encoder Decoderz
...

de
co

de
d

pa
tc

he
s

B× 64× 4096
as incomplete latent shape

SDF-Latent-Transformer

Decoder

. . .

1

2

3

4

Figure 1: Architecture Overview. The 1283 input SDF is divided into 4×4×4 patches of size 323.
For each patch, a latent code is generated by a variational autoencoder (P-VAE) resulting in the
input stream to our SDF-Latent-Transformer, which can be masked to produce partial inputs. It is
trained as a Masked AutoEncoder (MAE) to generate a completed series of tokens which are finally
translated back to SDF patches using the P-VAE decoder.

3 METHOD

Our POC-SLT shape completion pipeline consists of four main steps which are depicted in Figure 1:
First, the input 1283 SDF grid is split into 4×4×4 patches of size 323 1 . Each of those patches is
encoded into a latent vector using the P-VAE 2 . The latent codes z that form the input shape are then
assembled in a sequence, which is masked and processed by the SDF-Latent-Transformer (SLT) 3 .
Finally, the resulting sequence is decoded patch-by-patch with the decoder from the P-VAE into a
completed SDF 4 . We will now elaborate on these four steps.

3.1 P-VAE

The task for the P-VAE is to encode 323-SDF grid patches (pi)i=0,...,n into latent code vectors
(zi)i=0,...,n. For details about the architecture and implementation of our P-VAE, refer to Ap-
pendix D. The P-VAE consists of an encoder EVAE and a decoder DVAE, which are both based
on 3D-convolutional layers. A patch pi is encoded by the encoder into mean µi and variance σ2

i
of a Gaussian distribution. During training, this distribution is sampled to obtain the latent code
zi ∼ N (µi, σ

2
i), which is then decoded by the Decoder DVAE into an SDF patch p̃i = DVAE(zi).

We use the mean absolute error between pi and p̃i as reconstruction loss. To regularize the latent
space of the VAE, we follow the KL-regularized VAE implementation from Stable Diffusion (Rom-
bach et al., 2022). During inference, we directly use the means zi = µi without additional sampling.

The P-VAE is trained on SDF patches extracted randomly from parts of the meshes of ShapeNet-
CoreV1 (Chang et al., 2015). Each patch has a fixed SDF resolution of 323. We however strongly

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

P-VAE
SD

F
-p

g
t

P-VAE Encder

µ
,σ

2

noise ∼ σ2

+ z

P-VAE Decoder

SD
F

-p
p
r
e
d

loss

∼ N (µ, σ2)

SDF-Latent-Transformer

gt

masked -
trainable
shared code

masked

linear

concat

linear

TransformerEncoder

pos. enc.

linear

pred

lo
ss

Figure 2: P-VAE (left): On millions of patches, we train a smooth embedding space for SDFs with
a variational autoencoder (P-VAE) that samples the noise according to the predicted variance before
passing the estimated latent to the decoder. SDF-Latent-Transformer (SLT) (right): Performs
shape completion on input sequences consisting of SDF-Patches (cyan) in latent space. During
training, some of the input patches are masked and substituted with a trainable shared vector (blue).
The utilized masking schemes Random, Half, Octant and Slice are visualized on the right. 3D
positional encoding is added before a TransformerEncoder propagates the information from the
remaining patches to all the masked patches completing the 3D shape.

vary the side length of each extracted patch while ensuring that they remain close to a surface.
Specifically, we uniformly sample surface points and side lengths d ∼ U[0.1,1] as well as offsets
x, y, z ∼ N (0, d/3). The P-VAE is therefore exposed to a large variety of detail levels, scales, and
surface types and has to learn the full variety of how patches of natural shapes can potentially look
like. This yields a strong, generalizable shape prior which allows the P-VAE to generalize even to
patches of shapes from completely different datasets.

3.2 SDF-LATENT-TRANSFORMER

The actual shape completion happens completely in latent space. Our approach is visualized on the
right in Figure 2. The incomplete input shape is provided as a sequence of latent space vectors.
We employ a standard transformer encoder as a Masked Auto Encoder to fill in missing latent vec-
tors. The missing input parts are marked by a special trainable mask token (blue in the figure). The
positions of all vectors, including masked ones, are provided to the transformer as 3D positional
encoding (Sitzmann et al., 2020). Linear layers before and after concatenating the positional em-
bedding have empirically shown to improve convergence. Finally, the transformer completes the
sequence.

Outside SDF Patches. For many, especially anisotropic shapes, some of the encoded SDF-Patches
will not contain any geometry either because they are completely inside or outside an object. Note
however, that those patches still contain valid distance values towards surfaces that lie outside those
patches. We therefore do not differentiate between patches that explicitly contain surfaces and those
that lie outside.

Masking during Training. The training strategy of the SDF-Latent-Transformer is visualized
in Figure 2. For creating the mask for a given training example, we randomly choose from one
of the following masking strategies: 1. Random Masking, 2. Octant, 3. Half, 4. Slice. With
Random Masking, each patch is masked out with a 40% probability. With Octant, all but one of the
octants of the patch-grid are masked out. With Half, one half of the patch-grid is masked out. With
Slice, everything but one axis-aligned slice through the patch-grid is masked out. The four different
masking schemes are visualized in the same order from top to bottom on the right side of Figure 2.
We use Random Masking with a probability of 35% and all the other strategies with a probability of
21.7% each.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Loss Functions. We supervise our training with ground truth patch encodings z = EVAE for the
complete object. The entire training of the SDF-Latent-Transformer happens in latent space. The
full loss function Lcomp consists of two terms:

Lcomp = αLmasked + βLnon-masked (1)

Both Lmasked and Lnon−masked are simple L1-losses on the latent codes evaluated on results with
masked and non-masked inputs respectively. The weights α and β are chosen, such that the contri-
bution of every patch to the total loss is equal, no matter how many patches were masked. With N
patches in total from which M are masked out we get:

α =
M

N
β =

N −M

N
(2)

Shape Completion. For shape completion, one can use the SDF-Latent-Transformer in the same
mode as during training. We assume the partial shape is given in the form of a high-resolution SDF
volume. For each given patch, a latent code is generated with the P-VAE encoder. The known SDF
patches (including known empty patches) are handed over as input to the transformer while marking
all others as masked. The transformer will then predict proper latent codes for all masked tokens,
which includes predicting latent codes for empty patches.

The resulting grid of latent codes can then be decoded back into an 1283 SDF which can be converted
into a mesh, e.g. using Marching Cubes (Lorensen & Cline, 1987).

4 EVALUATION

POC-SLT is an efficient and fast solution for patch-wise SDF completion in latent space. It consists
of the P-VAE which encodes SDF patches into latent space and the SDF-Latent-Transformer which
fills in missing patches in latent space. To demonstrate the effectiveness of our method, we measure
its performance on various completion tasks and compare it to related work below. Additional tasks
are demonstrated in Appendix A. All metrics used in the experiments are defined in Appendix B.
Data preparation for turning meshes into SDFs is described in Appendix C.

Completion. First, we provide quantitative and qualitative results for three SDF shape completion
tasks on the full ShapeNetCoreV1 (Chang et al., 2015) dataset and ABC (Koch et al., 2019) test sets.
The tasks are to complete an SDF based on different types of partial inputs. 1. Only the bottom half
of the SDF is given as input (Half). 2. Only the bottom right octant is given as input (Oct). 3. Patches
are removed randomly with 25%, 50%, and 75% of the SDF remaining (R25, R50, R75).

A simpler version of those tasks on a subset of ShapeNet has been suggested by Wu et al. (2020)
and used by (Wu et al., 2020; Yu et al., 2021; Mittal et al., 2022; Cheng et al., 2023) for completion
comparisons. Here, only 13 categories of ShapeNet are used for training and evaluation.

In addition, we also compare to AnchorFormer (Chen et al., 2023) on the (Half) task, by using point
cloud inputs with only points in the bottom half of the bounding box (Half). Note that this does not
represent a typical input for their method.

P-VAE. The P-VAE is evaluated by measuring the deviation between the input of the encoder and
the output of the decoder. We furthermore compare the reconstructions from our P-VAE latent space
to the reconstructions of an expensively optimized latent space using AutoDecoding (Park et al.,
2019; Tan & Mavrovouniotis, 1995). We also compare against the VQDIF by Yan et al. (2022).

Timing. Our latent space completion consists of a single forward step of the SLT. This makes the
shape completion inference very fast. We demonstrate this advantage over previous latent shape
completion works (Mittal et al., 2022; Yan et al., 2022; Cheng et al., 2023) in Table 1.

Hardware. The P-VAE and SDF-Latent-Transformer variations were trained on a machine with
3 Nvidia RTX 4090 GPUs and 512GB of main memory. The P-VAE was trained for approximately
two weeks, while the transformers were trained for about two days each. Additional computation
was required for preprocessing (Appendix C) and evaluation, which was carried out over several
machines in our cluster, using mostly Nvidia RTX 2080 Ti GPUs and several CPUs.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparing shape completion inference time, resolution, and number of model parameters
(encode/decode + completion).

Method Inference Time Output Resolution Num Params

AutoSDF (Mittal et al., 2022) 4.3 seconds 643 33.3 M + 34.0 M
ShapeFormer (Yan et al., 2022) 20 seconds 1283 23 M + 317 M
SDFusion (Cheng et al., 2023) 6.6 seconds 643 26.4 M + 620.7 M
POC-SLT (Ours) 8.6 milliseconds 1283 60.3 M + 503.0 M

4.1 COMPLETION

The SDF-Latent-Transformer is the core component of our completion pipeline. It receives an in-
complete sequence of SDF patches in latent space and completes it to a full sequence of latent codes
in a single forward step. The latent codes of the completed sequence are independently decoded into
SDF patches with the P-VAE decoder. The patches are trivially assembled into a high-resolution
shape volume from which we extract surface meshes using Marching Cubes (Lorensen & Cline,
1987). We trained two slightly different variants of the SDF-Latent-Transformer: SLT: trained on
ShapeNetCoreV1 with latent codes z from P-VAE as ground truth and SLT ABC: SLT fine-tuned on
a subset of the ABC dataset. The quality of our shape completion approach is evaluated on unseen
objects from ShapeNetCoreV1 (Chang et al., 2015) and ABC (Koch et al., 2019).

Qualitative Results (ShapeNet). Examples for the previously described bottom half (Half) com-
pletion task on ShapeNetCoreV1 (Chang et al., 2015) are shown in Figure 3. Here, we compare
our SLT against AutoSDF (Mittal et al., 2022) and AnchorFormer (Chen et al., 2023) as recent
state-of-the-art methods.

Our POC-SLT pipeline generates highly plausible shapes. Both AutoSDF (Mittal et al., 2022) and
AnchorFormer (Chen et al., 2023) struggle to fill in the missing parts. Compared to AutoSDF, our
method works at a significantly higher resolution and can handle all ShapeNet classes. The higher
resolution is for example important for the fine structures on the bench table in column four or
the faucet in column two. AutoSDF (Mittal et al., 2022) completely fails to reconstruct the car in
column one or the armchair in column three, while our SLT on the same input produces correct
results. AnchorFormer (Chen et al., 2023) often produces sparse and simplistic completions for
inputs with unknown top halves which is especially visible for the faucet in column two. However,
the sparseness and therefore lack of detail are also visible in the car in the first column, the armchair
in the second, and the cupboard in the last column.

Qualitative Results (ABC). Shape completion results from halves (Half) or octants (Oct) on
ABC (Koch et al., 2019) are visualized in Figure 4. For this task, we use SLT ABC, which was
fine-tuned on the ABC dataset. The ABC dataset contains many planar and rotationally symmetric
objects. These symmetries are picked up by the SDF-Latent-Transformer to complete missing parts
with high detail and high plausibility, such as the object in column one or column four.

On the other hand, the provided input does not always constrain the output sufficiently. This can
lead to deviations when compared to ground truth while still generating plausible objects, such as
the upper spokes in the third column, the unsymmetric object in the sixth column, or the missing
hole in the last column of the figure.

Generalization (Objaverse). To demonstrate the generalizability of our approach we evaluate the
SLT, trained only on ShapeNet (Chang et al., 2015), on the (Half) task with objects from Obja-
verse (Deitke et al., 2023). The type of objects shown in Figure 5 have never been seen by the SLT.
As expected, the results show clear deviations from the ground truth, especially for objects which
are far away from the kind of objects that are found in ShapeNet, such as the animals in column four
and five. For simpler objects, such as the pillow in column three or the mushroom in column one,
our approach produces good completions. There is a chair category in ShapeNet, which allows our
model to plausibly complete the rocking chair in column two.

Quantitative Results. We numerically evaluate the previously described tasks in Table 2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

In
pu

t

A
ut

oS
D

F
(M

itt
al

et
al

.,
20

22
)

A
nc

ho
r-

Fo
rm

er
(C

he
n

et
al

.,
20

23
)

SL
T

(O
ur

s)
G

T

Figure 3: Completion of ShapeNet (Chang et al., 2015) objects from bottom half. Comparison
to AutoSDF (Mittal et al., 2022) and AnchorFormer Chen et al. (2023). Our SLT completes these
objects more plausibly than AutoSDF. The density of completed points by AnchorFromer drastically
varies in the completed regions.

In
pu

t
SL

T
A

B
C

G
T

Figure 4: Completion of ABC (Koch et al., 2019) objects from the bottom half (left) and octant
(right). The SLT learned to complete partially symmetric objects quite successfully.

In
pu

t
SL

T
G

T

Figure 5: Completion of out-of-distribution objects from Objaverse (Deitke et al., 2023) using the
SLT trained on ShapeNet (Chang et al., 2015). The last three columns show completions of scanned
real-world objects.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Evaluation on shape completion tasks (Half), (Oct), (R75), (R50) and (R25) with the
ShapeNetCoreV1 (Chang et al., 2015) dataset with all 55 categories and on (Half) and (Oct) with
the ABC (Koch et al., 2019) dataset. Details on the metrics can be found in Appendix B.

Model Dataset Task IoU↑ F1↑ CD↓ HD↓ NC↑ IN↓ CMP↑
SLT SN Half 0.7466 0.8468 1.0221 0.0765 0.9200 0.4196 0.9067
SLT SN Oct 0.5884 0.7336 1.2467 0.0966 0.8589 0.6034 0.8404
SLT SN R75 0.9153 0.9792 0.2258 0.0452 0.9677 0.2862 0.9905
SLT SN R50 0.8650 0.9495 0.4829 0.0595 0.9504 0.3512 0.9751
SLT SN R25 0.7645 0.8677 0.8567 0.0789 0.9183 0.4512 0.9329

SLT ABC ABC Half 0.8617 0.9159 0.8703 0.0575 0.9435 0.2551 0.9466
SLT ABC ABC Oct 0.7144 0.7744 2.9247 0.1077 0.8779 0.3986 0.8391

Comparison. We compare with previous works designed for the (Half) task on the 13 category
ShapeNetCoreV1 subset defined by Wu et al. (2020). The results in Table 3 show that our method
significantly outperforms AutoSDF (Mittal et al., 2022) and SDFusion (Cheng et al., 2023).

Table 3: Shape completion from (Half) on all categories of the ShapeNetCoreV1 subset defined
by Wu et al. (2020). ∗ Please note that we compare voxel-based IoU. While we evaluate our method
at 1283, other methods only produce 643 results, where it is much easier to achieve a high IoU.

Method UHD↓ IoU∗ ↑ F1↑ CD↓ HD↓ NC↑ IN↓ CMP↑
AutoSDF (Mittal et al., 2022) 0.0618 0.9824 0.6785 6.1828 0.1871 0.7698 0.7381 0.7970
SDFusion (Cheng et al., 2023) 0.0548 0.9728 0.6170 13.3824 0.2590 0.7272 0.8091 0.6170
SLT (ours, retrained on subset) 0.0354 0.7263 0.8295 3.3519 0.0937 0.9079 0.4469 0.8924

4.2 P-VAE & AUTODECODER

The P-VAE accepts SDF patches of size 323 as input, encodes them into compressed latent repre-
sentations and decodes latent representations back to SDF patches. It was trained and evaluated on
a training split of ShapeNet. We evaluate the P-VAE on unseen data in Table 4 and compare our re-
sults with the VQDIF by Chang et al. (2015). Our numeric evaluation demonstrates the high quality
of our latent space. In comparison the VQDIF, which only operates on 32k input points produces
coarse reconstructions, e.g. Figure 6. Note that the P-VAE was not fine-tuned for the following ex-
periments on ABC (Koch et al., 2019) or Objaverse (Deitke et al., 2023), demonstrating the strong
generalizability resulting from our training scheme.

Table 4: Encode-decode performance on ShapeNet (Chang et al., 2015). We compare our P-VAE
against VQDIF by ShapeFormer (Yan et al., 2022). Note that the VQDIF by ShapeFormer operates
on 32k points per object as input whereas our method operates on 1283 SDFs per object.

Method IoU↑ F1↑ CD↓ HD↓
VQDIF (Yan et al., 2022) 0.6026 0.6552 56.4902 0.2170
P-VAE (ours) 0.9482 0.9931 0.0001 0.0264

Park et al. (2019) suggested to use an AutoDecoder (AD) (Tan & Mavrovouniotis, 1995) to optimize
the latent codes for a known SDF such that the frozen decoder DVAE produces the best possible re-
sult. The optimized latent codes should yield more accurate surface reconstruction than the codes
directly produced by the encoder EVAE in a single forward pass. However, the time spent on refine-
ment is orders of magnitude longer, e.g. around 0.04 sec for the P-VAE encoder vs. 25 sec for the
AutoDecoder per object.

We compare our P-VAE to the AutoDecoder approach by encoding a given SDF patch pgt to a latent
code z = EVAE(pgt). We then add random noise to z to get an initial version z′, which is then

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

decoded into a SDF ppred = DVAE(z
′). We compute a loss |pgt − ppred| to update z′ in a loop till

convergence.

Both P-VAE and AD produce high-quality results with only minor differences to ground truth.
Across the dataset, we get a tiny improvement over the Hausdorff Distance from 0.026 to 0.024
from the optimization. These improvements are mostly visible for objects with fine detail as shown
in Figure 6. One could use these optimized latent codes z′ to train the SLT towards producing such
output tokens at no extra cost. We experimented on this idea and show results in Appendix A.1.

P-VAE AutoDecoder VQDIF
(Yan et al., 2022) Ground Truth

HD 0.01688 0.05261 0.01490 0.02845 0.12332 0.05872 - -
CD 0.01059 0.14678 0.00541 0.01709 46.20625 31.20714 - -

Figure 6: Comparison of latent codes generated by P-VAE encoding and refined via the AutoDe-
coder. While overall subtle, these extreme examples demonstrate the benefit of using the AutoDe-
coder to refine the patch embeddings. Our P-VAE represents significantly higher levels of detail
than the Vector-Quantized Deep Implicit Functions (VQDIF) by Yan et al. (2022).

5 LIMITATIONS

While the presented results are of high quality, some downstream tasks for the POC-SLT pipeline
might need additional work. At the moment, it is trained assuming a fixed bounding box. This is
a valid assumption for most objects but might be too limiting for open scenes. In principle, the
transformer should be able to cope with sequences of basically arbitrary length. However, it still
needs to be investigated if the current model can deal with higher-resolution spatial encodings to
make use of additional tokens.

The completion is performed for masked patches. Implicitly, the approach always assumes either
completely given SDF patches or completely unknown patches. In completion applications for
images, depth maps, or partial 3D scans, one might additionally need to indicate that the patch
information itself might be incomplete, e.g. a missing occluded surface in the same cell.

We do not consider the single-view 3D reconstruction task. Previous work (Tatarchenko et al., 2019)
has shown that predicting object-centered results heavily relies on identifying (and augmenting)
similar objects in the training set and can even be outperformed by object retrieval. Lacking a single
global object representation, our method is not well-suited for such a classification task. Instead,
one could first estimate a canonical pose, monocular depth, and then compute 3D SDF patches from
the then recovered partial geometry in order to meaningfully perform geometric 3D reconstruction
with our method. Evaluation of such an approach would highly depend on the models employed for
pose estimation and depth estimation in addition to our model, preventing meaningful comparisons.

6 CONCLUSION

With POC-SLT, we proposed an accurate and efficient new method for SDF shape completion in
latent space. POC-SLT processes SDFs in patches of fixed size. Two main components are used
to refine and fill in missing patches in a shape. Firstly, an extensively trained Patch Variational
Autoencoder (P-VAE) for accurately compressing the patches into a sequence of latent codes and
back. Secondly, an SDF-Latent-Transformer (SLT) which completes and refines the latent sequence
of an incomplete shape in a single inference step. We demonstrate that our approach produces highly
accurate and plausible 3D shape completions, outperforming prior works. POC-SLT is trained on
ShapeNetCoreV1 (Chang et al., 2015), is class agnostic, and can easily be adapted to new datasets,
which we demonstrated with the ABC (Koch et al., 2019) dataset. We show that the P-VAE works
across different datasets, even without additional training, and hope that it will be a helpful tool
for future research. Extending the approach to deal with partial information within patches and
developing applications like real-time scan completions are left open for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-Xing Huang, Zimo
Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher
Yu. Shapenet: An information-rich 3d model repository. CoRR, abs/1512.03012, 2015. URL
http://arxiv.org/abs/1512.03012.

Zhikai Chen, Fuchen Long, Zhaofan Qiu, Ting Yao, Wengang Zhou, Jiebo Luo, and Tao Mei. An-
chorformer: Point cloud completion from discriminative nodes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13581–13590, June 2023.

Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, Alexander G. Schwing, and Liang-Yan Gui. Sd-
fusion: Multimodal 3d shape completion, reconstruction, and generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4456–4465,
June 2023.

Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. Implicit functions in feature space for 3d
shape reconstruction and completion. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020.

Ruihang Chu, Enze Xie, Shentong Mo, Zhenguo Li, Matthias Niessner, Chi-Wing Fu, and
Jiaya Jia. Diffcomplete: Diffusion-based generative 3d shape completion. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 75951–75966. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/ef7bd1f9cbf8a5ab7ddcaccd50699c90-Paper-Conference.pdf.

Angela Dai, Charles Ruizhongtai Qi, and Matthias Niessner. Shape completion using 3d-encoder-
predictor cnns and shape synthesis. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of anno-
tated 3d objects. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 13142–13153, June 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point set generation network for 3d object
reconstruction from a single image. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Zitian Huang, Yikuan Yu, Jiawen Xu, Feng Ni, and Xinyi Le. Pf-net: Point fractal network for 3d
point cloud completion. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

Chiyu ”Max” Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Niessner, and
Thomas Funkhouser. Local implicit grid representations for 3d scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny Bur-
naev, Marc Alexa, Denis Zorin, and Daniele Panozzo. Abc: A big cad model dataset for geomet-
ric deep learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

11

http://arxiv.org/abs/1512.03012
https://proceedings.neurips.cc/paper_files/paper/2023/file/ef7bd1f9cbf8a5ab7ddcaccd50699c90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/ef7bd1f9cbf8a5ab7ddcaccd50699c90-Paper-Conference.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Minghua Liu, Lu Sheng, Sheng Yang, Jing Shao, and Shi-Min Hu. Morphing and sampling network
for dense point cloud completion. CoRR, abs/1912.00280, 2019. URL http://arxiv.org/
abs/1912.00280.

William Lorensen and Harvey Cline. Marching cubes: A high resolution 3d surface construction
algorithm. ACM SIGGRAPH Computer Graphics, 21:163–, 08 1987. doi: 10.1145/37401.37422.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Oc-
cupancy networks: Learning 3d reconstruction in function space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Paritosh Mittal, Yen-Chi Cheng, Maneesh Singh, and Shubham Tulsiani. Autosdf: Shape priors for
3d completion, reconstruction and generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 306–315, June 2022.

Liang Pan, Xinyi Chen, Zhongang Cai, Junzhe Zhang, Haiyu Zhao, Shuai Yi, and Ziwei Liu. Vari-
ational relational point completion network. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 8524–8533, June 2021.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. Convo-
lutional occupancy networks. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
Frahm (eds.), Computer Vision – ECCV 2020, pp. 523–540, Cham, 2020. Springer International
Publishing. ISBN 978-3-030-58580-8.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hi-
erarchical feature learning on point sets in a metric space. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017b. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf.

Yuchen Rao, Yinyu Nie, and Angela Dai. Patchcomplete: Learning multi-resolution
patch priors for 3d shape completion on unseen categories. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 34436–34450. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/de7dc701a2882088f3136139949e1d05-Paper-Conference.pdf.

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images
with vq-vae-2. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/5f8e2fa1718d1bbcadf1cd9c7a54fb8c-Paper.pdf.

12

http://arxiv.org/abs/1912.00280
http://arxiv.org/abs/1912.00280
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/de7dc701a2882088f3136139949e1d05-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/de7dc701a2882088f3136139949e1d05-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/5f8e2fa1718d1bbcadf1cd9c7a54fb8c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/5f8e2fa1718d1bbcadf1cd9c7a54fb8c-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wet-
zstein. Implicit neural representations with periodic activation functions. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 7462–7473. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/53c04118df112c13a8c34b38343b9c10-Paper.pdf.

S Tan and M L Mavrovouniotis. Reducing data dimensionality through optimizing neural network
inputs. AIChE Journal, 41(6), 6 1995. doi: 10.1002/aic.690410612. URL https://www.
osti.gov/biblio/80034.

Junshu Tang, Zhijun Gong, Ran Yi, Yuan Xie, and Lizhuang Ma. Lake-net: Topology-aware point
cloud completion by localizing aligned keypoints. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 1726–1735, June 2022.

Maxim Tatarchenko, Stephan R. Richter, Rene Ranftl, Zhuwen Li, Vladlen Koltun, and Thomas
Brox. What do single-view 3d reconstruction networks learn? In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Lyne P. Tchapmi, Vineet Kosaraju, Hamid Rezatofighi, Ian Reid, and Silvio Savarese. Topnet:
Structural point cloud decoder. In 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 383–392, 2019. doi: 10.1109/CVPR.2019.00047.

Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu. Neural discrete representation learn-
ing. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/
paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (tog), 38(5):
1–12, 2019.

The PyTorch Lightning team William Falcon. Pytorch lightning. 03 2019. doi: 10.5281/aenodo.
3828935. URL https=//www.pytorchlightning.ai.

Rundi Wu, Xuelin Chen, Yixin Zhuang, and Baoquan Chen. Multimodal shape completion via
conditional generative adversarial networks. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and
Jan-Michael Frahm (eds.), Computer Vision – ECCV 2020, Cham, 2020. Springer International
Publishing.

Peng Xiang, Xin Wen, Yu-Shen Liu, Yan-Pei Cao, Pengfei Wan, Wen Zheng, and Zhizhong Han.
Snowflakenet: Point cloud completion by snowflake point deconvolution with skip-transformer.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5499–
5509, October 2021.

Haozhe Xie, Hongxun Yao, Shangchen Zhou, Jiageng Mao, Shengping Zhang, and Wenxiu Sun.
Grnet: Gridding residual network for dense point cloud completion. In Andrea Vedaldi, Horst
Bischof, Thomas Brox, and Jan-Michael Frahm (eds.), Computer Vision – ECCV 2020, pp. 365–
381, Cham, 2020. Springer International Publishing. ISBN 978-3-030-58545-7.

Xingguang Yan, Liqiang Lin, Niloy J. Mitra, Dani Lischinski, Daniel Cohen-Or, and Hui Huang.
Shapeformer: Transformer-based shape completion via sparse representation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6239–6249,
June 2022.

13

https://proceedings.neurips.cc/paper_files/paper/2020/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf
https://www.osti.gov/biblio/80034
https://www.osti.gov/biblio/80034
https://proceedings.neurips.cc/paper_files/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https =//www.pytorchlightning.ai

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud auto-encoder via
deep grid deformation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

Xumin Yu, Yongming Rao, Ziyi Wang, Zuyan Liu, Jiwen Lu, and Jie Zhou. Pointr: Diverse point
cloud completion with geometry-aware transformers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pp. 12498–12507, October 2021.

Xumin Yu, Yongming Rao, Ziyi Wang, Jiwen Lu, and Jie Zhou. Adapointr: Diverse point cloud
completion with adaptive geometry-aware transformers. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(12):14114–14130, 2023. doi: 10.1109/TPAMI.2023.3309253.

Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and Martial Hebert. Pcn: Point completion
network. In 2018 International Conference on 3D Vision (3DV), pp. 728–737, 2018. doi: 10.
1109/3DV.2018.00088.

Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, and
Karsten Kreis. Lion: Latent point diffusion models for 3d shape generation. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems, volume 35, pp. 10021–10039. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/40e56dabe12095a5fc44a6e4c3835948-Paper-Conference.pdf.

Biao Zhang, Matthias Nießner, and Peter Wonka. 3dilg: Irregular latent grids for 3d generative
modeling. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems 35 - 36th Conference on Neural Information
Processing Systems, NeurIPS 2022, Advances in Neural Information Processing Systems. Neural
information processing systems foundation, 2022. Publisher Copyright: © 2022 Neural informa-
tion processing systems foundation. All rights reserved.; 36th Conference on Neural Information
Processing Systems, NeurIPS 2022 ; Conference date: 28-11-2022 Through 09-12-2022.

Biao Zhang, Jiapeng Tang, Matthias Nießner, and Peter Wonka. 3dshape2vecset: A 3d shape repre-
sentation for neural fields and generative diffusion models. ACM Trans. Graph., 42(4), July 2023.
ISSN 0730-0301. doi: 10.1145/3592442. URL https://doi.org/10.1145/3592442.

Haoran Zhou, Yun Cao, Wenqing Chu, Junwei Zhu, Tong Lu, Ying Tai, and Chengjie Wang. Seed-
former: Patch seeds based point cloud completion with upsample transformer. In Shai Avidan,
Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner (eds.), Computer
Vision – ECCV 2022, pp. 416–432, Cham, 2022. Springer Nature Switzerland. ISBN 978-3-031-
20062-5.

A ADDITIONAL EXPERIMENTS

In this section we show several additional experiments which did not fit into the main paper. We
evaluate training the SLT on auto-decoded latent codes (Section A.1), inspect how the SLT trained
on ShapeNet (Chang et al., 2015) can generalize to the ABC dataset (Section A.2), show visual
results of shape completion on the completion tasks (R25), (R50) and (R75) with randomly masked
inputs (Section A.3), compare our latent space representation with DeepSDF (Park et al., 2019) and
3DShape2VecSet (Zhang et al., 2023) (Section A.4), provide evaluation on 3D-EPN Dai et al. (2017)
(Section A.6), and, finally, present further comparisons with AnchorFormer (Chen et al., 2023) in
Section A.7.

A.1 SDF-LATENT-TRANSFORMER ON REFINED LATENT CODES

The comparison in Figure 6 suggests that the latent codes for some objects might be improved by
explicitly optimizing the latent codes of the patches using the AutoDecoder technique (Park et al.,
2019; Tan & Mavrovouniotis, 1995). To test if the SLT might improve performance when trained
on regular partial latent codes z as input but with optimized z′ as ground truth, we optimized the
latent codes for all objects in the training dataset of ShapeNet (Chang et al., 2015). We trained a
separate SDF Latent Transformer on this dataset called SLT-AD, expecting the SLT-AD to also learn

14

https://proceedings.neurips.cc/paper_files/paper/2022/file/40e56dabe12095a5fc44a6e4c3835948-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/40e56dabe12095a5fc44a6e4c3835948-Paper-Conference.pdf
https://doi.org/10.1145/3592442

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

to do the expensive AutoDecoder optimization for free in its forward pass. We also tested to run the
regular SLT and, on the resulting SDF, the SLT-AD without masking just for refinement. This model
is called SLT + SLT-AD. Finally, we tried running the SLT-AD twice: Once on the incomplete input
and then again on the completed output, which is called SLT-AD + SLT-AD.

The quantitative results are shown in Table 5 and qualitative results are shown in Figure 7. The
numbers for the bottom half (Half) experiment clearly suggest, that the expected improvement did
not happen. The results for the octant (Oct) experiment are inconclusive at best.

While the AutoDecoder technique (Park et al., 2019; Tan & Mavrovouniotis, 1995) produces latent
codes that decode to a more accurate representation of the given input, we believe that the latent
codes generated this way are more likely to be outliers and thus not as easily understood and utilized
by the SLT-AD, resulting in worse performance.

SN
(O

ct
)

SL
T

SL
T

+
SL

T-
A

D
SN

(H
al

f)
SL

T
SL

T
+

SL
T-

A
D

G
T

Figure 7: Completion from halves and octants by our SLT and then refined by SLT-AD on ShapeNet.

A.2 ABC COMPLETION USING SLT TRAINED ON SHAPENET

To test the generalizability of our SLT trained on ShapeNet (Chang et al., 2015), we evaluate it on
the ABC (Koch et al., 2019) dataset without fine-tuning. We report the metrics for the tasks (Half)
and (Oct) in Table 6. To compare to the fine-tuned SLT ABC, we duplicate its numbers reported in
Table 2 here for convenience. As expected, the reconstruction metrics of the fine-tuned model are
much better. Figure 8 shows, however, that the STL still does a reasonably good job at completing
many of the objects from ABC (Koch et al., 2019). Instead of producing complete mechanical parts,
it often creates chairs, tables, and vases from their partial inputs and it picks up surprisingly well on
some of the inherent symmetries. With the (Oct) input, the SLT has more freedom to complete the
input into objects found in ShapeNet (Chang et al., 2015), such as chairs, e.g., column four.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: Shape completion on ShapeNet (Chang et al., 2015) with several versions of the SLT. SLT
is the default version, SLT-AD hs been trained on auto-decoded ground-truth latent codes, and the ”+
SLT-AD” variants feed the previous output through SLT-AD again without masking for refinement.

Model Task IoU↑ F1↑ CD↓ HD↓ NC↑ IN↓ CMP↑
SLT Half 0.7466 0.8468 1.0221 0.0765 0.9200 0.4196 0.9067
SLT-AD Half 0.7237 0.8344 1.2065 0.0846 0.9119 0.4767 0.9086
SLT + SLT-AD Half 0.6867 0.8101 1.0039 0.0811 0.8976 0.5268 0.8696
SLT-AD + SLT-AD Half 0.6780 0.7969 0.9111 0.0880 0.8923 0.5528 0.8658

SLT Oct 0.5884 0.7336 1.2467 0.0966 0.8589 0.6034 0.8404
SLT-AD Oct 0.6127 0.7121 1.8994 0.1010 0.8694 0.5704 0.8279
SLT + SLT-AD Oct 0.5878 0.6848 1.6883 0.0970 0.8557 0.6052 0.7729
SLT-AD + SLT-AD Oct 0.5912 0.6795 1.4225 0.0940 0.8560 0.6167 0.7767

Table 6: Evaluation on completion tasks (Half), (Oct) on the ABC (Koch et al., 2019) dataset using
SLT and comparing to the SLT ABC results copied from Table 2. The results report the mean over
all categories. Details on the metrics can be found in Appendix B.

Model Dataset Task IoU↑ F1↑ CD↓ HD↓ NC↑ IN↓ CMP↑
SLT ABC Half 0.7478 0.8123 2.0658 0.1053 0.9134 0.3730 0.8869

SLT ABC ABC Half 0.8617 0.9159 0.8703 0.0575 0.9435 0.2551 0.9466
SLT ABC Oct 0.5710 0.6304 5.1872 0.1532 0.8208 0.5433 0.7234

SLT ABC ABC Oct 0.7144 0.7744 2.9247 0.1077 0.8779 0.3986 0.8391

A.3 COMPLETION ON RANDOMLY MASKED SHAPENET

One of the masking strategies during training is to randomly mask out inputs as outlined in Sec-
tion 3.2. We also numerically evaluated the random masking completion tasks (R75), (R50) and
(R25) in Table 2. Now, in Figure 9 we show visual results on ShapeNet (Chang et al., 2015), for
the same three completion tasks. Even when only small parts of the input are given, e.g. 25% in the
(R25) task, the information in neighboring tokens is used to produce near-perfect completions. This
is in contrast to the significantly more challenging (Half) and (Oct) tasks we chose to evaluate our
method where completion needs to happen most often for non-neighbor patches.

A.4 LATENT QUALITY COMPARISON WITH DEEPSDF AND 3DSHAPE2VECSET

We compare the auto-encoding quality of our P-VAE (Section 3.1) against DeepSDF (Park
et al., 2019) in Table 7 and against 3DShape2VecSet (Zhang et al., 2023) in Table 8. For
3DShape2VecSet (Zhang et al., 2023), we follow their evaluation code with regards to the size of the
object and with regards to the L1 Chamfer Distance. Like in their code, we omit the division by 2
which would be part of the original definition from the supplemental of Mescheder et al. (2019). In
addition to the numbers on our regular P-VAE, we also report the results when decoding optimized
latent codes z′ using an AutoDecoder as described in Section A.1 under the label P-VAE-AD.

The results in Table 7 demonstrate that, on autoencoding quality, our P-VAE outperforms DeepSDF
on all categories with and without optimized latent codes. The numbers in Table 8 suggest that the
autoencoding performance of our P-VAE is significantly better in F1 and CDL1 and on par in IoU
with the cross-attention based autoencoding strategy from 3DShape2VecSet.

A.5 SHAPE COMPLETION ON SHAPENET

We present shape completion results on the ShapeNetCoreV1 subset defined by Wu et al. (2020),
compatible with numbers reported by prior methods, in Table 9. This subset uses only 13 categories
of ShapeNet for training and evaluation. In contrast to Table 3, here, only the chair category is con-
sidered, and only UHD is reported, since those are the only compatible values reported by previous

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A
B

C
(O

ct
)

SL
T

A
B

C
(H

al
f)

SL
T

G
T

Figure 8: Testing generalizability via completion of ABC (Koch et al., 2019) objects using the SLT
trained exclusively on ShapeNet (Chang et al., 2015).

SN (R25) SLT SN (R50) SLT SN (R75) SLT GT

Figure 9: Completion of randomly masked ShapeNet (Chang et al., 2015) objects using the SLT. This
is often a slightly simpler task as small holes are relatively easily filled by propagating information
from neighboring patches.

work. Note that this only measures how faithfully the geometry given in the input was preserved
during the completion.

A.6 SHAPE COMPLETION ON 3D-EPN

While our model was never intended for and never trained to perform shape completion from in-
complete SDF patches, it might still be interesting to see how it performs on such a task. Incomplete
SDF patches mean that, within the same patch, parts of the geometry are already missing.

In Figure 10, we show the result of trying to complete the partial 323 SDFs in the 3D-EPN (Dai
et al., 2017) dataset with our SLT trained on complete, high-resolution ShapeNet (Chang et al., 2015)
patches. The partial SDFs from 3D-EPN (Dai et al., 2017) are generated from a single camera view
and, thus, everything behind the first visible surface is considered inside, often producing incorrect
SDF patches where outside areas are encoded to be deep inside an object. We upsample the low

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: Comparing mean and median (L2) Chamfer Distance in a P-VAE auto-encoding quality
comparison with DeepSDF (Park et al., 2019).

CD↓ (mean) chair plane table lamp sofa

P-VAE 0.0759 0.0236 0.0914 0.415 0.0269
P-VAE-AD 0.1427 0.0177 0.0743 0.4041 0.0263
DeepSDF 0.204 0.143 0.553 0.832 0.132

CD↓ (median) chair plane table lamp sofa

P-VAE 0.0203 0.0075 0.023 0.0167 0.0264
P-VAE-AD 0.0199 0.0067 0.0225 0.0138 0.0259
DeepSDF 0.072 0.036 0.068 0.219 0.088

Table 8: P-VAE autoencoding quality comparison with 3DShape2VecSet (Zhang et al., 2023).
Method IoU↑ F1↑ CDL1 ↓ HD↓
P-VAE 0.9483 0.9931 0.0094 0.0658
3DShape2VecSet 0.965 0.970 0.038 -

resolution SDFs to our 1283 resolution in order to get multiple patches. This leads to staircase
artifacts which have not been seen in this way by the SLT, even for complete patches.

Our SLT assumes that every given, non-masked 323 input patch contains complete information.
Therefore, it does not attempt to repair their partially corrupt information and – for the most part
– just feeds the given input through to the output. While some masked patches on the side of the
objects can be filled in, as expected, this generally leads to poor results.

While it could be possible to train or fine-tune the existing SLT architecture on this task, we think
that further research would be required to best adapt our method to this setting.

A.7 COMPARISON WITH ANCHORFORMER

Since our method works on SDF patches rather than point clouds, performing one-to-one compar-
isons with point cloud methods is somewhat problematic.

In Table 10, we show the performance of AnchorFormer (Chen et al., 2023) when evaluated on the
regular PCN (Yuan et al., 2018) test split and when presented with bottom-half inputs from the same
objects, uniformly sampled from our preprocessed (Appendix C) version of ShapeNet (Chang et al.,
2015). We removed some of the objects from the PCN (Yuan et al., 2018) test split, mostly cars, for
which we did not have a matching mesh available to generate bottom-half inputs.

For evaluating AnchorFormer (Chen et al., 2023), we use their only published pre-trained checkpoint
which was trained on PCN (Yuan et al., 2018). Completion from just the bottom half can be a much
harder task, since the output on the top half is completely unconstrained. Typically, PCN (Yuan

Table 9: Quantitative comparison on shape completion on the chair category of the
ShapeNetCoreV1-subset with 13 categories from Wu et al. (2020). Completion tasks are (Half)
and (Oct). In compliance with previous work, we report the Unidirectional Hausdorff Distance from
input to completed result.

Method/UHD↓ Half Oct

MPC (Wu et al., 2020) 0.0627 0.0579
PoinTR (Yu et al., 2021) 0.0572 0.0536

AutoSDF (Mittal et al., 2022) 0.0567 0.0599
SDFusion (Cheng et al., 2023) 0.0557 -

SLT (ours) 0.0445 0.0467

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

In
pu

t
SL

T

Figure 10: Completion of partial 323 SDFs from 3D-EPN (Dai et al., 2017) using our SLT which is
trained only on complete patches from 1283 SDFs from ShapeNet (Chang et al., 2015). While not
trained on this kind of input, the SLT still demonstrates its geometric understanding and produces
reasonable shape completions.

et al., 2018) and other partial point cloud settings provide at least some sparse global information
which guides and constrains the completion process.

As a second experiment (also shown in Table 10), we use the same AnchorFormer (Chen et al.,
2023) model and checkpoint to complete our test set of ShapeNet (Chang et al., 2015) meshes from
bottom halves, as shown in Figure 3 and evaluated for our method in Table 2.

The numbers on the PCN (Yuan et al., 2018) data show that AnchorFormer (Chen et al., 2023) is
not well suited to solve the (Half) completion task. Both metrics drop significantly. Furthermore,
on our ShapeNet (Chang et al., 2015) data, the (Half) task produces slightly better numbers than on
the PCN (Yuan et al., 2018) data. However, our approach achieves better completion quality on the
(Half) shape completion task.

Table 10: Comparison with AnchorFormer (Chen et al., 2023) on completing partial inputs from
ShapeNet (Chang et al., 2015). Details on the compared configurations are explained in Section A.7.
Some qualitative results can be seen as part of Figure 3.

Method Data Source Split Task F1 ↑ CD(L2) ↓
AnchorFormer PCN PCN PCN 0.8379 0.1986
AnchorFormer ShapeNet PCN Half 0.6953 1.4791

AnchorFormer ShapeNet Ours Half 0.7164 4.2816
Ours (see Table 2) ShapeNet Ours Half 0.8468 1.0221

B METRICS

In order to evaluate any of the following metrics, we use Marching Cubes (Lorensen & Cline, 1987)
to generate a mesh from our generated SDF and then uniformly sample 1M points X and Y from
the resulting meshes.

We use the following point-based metrics: Hausdorff Distance (HD), to measure the largest gap
between the original and the reconstructed geometry:

HD(X,Y) = max

{
max
x∈X

{
min
y∈Y

d(x, y)

}
,max
y∈Y

{
min
x∈X

d(x, y)

}}
. (3)

Similarly, the Unidirectional Hausdorff Distance (UHD) measures the maximum distance between
objects, but here, in line with previous work (Mittal et al., 2022), it is measured from partial input
X to completion Y to measure the ”fidelity” of the completed output:

UHD(X,Y) = max
x∈X

{
min
y∈Y

d(x, y)

}
. (4)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

We use the (L2) Chamfer Distance (Fan et al., 2017), multiplied by 1000, to measure the accuracy of
the reconstruction via the mean squared distance between the original and reconstructed geometry:

CD(X,Y) =
1

|X|
∑
x∈X

min
y∈Y

{
d2(x, y)

}
+

1

|Y |
∑
y∈Y

min
x∈X

{
d2(y, x)

}
. (5)

In both cases, d(x, y) measures the L2 distance between two points x, y ∈ R3.

For consistency with prior work, these metrics are evaluated at a normalized scale where the bound-
ing box diameter is 1. This corresponds to the normalization of the ShapeNet (Chang et al., 2015)
dataset.

Following the evaluation of AutoSDF (Mittal et al., 2022), we separately measure objectionable
reconstruction artifacts using F-score @1% (F1), normal consistency (NC) and inaccurate normals
(IN). The F-score @1% (F1) sets a threshold at 1% of the side length of the reconstructed vol-
ume (Tatarchenko et al., 2019), within which a neighboring point on the ground truth mesh needs
to be found from a reconstruction sample for computing precision and vice-versa for recall. From
these, the F1 score is computed as usual.

Completeness (CMP) measures the recall within a threshold of 1.5% of the side length, based on the
implementation of Wu et al. (2020).

Normal Consistency (NC) measures the mean absolute dot-product between normals on the recon-
structed surface and the closest ground-truth surface point:

NC(X,Y) =
1

|X|
∑
x∈X

{
|nx · ny| : y = argminy∈Y d(x, y)

}
(6)

The absolute value is taken to allow for flipped normals in the ground truth data. For the normals
nx and ny , we use the geometric face normals of the faces that generated the sampled points x and
y. Inaccurate Normals (IN) complements the NC measure by counting the percentage of normals
which are outside of a 5-degree threshold of the normal of the closest ground-truth point.

We also measure Intersection over Union (IoU) based on the sign of the 1283 SDFs.

C DATA PREPARATION

In order to compute SDFs from meshes, we translate them such that their bounding box is centered
at the origin and then uniformly scale them into [−1, 1]3. Then, for ShapeNetCoreV1, we remeshed
the mesh in Blender via voxelization using a voxel size of 0.008. This was necessary to create
manifold meshes from which SDFs could be computed. Admittedly, this resulted in the loss of
some geometry which does not have any volumetric counterpart. Nevertheless, we consider this
remeshed version our ground truth data for SDF-based shape completion training. For evaluation,
we excluded objects which lost all geometry in the conversion. The meshes in the ABC dataset are
of much higher quality. Here, we only normalized the meshes to [−1, 1]3 and then densely sampled
signed distances in a regular grid of size 1283.

D ARCHITECTURE DETAILS

We implemented all our models in PyTorch (Paszke et al., 2019) and trained using PyTorch Light-
ning (William Falcon, 2019).

The P-VAE is a variational autoencoder built with 3D convolutions. The encoder converts an SDF-
patch of shape [B, 1, 32, 32, 32] into a mean µ and variance σ2 vector of shape [B, 8192]. To be
precise, the encoder returns log(σ2), from which we compute σ2. During training, the latent repre-
sentation of the SDF-patch is sampled from the normal distribution z ∼ N (µ, σ2). During inference
we use z = µ. The architectures of the encoder and the decoder are given in Table 13 and Table 14
respectively. The ConvBlock specified in Table 11 and the DecoderLayer in Table 12 are reoccur-
ring architectural structures in both the encoder and the decoder. Note that each layer specifies its
predecessor in the parent column. Skip connections are joined by adding the output of two parents
together.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 11: Architecture of a ConvBlock element as used in the P-VAE Encoder in Table 13
Layer Name Parent Name Layer Parameters Output Shape

Conv3D - kernel 3, stride 1, pad 1 [B, cout, d, d, d]
BatchNorm3d Conv3D - [B, cout, d, d, d]

ReLU BatchNorm3d - [B, cout, d, d, d]

Table 12: Architecture of a DecoderLayer as used in Table 14. If not otherwise noted, all layers use
a kernel size of 3 ([3, 3, 3]), stride 1 and padding 1 ([1, 1, 1]). The input has shape [B, cin, d, d, d].

Layer Name Parent Name Layer Parameters Output Shape
Conv3D layer input - [B, cout, d, d, d]

Conv3DTrans layer input stride 2, output padding 2 [B, cout, 2d, 2d, 2d]
BatchNorm3D Conv3D - [B, cout, d, d, d]

Upsample BatchNorm3D factor 2, trilinear [B, cout, 2d, 2d, 2d]
Add Conv3DTrans, Upsample - [B, cout, 2d, 2d, 2d]

ReLU Add - [B, cout, 2d, 2d, 2d]

E TRAINING DETAILS

E.1 PATCH-VARIATIONAL AUTOENCODER

We trained the P-VAE for 250 epochs with early stopping at epoch 193 with initial learning rate of
1e-4 and CosineAnnealing scheduler. The batch size for the training was 128 per GPU.

E.2 AUTODECODER

The refined codes z′ were optimized with Adam for 200 steps per patch. The gaussian noise that
was added on the initial z from the P-VAE was sampled from a gaussian distribution N (0, 1e−2).

E.3 SDF LATENT TRANSFORMER

The masking ratio used for training is 0.4. Our learning rate was 1e−5 and we use a cosine scheduler
with 1400 warm-up steps for the transformer and trained for 120k steps. The batch size was 64 per
GPU. All SLT configurations used the same training configuration and setup.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 13: Architecture of the P-VAE Encoder. If not otherwise noted, all layers use a kernel size
of 3 ([3, 3, 3]) stride 1 and padding 1 ([1, 1, 1]). The input patch has shape [B, 1, 32, 32, 32].

Layer Name Parent Name Layer Parameters Output Shape
ConvBlock-1 SDF patch - [B, 32, 32, 32, 32]
ConvBlock-2 ConvBlock-1 - [B, 32, 32, 32, 32]
ConvBlock-3 ConvBlock-2 - [B, 32, 32, 32, 32]
ConvBlock-4 ConvBlock-3 - [B, 32, 32, 32, 32]

Add-1 ConvBlock-1, SDF patch broadcasting [B, 32, 32, 32, 32]
MaxPool-1 Add-1 stride 2 [B, 32, 16, 16, 16]
Conv3D-1 Add-1 stride 2 [B, 32, 16, 16, 16]

Add-2 MaxPool-1, Conv3D-1 - [B, 32, 16, 16, 16]
Conv3D-2 Add-2 kernel 1, padding 0 [B, 32, 16, 16, 16]

ConvBlock-5 Add-2 - [B, 64, 16, 16, 16]
ConvBlock-6 ConvBlock-5 - [B, 64, 16, 16, 16]
ConvBlock-7 ConvBlock-6 - [B, 64, 16, 16, 16]
ConvBlock-8 ConvBlock-7 - [B, 64, 16, 16, 16]

Add-3 Conv3D-1, ConvBlock-7 - [B, 64, 16, 16, 16]
MaxPool-2 Add-3 stride 2 [B, 64, 8, 8, 8]
Conv3D-3 Add-3 stride 2 [B, 64, 8, 8, 8]

Add-4 MaxPool-2, Conv3D-3 - [B, 64, 8, 8, 8]
Conv3D-4 Add-4 kernel 1, padding 0 [B, 128, 8, 8, 8]

ConvBlock-9 Add-4 - [B, 128, 8, 8, 8]
ConvBlock-10 ConvBlock-9 - [B, 128, 8, 8, 8]
ConvBlock-11 ConvBlock-10 - [B, 128, 8, 8, 8]
ConvBlock-12 ConvBlock-11 - [B, 128, 8, 8, 8]

Add-5 Conv3D-4, ConvBlock-12 - [B, 128, 8, 8, 8]
MaxPool-3 Add-5 stride 2 [B, 128, 4, 4, 4]
Conv3D-5 Add-5 stride 2 [B, 128, 4, 4, 4]

Add-6 MaxPool-3, Conv3D-5 - [B, 128, 4, 4, 4]
Conv3D-6 Add-4 kernel 1, padding 0 [B, 256, 4, 4, 4]

ConvBlock-13 Add-6 - [B, 256, 4, 4, 4]
ConvBlock-14 ConvBlock-13 - [B, 256, 4, 4, 4]
ConvBlock-15 ConvBlock-14 - [B, 256, 4, 4, 4]
ConvBlock-16 ConvBlock-15 - [B, 256, 4, 4, 4]

Add-7 Conv3D-4, ConvBlock-16 - [B, 128, 8, 8, 8]
MaxPool-4 Add-7 stride 2 [B, 128, 2, 2, 2]
Conv3D-7 Add-7 stride 2 [B, 128, 2, 2, 2]

Add-8 MaxPool-4, Conv3D-7 - [B, 128, 2, 2, 2]
Conv3D-8 Add-8 kernel 1, padding 0 [B, 512, 2, 2, 2]

ConvBlock-17 Add-8 - [B, 512, 2, 2, 2]
ConvBlock-18 ConvBlock-17 - [B, 512, 2, 2, 2]
ConvBlock-19 ConvBlock-18 - [B, 512, 2, 2, 2]
ConvBlock-20 ConvBlock-19 - [B, 512, 2, 2, 2]

Add-9 Conv3D-8, ConvBlock-20 - [B, 512, 2, 2, 2]
Conv3D-9 Add-9 kernel 1, padding 0 [B, 1024, 2, 2, 2]

Table 14: Architecture of the P-VAE Decoder. The decoder converts a input latent code with shape
[B, 8192] → [B, 512, 2, 2, 2] into an SDF-patch of shape [B, 1, 32, 32, 32].

Layer Name Parent Name Layer Parameters Output Shape
DecoderLayer-1 latent code cin = 512, cout = 512 [B, 512, 4, 4, 4]
DecoderLayer-2 DecoderLayer-1 cin = 512, cout = 256 [B, 256, 8, 8, 8]
DecoderLayer-3 DecoderLayer-2 cin = 256, cout = 256 [B, 256, 16, 16, 16]
DecoderLayer-4 DecoderLayer-3 cin = 256, cout = 128 [B, 128, 32, 32, 32]

Conv3D-1 DecoderLayer-4 kernel 1, stride 1, padding 0 [B, 1, 32, 32, 32]

22

	Introduction
	Related Work
	Method
	P-VAE
	SDF-Latent-Transformer

	Evaluation
	Completion
	P-VAE & AutoDecoder

	Limitations
	Conclusion
	Additional Experiments
	SDF-Latent-Transformer on Refined latent codes
	ABC completion using SLT trained on ShapeNet
	Completion on Randomly Masked ShapeNet
	Latent Quality Comparison with DeepSDF and 3DShape2VecSet
	Shape Completion on ShapeNet
	Shape Completion on 3D-EPN
	Comparison with AnchorFormer

	Metrics
	Data Preparation
	Architecture Details
	Training Details
	Patch-Variational Autoencoder
	AutoDecoder
	SDF Latent Transformer

