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ABSTRACT

In long-tailed semi-supervised learning (LTSSL), pseudo-labeling often creates a
vicious cycle of bias amplification, a problem that recent state-of-the-art meth-
ods attempt to mitigate using logit adjustment (LA). However, their adjustment
schemes, inherited from LA, remain inherently hierarchy-agnostic, failing to ac-
count for the semantic relationships between classes. In this regard, we identify
a critical yet overlooked problem of intra-super-class imbalance, where a toxic
combination of high semantic similarity and severe local imbalance within each
super-class hinders effective LTSSL. This problem causes the model to reinforce
on its errors, leading to representation overshadowing. To break this cycle, we
propose Super-Class-Aware Debiasing (SCAD), a new framework that performs a
dynamic, super-class-aware logit adjustment. SCAD leverages the latent seman-
tic structure between classes to focus its corrective power on the most confusable
groups, effectively resolving the local imbalances. Our extensive experiments
validate that SCAD achieves new state-of-the-art performance, demonstrating the
necessity of a super-class-aware approach for robust debiasing.

1 INTRODUCTION

Deep learning models have achieved remarkable success on large, annotated datasets, but creating
them is expensive (Deng et al., 2009; Lin et al., 2014). Semi-supervised learning (SSL) is a powerful
approach to reduce this cost by using a small labeled dataset with a large unlabeled one (Sohn et al.,
2020; Berthelot et al., 2020). However, the performance of SSL is often hindered by the long-tailed
distribution of real-world data (Figure 1a), where a few majority classes vastly outnumber many
minority classes (Kang et al., 2020; Cui et al., 2019). This imbalance especially creates a vicious
cycle in long-tailed semi-supervised learning (LTSSL): a biased model generates biased pseudo-
labels, reinforcing the bias and causing performance to drop severely for minority classes (Kim
et al., 2020; Wei et al., 2021).

To break this vicious cycle, logit adjustment (LA) (Menon et al., 2021), a powerful method from su-
pervised long-tail learning, has become the de facto standard for pseudo-label debiasing in LTSSL.
LA applies a static, corrective offset to each class’s logits, calculated based on the global class fre-
quencies. The appeal of this approach lies in its theoretical guarantee: LA provides a cost-free,
Fisher-consistent correction for any given class prior, making it an ideal foundational block for
more complex scenarios. Building upon this foundation, recent state-of-the-art methods have made
remarkable progress by deriving more sophisticated estimates of the true prior to leverage within
the LA framework, such as by estimating the distribution mismatch (Wei & Gan, 2023) or measur-
ing the classifier’s intrinsic bias (Lee & Kim, 2024). However, while these methods innovate on
how to estimate the global prior, the adjustment scheme itself remains that of LA: a single, uniform
correction that is inherently blind to the semantic relationships between classes.

In this paper, we first uncover that this blindness to semantic relationships among classes leads to a
critical challenge we term intra-super-class imbalance. Specifically, we identify that this problem
arises from a toxic combination of two factors, best understood through the example of truck and
automobile on CIFAR10-LT. First, for these classes that have high semantic similarity, adjustment
mechanisms based on LA offer no solution, as its corrective offset is derived solely from class
frequencies and is agnostic to the inter-class similarities that cause model confusion. Second, this
challenge is dramatically amplified by the extreme local imbalance within their shared vehicle
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Figure 1: Illustration of the intra-super-class imbalance problem on CIFAR10-LT. (a) The over-
all dataset exhibits a long-tailed distribution. (b) The problem arises from a toxic combination of
high semantic similarity and extreme local imbalance, as seen within the vehicle super-class. (c)
This leads to the failure of LA (Menon et al., 2021), which struggles to distinguish minority classes
from their majority neighbors. (d) In contrast, SCAD mitigates these critical misclassifications.

super-class, where automobile vastly outnumbers truck (Figure 1b). LA’s globally derived correction
is fundamentally mismatched for this local conflict. Its adjustment for the truck class is determined
by its global rarity across the entire dataset, not by the specific, intense competition it faces from
automobile. This globally calibrated boost is ill-suited to counteract the overwhelming pressure
from its direct and dominant competitor. In the context of pseudo-labeling, this dual failure of LA
triggers a self-reinforcing loop of bias amplification, leading to representation overshadowing and
the systematic misclassification shown in Figure 1c.

To tackle this problem, we propose Super-Class-Aware Debiasing (SCAD), a new framework de-
signed to break this cycle by performing a dynamic, super-class-aware logit adjustment. Our ap-
proach is driven by a key insight: the debiasing mechanism must be adaptive, dynamically tailor-
ing the corrective force to a sample’s predicted semantic group. SCAD implements this by first
discovering a latent super-class structure from class names using pre-trained text encoders (e.g.,
CLIP (Radford et al., 2021)), then training a super-class classifier to infer each unlabeled sample’s
semantic context, and finally refining standard LA with a super-class-aware correction that uses the
super-class posterior as weights for a targeted local correction on top of LA’s global adjustment.
This allows SCAD to mitigate systematic misclassifications on CIFAR10-LT (Figure 1d), and, as
we further show on CIFAR100-LT (Figure 4 and Appendix A.2), to consistently alleviate analogous
intra–super-class errors on more complex long-tailed benchmarks.

To validate our approach, we conduct experiments on diverse LTSSL benchmarks, ranging from
CIFAR10/100-LT (Krizhevsky et al., 2009) to large-scale, fine-grained datasets such as ImageNet-
127(Fan et al., 2022) and Food101-LT(Bossard et al., 2014). SCAD proves to be a flexible, pluggable
framework that consistently enhances state-of-the-art methods under distribution mismatch.

2 RELATED WORK

Long-tailed Semi-supervised Learning LTSSL addresses the realistic scenario where labeled
data is both scarce and imbalanced. Early methods focused on directly manipulating pseudo-labels,
for instance, by iterative re-balancing Wei et al. (2021) or refining their distributions Kim et al.
(2020); Wang et al. (2022). Subsequently, logit adjustment (LA) Menon et al. (2021) emerged as
the de facto standard for debiasing, offering a more fundamental solution by directly correcting the
model’s output logits. The effectiveness and simplicity of LA have made it the foundational block
for recent state-of-the-art methods that tackle complex scenarios like distribution mismatch. These
advanced methods, such as ACR Wei & Gan (2023) and CDMAD Lee & Kim (2024), innovate by
dynamically modulating the strength of the LA correction. ACR achieves this by estimating the
mismatch between labeled and unlabeled distributions, while CDMAD does so by measuring the
classifier’s intrinsic bias. Despite these sophisticated advances, their adjustment schemes remain
fundamentally that of LA. Consequently, they are all inherently hierarchy-agnostic and sub-optimal
for alleviating the localized confusion between semantic neighbors.

2
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Figure 2: Illustration of Super-Class-Aware Debiasing (SCAD) mechanism. For an unlabeled
truck image, the class classifier initially produces biased logits, incorrectly favoring automobile.
Standard LA applies a uniform, global correction, which is insufficient to change the outcome.
In contrast, our mechanism first uses a reliable super-class classifier to infer the sample’s context
(vehicle). In this context, p(k|uj), is then used to compute a targeted local adjustment. When this
local adjustment is added to the standard LA, it successfully overcomes the initial bias and boosts
the logit for the correct class.

Hierarchical and Super-class learning Leveraging class hierarchies to improve recognition is
well established. In supervised learning, methods like HD-CNN Yan et al. (2015) and Deep-RTC Wu
et al. (2020) use manually defined hierarchies, while SuperDisco Du et al. (2023) discovers super-
classes from image features via a graph neural network. However, these approaches are less practical
for LTSSL, as they often require pre-defined taxonomies or complex, computationally expensive
training. In contrast, SCAD is designed to be lightweight and practical: it constructs super-classes
by applying a pre-trained text encoder to class names—without manual hierarchies or pre-trained
vision models—and serves as a simple, pluggable debiasing module for existing LTSSL methods.

3 METHOD

We propose Super-Class-Aware Debiasing (SCAD), a multi-stage framework to address
intra–super-class imbalance in LTSSL. SCAD consists of three components: (i) super-class dis-
covery from semantic information, (ii) a dedicated training procedure for the feature extractor and
two classifiers, and (iii) a dynamic logit adjustment mechanism that corrects biased predictions at
inference time. We detail each component below, after introducing notation and problem setup.

3.1 PRELIMINARIES

3.1.1 PROBLEM SETUP

Let Dl = {(xi, yi)}Ni=1 be a labeled dataset and Du = {uj}Mj=1 an unlabeled dataset, where xi, uj ∈
Rd denote the d-dimensional inputs. We consider C classes, indexed by c ∈ [C]≜{1, . . . , C}. Let
Nc be the number of labeled samples in class c and Mc the (generally unknown) number of unlabeled
samples in class c. The labeled set is long-tailed with N1 ≥ N2 ≥ · · · ≥ NC and imbalance ratio
γl=N1/NC . We similarly define the unlabeled imbalance ratio γu=maxc Mc/minc Mc.

Our model consists of three main components: a feature extractor fθ : Rd → Rp, a primary class
classifier gc : Rp → RC , and an auxiliary super-class classifier gs : Rp → RK , where p is the
dimensionality of the feature representation and K denotes the number of discovered super-classes.
For a given input x, we denote the extracted features as z = fθ(x), the class logits as ℓc = gc(z),
and the super-class logits as ℓs = gs(z).

3
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3.1.2 SEMI-SUPERVISED LEARNING.

Our method builds upon the consistency regularization paradigm, as popularized by FixMatch (Sohn
et al., 2020). The total loss for the primary SSL is

L = Ls + Lu, (1)
where Ls is the supervised loss on labeled data and Lu is the unsupervised consistency loss on
unlabeled data.

Supervised loss. For a mini-batch Bl ⊂ Dl, we apply a weak augmentation Aw to xi and compute

Ls =
1

|Bl|
∑

(xi,yi)∈Bl

CE
(
softmax

(
gc(fθ(Aw(xi)))

)
, yi
)
, (2)

where CE(·, ·) denotes the standard cross-entropy with the label yi treated as a class index.

Unsupervised consistency loss. For a mini-batch Bu ⊂ Du, we obtain a pseudo-label from a
weak view and enforce consistency on a strong view. Let qj = softmax

(
gc(fθ(Aw(uj)))

)
and

ŷj = argmaxc∈[C](qj)c. We apply a strong augmentation As to the same sample and compute

Lu =
1

|Bu|
∑

uj∈Bu

I(max
c

(qj)c ≥ τ
)
CE
(
softmax

(
gc(fθ(As(uj)))

)
, ŷj

)
, (3)

where τ ∈ (0, 1) is a confidence threshold. The mask I(maxc(qj)c ≥ τ) prevents low-confidence
pseudo-labels from contributing to the loss. In practice, ŷj is treated with stop-gradient.

3.2 SUPER-CLASS GENERATION

The foundation of our method is a structural prior that groups fine-grained classes into meaningful
super-classes. We generate this prior automatically from class name semantics, requiring no manual
annotation or pre-trained vision models. More details are explained in A.9.

Generation Process. The generation process involves two steps: (1) We convert the names of
all C classes into semantic vectors using a pre-trained text encoder (e.g., SBERT (Devlin et al.,
2019) or CLIP’s text encoder (Radford et al., 2021)). (2) We then apply agglomerative clustering on
these vectors. This bottom-up technique builds a dendrogram representing the class hierarchy. By
cutting this dendrogram at a level that yields a pre-specified number of clusters (K), we partition
the C classes into K super-classes. This process yields a deterministic mapping M : {1, . . . , C} →
{1, . . . ,K}, where M(c) is the super-class index for class c.

Justification. Our approach of generating super-classes is grounded in the observation that se-
mantic relationships captured by pre-trained text embeddings often correlate with visual tax-
onomies (Radford et al., 2021). This strategy is particularly advantageous as it sidesteps the need
for manual hierarchy creation, which is often infeasible for large-scale or specialized datasets. It is
important to clarify that the novelty of our work does not lie in this generation process itself, which
is a straightforward application of existing tools. Rather, we employ this process as a simple and
effective means to obtain the structural prior required for our main contribution: a new, dynamic
debiasing mechanism. Our goal is to show that even an approximate hierarchy can alleviate critical
issues when leveraged by a powerful debiasing algorithm.

Crucially, the effectiveness of our framework does not hinge on any single text encoder. This ro-
bustness is a key finding, as it proves our method’s principle is general and not reliant on a specific,
and potentially expensive, text model. SCAD consistently improves performance regardless of the
choice of text encoder, from lightweight GloVe (Pennington et al., 2014) to large-scale CLIP. This
indicates that SCAD’s benefit stems from the debiasing mechanism rather than encoder capacity, a
conclusion further supported by our ablations in Section 4.5.

In this work, we obtain super-classes by applying text encoders to class names, but SCAD itself is
agnostic to the hierarchy source: it only requires a mapping from classes to super-classes. The same
interface can be instantiated using existing taxonomies or manually defined hierarchies. In extremely
rare or highly domain-specific settings where class names provide limited semantic signal, ontology-
or expert-defined super-classes offer a natural alternative to text-based grouping.
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3.3 TRAINING PROCEDURE

The feature extractor fθ, class classifier gc, and super-class classifier gs are trained jointly. The goal
of this stage is not only to train the main classifier, but also to train a reliable super-class classifier
gs that can provide a trustworthy signal for our debiasing mechanism.

The rationale for this joint training hinges on the observation that the auxiliary task of super-class
classification is inherently simpler and more robust to data imbalance. This robustness stems from
two factors: (1) it is a coarse-grained problem with significantly fewer classes (K ≪ C), and (2)
grouping classes often mitigates the label distribution imbalance, as noted in prior work (Du et al.,
2023). Consequently, gs can learn to produce reliable predictions even for minority class samples,
providing a stable signal that is crucial for our debiasing mechanism. As we show in Appendix A.4,
gs indeed yields a more balanced and reliable prediction distribution on real-world unlabeled data.

To achieve this, we introduce an auxiliary SSL loss for the super-class task, Lsuper, which mirrors
the structure of the primary loss:

Lsuper = Lsuper
s + Lsuper

u . (4)

Here, the supervised component, Lsuper
s , is the standard cross-entropy loss computed on the labeled

batch Bl using super-class targets ysuper
i = M(yi), where M maps each fine-grained class to a super-

class (either from a dataset-provided hierarchy or from our automatically discovered grouping). The
unsupervised component, Lsuper

u , is a consistency loss computed on the unlabeled batch Bu, enforc-
ing that the model’s super-class predictions are consistent across strong and weak augmentations.

The final training objective is a weighted sum of the primary and auxiliary losses:

Ltotal = L+ λLsuper, (5)

where λ is a hyperparameter balancing the two tasks. This objective encourages fθ to learn repre-
sentations that are discriminative at both fine-grained and coarse-grained levels.

3.4 SUPER-CLASS–AWARE LOGIT ADJUSTMENT

This section introduces our framework’s core contribution: a novel logit adjustment method, Super-
Class–Aware logit Adjustment (SCAD), that addresses a critical limitation of the standard LA. Stan-
dard LA applies a static, global correction to the logits based on the class prior distribution π:

ℓLAj = ℓcj − log π, (6)

While effective against global class imbalance, this super-class-aware correction is ill-equipped to
mitigate local ambiguities, particularly conflicts arising between classes within the same super-class.

SCAD overcomes this limitation with a dynamic, sample-aware adjustment mechanism, illustrated
in Figure 2. The process begins by inferring the coarse-grained context for each unlabeled sample
uj . We utilize the super-class classifier, gs, to obtain a posterior probability distribution over super-
classes, p(k|uj) = softmax(ℓsj)k. This distribution, p(k|uj), quantifies the estimated likelihood of
the sample belonging to each super-class k. For instance, an image of a truck would yield a high
probability for the vehicle super-class, i.e., p(vehicle|uj) ≈ 1.

This inferred context is then used to apply a tailored, super-class-aware adjustment. We pre-calculate
an adjustment vector ∆k ∈ RC for each super-class k, specifically designed to counteract the intra-
super-class imbalance within that group. Let Ck = {c | M(c) = k} be the set of all classes
belonging to super-class k. The c-th components of ∆k are defined as:

(∆k)c =

{
βk,c, if c ∈ Ck,
maxc′∈Ck

βk,c′ , if c /∈ Ck,
(7)

where βk,c = nk,c/(maxc′∈Ck
nk,c′) is the relative dominance score of class c within its super-class

k, based on the sample count or estimated frequency nk,c for class c within super-class k. from a
mixture of labeled and high-confidence pseudo-labeled samples: whenever a labeled example with
ground-truth label c, or an unlabeled example whose pseudo-label is c with confidence above the
FixMatch threshold τ , is assigned to super-class k, we increment nk,c by one. These counts are
recomputed periodically (once per epoch in our implementation) using the current classifier. The

5
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Table 1: Results on CIFAR10-LT and CIFAR100-LT datasets for various algorithms and settings.

CIFAR10-LT CIFAR100-LT

γ = γl = γu = 100 γ = γl = γu = 150 γ = γl = γu = 10 γ = γl = γu = 20

Algorithm N1 = 500
M1 = 4000

N1 = 1500
M1 = 3000

N1 = 500
M1 = 4000

N1 = 1500
M1 = 3000

N1 = 50
M1 = 400

N1 = 150
M1 = 300

N1 = 50
M1 = 400

N1 = 150
M1 = 300

Supervised
w/ LA

47.3 ± 0.95

53.3 ± 0.44

61.9 ± 0.41

70.6 ± 0.21

44.2 ± 0.33

49.5 ± 0.40

58.2 ± 0.29

67.1 ± 0.78

29.6 ± 0.57

30.2 ± 0.44

46.9 ± 0.22

48.7 ± 0.89

25.1 ± 1.14

26.5 ± 1.31

41.2 ± 0.15

44.1 ± 0.42

FixMatch
w/ DARP
w/ CReST+
w/ DASO
w/ DASO + Ours

67.8 ± 1.13

74.5 ± 0.78

76.3 ± 0.86

76.0 ± 0.37

75.1 ± 0.10

77.5 ± 1.32

77.8 ± 0.63

78.1 ± 0.42

79.1 ± 0.75

79.2 ± 1.60

62.9 ± 0.36

67.2 ± 0.32

67.5 ± 0.45

70.1 ± 1.81

69.0 ± 0.61

72.4 ± 1.03

73.6 ± 0.73

73.7 ± 0.34

75.1 ± 0.77

75.8 ± 0.33

45.2 ± 0.55

49.4 ± 0.20

44.5 ± 0.94

49.8 ± 0.24

50.0 ± 0.22

56.5 ± 0.06

58.1 ± 0.44

57.4 ± 0.18

59.2 ± 0.35

58.7 ± 0.28

40.0 ± 0.96

43.4 ± 0.87

40.1 ± 1.28

43.6 ± 0.09

44.5 ± 0.35

50.7 ± 0.25

52.2 ± 0.66

52.1 ± 0.21

52.9 ± 0.42

53.2 ± 0.50

FixMatch + LA
w/ DARP
w/ CReST+
w/ DASO
w/ DASO + Ours

75.3 ± 2.45

76.6 ± 0.92

76.7 ± 1.13

77.9 ± 0.88

81.6 ± 0.22

82.0 ± 0.36

80.8 ± 0.62

81.1 ± 0.57

82.5 ± 0.08

84.0 ± 0.99

67.0 ± 2.49

68.2 ± 0.94

70.9 ± 1.18

70.1 ± 1.68

74.5 ± 1.21

78.0 ± 0.91

76.7 ± 1.13

77.9 ± 0.71

79.0 ± 2.23

82.2 ± 0.14

47.3 ± 0.42

50.5 ± 0.78

44.0 ± 0.21

50.7 ± 0.51

51.8 ± 0.28

58.6 ± 0.36

59.9 ± 0.32

57.1 ± 0.55

60.6 ± 0.71

60.5 ± 0.21

41.4 ± 0.93

44.4 ± 0.65

40.6 ± 0.55

44.1 ± 0.61

45.7 ± 0.56

53.4 ± 0.32

53.8 ± 0.43

52.3 ± 0.20

55.1 ± 0.72

55.7 ± 0.57

FixMatch + ACR
w/ Ours

81.6 ± 0.19

83.5 ± 0.16

84.1 ± 0.39

85.5 ± 0.03

77.0 ± 1.19

78.6 ± 0.56

80.9 ± 0.22

83.3 ± 0.20

51.3 ± 0.48

52.7 ± 0.11

61.1 ± 0.11

61.8 ± 0.21

44.8 ± 0.21

45.8 ± 0.20

55.9 ± 0.31

56.4 ± 0.10

Table 2: Test accuracy of previous LTSSL algorithms and ours under inconsistent class distributions,
i.e., γl ̸= γu, on CIFAR-10-LT and STL10-LT datasets. The γl is fixed to 100 for CIFAR-10-LT,
while it is set to 10 and 20 for STL10-LT dataset. The best results are in bold.

CIFAR10-LT (γl ̸= γu) STL10-LT (γu = N/A)

γu = 1 (uniform) γu = 1/100 (reversed) γl = 10 γl = 20

Algorithm N1 = 500
M1 = 4000

N1 = 1500
M1 = 3000

N1 = 500
M1 = 4000

N1 = 1500
M1 = 3000

N1 = 150
M1 = 100k

N1 = 450
M1 = 100k

N1 = 150
M1 = 100k

N1 = 450
M1 = 100k

FixMatch
w/ DARP
w/ CReST
w/ CReST+
w/ DASO

73.0 ± 3.81

82.5 ± 0.75

83.2 ± 1.67

82.2 ± 1.53

86.6 ± 0.84

81.5 ± 1.15

84.6 ± 0.34

87.1 ± 0.28

86.4 ± 0.42

88.8 ± 0.59

62.5 ± 0.94

70.1 ± 0.22

70.7 ± 2.02

62.9 ± 1.39

71.0 ± 0.95

71.8 ± 1.70

80.0 ± 0.93

80.8 ± 0.39

72.9 ± 2.00

80.3 ± 0.65

56.1 ± 2.32

66.9 ± 1.66

61.7 ± 2.51

61.2 ± 1.27

70.0 ± 1.19

72.4 ± 0.71

75.6 ± 0.45

71.6 ± 1.17

71.5 ± 0.96

78.4 ± 0.80

47.6 ± 4.87

59.9 ± 2.17

57.1 ± 3.67

56.0 ± 3.19

65.7 ± 1.78

64.0 ± 2.27

72.3 ± 0.60

68.6 ± 0.88

68.5 ± 1.88

75.3 ± 0.44

FixMatch + ACR
w/ Ours

92.1 ± 0.18

93.0 ± 0.13

93.5 ± 0.11

93.4 ± 0.56

85.0 ± 0.09

86.1 ± 0.10

89.5 ± 0.17

89.8 ± 0.18

77.1 ± 1.24

77.8 ± 0.45

83.0 ± 0.32

83.6 ± 0.45

75.1 ± 0.70

75.8 ± 0.10

81.5 ± 0.25

82.0 ± 0.35

normalization in Eq. 7 then yields βk,c ∈ [0, 1], making (∆k)c a relative, rather than absolute,
penalty and rendering the dynamic term insensitive to the overall dataset size. Since the SCAD
correction term

∑
k p(k | uj)∆k is a convex combination of these bounded adjustments, its com-

ponents are themselves bounded in [0, 1] and thus act as a moderate, local correction on top of the
global LA term − log π, whose magnitude can be much larger on highly imbalanced datasets. We
empirically found this construction fmto be numerically stable across all benchmarks. For the vehi-
cle super-class, this formulation assigns a high penalty (up to 1) to the dominant automobile class
and a smaller penalty to the minority truck class. For all classes outside this super-class, a fixed max-
imum penalty (e.g. set to the strongest suppression level) is applied, preventing potential confusion.
This max penalty design is motivated by prior work (Tao et al., 2023)

The final SCAD adjustment is formulated by augmenting the standard LA correction with our
sample-aware term. Specifically, we use the inferred super-class posterior p(k|uj) as a dynamic
weight to create a convex combination of the pre-computed adjustment vectors, ∆k. This yields a
single, sample-specific adjustment vector. The complete SCAD formulation is:

ℓSCAD
j = ℓcj −

(
log π +

K∑
k=1

p(k|uj)∆k

)
, (8)

This dynamic formulation is the key to SCAD’s effectiveness. As illustrated in Figure 2, for an
image of a truck, the model’s high confidence in the vehicle super-class (p(vehicle|uj) ≈ 1) ensures
that final adjustment is dominated by ∆vehicle. This vector applies a large penalty to the competing
majority class (automobile) and a smaller penalty to the true class (truck), resolving the local am-
biguity. In stark contrast, standard LA applies a fixed, global correction that is blind to this local
context, making it ill-equipped to handle such intra-super-class conflicts.
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Table 3: Test accuracy on CIFAR100-LT under uniform and reversed distributions.

CIFAR100-LT (γl ̸= γu)

γu = 1 (uniform) γu = 1/10 (reversed)

Algorithm N1 = 50
M1 = 400

N1 = 150
M1 = 300

N1 = 50
M1 = 400

N1 = 150
M1 = 300

FixMatch
w/ DARP
w/ CReST
w/ CReST+
w/ DASO
w/ Ours

45.5± 0.71
43.5± 0.95
43.5± 0.30
43.6± 1.60
53.9± 0.66
54.0± 0.77

58.1± 0.72
55.9± 0.32
59.2± 0.25
58.7± 0.16
61.8± 0.98
62.4± 0.98

44.2± 0.43
36.9± 0.48
39.0± 1.11
39.1± 0.77
51.0± 0.19
48.6± 0.19

57.3± 0.19
51.8± 0.92
56.4± 0.62
56.4± 0.78
60.0± 0.31
60.4± 0.10

FixMatch + ACR
w/ Ours

57.2± 0.19
59.1± 0.25

66.7± 0.30
66.8± 0.22

51.6± 0.12
53.4± 0.11

62.9± 0.25
63.3± 0.12

Table 4: Comparison with other LTSSL baselines on CIFAR10/100-LT.

Algorithm CIFAR-10-LT CIFAR-100-LT
γl = γu = 100 γl = 100, γu = 1 γl = 100, γu = 1/100 γl = γu = 20

FixMatch + SAW 77.5 ± 0.65 81.2 ± 0.68 72.3 ± 0.65 50.1 ± 0.10
w/ Ours 79.4 ± 0.70 81.1 ± 0.30 75.7 ± 0.57 53.1 ± 0.16

FixMatch + ABC 81.1 ± 1.14 82.7 ± 0.40 68.9 ± 0.61 53.3 ± 0.79
w/ Ours 82.0 ± 0.30 83.0 ± 0.42 73.2 ± 1.50 55.1 ± 0.19

FixMatch + CoSSL 83.1 ± 0.45 88.8 ± 0.42 85.1 ± 0.58 53.9 ± 0.78
w/ Ours 83.3 ± 0.32 89.0 ± 0.27 84.8 ± 0.47 55.0 ± 0.21

FixMatch + CDMAD 83.6 ± 0.46 87.5 ± 0.46 77.6 ± 0.70 54.3 ± 0.44
w/ Ours 85.1 ± 0.11 87.9 ± 0.10 79.4 ± 1.15 54.9 ± 0.76

4 EXPERIMENT

We conducted experiments used datasets in LTSSL, including CIFAR10-LT (Krizhevsky et al.,
2009), CIFAR100-LT (Krizhevsky et al., 2009), and STL10-LT (Coates et al., 2011). Additionally,
we performed experiments on the ImageNet-127, Food101-LT (Fan et al., 2022) dataset.

Followed by Wei & Gan (2023), we used three different settings: consistent, uniform, and reverse.
The consistent setting refers to when γl = γu. The uniform setting indicates that γu = 1. Finally,
the reverse setting describes the case where γl and γu have reciprocals of the consistent setting.

4.1 IMPLEMENTATION DETAILS

Following DASO (Oh et al., 2022) and ACR (Wei & Gan, 2023) settings, we apply our framework
to various existing methods, including FixMatch (Sohn et al., 2020), FixMatch+DASO, and Fix-
Match+ACR. If the base method does not adopt the LA-based pseudo-label debiasing, we apply
only super-class learning.

We conducted the experiment for the LTSSL method in different experiment settings including SAW
(Lai et al., 2022), ABC (Lee et al., 2021), CoSSL (Fan et al., 2022), and CDMAD (Lee & Kim,
2024) to show that our framework can enhance the other method in a different setting. For detailed
experimental settings, please refer to Appendix A.2. We set the top-1 accuracy as our evaluation
metric. All experiments were conducted three times with different random seeds. Please note that
the results for ACR differ from those reported in the original paper1. this discrepancy arises because
the authors mistakenly used a different backbone on CIFAR100-LT.

1https://github.com/Gank0078/ACR/issues/5
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Table 5: Test accuracy on ImageNet-127. The best results are in bold.

Algorithm / ImageNet-127 32 × 32 64 × 64

FixMatch
w/ DARP
w/ DARP+cRT
w/ CReST+
w/ CReST++LA
w/ CoSSL
w/ ACR
w/ Ours
w/ ACR + Ours

29.7
30.5
39.7
32.5
40.9
43.7
57.2
60.1
60.5

42.3
42.5
51.0
44.7
55.9
53.9
63.6
66.7
67.0

4.2 RESULTS ON CIFAR10/100-LT AND STL10-LT

In case of γℓ = γu : To demonstrate the effectiveness of our proposed framework, we conducted
experiments by additionally incorporating FixMatch + DASO and FixMatch + ACR for comparison.
As shown in Table 1, SCAD enhances performance across almost all settings. It shows that SCAD
integrates effectively with various existing LTSSL algorithms, yielding a complementary effect. In
particular, the CIFAR100-LT performance was impressive with the ACR, where the settings N1 =
50 and M1 = 400 achieved state-of-the-art performance improvements of 2.7% and 2.2% when
γℓ = γu = 10 and γℓ = γu = 20.

In case of γℓ ̸= γu : In the real world, there can be distributional differences between unlabeled
and labeled datasets. Therefore, we conducted experiments with both uniform and reverse settings
to explore these scenarios.

We observed overall performance improvements when SCAD was applied to ACR in the uniform
and reverse settings. Specifically, as shown in Table 3, SCAD marginally outperformed DASO on
CIFAR100-LT in both the uniform and reverse settings. Furthermore, combining ACR with SCAD
led to performance gains of up to 2% and 3.4% in the uniform and reverse settings, respectively.

4.3 RESULTS ON IMAGENET-127 AND FOOD101-LT
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Figure 3: Left: figure displays the average confi-
dence scores for minority-class samples (8, 9) of
the super-class vehicle. Our method effectively
reduces confidence in confusing majority classes
(0, 1) within the same super-class while increas-
ing confidence in the correct minority classes
(8, 9). Right: illustration demonstrates that our
approach consistently improves accuracy across
various LTSSL frameworks, especially benefit-
ing minority classes.

On ImageNet-127 (Fan et al., 2022), a chal-
lenging 127-class subset of ImageNet with a
severe long-tail distribution (γu ≈ 286), our
method shows a distinct advantage. Following
the standard setup with 10% labeled data, our
approach outperforms existing baselines, as
detailed in Table 5. Notably, it surpasses the
strong ACR baseline by a substantial margin
of 5.0% at 32×32 resolution and 4.0% at
64×64 resolution. This improvement is partic-
ularly noteworthy as ACR represents a highly
competitive recent method, highlighting the
efficacy of our proposed hierarchical debiasing.
Furthermore, when our method is combined
with ACR, it achieves new state-of-the-art
results, underscoring its high compatibility
as a plug-in module. These significant gains,
consistent with results on Food101-LT (see
Appendix A.6), validate that our approach
effectively alleviates the critical problem of
intra-super-class imbalance—a fine-grained
challenge that existing methods have struggled
to address.
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Table 6: Ablation studies of SCAD on CIFAR10-LT and STL10-LT datasets.

Ablations CIFAR10-LT STL10-LT

FixMatch 67.8 56.1
+ Super-class learning 69.2 69.0
+ Logit-Adjustment (LA) 76.9 70.4
+ Super-class-Aware Debiasing (SCAD) 78.7 71.3

Table 7: Comparison of SCAD with ground truth and various text encoders on CIFAR100-LT.

Algorithms CIFAR100-LT

FixMatch + LA 47.3
w/ Ours with ground truth 50.3
w/ Ours with GloVe 49.7
w/ Ours with SBERT 50.1
w/ Ours with CLIP text encoder 50.4
w/ Ours with text-embedding-ada-002 50.5

4.4 RESULTS ON OTHER LTSSL BASELINES

Table 4 shows that our framework can also be applied effectively to other experiment settings
with state-of-the-art methods, we conducted experiments on the three settings of CIFAR10-LT and
consistent setting of CIFAR100-LT within the CDMAD (Lee & Kim, 2024), CoSSL (Fan et al.,
2022), ABC (Lee et al., 2021) and SAW (Lai et al., 2022) framework. According to CDMAD,
when we ran experiments with ACR under CDMAD settings, we observed a performance drop
from 84.1 to 81.8 at N1 = 1500 and M1 = 3000. Our framework remains robust when combined
with existing LTSSL in different settings. According to Table 4, when combining CDMAD with
our framework, which is another state-of-the-art method, there was a 1.6% improvement in the
consistent setting, a 0.3% increase in the uniform setting, and a 2.3% improvement in the reverse
setting. These results demonstrate that our proposed SCAD framework effectively integrates with
diverse LTSSL baselines, further validating its utility and applicability.

4.5 COMPREHENSIVE ANALYSIS OF OUR METHOD

Ablation study According to Table 6, we evaluated the performance improvements achieved by
incrementally adding each component to the algorithms on CIFAR10-LT and STL10-LT under a
consistent setting. First, adding the super-class learning component resulted in significant perfor-
mance gains, with an increase of 2.0% on CIFAR10-LT and 23% on STL10-LT. Finally, adding
SCAD yielded additional gains of 9.2% on CIFAR10-LT and 1.1% on STL10-LT. The limited im-
provement observed from adding SCAD on STL10-LT is likely due to the significant difference in
the number of labeled and unlabeled datasets.

Comparison with ground truth super-class labels and various text embedding models As
shown in Table 7, there is no performance difference between using our super-class labels generated
from text-embeddings-ada-002 (Ryan et al., 2022) or the CLIP text encoder (Radford et al., 2021),
and using the ground-truth super-class labels provided in CIFAR100. We further evaluate SCAD on
CIFAR100-LT using weaker embeddings such as GloVe (Pennington et al., 2014), SBERT (Nils &
Iryna, 2019), and still outperform the baseline. This indicates that our approach remains effective
even without large-scale models.

Minority class accuracy comparison As shown in Figure 3, Our method improves the average
confidence of minority classes (8,9) over the LA baseline, while correspondingly reducing the confi-
dence of majority classes (0,1) within the same super-class. This result yields consistent gains across
diverse LTSSL frameworks, highlighting its general applicability. Moreover, since our approach
merely appends a super-class classifier trained in a joint manner, it entails negligible computational
overhead (more detailed in Appendix A.7).
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Hyperparameter settings we define the confidence threshold τ for class-level predictions as 0.95,
following FixMatch. Since super-class learning is expected to converge faster than class-level learn-
ing, we set the super-class threshold τs to the same value, i.e., τs = 0.95, for simplicity and conve-
nience. We determined the number of super-classes K by setting K =

⌈
C
4

⌉
. For a detailed analysis,

choosing K and ensuring super-class balance, please refer to Appendix A.4.

5 CONCLUSION

In this paper, we introduce Super-Class-Aware Debiasing (SCAD), a novel framework designed
to tackle the fundamental challenge of intra-super-class imbalance in long-tailed semi-supervised
learning (LTSSL). Unlike previous approaches that rely solely on global class priors for logit ad-
justment, SCAD dynamically adapts the corrective force to the semantic context of each sample.
To validate the effectiveness of our approach, we conduct extensive experiments on a wide range
of LTSSL benchmarks. The results demonstrate that SCAD substantially improves the reliability of
pseudo-labels, enhances the learning dynamics of minority classes, and consistently narrows the per-
formance gap caused by long-tailed distributions. Moreover, SCAD achieves state-of-the-art results
across diverse datasets, outperforming strong baselines and existing debiasing methods. These find-
ings highlight that incorporating semantic structure and local class relationships into the debiasing
process is a powerful strategy, and establish SCAD as a new standard for robust and generalizable
learning in real-world imbalanced settings.

6 LIMITATIONS AND FUTURE WORKS

Our study mainly evaluates SCAD within LTSSL. Its effectiveness for other tasks such as detection
or segmentation remains an open question and would require further validation. A promising di-
rection for future work is to extend SCAD beyond classification. In particular, applying our idea to
more complex tasks such as object detection or semantic segmentation could further demonstrate its
utility, as these tasks often suffer from both long-tailed distributions and semantic overlap among
categories.

10
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A APPENDIX

A.1 THE ASSISTANCE OF A LARGE LANGUAGE MODEL (LLM)

This work used a large language model (LLM) solely for language editing (grammar, wording, and
minor typographical corrections) during manuscript preparation.

A.2 EXPERIMENT SETTING

For a fair comparison, we integrate our framework with the DASO (Oh et al., 2022), ACR (Wei
& Gan, 2023), SAW (Lai et al., 2022), ABC (Lai et al., 2022), CoSSL (Fan et al., 2022), and
CDMAD (Lee & Kim, 2024) algorithms using their official code repositories. For example, we
use the code for DASO from https://github.com/ytaek-oh/daso.git, for ACR from
https://github.com/Gank0078/ACR.git, and for CDMAD from https://github.
com/LeeHyuck/CDMAD.git.

When combining FixMatch (Sohn et al., 2020) with our framework, we adopt the ACR settings. It
is worth noting that the settings for each algorithm exhibit slight differences. For instance, ACR and
CDMAD utilize distinct configurations. The ACR setting is specifically tailored to generate weakly
and strongly augmented versions of input images for use within the FixMatch framework.

• Weak augmentation: This pipeline applies random horizontal flipping and random crop-
ping with reflective padding to preserve the image structure. These transformations are
designed to introduce minimal changes to the input image while maintaining its semantic
content.

• Strong augmentation: In addition to the weak augmentations, this pipeline uses the Ran-
dAugment (Cubuk et al., 2020) method, which applies 2 transformations with 10 magnitude
with Cutout (DeVries & Taylor., 2017) operation.

In CDMAD setting, Weak augmentation is same however, there are slight difference in Strong aug-
mentation. CDMAD uses RandAugment with 3 transformations of magnitude 4, followed by the
Cutout operation.

The hyperparameter settings differ significantly between ACR and CDMAD. In ACR, the labeled
dataset batch size is set to 64, the ratio of the unlabeled batch size to the labeled batch size is set to
1, and the optimizer’s learning rate is adjusted using a cosine decay schedule. The learning rate at
each step is calculated as α cos

(
7πt
16T

)
, where α is the initial learning rate set to 3× 10−3, t denotes

the current iteration and T is the total number of iterations.

In contrast, CDMAD uses a labeled dataset batch size of 32, the ratio of the unlabeled batch size to
the labeled batch size is set to 2, and a learning rate of 2 × 10−3. All experiments are conducted
using one NVIDIA RTX 3090 GPU. The software environment includes PyTorch 2.1.2, TorchVision
0.16.2, and CUDA 12.1.

All settings, We performed the experiments on CIFAR10-LT (Krizhevsky et al., 2009), CIFAR100-
LT (Krizhevsky et al., 2009), and STL-10 (Coates et al., 2011) using the WideResNet-28-2
(Zagoruyko & Komodakis, 2016) architecture, and on ImageNet-127 (Fan et al., 2022), Food101-
LT(Fan et al., 2022) using the ResNet-50 (He et al., 2016) architecture.

A.3 INTRA-SUPERCLASS-IMBALANCE PROBLEM ON CIFAR100-LT

We extended our investigation to CIFAR100-LT to prove the prevalence of intra-super-class imbal-
ance. Our results (see Figure 4) show that even on CIFAR-100-LT, substantial imbalance persists
within super-classes when using standard methods such as LA: minority classes inside each semantic
group remain underserved despite global prior correction. In contrast, SCAD consistently reduces
these intra–super-class disparities by explicitly targeting the local bias. These additional findings
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Figure 4: Illustration of the intra-super-class imbalance problem on CIFAR100-LT. Within the Fig-
ure 4a, 4b super-class (e.g., camel and elephant), the model frequently confuses semantically related
classes, and SCAD effectively alleviates these errors. A similar pattern appears in the Figure 4c, 4d
super-class (e.g., porcupine and possum), where SCAD reduces misclassifications by addressing the
local dominance within the group.
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Figure 5: Illustration for balancing super-classes and determining the optimal value of K on
CIFAR10-LT

suggest that intra–super-class imbalance is not a CIFAR10-specific artifact and that our solution is
robust across different long-tailed datasets.

A.4 ANALYSIS OF SUPER-CLASS LEVEL DISTRIBUTION

According to Figure 5a, we set K =
⌈
C
4

⌉
. In addition, in Figure 5b we compare the class-level

and superclass-level imbalance ratios of unlabeled data under the consistent, uniform, and reverse
settings. Note that in the reverse setting, the reciprocal values are not employed. We observe that
the imbalance ratio drops sharply in the consistent and reverse settings, while it slightly increases
in the uniform setting but still remains nearly identical. Furthermore, owing to this more balanced
distribution structure, Figure 5c reports class and super-class level accuracies across training epochs
with our method, consistently achieves higher performance at all epochs. These results indicate that
the super-class classifier is more balanced and reliable than the class-level counterpart. Experiments
on CIFAR100-LT show a similar trend: According to Figure 6a, the performance reaches its max-
imum around K =

⌈
C
4

⌉
, and when the original unlabeled imbalance ratio γu is 10 or lower, the

performance difference becomes negligible. (See Figure 6b)

A.5 VISUALIZATION ON SCAD

To visually demonstrate that our proposed method is particularly beneficial for minority classes,
we further compare the confusion matrices of FixMatch, FixMatch + Ours, ACR and ACR+Ours.
Specifically, as shown in Figure 7, our method significantly enhances classification performance
for minority classes under consistent settings, highlighting the effectiveness of SCAD in alleviating
class imbalance.
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(a) Performance for K (b) Imb-ratio for different K

Figure 6: Illustration for balancing super-classes and determining the optimal value of K on
CIFAR100-LT

(a) FixMatch (b) FixMatch + Ours (c) ACR (d) ACR + Ours

Figure 7: Confusion matrices of the test set for FixMatch, FixMatch+Ours, ACR, and ACR+Ours
under consistent settings.

A.6 FOOD101-LT RESULTS

Food101-LT, we sample 250 labeled and 500 unlabeled images per class, corresponding to imbal-
ance ratios of γl = γu = 50, 100, followed by CoSSL. According to Table 8, Our method also
improves the accuracy on Food101-LT about 3% and 7%, respectively.

Table 8: Test accuracy on Food101-LT with γl = γu = 50, 100. The best results are in bold.

Algorithm γ = 50 γ = 100

FixMatch 42.6 35.3
w/ DARP 42.0 34.2
w/ DARP + cRT 41.5 34.4
w/ CReST+ 43.8 31.2
w/ CReST+ + LA 47.7 36.1
w/ CoSSL 49.0 40.4
w/ Ours 51.0 43.5

A.7 CALIBRATION ANALYSIS ON SCAD

We further evaluate the calibration properties of SCAD compared to FixMatch and LA baselines.
We measure calibration using Expected Calibration Error (ECE), which quantifies the discrepancy
between predicted confidence and empirical accuracy.FixMatch exhibits severe miscalibration in
tail classes, with ECE values reaching up to 0.59, while SCAD reduces these errors substantially.
This indicates that SCAD alleviates underconfidence in tail classes and achieves a more balanced
calibration across head and tail. We futher evaluated calibration by integrating SCAD into ACR
and observed consistent improvements across all frequency groups. The ECE drops from 0.1018 to
0.0517 (Head), 0.1339 to 0.1228 (Medium), and from 0.1654 to 0.0926 (Tail). These results show
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Figure 8: ECE analysis on CIFAR10-LT

Table 9: ECE comparison between ACR and ACR+Ours

Method Head Medium Tail

ACR 0.1018 0.1339 0.1654
ACR+Ours 0.0517 0.1228 0.0926

that SCAD not only preserves performance but also substantially enhances prediction reliability,
especially for tail classes.

A.8 TRAINING TIME ANALYSIS

As presented in Table 10, the reported time represents the training time per epoch. The difference
between our method and the baseline is approximately 1 second, which is negligible in practice.

A.9 DETAILED INFORMATION ABOUT THE SUPER-CLASS

We retrieved descriptions for each class name using the Wikipedia API, and for convenience, we
only used the first sentence of the returned summary. If no corresponding Wikipedia entry ex-
ists, we simply use the class name itself. Agglomerative clustering is performed using the clus-
tering module from scikit-learn. As previously mentioned, we set K =

⌈
C
4

⌉
. Specifically, for

CIFAR10-LT (Krizhevsky et al., 2009) and STL10-LT (Coates et al., 2011), K = 3, for CIFAR100-
LT (Krizhevsky et al., 2009), K = 25 and for ImageNet-127 (Fan et al., 2022), K = 32. The
groupings for CIFAR10-LT, STL10-LT, CIFAR100-LT and ImageNet-127 are detailed in Table 11
and Table 13. These groupings are determined using the text-embedding-ada-002 model (Ryan et al.,
2022).
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Table 10: Training time comparison (seconds) per epoch

Method FixMatch FixMatch+Ours ACR ACR+Ours

Time (s) 28 29 35 36

Table 11: Super-class table on CIFAR10-LT. We use the Wikipedia API to retrieve a summary for a
given query and perform agglomerative clustering using the text-embedding-ada-002 model, setting
the number of clusters to 3.

Cluster Classes
Cluster 0 0: airplane, 1: automobile, 8: ship, 9: truck
Cluster 1 2: bird, 6: frog
Cluster 2 3: cat, 4: deer, 5: dog, 7: horse

Table 12: Super-class table on CIFAR100-LT. We use the Wikipedia API to retrieve a summary for a
given query and perform agglomerative clustering using the text-embedding-ada-002 model, setting
the number of clusters to 25.

Cluster Classes
Cluster 0 1: aquarium fish, 26: crab, 45: lobster, 77: snail, 99: worm
Cluster 1 27: crocodile, 29: dinosaur, 44: lizard, 73: shark, 78: snake, 93: turtle
Cluster 2 21: chimpanzee, 42: leopard, 43: lion, 88: tiger
Cluster 3 54: orchid, 62: poppy, 70: rose, 82: sunflower, 92: tulip
Cluster 4 58: pickup truck, 69: rocket, 85: tank, 89: tractor
Cluster 5 2: baby, 11: boy, 35: girl, 46: man, 98: woman
Cluster 6 22: clock, 86: telephone, 87: television
Cluster 7 6: bee, 7: beetle, 14: butterfly, 18: caterpillar, 24: cockroach, 79: spider
Cluster 8 36: hamster, 50: mouse, 65: rabbit, 74: shrew, 75: skunk, 80: squirrel
Cluster 9 0: apple, 51: mushroom, 53: orange, 57: pear, 83: sweet pepper
Cluster 10 5: bed, 20: chair, 25: couch, 94: wardrobe
Cluster 11 23: cloud, 71: sea
Cluster 12 33: forest, 49: mountain, 60: plain
Cluster 13 9: bottle, 10: bowl, 28: cup
Cluster 14 13: bus, 81: streetcar, 90: train
Cluster 15 15: camel, 19: cattle, 31: elephant
Cluster 16 17: castle, 37: house, 76: skyscraper
Cluster 17 16: can, 39: keyboard, 40: lamp, 61: plate, 84: table
Cluster 18 32: flatfish, 67: ray, 91: trout
Cluster 19 30: dolphin, 95: whale, 72: seal
Cluster 20 8: bicycle, 41: lawn mower, 48: motorcycle
Cluster 21 3: bear, 4: beaver, 34: fox, 55: otter, 97: wolf
Cluster 22 12: bridge, 68: road
Cluster 23 38: kangaroo, 63: porcupine, 66: raccoon, 64: possum
Cluster 24 47: maple tree, 52: oak tree, 56: palm tree, 59: pine tree, 96: willow tree
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Table 13: Super-class table on ImageNet-127. We use the Wikipedia API to retrieve a summary
for a given query and perform agglomerative clustering using the text-embedding-ada-002 model,
setting the number of clusters to 32.

Cluster Classes
Cluster 0 17: electronic equipment, 43: light, 60: camera, 99: magazine, 125: monitor
Cluster 1 16: furniture, 58: litter, 118: cushion
Cluster 2 2: jewelry, 22: hairpiece, 36: protective garment, 44: garment, 45: nightwear, 50: uniform, 55: glove, 84: hosiery, 90: gown, 113: dress
Cluster 3 27: pot, 28: dish, 30: rod, 42: home appliance, 71: toiletry, 80: pan, 94: cleaning implement, 106: cooker, 109: turner
Cluster 4 29: athlete, 34: game equipment, 41: golf equipment, 47: gymnastic apparatus, 53: sports implement, 110: participant, 115: diver
Cluster 5 31: frozen dessert, 37: sauce, 39: dip, 63: pudding, 74: entree, 77: cracker, 111: concoction
Cluster 6 9: platform, 32: weight, 59: system, 76: structure, 105: sign, 121: drill rig
Cluster 7 19: plaything
Cluster 8 75: ceratopsian, 86: mammal, 104: bird
Cluster 9 25: bus, 46: fare, 56: sled, 98: passenger train
Cluster 10 38: ray, 79: plectognath, 107: shark, 108: ganoid, 124: food fish, 126: soft finned fish
Cluster 11 72: wine, 81: punch, 114: coffee
Cluster 12 8: globule, 21: stick, 66: tissue, 83: covering
Cluster 13 11: fungus, 14: coelenterate, 54: echinoderm, 65: arthropod, 68: mollusk
Cluster 14 88: rescue equipment, 91: safety belt
Cluster 15 52: spacecraft, 64: rocket, 67: heavier than air craft, 112: lighter than air craft
Cluster 16 18: sailing vessel, 35: ship, 93: oar, 119: boat
Cluster 17 6: anguid lizard, 24: teiid lizard, 49: lacertid lizard, 78: gecko, 87: agamid, 102: venomous lizard, 116: iguanid, 122: chameleon
Cluster 18 20: board, 120: bar
Cluster 19 95: bath linen, 103: fabric
Cluster 20 1: vegetable, 4: fruit, 40: fodder, 51: flower
Cluster 21 70: pen, 101: eraser
Cluster 22 3: ligament
Cluster 23 13: frog, 89: snake, 96: turtle, 97: salamander, 100: worm
Cluster 24 69: cistern, 117: container
Cluster 25 0: loaf of bread, 73: bun
Cluster 26 5: cap, 26: helmet, 123: hat
Cluster 27 15: alligator, 62: crocodile
Cluster 28 12: device, 23: tool, 48: sharpener, 57: kit, 85: key, 92: duplicator
Cluster 29 10: military vehicle
Cluster 30 33: geological formation
Cluster 31 7: damselfish, 61: butterfly fish, 82: scorpaenid
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