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Abstract
We improve protein fitness prediction by ad-
dressing an often-overlooked source of instabil-
ity in machine learning models: the choice of
data representation. Guided by the Predictabil-
ity–Computability–Stability (PCS) framework for
veridical (truthful) data science, we construct
Stable predictors by applying a prediction-based
screening procedure (pred-check in PCS) to select
predictive representations, followed by ensem-
bling models trained on each—thereby leverag-
ing representation-level diversity. This approach
improves predictive accuracy, out-of-distribution
generalization, and uncertainty quantification
across a range of model classes. Our Stable vari-
ant of the recently introduced kernel regression
method, Kermut, achieves state-of-the-art perfor-
mance on the ProteinGym supervised fitness pre-
diction benchmark: it reduces mean squared error
by up to 20% and improves Spearman correlation
by up to 10%, with the largest improvements on
splits representing a distribution shift. We further
demonstrate that Stable predictors yield statisti-
cally significant improvements in in-silico protein
design tasks. Our results highlight the critical role
of representation-level variability in fitness pre-
diction and, more broadly, underscore the need
to address instability throughout the entire data
science lifecycle to advance protein design.

1. Introduction
Improving the ability of machine learning (ML) models to
predict the effects of mutations on protein fitness is a central
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challenge in computational biology, with broad implications
for protein design, disease understanding, and more. In
protein engineering, ML has shown promise in reducing
experimental costs by prioritizing high-fitness sequences for
wet-lab testing (Yang et al., 2025).

However, applying ML to guide experiments presents
key challenges. First, models must generalize to out-of-
distribution (OOD) sequences—typically mutations of a
reference—since the goal is to discover novel functional
proteins. Second, uncertainty quantification (UQ) is crucial
for assessing prediction reliability, as no existing model gen-
eralizes well across the vast, combinatorial space of protein
sequences.

Current approaches to improving OOD generalization
(Tagasovska et al., 2024) and UQ (Greenman et al., 2025)
focus largely on the modeling stage of the data science
life-cycle (DSLC) (Yu & Kumbier, 2020). Bayesian meth-
ods provide uncertainty estimates via posterior distribu-
tions (Greenman et al., 2025; Notin et al., 2023b), while
ensembling neural networks captures variability from ran-
dom model initializations (Gruver et al., 2021). Frequentist
methods estimate predictive variance through probabilistic
modelling (Nix & Weigend, 1994; Greenman et al., 2025).
Conformal prediction, which provides UQ in the form of
prediction intervals, have been used for model selection
and function prediction (Fannjiang et al., 2022; Boger et al.,
2025; Fannjiang & Park, 2025).

This work emphasizes the importance of stability under rea-
sonable perturbations to data processing choices, with a
focus on protein engineering. Guided by the Predictabil-
ity–Computability–Stability (PCS) framework for veridical
data science (Yu & Kumbier, 2020; Yu & Barter, 2024),
we propose a simple and broadly applicable procedure
to improve UQ and OOD generalization by leveraging
multiple reasonable representations of the same protein
sequence—for example, embeddings from different pre-
trained protein language models (PLMs) or zero-shot evolu-
tionary scores from diverse methods. Our key contributions
are:

• We identify a critical but underexplored source of in-
stability in protein fitness prediction: the choice of
data representation (e.g., embeddings). State-of-the-art
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Figure 1. We stabilize protein fitness prediction via the PCS frame-
work by leveraging representation-level variability: predictive rep-
resentations are selected through a pred-check step and ensembled.
This leads to substantial gains in accuracy and uncertainty quantifi-
cation, underscoring the value of considering multiple reasonable
representations for a protein sequence.

model performance varies significantly across repre-
sentations (Section 4, Appendix 6.4).

• We introduce a simple and intuitive two-step procedure
(Figure 1, Section 3) inspired by the PCS framework:
(1) a pred-check step to select and weight predictive
representations, and (2) an ensembling step that fits
a base model on selected representations, yielding a
Stable fitness predictor.

• On the supervised ProteinGym substitution bench-
mark, Stable predictors outperform their base mod-
els—including Gaussian Processes, linear models, and
CNNs—in both accuracy and uncertainty estimation.
Stable Kermut improves over standard Kermut (the cur-
rent state-of-the-art) by reducing MSE by up to 20%
and increasing Spearman correlation by up to 10%,
with the greatest gains under distribution shift. For
uncertainty, Stable Kermut improves correlation be-
tween predicted uncertainty and true errors by up to
70% (Section 4).

• Our Stable variants of Bayesian Ridge and Kermut
enhance performance in in-silico iterative protein de-
sign, recovering 6% more top-fitness sequences than
the previous best method Kermut (Section 4).

2. Background and related works
Supervised fitness prediction We represent a protein se-
quence as p = (a1, . . . , al(p)), where l(p) is the sequence
length and each ai is one of the 20 canonical amino acids.
A mutated sequence relative to p is defined as a sequence of
the same length that differs from p at one or more positions,
denoted by m(p). We denote the set of all such mutated
sequences as Mp. The goal of supervised fitness prediction
is to learn a predictor (model) f̂ (p) : Mp → R that maps a

mutated sequence to its corresponding fitness value y—a
scalar quantity that may reflect properties such as thermosta-
bility or binding affinity. We assume access to a labeled
dataset of n mutations,, (m(p)

1 , y1), . . . , (m
(p)
n , yn), where

yi is the experimentally measured fitness of m(p)
i .

We consider models that output both point predictions and
uncertainty estimates. In this work, we study Bayesian
Ridge regression, Kermut (a GP) and an ensemble of con-
volutional neural networks, each one of these models have
been used for fitness prediction in previous works (Gru-
ver et al., 2021; Groth et al., 2024; Greenman et al., 2025).
Details are provided in Appendix 6.5.

Representations of protein sequences Predicting protein
fitness with machine learning requires converting sequences
into numerical representations, or embeddings. The sim-
plest choice is one-hot encoding, which maps a sequence of
length l to a 20× l vector by concatenating one-hot vectors
for the 20 canonical amino acids.

Recent advances leverage embeddings from pre-trained
PLMs (Rives et al., 2021; Rao et al., 2021; Lin et al., 2023;
Yang et al., 2024), which capture patterns learned during
pre-training on large-scale sequence data. These models
typically represent a protein sequence as l × h matrices
that are mean-pooled into fixed-size vectors for downstream
prediction tasks (Li et al., 2024a). PLMs can also provide
zero-shot scores—log-likelihood ratios between mutant and
reference sequences—that correlate with fitness without
supervised training (Meier et al., 2021; Notin et al., 2023a).

It is important to emphasize that the space of reasonable1

choices for representing a single protein sequence is pro-
hibitively large (Table 1). For example, Li et al. (2024a)
show that different PLMs can produce embeddings that per-
form equally well in prediction tasks, and that increasing
model size or training data does not necessarily lead to bet-
ter results. In addition, while many computational methods
incorporate a zero-shot score into the representation, there
is no universally optimal score: different scores perform
best for different tasks (Notin et al., 2023a). Moreover, al-
though the penultimate layer is often used by default, Li et al.
(2024a) report that embeddings from alternative layers can
offer competitive performance. Finally, while mean pooling
is the most common dimension reduction strategy, (Li et al.,
2024b) have shown that alternative pooling methods can
perform similarly well. Table 1 provides a non-exhaustive
list of different and reasonable choices for embedding a
single protein sequence.

We define a protein representation as a triplet compris-

1We define a representation as reasonable if there is no clear
justification, a priori, to expect it will perform poorly for the
purpose of fitness prediction.
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ing: (1) a PLM embedding, (2) a dimensionality reduction
method, and (3) a zero-shot score. To ensure tractability,
we select a representative subset. For embeddings, we use
ESM1v (Meier et al., 2021), ESM2 (Lin et al., 2023), and
CARP (Yang et al., 2024). Dimensionality reduction is per-
formed via standard mean pooling (Dallago et al., 2021)
and three randomized variants that perturb pooling weights.
For zero-shot scores, we include MSA Transformer (Rao
et al., 2021), ProSST (Li et al., 2024c), ESM2 (Lin et al.,
2023), and TranceptEVE (Notin et al., 2022b). Full details
are provided in Appendices 6.2.1 and 6.2.2.

3. Stable fitness predictors via the PCS
framework

Stabilizing fitness predictors via the PCS framework
We adopt a two-step procedure to explore reasonable pro-
tein representations following Agarwal et al. (2025), and
quantify associated uncertainty. First, in the prediction
check (pred-check) step, we select a subset of informa-
tive zero-shot scores based on their fit to the training data
(details in Appendix 6.3). We find it effective to select the
top three zero-shot scores, weighted by Mean Decrease in
Impurity (MDI), normalized to sum to one, from a random
forest trained to predict the training fitness labels using the
zero-shot scores as features (Appendix 6.4).

Secondly, in the ensembling step, we form 36 representa-
tions by taking the Cartesian product of the 3 selected zero-
shot scores, 3 embeddings, and 4 dimensionality reduction
methods. A base model is trained on each representation,
and predictions are a weighted average of the ensemble
outputs (weighted by the normalized MDI scores associ-
ation with the zero-shot score). Uncertainty is estimated
by combining (1) the average uncertainty reported by the
base models, and (2) the empirical standard deviation of the
predictions across different representations.

Our method builds on the PCS-based UQ framework (Agar-
wal et al., 2025), but focuses on representation-level sen-
sitivity rather than algorithmic variability. Key changes
include filtering representations (not algorithms) and per-
turbing reasonable data representations instead of using
bootstrap resampling.

4. Experiments
4.1. ProteinGym benchmark performance

Setup We evaluate our methods on the ProteinGym su-
pervised benchmark (Notin et al., 2023a), which includes
217 single-substitution assays across diverse proteins, or-
ganisms, and fitness definitions (see Section 2). Results on
double mutants are deferred to Appendix 6.7.2. While other
benchmarks exist (e.g., FLIP (Dallago et al., 2021)), we

focus on ProteinGym for its scale and diversity.

For each dataset, we use 80% of the mutated sequences
for training and evaluate predictive performance on the re-
maining 20%. ProteinGym provides three types of data
splits:

• Random split: sequences are randomly assigned to
the training and test sets.

• Modulo split: sequences with mutations at every fifth
residue are assigned to the test set.

• Contiguous split: the sequence is divided into five
equal segments, and each fold contains sequences with
mutations in residues from one segment.

Methods As baselines, we consider three models adopted
from prior work: (1) a Bayesian Ridge regression model
(Greenman et al., 2025), (2) a Kermut regressor (Groth
et al., 2024), and (3) an ensemble of four CNNs (Gruver
et al., 2021; Greenman et al., 2025) (details for the models
are provided in Appendix 6.5). For each of these models,
we use ESM2 embeddings with mean pooling across the
sequence dimension, combined with the ESM2 zero-shot
score as additional input. These same models also serve as
the base models for our Stable predictors, where they are
trained separately on each selected representation before
being ensembled. We also report results from ProteinNPT
(Notin et al., 2023b) which is a strong baseline, though
we do not reimplement a Stable version of it due to its
high computational cost (Groth et al., 2024). For each one
of the three models (Bayesian Ridge, Kermut and CNN),
we implement a Stable version following the procedure
described in Section 3. These stable versions are ensembles
of the base models fitted on the same training data with
different representations of the protein sequences. Each
Stable version consists of 36 models.

Results The results, presented in Figure 2 (a) and in Ap-
pendix 6.7, show that Stable predictors consistently outper-
form their base estimators across all models and data splits.
Among them, Stable Kermut achieves the best performance,
followed by Stable Bayesian Ridge. The improvements are
particularly notable on the more challenging modulo and
contiguous splits, which introduce covariate shifts between
training and test sets. On average, across the two evalua-
tion splits, Stable CNN increases Spearman correlation by
22%, Stable Bayesian Ridge by 30%, and Stable Kermut
by 9% relative to their respective base models. Remarkably,
Stable Bayesian Ridge outperforms ProteinNPT across all
splits and metrics, achieving performance on par with Ker-
mut. These results demonstrate that mitigating instability
due to data representation can yield improvements com-
parable to—or even greater than—those achieved through
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the development of new algorithms, underscoring the criti-
cal role of representation choice. In addition to improved
accuracy, Stable estimators also provide more reliable un-
certainty quantification, as evidenced by stronger Spearman
correlations between predicted uncertainty and absolute er-
ror of a model—exceeding a 50% gain for Kermut, and
yielding several-fold improvements for CNN and Bayesian
Ridge. Appendix 6.4 presents a detailed ablation of the
Stable pipeline. Each component—ensembling, pred-check,
and others—shows statistically significant gains in at least
one setting (i.e., base model and split), and none reduce
performance in any case.

4.2. In-silico protein engineering

Setup We conduct an in-silico protein engineering cam-
paign with the goal of identifying high-fitness sequences
using as few evaluations as possible. We implement an it-
erative Bayesian Optimization (BO) procedure, beginning
with an initial batch of labeled sequences used to train a
predictive model. At each iteration, we select the next batch
of k sequences (m1, . . . ,mk) using the upper confidence
bound (UCB) acquisition function (which is commonly used
in these settings (Gruver et al., 2021; Notin et al., 2023b;
Greenman et al., 2025; Yang et al., 2025)), defined as:

f̂(m) + λσ̂(m), (1)

where f̂(m) denotes the predicted fitness, σ̂(m) represents
the model’s uncertainty and λ controls the exploration-
exploitation tradeoff. We evaluate two choices for λ,
{0.1, 2}, as proposed by Notin et al. (2023b); Yang et al.
(2025) respectively, and find that λ = 2 yields stronger per-
formance in recovering the highest-fitness sequences, while
λ = 0.1 yields better performance in recovering a larger
number of high fitness sequences (i.e., their fitness values
belong to 70th or 90th percentile of all measured fitness
values within their assay).

For each dataset, we initialize the BO loop with 50 randomly
selected sequences (two datasets with less than 50 sequences
are removed) and acquire 50 additional sequences per round
over 5 rounds, resulting in a total of 250 labeled sequences.
This setup mirrors the structure and scale of real-world
protein engineering campaigns (Yang et al., 2025). We
evaluate three base predictors—CNN ensemble, Bayesian
Ridge, and Kermut—along with their Stable variants.

Results Stable variants of all base methods—Kermut,
Bayesian Ridge, and CNN—consistently outperform their
non-Stable counterparts. Figure 2 (b) reports the cumulative
fraction of assays in which the highest-fitness sequence is
recovered across five steps of Bayesian optimization (BO),
averaged over three independent runs with different random
initializations. At every step, Stable Kermut and Stable
Bayesian Ridge recover the top sequence in more assays

than their base versions. By step five, Stable Kermut shows
a 6% absolute improvement over base Kermut.

Appendix 6.6 presents additional results, including compar-
isons at λ = 0.1 and further analysis on recovering multiple
high-fitness sequences, measured using quantiles of each
assay’s fitness distribution.

In summary, for both top-sequence recovery and high-
percentile recovery, Stable Kermut achieves the best overall
performance—with λ = 2 performing best for identifying
the top sequence, and λ = 0.1 performing best recovering a
large number of high fitness sequences.

(a)

(b)

Figure 2. (a) ProteinGym benchmark. We report the average Spear-
man correlation (ρ), mean squared error (MSE), and the Spearman
correlation between the uncertainty scores and the absolute errors
of the predictions (ρuncertainty). Each column corresponds to a
different ProteinGym split (b) Percent of assays for which the
highest fitness sequence was recovered for across 5 BO iterations.

5. Discussion
This work highlights the impact of representation-induced
instability in protein fitness prediction and shows that lever-
aging this variability—guided by the PCS framework—can
improve performance, especially under distribution shift.
While we studied a subset of reasonable representations
(e.g., zero-shot scores and pre-trained embeddings), many
choices (e.g., network layer) remain unexplored. Stabilizing
predictions across these dimensions is a promising direc-
tion. Though Stable predictors improve accuracy, they incur
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computational cost; our ensemble of 36 models is modest,
and techniques like pred-checks or dimensionality reduction
may help mitigate overhead. The PCS-guided approach
may generalize to tasks in computational chemistry and be-
yond, where multiple featurization choices exist, to improve
prediction and UQ.
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6. Appendix
6.1. Reasonable choices for embedding a protein sequence

Table 1. A list of reasonable choices for the representation of a single protein. A single protein sequence can represented by any
combination of zero-shot scores, embeddings from a PLM (with any choice of dimension reduction, layer or model) as well as structure
and inverse folding information based on this structure. This represents a huge space of potential reasonable ways to represent a single
protein sequence.

Category Component Reasonable choices

Zero-shot score Method / Model

ESM1v (Meier et al., 2021), ESM2
(Lin et al., 2023), MSA Transformer
(Rao et al., 2021), ProSST (Li et al.,
2024c)

Embedding

Method / Model

ESM1v (Meier et al., 2021), ESM2
(Lin et al., 2023), CARP (Yang et al.,
2024), MSA Transformer (Rao et al.,
2021), One-hot (Hsu et al., 2022a)

Layer

Penultimate, first/middle layers, or
learned combinations across atten-
tion layers (Bhattacharya et al.,
2020)

Dimension reduction

Mean pooling, max pooling, pool
over sequence dimension, pool over
hidden dimension, mean pooling
over mutated sites, flattening (Dal-
lago et al., 2021; Li et al., 2024b).

Structure

3D coordinates

AlphaFold2 (Jumper et al., 2021),
RosettaFold (Baek et al., 2021), Ex-
perimental (PDB, (Berman et al.,
2000))

Inverse folding ESM-IF (Hsu et al., 2022b), Protein-
MPNN (Dauparas et al., 2022)

6.2. List of embeddings and zero shot score

6.2.1. SELECTED REPRESENTATIVE ZERO-SHOT SCORES

We describe below the different methods included in our study for zero-shot score prediction. Our focus was to include a set
of diverse methods, which include PLMs, MSA based models and structure based models.

ESM2 ESM2 (Lin et al., 2023) is a transformer-based protein language model. We use the 650 million parameters version
consisting of 33 layers. It follows a BERT style encoder only transformer architecture and is trained on the UniRef50 (Suzek
et al., 2007) protein sequence database using a masked language modeling objective.

MSA Transformer MSA Transformer (Rao et al., 2021) uses a specialized transformer architecture with interleaved row
and column (axial) self-attention layers to process multiple sequence alignments (MSAs). It has approximately 100 million
parameters and 12 layers, and is trained on 26 million MSAs. An MSA is generated for each UniRef50 sequence.
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TranceptEVE TranceptEVE (Notin et al., 2022b) is a hybrid model that integrates an autoregressive transformer (Tran-
ception (Notin et al., 2022a)) with a variational autoencoder (EVE) trained on family-specific MSAs. Tranception offers
three model variants; the best-performing TranceptionEVE configuration on the ProteinGym indel benchmark uses the
medium-sized Tranception model (16 attention heads, 24 layers, 1024-dimensional embeddings) trained on UniRef100.
EVE is trained on MSAs built from UniRef100 for 3,219 clinically relevant proteins.

ProSST ProSST (Li et al., 2024c) consists of a transformer model integrated with a geometric vector perceptron (GVP)
encoder that encodes 3D structural information. The model has around 250 million parameters, with the transformer
comprising 12 layers and the GVP encoder using approximately six layers. This model is pretrained on data collected from
AlphaFoldDB (Jumper et al., 2021; Varadi et al., 2022; 2024), which contained more than 214 million structures. The
dataset used for training the structure encoder is extracted from CATH43-S40 (Sillitoe et al., 2021), a dataset of manually
annotated protein crystal structural domains.

6.2.2. SELECTED REPRESENTATIVE EMBEDDING MODELS

We describe below the embeddings models we used, our focus was to include at least two models with different architecture.
ESM2 and ESM1v are similar and were included for ease of implementation.

ESM2 ESM2 (Lin et al., 2023) is a transformer-based protein language model. We use the 650 million parameters version
consisting of 33 layers. It follows a BERT style encoder only transformer architecture and is trained on the UniRef50 protein
sequence database using a masked language modeling objective. ESM2’s hidden dimension is 1280.

CARP CARP (Convolutional Autoencoding Representations of Proteins (Yang et al., 2024)) is a convolutional neural
network model based on a ByteNet encoder architecture with dilated convolutions. We used the CAPR model with
approximately 640 million parameters and 56 layers. The model is trained on UniRef50 using a masked language modeling
task. Unlike transformers, CARP captures long-range dependencies via convolution, scaling linearly with sequence length.
Embeddings are taken from the final hidden representations, with a hidden dimension of 1280.

ESM1v ESM1v (Meier et al., 2021) is a transformer model based on the ESM1b architecture, optimized for zero-shot
variant effect prediction. It has 650 million parameters and 33 layers, with a hidden dimension of 1,280. The final model is
an ensemble of five independently trained networks, each trained on UniRef90. We extract embeddings from the last hidden
layer (layer 33) of the first model in the ensemble.

6.3. Pred-check procedure

Following the PCS framework, we apply a prediction check (Pred-Check) step to filter representations that are less
predictive for a particular fitness prediction problem.

The pred-check procedure has two main goals:

• Filtering: Remove the worst-performing zero-shot scores.

• Weighting: Assign weights to the remaining scores based on their predictive quality.

Procedure Let {yi}ni=1 denote the training labels and {z(j)i }ni=1 for j = 1, . . . , k denote the values of the zero-shot scores.
Our procedure involves the following steps:

1. Assign a prediction score (s(i)) for every zero-shot scores vector ({z(j)i }ni=1) using the training labels ({yi}ni=1).

2. Keep the top k scores (assuming higher is better). We set k = 3, but find that similar performance is obtained with
k = 4 or k = 2.

3. Obtain the weights by normalizing the prediction score via soft-max transformation.

We consider the following prediction scores:
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• Correlation (Corr) — For each zero-shot score vector, we compute the Spearman correlation with the training fitness
labels.

• LASSO — All zero-shot score vectors are concatenated into a feature matrix. We then fit a LASSO regression model
(using 5-fold cross-validation to select the regularization strength (Pedregosa et al., 2011)). The prediction score
for each zero-shot score is the absolute value of its corresponding LASSO coefficient, reflecting its importance in
predicting fitness. This can be viewed as a form of feature selection.

• RF-MDI — As with LASSO, the zero-shot scores are concatenated into a feature matrix. A Random Forest model is
trained to predict fitness, and the prediction score for each zero-shot score is its Mean Decrease in Impurity (MDI)
importance value.

We highlight that the above pred-check procedure does not require any held-out calibration set, and is done using the training
set only.

6.4. Ablation studies

We perform an ablation study to quantify the contribution of each component in our StaPred fitness predictors. Specifically,
we ablate the following elements: (1) ensembling across multiple embeddings, (2) ensembling across dimensionality
reduction methods, and (3) the pred-check procedure (i.e., use of RF-MDI and its advantage over using a single score or just
an average).

Each ablation is evaluated by measuring the change in Spearman correlation across 217 ProteinGym assays. For each
component, we report box plots and p-values from two-sample t-tests assessing whether the component improves average
correlation across assays. The specific ablations are described below:

Embedding To assess the benefit of ensembling multiple embeddings (ESM1v (Meier et al., 2021), ESM2 (Lin et al.,
2023), and CARP (Yang et al., 2024)), we compare the performance of the full ensemble (after pred-check) to that of a
variant that uses only a single embedding model. Both versions use the same weighting scheme based on RF-MDI.

Pred-Check To isolate the impact of the pred-check step, we compare our RF-MDI procedure to the three alternative
methods described in Section 6.3. We also include a baseline that uses each zero-shot score individually in the ensemble.
All settings use the same embeddings and dimensionality reduction methods; only the selection and weighting of zero-shot
scores differ.

Dimensionality Reduction To evaluate the effect of ensembling across dimensionality reduction methods, we compare
the full ensemble to a variant that uses only mean pooling for each embedding. Both use the same zero-shot selection and
weighting via RF-MDI.

Results The results for StaPred Kermut, StaPred Bayesian Ridge, and StaPred CNN are shown in Figures 3, 4, and 5,
respectively. For all three base models, the pred-check step and dimensionality reduction ensemble lead to statistically
significant improvements. Ensembling embeddings yields additional gains for StaPred Kermut and StaPred Bayesian Ridge.
For StaPred CNN—the weakest overall model—embedding ensembling performs similarly to using ESM2 alone, but not
worse.

6.5. Detailed description of fitness predictors

Bayesian Ridge The Bayesian Ridge model assumes that the fitness label follows a Gaussian likelihood given the
d-dimensional representation of sequence (x(m)) (which we consider as the concetanation of the mean-pooled embeddings
with a zero-shot score):

y|x(m) ∼ N

(
d∑

i=1

x(m)iβi, σ
2

)
(2)

where βi is the weight of the i-th feature, and σ2 is the variance of the noise.
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Figure 3. Each component of StaPred Kermut improves prediction accuracy. Box plots show the change in test set Spearman correlation
when ablations are applied to individual components. Asterisks indicate significance levels from one-sided two-sample t-tests (*¡0.05,
**¡0.01, ***¡0.001), and colors denote different data splits. The top left panel compares StaPred Kermut to a model using only a single
embedding; the top right to a model with only mean pooling instead of multiple randomized dimensionality reduction; the bottom left
to a model using only a single zero-shot score (MSAT is short for MSA Transformer and TEVE is a short for TranceptEVE) ; and the
bottom right compares the RF-MDI pred-check to alternative pred-check procedures. Ensembling embeddings and random dimensionality
reduction both significantly improve performance. The RF-MDI pred-check outperforms each individual zero-shot score and their
ensemble, and performs comparably to the correlation-based method (Corr).
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Figure 4. Each component of StaPred Bayesian Ridge improves prediction accuracy. Box plots show the change in test set Spearman
correlation when ablations are applied to individual components. Asterisks indicate significance levels from one sided two-sample t-tests
(*¡0.05, **¡0.01, ***¡0.001), and colors denote different data splits. The top left panel compares StaPred Bayesian Ridge to a model using
only a single embedding; the top right to a model with only mean pooling instead of multiple randomized dimensionality reduction; the
bottom left to a model using only a single zero-shot score (MSAT is short for MSA Transformer and TEVE is a short for TranceptEVE);
and the bottom right compares the RF-MDI pred-check to alternative pred-check procedures. Ensembling embeddings and random
dimensionality reduction both significantly improve performance. The RF-MDI pred-check outperforms each individual zero-shot score
and their ensemble, and performs comparably to the correlation-based method (Corr).
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Figure 5. Each component of StaPred CNN improves or does not hurt prediction accuracy. Box plots show the change in test set Spearman
correlation when ablations are applied to individual components. Asterisks indicate significance levels from one-sided two-sample t-tests
(*¡0.05, **¡0.01, ***¡0.001), and colors denote different data splits. The top left panel compares StaPred CNN to a model using only a
single embedding; the top right to a model with only mean pooling instead of multiple randomized dimensionality reduction; the bottom
left to a model using only a single zero-shot score (MSAT is short for MSA Transformer and TEVE is a short for TranceptEVE); and the
bottom right compares the RF-MDI pred-check to alternative pred-check procedures. Random dimensionality reduction significantly
improves performance, while ensembeling of embedding is on par with using ESM2. The RF-MDI pred-check outperforms each individual
zero-shot score and their ensemble, and performs comparably to the correlation-based method (Corr).
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The weights are assumed to follow a Gaussian prior:

βi|αi ∼ N(0, α−1
i ), (3)

where αi is the precision parameter for the i-th weight. The model also places gamma priors on αi and the noise precision
τ = 1/σ2:

αi ∼ Gamma(a0, b0), τ ∼ Gamma(c0, d0) (4)

The hyperparameters a0, b0, c0, and d0 are set to small values (10−6) following the default scikit-learn (Pedregosa et al.,
2011) implementation.

Kermut The Kermut method (Groth et al., 2024) defines a Gaussian Process for distribution of the fitness given the
sequence. Its mean function is defined using a zero-shot score, while its kernel is defined as the following product:

KKermut(x, x
′) = πKseq(x, x

′) + (1− π)Kstruc(x, x
′), (5)

where Kseq(x, x
′) represents a sequence kernel defined using RBF Kernel applied to mean pooled embeddings of a PLM.

and Kstruc(x, x
′) is a structure kernel defined as the multipication of three parts (1) A Hellinger Kernel which is a negative

exponential of the Hellinger distance between the inverse folding probabilities between the mutated sites. (2) An exponential
kernel in the abolute difference between the log-probabilites of the specific amino acid mutations assinged by an inverse
folding model, and (3) a distance kernel which is the negative exponential of the physical distance between the mutation
sites. We set π = 0.5 in our experiements as it is the default values in the Kermut implementation.

CNN Model We use a CNN architecture with the following structure:

• Three 1D convolutional layers with [4, 4, 6] filters respectively, each with kernel size 8

• Each conv layer is followed by ReLU activation, batch normalization, and dropout (p=0.1)

• Global average pooling after the final conv layer

• A tanh activation followed by a linear layer that outputs a single value

The model is trained using Adam optimizer with learning rate 1e-3 and batch size 128 for 100 epochs, using the concetanation
of the mean-pooled embeddings with a zero-shot score.

6.6. Additional BO results

We report additional BO results. For λ = 0.1, Figure 6 shows, at each BO iteration, the cumulative fraction of evaluated
sequences whose fitness exceeds the 90th and 70th percentiles, averaged over all datasets, with ±1,s.d. computed from
three independent runs (each initialized with a different random subset). Figure 8 presents the same analysis for λ = 2.
Finally, Figure 7 plots the running percentage of datasets in which at least one highest-fitness sequence has been recovered
for λ = 0.1.

StaPred variants outperform Kermut (and Bayesian Ridge) on the high-percentile metrics at both λ = 0.1 and λ = 2, with
the larger gains at λ = 0.1. For recovery of the highest-fitness sequence, StaPred Kermut and StaPred Bayesian Ridge match
Kermut at λ = 0.1, but both show clear improvements at λ = 2, surpassing their own and Kermut’s λ = 0.1 performance.

6.7. Additional ProteinGym benchmark results

6.7.1. RESULTS ON SINGLE MUTANTS

We report the numerical results for the random in Table 4, modulo Table 3 and contiguous in Table 2
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Figure 6. StaPred predictors recover high-fitness sequences more often than their base models when using BO with λ = 0.1. The y-axis
shows the cumulative percentage of solutions that are above the 90th (left) and 70th (right) percentiles of the assay’s fitness distribution.
The x-axis shows the BO step. StaPred Kermut provides the strongest results under this setting.
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Figure 7. StaPred predictors recover the highest-fitness sequence more often—or at least as often—as their base models when using BO
with λ = 0.1. The y-axis shows the percentage of experiments in which the top-fitness sequence is recovered; the x-axis shows the
number of BO steps. Results are averaged over three random training set initializations, with error bars showing standard deviation (often
too small to be visible). Both StaPred Kermut and StaPred Bayesian Ridge perform worse under λ = 0.1 compared to λ = 2.

6.7.2. RESULTS ON MULTIPLE MUTANTS

We consider the same setup as in (Groth et al., 2024), where we analyze the 51 datasets with less than 7500 sequences (due
to Kermut’s memory requirements which require to store the covariance matrix). We consider two splitting strategies (1)
random split where 80% of the data point are assigned to the training set and 20% to the test set and (2) one vs. two where
all single mutations are assigned to the training set and all double mutations are assigned to the test set. Similar to (Groth
et al., 2024) we find that using zero-shot score hurts performance in the one vs. two setting and does provide significant
improvement in the random setting. We therefore report the results for all method without using any zero-shot scores (i.e.,
mean function of Kermut and StaPred Kermut is zero).

Results The results are presented in Figure 9 and Tables 6 and 5 for one vs. two and random, respectively. On the
challenging one vs. two split, StaPred Bayesian Ridge provides the strongest spearman results with an average 0.72
compared with 0.69 for Bayesian Ridge and 0.67 for both Kermut and StaPred Kermut. For the random split StaPred Kermut
achieves a spearman value of 0.95 surpassing Kermut with Spearman of 0.94. StaPred Bayesian Ridge is able to match
Kermut’s performance with Spearman of 0.94.

On both random and one vs. two splits, StaPred Kermut and StaPred Bayesian Ridge predictors provide uncertainty values
whose correlation with the model errors are higher compared with their base models.

6.8. Computational Resources

All experiments in this work were carried out using a single A100 GPU.
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Figure 8. StaPred predictors recover high-fitness sequences more often—or at least as often—as their base models when using BO with
λ = 2. The y-axis shows the cumulative percentage of solutions that are above the 90th (left) and 70th (right) percentiles of the assay’s
fitness distribution. The x-axis shows the BO step. StaPred Bayesian Ridge provides the strongest results under this setting; however, it
underperforms compared to both Kermut and StaPred Kermut with λ = 0.1.
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Figure 9. ProteinGym benchmark results on 51 multiples mutation datasets studied in (Groth et al., 2024). We report the average Spearman
correlation (ρ), mean squared error (MSE), and the Spearman correlation between the uncertainty scores and the absolute errors of the
predictions (ρuncertainty). Each column corresponds to a different ProteinGym split. StaPred predictors outperform their base models on
Spearman correlation and on the correlation of the uncertainty with the absolute error.
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Table 2. Benchmark results on ProteinGym single-substitution assays for the contiguous train / test split. ProteinNPT results are taken
from the ProteinGym website, which does not provide uncertainty estimates.

Model ρ ↑ MSE ↓ ρuncertainty ↑

CNN 0.344 ± 0.013 1.113 ± 0.070 0.019 ± 0.006

Stable CNN 0.492 ± 0.010 0.916 ± 0.026 0.129 ± 0.008

Bayesian Ridge 0.422 ± 0.014 0.973 ± 0.031 0.008 ± 0.004

Stable Bayesian Ridge 0.597 ± 0.011 0.677 ± 0.022 0.153 ± 0.008

Kermut 0.606 ± 0.012 0.688 ± 0.028 0.110 ± 0.008

Stable Kermut 0.667 ± 0.010 0.587 ± 0.020 0.164 ± 0.010

ProteinNPT 0.561 ± 0.013 0.784 ± 0.034 -

Table 3. Benchmark results on ProteinGym single-substitution assays for the modulo train / test split. ProteinNPT results are taken from
the ProteinGym website, which does not provide uncertainty estimates.

Model ρ ↑ MSE ↓ ρuncertainty ↑

CNN 0.344 ± 0.013 1.113 ± 0.070 0.019 ± 0.006

StaPred CNN 0.492 ± 0.010 0.916 ± 0.026 0.129 ± 0.008

Bayesian Ridge 0.422 ± 0.014 0.973 ± 0.031 0.008 ± 0.004

StaPred Bayesian Ridge 0.597 ± 0.011 0.677 ± 0.022 0.153 ± 0.008

Kermut 0.606 ± 0.012 0.688 ± 0.028 0.110 ± 0.008

StaPred Kermut 0.667 ± 0.010 0.587 ± 0.020 0.164 ± 0.010

ProteinNPT 0.561 ± 0.013 0.784 ± 0.034 -

Table 4. Benchmark results on ProteinGym single-substitution assays for the random train / test split. ProteinNPT results are taken from
the ProteinGym website, which does not provide uncertainty estimates.

Model ρ ↑ MSE ↓ ρuncertainty ↑

CNN 0.365 ± 0.012 0.975 ± 0.040 0.013 ± 0.006

StaPred CNN 0.509 ± 0.010 0.815 ± 0.011 0.133 ± 0.008

Bayesian Ridge 0.693 ± 0.013 0.460 ± 0.020 0.005 ± 0.004

StaPred Bayesian Ridge 0.755 ± 0.011 0.382 ± 0.016 0.130 ± 0.007

Kermut 0.758 ± 0.012 0.377 ± 0.019 0.106 ± 0.008

StaPred Kermut 0.785 ± 0.010 0.334 ± 0.016 0.184 ± 0.008

ProteinNPT 0.753 ± 0.013 0.397 ± 0.022 -
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Table 5. Benchmark results on ProteinGym multiple-substitution assays for the random train / test split.

Model ρ ↑ MSE ↓ ρuncertainty ↑

CNN 0.423 ± 0.018 1.027 ± 0.037 0.083 ± 0.019

StaPred CNN 0.588 ± 0.020 0.757 ± 0.020 0.003 ± 0.018

Bayesian Ridge 0.927 ± 0.004 0.140 ± 0.008 0.023 ± 0.004

StaPred Bayesian Ridge 0.939 ± 0.004 0.118 ± 0.008 0.214 ± 0.013

Kermut 0.935 ± 0.005 0.129 ± 0.014 0.203 ± 0.015

StaPred Kermut 0.945 ± 0.004 0.110 ± 0.008 0.264 ± 0.014

Table 6. Benchmark results on ProteinGym multiple-substitution assays for the one vs. two train / test split.

Model ρ ↑ MSE ↓ ρuncertainty ↑

CNN 0.324 ± 0.030 1.417 ± 0.203 0.021 ± 0.031

StaPred CNN 0.384 ± 0.030 1.463 ± 0.181 0.015 ± 0.032

Bayesian Ridge 0.678 ± 0.028 1.189 ± 0.157 0.057 ± 0.023

StaPred Bayesian Ridge 0.715 ± 0.024 0.991 ± 0.133 0.182 ± 0.024

Kermut 0.666 ± 0.022 0.666 ± 0.117 0.124 ± 0.024

StaPred Kermut 0.669 ± 0.026 0.689 ± 0.121 0.143 ± 0.027
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