Finding Environmental-friendly Chemical Synthesis
with Al and High-throughput Robotics
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Abstract—Recent challenges with the environment have
resulted in tremendous interest in Green Chemistry, which
includes the design of chemical products and processes that
reduce the use of environmentally-harmful substances. Until
now, finding new environmental chemical synthesis is largely a
trial-and-error process, requiring trained expertise and a large
amount of work. Here, we report a high-throughput process,
combining Al techniques and robotic synthesis, allowing us to
find a more environmentally friendly way to synthesize an
existing material. The model materials in this study are to
replace nitrate salts (NOs), which might be responsible for algae
bloom if leaked into open water, by a chloride salt (CI), a
natural abundant ion, in the synthesis of a metal-organic
framework, Zn-HKUST-1. Our high-throughput process starts
with using large language models (LLM)-based literature
summary to create a database on the synthesis of Zn-HKUST-1
with NOs', so that optimized concentrations of Cl° can be
suggested. Subsequently, these suggestions are tested with
automatic robotic processes, increasing the speed and precision
of the experiment, to find the optimal synthesis condition. Using
this process, we successfully obtained MOFs (Metal Organic
Frameworks) crystals from ZnCl, precursors. An Al-based
learning process is developed, comparing the structural
information of our synthesized materials with that of the
database to confirm indeed the obtained MOFs are Zn-HKUST-
1. This success proves that our process holds the promise to
accelerate the discovery of new environmental-friendly
materials in the near future.

Keywords—LLM literature synthesis, Metal Organic
Frameworks, LLM experimental verification, Green Chemistry,
Robotic synthesis

I. INTRODUCTION

Metal-organic frameworks (MOFs) are a class of material
composed of metal clusters coordinated to organic ligand.[1],
[2], [3] These materials combine the best of both organic and
inorganic chemistry, offering remarkable properties and
divers applications. MOFs can be highly porous, with uniform
pore structures and tunable porosity. The multitude of
structures of MOFs also allow for flexibility in network
topology. High porosity of MOFs enables several interesting
applications in storage, supercapacitors, and sensing. Their
hollow structure also gives rises to an extraordinarily large
internal surface area, reaching even 780 square meters per
gram and used for catalyst purposes.[4] In particular, MOFs
are promising materials to mitigate climate change for their
potential of COz capturing.[5]

The synthesis of MOFs is relatively simple, consisting of
mixing metal ions to organic linker and activating using
thermal treatment. In this process, several non-

environmentally friendly solvents and compounds can be
used, which eliminate the overall environmental impact of the
MOFs applications. For instance, to synthesize the MOF
named Zn-HKUST-1, it is common to use Zn(NO3)2, instead
of a more environmental friendly ZnCl.[6], [7], [8] The main
reason is due to the high solubility of ZnCl. compared to that
of Zn(NOs)2, which leads to faster but less controlled crystal
growth during the synthesis conditions thus difficult to
optimize the synthesis conditions.[8] Nevertheless,
considering the minimal environmental impact of Cl as well
as its several benefits such as their abundance and low cost,
synthesizing Zn-HKUST-1 from ZnClz as a green chemistry
process would be much preferred if optimized condition is
found. The transition from an established and well-study
system to a new and more environmentally friendly one would
require a large amount of work, including long training
processes and extending hours using conventional trial/error
approaches. Recent advances in Artificial Intelligence (Al)
techniques and automation enable a possibility to minimize
the resource and time of improving environmental impact on
the environment.[9], [10], [11], [11], [12], [13] Specially, it
will allow to the optimize conditions in short times and allows
to find the right conditions rapidly.[14], [15]

In this work, we propose a new Al-based process for
materials discovery integrating high-throughput literature
synthesis with Large Language Model, high-throughput
materials synthesis with automation robotics. We show that
using this process, we can synthesize a target material Zn-
HKUST-1, using ZnCl: instead of a less environmental friend
but more common compound Zn(NOs)2. We first use a large
language model to extract relevant information of HKUST-1
from Zn(NOs)2, and identify a few experimentally accessible
conditions for Cl" ions. Then we use a high throughput
pipetting robot in testing those conditions of Zn(NOs)2 on
ZnCl.
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We focus on the concentration of ZnClx in
dimethylformamide (DMF) as the varying parameters,
keeping the linkers, temperatures, and annealing time the
same. Robotic automation allows to range of concentrations
to be used in the synthesis of Zn-HKUST-1 from ZnClo. The
result is scanned first with characterization with Al
classification to identify successful conditions, which then
will be confirmed with advanced and conventional
characterization techniques confirmed with data extracted
from AL

II. GENERAL FRAMEWORK

Figure 1 illustrates the general pipeline of this work.
Conventionally, to replace a chemical in an establish synthesis
process with a “greener” one, researchers would embark on a
comprehensive process involving literature analysis,
understanding fundamental principles, and gathering data
from literature reviews. Those data typically contain crucial
information such as chemical substances, reaction conditions
(such as reaction time or temperature if required) and expected
outcomes. Subsequently, experiments are conducted to
synthesize materials, followed by the identification of
necessary material characterization methods. Once material
characterization results are obtained, they are cross-referenced
with existing publications to validate the synthesis process.
The whole process could take weeks or months of time to
obtain an optimized synthesis process.

Here we propose a more efficient approach for
accelerating material synthesis based on robotic automation
and Al capabilities. Initially, we employ a Large Language
Models platform to obtain a dataset from published literature.
This platform facilitates the extraction and aggregation of
pertinent information, which is then exported into a structured
format such as a CSV file. This dataset provides valuable
insights into experimental conditions pertaining to chemical
substances and reaction parameters, enabling the selection of
optimized conditions for subsequent experiments. Upon
identifying the optimal experimental conditions, we utilize a
pipetting robot for solution hander to simultaneously generate
various concentrations of reaction mixtures, thereby
accelerating the synthesis of materials. Different
characterization techniques such optical microscopy, X-ray
diffraction (XRD), Fourier-transformed Infrared spectroscopy
(FTIR) are used to examine crystals under different
concentrations. Once after obtaining crystals, to streamline the
analysis process, we developed an Al-based classification
method to verify that the obtained crystals are the expected
one, for example by comparing the XRD curve of the obtained
literature with the database.

II. RESULTS AND DISCUSSION

A. Materials

Zinc Chloride powder (>94% purity) was purchased from
Viet Quang Chemicals Co., Ltd that plays a role as metal ion.
Benzene-1,3,5-tricarboxylic acid (BTC) as an organic linker
and Dimethylformamide (DMF, organic solvent) were
supplied by Shanghai Haohong Biomedical Technology Co.,
Ltd and Shanghai Zhanyun Chemical Co., Ltd, respectively.

B. Al-literature synthessis

Manual extraction of synthesis conditions from extensive
literature poses a bottleneck in material discovery, demanding
significant time from experienced chemists. Previously,
specialized natural language processing (NLP) models have
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been adopted to enable efficient mining, which, however, are
“labor-intensive and necessitate expertise in coding,
computer science, and data science”. Recently, the
emergence of large language models like GPT-3, GPT-3.5,
and GPT-4 has the potential to revolutionize chemistry
research in the coming decade. [15], [16], [17]

While there have been endeavors in utilizing the capability
of these LLMs to aid researchers in text mining and data
analysis, these approaches suffer from the high-cost usage of
OpenAl’s APIL. This is due to the adoption of few-shot
prompting for classification of synthesis paragraphs, which
inherently involves a large number of input tokens to the API,
thus further increasi ng the cost.

Scientific knowledge is predominantly stored in books and
scientific journals, often in the form of PDFs, which present a
challenge due to their diverse layouts. Traditional PDF parsers
that rely solely on text extraction may struggle with this
variability, making the combination of OCR (Optical
Character Recognition) and Document Layout models
essential for optimal extraction of information from such
documents. Figure 2A shows a schematic representation of a
data-driven workflow utilizing capabilities of current LLM(s)
and Machine Learning models for the extraction and
characterization of scientific data from chemistry literature.
Papers (in PDF format) are converted into JPG/PNG images
and transformed into structured representation via a
Document Layout analysis model. The texts from the files are
indexed for searching by ColBERT — a fast and accurate
retrieval model, enabling scalable BERT-based search over
large text collections in tens of milliseconds. Sections of the
files which might contain synthesis conditions are then
retrieved and fed into ChatGPT, which acts as a versatile
extraction tool.

To achieve this, it should be recognized that creating
prompts with expertise is a major factor in how effective
LLM(s) is when used, with important challenge lies in writing
clear instructions that can help LLMs. [16] To produce
precise and accurate outcomes in a desired format, rapid
design precision is crucial, highlighting the need of well-
articulated, precise, and complete instructions. Furthermore,
tiny and unique prompt signals can affect LLMs without
altering the underlying meaning; as a result, occasionally
similarly looking prompts have quite diverse qualities. When
compared to human-written suggestions, the newly developed
tool DSPy (Declarative Self-Improving Python) [18] offers a
major leap in this regard. By integrating methods for
prompting and optimizing language models, DSPy simplifies
the prompt building process. It is necessary to have a small
development set and some data annotation for DSPy to do the
optimization automatically in order to apply DSPy for rapid
optimization. From a conceptual standpoint, this novel system
might allow researchers to start their investigations with a
simple scaffolding of the high-level design steps and utilize
DSPy to automate the training of LLMs. This could be viewed
as a way to further strengthen our workflow and enhance the
effectiveness of LLMs. The result of this step is shown in
Figure 2B, with the example of a table containing the
synthesis condition of HKUST-1.

We manually verify the table obtained with LMMs for
data processing. To facilitate the verification synthesis, we
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Figure 2: Al-assisted MOFs synthesis condition. (A) The pipeline of data extraction (left)
and an example of data extract from 11 publications. (B) Data analysis showing the number of
anions used among the extracted dataset, and the histogram of concentration in the synthesis of
MOFs, with the selected concentration for robotic high-throughput experiment.

limit our synthesis scheme as follows: the method of choice
for MOF synthesis is solvothermal, with the organic linker
being BTC and the solvent being DMF. We focus on
searching for optimization using ZnCl> by scanning the
concentration of counter ions (such as NO3-, Cl-). It was seen
that for the majority of the publication NOs" is the counter-ion
of choice. The only encounters in which HKUST-1 MOFs
were made with CI. are FeCls, which probably due to the fact
that ferrite nitrate has no large scale production for lack of
applications.[19] As a consequence, among the feasible
conditions for Zn-HKUST-1 that can be synthesized from
ZnClz , the most common condition is 60 mM ZnCl:

C. High-throughput experiments with pipetting robots for
MOF synthesis

Learning the optimized condition is for NO; salt being 60
mM of Zn** in DMF, we apply it with the synthesis of Zn-
HKUST-1 with CI salt. Instead of choosing only one
concentration, with help of an automatic robotic liquid
handler, we scan a wide range of concentration, from 48 mM
to 64 mM of Zn*" in DMF, taking into account the possible
influence of the different counter-ions. The liquid handling
was done using an OT-2 liquid handler from Opentrons, a high
precision and high-throughput pipetting robot. To customize
the robot to our need, a 3D printed 24-slot well plate for 4 mL
vials was made, so that we could scan 22 different
concentrations in a single run (Figure 3A). In the slot labelled
A and B were for precursors: slot A is a4mL of 80 mM ZnClz
in DMF, and slot B a 4 mL of 80 mM BTC in DMF. In the
rest of the slots were 22 empty vials. The robotic liquid
handler using micropipettes to take an exact amount of
solutions from A and B to empty vials in slots | to 23. Both
single-channel pipette and multiple-channel pipette can be
used with various volumes needed. For example, Table 1
shows the accuracy and precision of volume related to single
channel pipette P300 GEN2 with the range of volume from 20
pL to 300 pL.

Table 1. Details information of the P200 GEN2 piptte model.

Volume Accuracy Precision
pL %D uL %CV uL
20 4% 0.8 +2.5% 0.5
150 1% 15 +0.4% 0.6
300 +0.6% 1.8 +0.3% 0.9

To customize the robotic handler for our needs, a home-
made 24 slots well-plate was designed (with Inventor
Autodesk) and uploaded in the OT-2 server. At the same time,
the design was used create a well-plate with a 3D printer Ender
3 with filament of Polylactic Acid (PLA). The standard length
for the well-plate slots in OT-2 pipetting robot is 127.76 mm
and the width is 85.48 mm, for this customized well-plate also
uses this diameter. 4 mL vial type was used. The height of the
robotic handler was modified for suiting of the 4 mL vial type
with its dimensions are @ 16.0 x 45 x 1.00 mm. For
experiment, 43.52 mg ZnCl2 (>94% purity) was mixed with 4
mL DMF in vial named vial A as the metal ion source (Zn?")
and 67.20 mg BTC was put in vial B with 4 mL DMF. BTC
serves as the organic linker to form the MOFs based on the
reaction. After chemical preparation, vial A and vial B were
sonicated in 10 min for full dissolution. Then both vial A and
vial B were put in the customized well-plate at the position of
0 and 4, respectively. The customized well-plate was declared
the first position is 0 and organized column by column. The
slots left for empty vials that contain different concentrations



Figure 3: The process of automation robotic
synthesis. (A) real-life picture of the hand manipulating
pipette tips with custom-made tray containing 24 vials,
comprising  two  precursors and  twenty-two
concentrations, colored from light green to dark green,
corresponding to an increase in concentration; vials
number 16 and number 17 contains the suggested
concentration (B) the obtained optical microscopy images
of the synthesis results, highlighting crystals in vials
number 16 and 17.

between metal ions and organic linkers after dispensing by
pipetting robot, the detail positions are illustrated in Figure
3A. When the dispensing progress finished, the solvothermal
method was carried out for reaction happening.[20]

After obtaining 22 vials with different concentrations of
two components, for the post-processing, those vials were all
baked in an oven at 85°C in 24 hours. When annealing time
finished, the crystal structure shapes were characterized with
optical microscopy for each distinct concentration. Examples
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of the obtained images are shown in Figure 3B, in which the
same scale-bar of 10 pum is applied to all images.

It can be seen that different concentrations gave the
different results of the experiment, from success to non-
success, and among the successful experiments that resulted
in crystal formation, the size and shape of crystals varied. The
optimal concentration showing the full-formed cubic shape
were found in vial number 16 and 17, corresponding to 60 mM
of ZnCl2, while other concentrations either did not form
crystals or resulted in defect non-cubical crystals. For
instance, at nearly right concentration at around 57.6 mM (vial
14) to 64 mM (vial 23) formed plenty of square sheets and
overlapped to shape the cubic (Figure 3B). With vial 16 and
17, the crystals showed cubic shape, which is expected for Zn-
HKUST-1. To confirm the obtained result, the material in vial
16 and 17 are dried out of solution to become power samples
for further characterizations.

D. Structural characterization and verification of MOFs

To confirm that the obtained material is indeed Zn-
HKUST-1, we conducted a series of morphological,
structural, and chemical characterizations. Figure 4A shows a
scanning electron microscopy (SEM) image of the obtained
structure, clearly indicating a simple cubic structure of
HKUST-1. Furthermore, the morphology of the sample is
homogeneous morphology, proving that the optimized
process could yield good crystals with Cl- as the counter ion.

To further investigate the crystal structure of the obtained
material, powder X-ray diffraction (XRD), with the 20 -
intensity plot shown in Figure 4B. Five highest peaks were
identified: at around 6.5°, 13.30°, 11.45°, 17.18° and 18.78°,
respectively with the highest 26 peak being at 11.45°. Using
ChatGPT-4, we compared the similarity of our PXRD results
with ones conducted on Zn-HKUST-1 and found and found a
strong similarity.

Furthermore, we could identify the crystal plan associated
with each peak. Using Bragg’s equations, nA = 2d sin 8 and
dpia = a/(h? + k? + [2), the lattice constant of the structure
is obtained a = 26.79 £ 0.19 A (Table 2), close to the value
found in the literature of reported in the literature.[7][8]

Figure 4: Confirmation of
the obtained MOFs as Zn-
HKUST-1. (A)B)(©)
Characterization of  the
obtained MOFs with surface
topography  (using SEM),
structural information (using
XRD), and chemical
information (using FT-IR),
respectively. (D) the chemical
structure of the obtained MOFs
as Zn-HKUST-1.
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Table 2. XRD peak analysis of obtained Zn-HKUST-1

Peak Spacing hkl plane conljczgice
2000 (A) P A)

6.5 13.58 (200) 27.16

11.45 7.72 (222) 26.74

13.30 6.65 (400) 26.60

17.18 5.15 (511) 26.76

18.78 4.72 (440) 26.70

Finally, Fourier-transform Infrared spectroscopy (FTIR) is
conducted to confirm Zn-HKUST-1 chemical compositions.
The FTIR spectra of as-synthesized Zn-HKUST-1 is shown in
Figure 4C with the peaks below 1200 cm™ relate to the
vibrations of the BTC linker. The range from 1250 cm™! to
1650 cm! indicates the carboxylate linker's presence; the
spectra peak observed at around 1610 cm-1 is attributed to the
asymmetric stretching vibrations of the carboxylate group in
BTC linker. Conversely, at 1420 cm™ and 1370 cm™ appeared
two peaks that are related to the symmetric stretching
vibrations of the carboxylate group. The influence of Zn2+ion
can be seen with the peak at 1630 cm-1, usually attributed to
the C=O0 stretching bond in BTC.[21] With the morphological,
crystal, and chemical confirmation, we confirmed that our
process successfully created Zn-HKUST-1 from the
environmentally friendly salt Cl". The structure of the obtained
Zn-HKUST-1 with a lattice constant of 26.7 A is
reconstructed in 3D, shown in Figure 4D.

IV. CONCLUSION AND PERSPECTIVES

In this report, we propose a new process to accelerate
materials discovery for Green Chemistry. The process
combines Al techniques for literature synthesis, using Large
Language Models, and Robotic Liquid Handling Automation
for materials synthesis. The process is successfully applied in
the synthesis of a Metal Organic Framework named Zn-
HKUST-1 from an environmental friendly precursor ZnCla,
instead of a common precursor Zn(NQ3)*. First, a database
about HKUST-1 MOFs is created from 22 papers, in which
synthesis conditions are recorded and analyzed to identify the
most promising synthesis condition for Zn-HKUST-1.
Second, from this one suggested condition, experimental
space is enlarged into 22 experiment conditions, which are
simultaneously conducted with a robotic handler to fine tune
the synthesis of the MOF. The robot procedure is modified to
work with custom-made 3D printed well-plates to fit the needs
of the experiments. Finally, an optimized condition is obtained
and the resulting material are thoroughly characterized in its
morphology, structure, and chemical composition, to be
confirmed as Zn-HKUST-1.

Our result shows that Al techniques can be integrated
seamlessly into Green Chemistry, in which environmentally
friendly materials are used as alternatives for potentially
harmful chemicals in existing synthesis schemes. In this work,
we present the use of Large Language Models for materials
synthesis and for automatic result verification. In the future
work, we will integrate few-step suggestions into experiment
design and image classification in material characterization.
Coupling with high-throughput robotic solution handling, we
believe this process would pave the way to the increasing use
of environmentally friendly materials in the making and
synthesis of materials in the lab and in industry.
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