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Abstract—Recent challenges with the environment have 
resulted in tremendous interest in Green Chemistry, which 
includes the design of chemical products and processes that 
reduce the use of environmentally-harmful substances. Until 
now, finding new environmental chemical synthesis is largely a 
trial-and-error process, requiring trained expertise and a large 
amount of work.  Here, we report a high-throughput process, 
combining AI techniques and robotic synthesis, allowing us to 
find a more environmentally friendly way to synthesize an 
existing material. The model materials in this study are to 
replace nitrate salts (NO3

-), which might be responsible for algae 
bloom if leaked into open water, by a chloride salt (Cl-), a 
natural abundant ion, in the synthesis of a metal-organic 
framework, Zn-HKUST-1. Our high-throughput process starts 
with using large language models (LLM)-based literature 
summary to create a database on the synthesis of Zn-HKUST-1 
with NO3

-, so that optimized concentrations of Cl- can be 
suggested. Subsequently, these suggestions are tested with 
automatic robotic processes, increasing the speed and precision 
of the experiment, to find the optimal synthesis condition. Using 
this process, we successfully obtained MOFs (Metal Organic 
Frameworks) crystals from ZnCl2 precursors. An AI-based 
learning process is developed, comparing the structural 
information of our synthesized materials with that of the 
database to confirm indeed the obtained MOFs are Zn-HKUST-
1. This success proves that our process holds the promise to 
accelerate the discovery of new environmental-friendly 
materials in the near future.  

Keywords—LLM literature synthesis, Metal Organic 
Frameworks, LLM experimental verification, Green Chemistry, 
Robotic synthesis 

I. INTRODUCTION 
Metal-organic frameworks (MOFs) are a class of material 

composed of metal clusters coordinated to organic ligand.[1], 
[2], [3] These materials combine the best of both organic and 
inorganic chemistry, offering remarkable properties and 
divers applications. MOFs can be highly porous, with uniform 
pore structures and tunable porosity. The multitude of 
structures of MOFs also allow for flexibility in network 
topology. High porosity of MOFs enables several interesting 
applications in storage, supercapacitors, and sensing. Their 
hollow structure also gives rises to an extraordinarily large 
internal surface area, reaching even 780 square meters per 
gram and used for catalyst purposes.[4] In particular, MOFs 
are promising materials to mitigate climate change for their 
potential of CO2 capturing.[5] 

The synthesis of MOFs is relatively simple, consisting of 
mixing metal ions to organic linker and activating using 
thermal treatment. In this process, several non-

environmentally friendly solvents and compounds can be 
used, which eliminate the overall environmental impact of the 
MOFs applications. For instance, to synthesize the MOF 
named Zn-HKUST-1, it is common to use Zn(NO3)2, instead 
of a more environmental friendly ZnCl2.[6], [7], [8] The main 
reason is due to the high solubility of ZnCl2 compared to that 
of Zn(NO3)2, which leads to faster but less controlled crystal 
growth during the synthesis conditions thus difficult to 
optimize the synthesis conditions.[8] Nevertheless, 
considering the minimal environmental impact of Cl- as well 
as its several benefits such as their abundance and low cost, 
synthesizing Zn-HKUST-1 from ZnCl2 as a green chemistry 
process would be much preferred if optimized condition is 
found. The transition from an established and well-study 
system to a new and more environmentally friendly one would 
require a large amount of work, including long training 
processes and extending hours using conventional trial/error 
approaches.  Recent advances in Artificial Intelligence (AI) 
techniques and automation enable a possibility to minimize 
the resource and time of improving environmental impact on 
the environment.[9], [10], [11], [11], [12], [13] Specially, it 
will allow to the optimize conditions in short times and allows 
to find the right conditions rapidly.[14], [15]  

In this work, we propose a new AI-based process for 
materials discovery integrating high-throughput literature 
synthesis with Large Language Model, high-throughput 
materials synthesis with automation robotics. We show that 
using this process, we can synthesize a target material Zn-
HKUST-1, using ZnCl2 instead of a less environmental friend 
but more common compound Zn(NO3)2. We first use a large 
language model to extract relevant information of HKUST-1 
from Zn(NO3)2, and identify a few experimentally accessible 
conditions for Cl- ions. Then we use a high throughput 
pipetting robot in testing those conditions of Zn(NO3)2 on 
ZnCl2. 

Figure 1: Schematic showing the process of  for a 
human, and our new approach with AI in all three steps 
extraction, characterization, and verification steps. 
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We focus on the concentration of ZnCl2 in 
dimethylformamide (DMF)  as the varying parameters, 
keeping the linkers, temperatures, and annealing time the 
same. Robotic automation allows to range of concentrations 
to be used in the synthesis of Zn-HKUST-1 from ZnCl2. The 
result is scanned first with characterization with AI 
classification to identify successful conditions, which then 
will be confirmed with advanced and conventional 
characterization techniques confirmed with data extracted 
from AI.  

II. GENERAL FRAMEWORK 
Figure 1 illustrates the general pipeline of this work. 

Conventionally, to replace a chemical in an establish synthesis 
process with a “greener” one, researchers would embark on a 
comprehensive process involving literature analysis, 
understanding fundamental principles, and gathering data 
from literature reviews. Those data typically contain crucial 
information such as chemical substances, reaction conditions 
(such as reaction time or temperature if required) and expected 
outcomes. Subsequently, experiments are conducted to 
synthesize materials, followed by the identification of 
necessary material characterization methods. Once material 
characterization results are obtained, they are cross-referenced 
with existing publications to validate the synthesis process. 
The whole process could take weeks or months of time to 
obtain an optimized synthesis process.  

Here we propose a more efficient approach for 
accelerating material synthesis based on robotic automation 
and AI capabilities. Initially, we employ a Large Language 
Models platform to obtain a dataset from published literature. 
This platform facilitates the extraction and aggregation of 
pertinent information, which is then exported into a structured 
format such as a CSV file. This dataset provides valuable 
insights into experimental conditions pertaining to chemical 
substances and reaction parameters, enabling the selection of 
optimized conditions for subsequent experiments. Upon 
identifying the optimal experimental conditions, we utilize a 
pipetting robot for solution hander to simultaneously generate 
various concentrations of reaction mixtures, thereby 
accelerating the synthesis of materials. Different 
characterization techniques such optical microscopy, X-ray 
diffraction (XRD), Fourier-transformed Infrared spectroscopy 
(FTIR) are used to examine crystals under different 
concentrations. Once after obtaining crystals, to streamline the 
analysis process, we developed an AI-based classification 
method to verify that the obtained crystals are the expected 
one, for example by comparing the XRD curve of the obtained 
literature with the database. 

III. RESULTS AND DISCUSSION 

A. Materials  
Zinc Chloride powder (>94% purity) was purchased from 

Viet Quang Chemicals Co., Ltd that plays a role as metal ion. 
Benzene-1,3,5-tricarboxylic acid (BTC) as an organic linker 
and Dimethylformamide (DMF, organic solvent) were 
supplied by Shanghai Haohong Biomedical Technology Co., 
Ltd and Shanghai Zhanyun Chemical Co., Ltd, respectively. 

B. AI-literature synthessis  
Manual extraction of synthesis conditions from extensive 

literature poses a bottleneck in material discovery, demanding 
significant time from experienced chemists. Previously, 
specialized natural language processing (NLP) models have 

been adopted to enable efficient mining, which, however, are 
“labor-intensive and necessitate expertise in coding, 
computer science, and data science”. Recently, the 
emergence of large language models like GPT-3, GPT-3.5, 
and GPT-4 has the potential to revolutionize chemistry 
research in the coming decade. [15], [16], [17]  

While there have been endeavors in utilizing the capability 
of these LLMs to aid researchers in text mining and data 
analysis, these approaches suffer from the high-cost usage of 
OpenAI’s API. This is due to the adoption of few-shot 
prompting for classification of synthesis paragraphs, which 
inherently involves a large number of input tokens to the API, 
thus further increasi ng the cost. 

Scientific knowledge is predominantly stored in books and 
scientific journals, often in the form of PDFs, which present a 
challenge due to their diverse layouts. Traditional PDF parsers 
that rely solely on text extraction may struggle with this 
variability, making the combination of OCR (Optical 
Character Recognition) and Document Layout models 
essential for optimal extraction of information from such 
documents. Figure 2A shows a schematic representation of a 
data-driven workflow utilizing capabilities of current LLM(s) 
and Machine Learning models for the extraction and 
characterization of scientific data from chemistry literature. 
Papers (in PDF format) are converted into JPG/PNG images 
and transformed into structured representation via a 
Document Layout analysis model. The texts from the files are 
indexed for searching by ColBERT – a fast and accurate 
retrieval model, enabling scalable BERT-based search over 
large text collections in tens of milliseconds. Sections of the 
files which might contain synthesis conditions are then 
retrieved and fed into ChatGPT, which acts as a versatile 
extraction tool.  

To achieve this, it should be recognized that creating 
prompts with expertise is a major factor in how effective 
LLM(s) is when used, with important challenge lies in writing 
clear instructions that can help LLMs. [16]  To produce 
precise and accurate outcomes in a desired format, rapid 
design precision is crucial, highlighting the need of well-
articulated, precise, and complete instructions. Furthermore, 
tiny and unique prompt signals can affect LLMs without 
altering the underlying meaning; as a result, occasionally 
similarly looking prompts have quite diverse qualities. When 
compared to human-written suggestions, the newly developed 
tool DSPy (Declarative Self-Improving Python) [18] offers a 
major leap in this regard. By integrating methods for 
prompting and optimizing language models, DSPy simplifies 
the prompt building process. It is necessary to have a small 
development set and some data annotation for DSPy to do the 
optimization automatically in order to apply DSPy for rapid 
optimization. From a conceptual standpoint, this novel system 
might allow researchers to start their investigations with a 
simple scaffolding of the high-level design steps and utilize 
DSPy to automate the training of LLMs. This could be viewed 
as a way to further strengthen our workflow and enhance the 
effectiveness of LLMs. The result of this step is shown in 
Figure 2B, with the example of a table containing the 
synthesis condition of HKUST-1.  

We manually verify the table obtained with LMMs for 
data processing. To facilitate the verification synthesis, we 
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limit our synthesis scheme as follows: the method of choice 
for MOF synthesis is solvothermal, with the organic linker 
being BTC and the solvent being DMF. We focus on 
searching for optimization using ZnCl2  by scanning the 
concentration of counter ions (such as NO3-, Cl-). It was seen 
that for the majority of the publication NO3- is the counter-ion 
of choice. The only encounters in which HKUST-1 MOFs 
were made with Cl- are FeCl3 , which probably due to the fact 
that ferrite nitrate has no large scale production for lack of 
applications.[19] As a consequence, among the feasible 
conditions for Zn-HKUST-1 that can be synthesized from 
ZnCl2 , the most common condition is 60 mM ZnCl2  

C. High-throughput experiments with pipetting robots for 
MOF synthesis 
Learning the optimized condition is for NO3- salt being 60 

mM of Zn2+  in DMF, we apply it with the synthesis of Zn-
HKUST-1 with Cl- salt. Instead of choosing only one 
concentration, with help of an automatic robotic liquid 
handler, we scan a wide range of concentration, from 48 mM 
to 64 mM of Zn2+ in DMF, taking into account the possible 
influence of the different counter-ions.  The liquid handling 
was done using an OT-2 liquid handler from Opentrons, a high 
precision and high-throughput pipetting robot. To customize 
the robot to our need, a 3D printed 24-slot well plate for 4 mL 
vials was made, so that we could scan 22 different 
concentrations in a single run (Figure 3A). In the slot labelled 
A and B were for precursors: slot A is a 4mL of  80 mM ZnCl2 
in DMF, and slot B a 4 mL of 80 mM BTC in DMF. In the 
rest of the slots were 22 empty vials. The robotic liquid 
handler using micropipettes to take an exact amount of 
solutions from A and B to empty vials in slots 1 to 23. Both 
single-channel pipette and multiple-channel pipette can be 
used with various volumes needed. For example, Table 1 
shows the accuracy and precision of volume related to single 
channel pipette P300 GEN2 with the range of volume from 20 
µL to 300 µL.  

 

 

 

 

 

Table 1. Details information of the P200 GEN2 piptte model. 

Volume Accuracy Precision 

µL %D µL %CV µL 

20 ±4% 0.8 ±2.5% 0.5 

150 ±1% 1.5 ±0.4% 0.6 

300 ±0.6% 1.8 ±0.3% 0.9 

 

To customize the robotic handler for our needs, a home-
made 24 slots well-plate was designed (with Inventor 
Autodesk) and  uploaded in the OT-2 server. At the same time, 
the design was used create a well-plate with a 3D printer Ender 
3 with filament of Polylactic Acid (PLA). The standard length 
for the well-plate slots in OT-2 pipetting robot is 127.76 mm 
and the width is 85.48 mm, for this customized well-plate also 
uses this diameter. 4 mL vial type was used. The height of the 
robotic handler was modified for suiting of the 4 mL vial type 
with its dimensions are ø 16.0 × 45 × 1.00 mm. For 
experiment, 43.52 mg ZnCl2 (>94% purity) was mixed with 4 
mL DMF in vial named vial A as the metal ion source (Zn2+) 
and 67.20 mg BTC was put in vial B with 4 mL DMF. BTC 
serves as the organic linker to form the MOFs based on the 
reaction. After chemical preparation, vial A and vial B were 
sonicated in 10 min for full dissolution. Then both vial A and 
vial B were put in the customized well-plate at the position of 
0 and 4, respectively. The customized well-plate was declared 
the first position is 0 and organized column by column. The 
slots left for empty vials that contain different concentrations 

Figure 2: AI-assisted MOFs synthesis condition. (A) The pipeline of data extraction (left) 
and an example of data extract from 11 publications. (B) Data analysis showing the number of 
anions used among the extracted dataset, and the histogram of concentration in the synthesis of 
MOFs, with the selected concentration for robotic high-throughput experiment. 
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between metal ions and organic linkers after dispensing by 
pipetting robot, the detail positions are illustrated in Figure 
3A. When the dispensing progress finished, the solvothermal 
method was carried out for reaction happening.[20] 

After obtaining 22 vials with different concentrations of 
two components, for the post-processing, those vials were all 
baked in an oven at 85°C in 24 hours. When annealing time 
finished, the crystal structure shapes were characterized with 
optical microscopy for each distinct concentration. Examples 

of the obtained images are shown in Figure 3B, in which the 
same scale-bar of 10 µm is applied to all images. 

It can be seen that different concentrations gave the 
different results of the experiment, from success to non-
success, and among the successful experiments that resulted 
in crystal formation, the size and shape of crystals varied. The 
optimal concentration showing the full-formed cubic shape 
were found in vial number 16 and 17, corresponding to 60 mM 
of ZnCl2, while other concentrations either did not form 
crystals or resulted in defect non-cubical crystals. For 
instance, at nearly right concentration at around 57.6 mM (vial 
14) to 64 mM (vial 23) formed plenty of square sheets and 
overlapped to shape the cubic (Figure 3B). With vial 16 and 
17, the crystals showed cubic shape, which is expected for Zn-
HKUST-1. To confirm the obtained result, the material in vial 
16 and 17 are dried out of solution to become power samples 
for further characterizations. 

D. Structural characterization and verification of MOFs  
To confirm that the obtained material is indeed Zn-

HKUST-1, we conducted a series of morphological, 
structural, and chemical characterizations. Figure 4A shows a 
scanning electron microscopy (SEM) image of the obtained 
structure, clearly indicating a simple cubic structure of 
HKUST-1. Furthermore, the morphology of the sample is 
homogeneous morphology, proving that the optimized 
process could yield good crystals with Cl- as the counter ion.  

To further investigate the crystal structure of the obtained 
material, powder X-ray diffraction (XRD), with the 2𝜃 -
intensity plot shown in Figure 4B. Five highest peaks were 
identified: at around 6.5°, 13.30°, 11.45°, 17.18° and 18.78°, 
respectively with the highest 2θ peak being at 11.45°. Using 
ChatGPT-4, we compared the similarity of our PXRD results 
with ones conducted on Zn-HKUST-1 and found and found a 
strong similarity.  

Furthermore, we could identify the crystal plan associated 
with each peak.  Using Bragg’s equations, 𝑛𝜆 = 2𝑑 sin 𝜃 and 
𝑑!"# = 𝑎/(ℎ$ + 𝑘$ + 𝑙$), the lattice constant of the structure 
is obtained a = 26.79 ± 0.19 Å (Table 2), close to the value 
found in the literature of reported in the literature.[7][8]  

 

 

Figure 4: Confirmation of 
the obtained MOFs as Zn-
HKUST-1. (A)(B)(C) 
Characterization of the 
obtained MOFs with surface 
topography (using SEM), 
structural information (using 
XRD), and chemical 
information (using FT-IR), 
respectively. (D) the chemical 
structure of the obtained MOFs 
as Zn-HKUST-1.   

Figure 3: The process of automation robotic 
synthesis. (A) real-life picture of the hand manipulating 
pipette tips with custom-made tray containing 24 vials, 
comprising two precursors and twenty-two 
concentrations, colored from light green to dark green, 
corresponding to an increase in concentration; vials 
number 16 and number 17 contains the suggested 
concentration (B) the obtained optical microscopy images 
of the synthesis results, highlighting crystals in vials 
number 16 and 17. 
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Table 2. XRD peak analysis of obtained Zn-HKUST-1 

 

 

 

Finally, Fourier-transform Infrared spectroscopy (FTIR) is 
conducted to confirm Zn-HKUST-1 chemical compositions. 
The FTIR spectra of as-synthesized Zn-HKUST-1 is shown in 
Figure 4C with the peaks below 1200 cm-1 relate to the 
vibrations of the BTC linker. The range from 1250 cm-1 to 
1650 cm-1  indicates the carboxylate linker's presence; the 
spectra peak observed at around 1610 cm-1 is attributed to the 
asymmetric stretching vibrations of the carboxylate group in 
BTC linker. Conversely, at 1420 cm-1 and 1370 cm-1 appeared 
two peaks that are related to the symmetric stretching 
vibrations of the carboxylate group. The influence of Zn2+ ion 
can be seen with the peak at 1630 cm-1, usually attributed to 
the C=O stretching bond in BTC.[21] With the morphological, 
crystal, and chemical confirmation, we confirmed that our 
process successfully created Zn-HKUST-1 from the 
environmentally friendly salt Cl-. The structure of the obtained 
Zn-HKUST-1 with a lattice constant of 26.7 Å is 
reconstructed in 3D, shown in Figure 4D. 

 

IV. CONCLUSION AND PERSPECTIVES 
In this report, we propose a new process to accelerate 

materials discovery for Green Chemistry. The process 
combines AI techniques for literature synthesis, using Large 
Language Models, and Robotic Liquid Handling Automation 
for materials synthesis. The process is successfully applied in 
the synthesis of a Metal Organic Framework named Zn-
HKUST-1 from an environmental friendly precursor ZnCl2, 
instead of a common precursor Zn(NO3)2-. First, a database 
about HKUST-1 MOFs is created from 22 papers, in which 
synthesis conditions are recorded and analyzed to identify the 
most promising synthesis condition for Zn-HKUST-1. 
Second, from this one suggested condition, experimental 
space is enlarged into 22 experiment conditions, which are 
simultaneously conducted with a robotic handler to fine tune 
the synthesis of the MOF. The robot procedure is modified to 
work with custom-made 3D printed well-plates to fit the needs 
of the experiments. Finally, an optimized condition is obtained 
and the resulting material are thoroughly characterized in its 
morphology, structure, and chemical composition, to be 
confirmed as Zn-HKUST-1.  

Our result shows that AI techniques can be integrated 
seamlessly into Green Chemistry, in which environmentally 
friendly materials are used as alternatives for potentially 
harmful chemicals in existing synthesis schemes. In this work, 
we present the use of Large Language Models for materials 
synthesis and for automatic result verification. In the future 
work, we will integrate few-step suggestions into experiment 
design and image classification in material characterization. 
Coupling with high-throughput robotic solution handling, we 
believe this process would pave the way to the increasing use 
of environmentally friendly materials in the making and 
synthesis of materials in the lab and in industry. 
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