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Abstract

We propose a novel convolution based variational distribution and an EM based learning
algorithm to scale factorial HMM to long and complex time series. The number of trainable
parameters in our model is independent from the length of the input data. Our model is
also adapted to the use of arbitrarily complex state emission distribution and can therefore
be used in combination with patient physiological models. We show the ability of our model
to disentangle independent additive processes from synthetic data. Our experiments also
confirm that our algorithm is able to fit real world patient data more accurately when several
independent Markov chains are used compared to a single Markov chain with a larger state
space. Our model could thus offer a scalable, interpretable and versatile alternative to latent
space time series models such as standard HMM.

1 Introduction

Hidden Markov models (HMM) are widely used tools to model observable multidimensional time series data
Smit et al. (2021); Honoré et al. (2020). In a HMM, the observed data at time t are assumed to be drawn
from emission distributions dependent on the state variable of a single latent K-state Markov chain. Single
latent Markov chain models suffer from a limited modeling ability for complex time series. For example, to
represent 16 bits of information about the past of a time series, a HMM needs K = 216 states. Learning the
transitions between so many states rapidly becomes infeasible and the resulting models are often difficult
to interpret. Factorial HMMs (Figure 1) are models with a distributed latent space consisting in M > 1
independent K-state1 Markov chains. Equivalent KM -state HMM exist, but the time complexity for posterior
probability computation scales exponentially with M Ghahramani & Jordan (1996). Factorial HMMs allow
the decomposition of the observed data into M decoupled processes, readily interpretable by the users. This
considerably reduces the amount of state transitions to learn, since only 16 binary state variables are needed
to represent 16 bits of information about the past of a time series.

Exact inference algorithms for general probabilistic models exist but are intractable in the case of densely
connected graphs such as factorial HMM. For factorial HMM, the intractability arises from the fact that
the time complexity of the probability propagation algorithm for a time series of size T is O(TMKM+1),
i.e. scales exponentially with the number of independent Markov chains M Ghahramani & Jordan (1996).
Instead of exact inference, approximate methods based on sampling and variational inference have been
proposed Ghahramani & Jordan (1996); Ng et al. (2016); Mysore & Sahani (2012); Weiss & Ellis (2009).
Variational methods often rely on a number of parameters growing linearly with the length of input time
series Ghahramani & Jordan (1996); Foti et al. (2014). Also, existing learning algorithms have been designed
for specific emission distributions, e.g. Gaussian or linear mixture of Gaussian Ng et al. (2016); Weiss & Ellis
(2009). This means that new parameter update rules have to be re-derived when new families of emission
distribution are used. This considerably limits the complexity and applicability of the models.

Adverse physiological processes, such as disease onset, are typically reasonably well understood in isolation,
but difficult to identify in real time series data of hospitalized patients de Bournonville et al. (2019). The
physiological characterization of diseases can often be integrated in differentiable compartment models

1Assuming all the chains have the same number of states for simplicity.
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Figure 1: Graphical model of a factorial HMM with M independent Markov chains in the latent space. The
unobserved latent space is depicted with circles and the observed data with square boxes. The dashed arrows
depict time dependencies modeled with Markov chains (parameter λ) and the full arrows depict dependencies
modeled with the emission distribution (parameter ϕ).

describing cardiovascular functions e.g. Guerrero et al. (2022); Ellwein Fix et al. (2018); Albanese et al.
(2015). A factorial HMM where each latent Markov chain is associated with a disease model learnt in isolation,
could offer a powerful statistical model to disentangle physiological processes from data. Such a model would
have interesting practical properties: interpretable with a user-defined correspondence between independent
Markov chains and physiological models of interest; versatile since it could accommodate any differentiable
disease models; scalable by design with a number of parameters independent from the length of the time
series. In this paper, we propose a framework to design such models, and learn their parameters from data.

1.1 Contributions

We propose an approximate variational inference based learning algorithm for factorial HMM. We build
an end-to-end learning framework allowing arbitrary differentiable (both wrt their parameters and input)
emission distributions using ideas from variational auto-encoders and normalizing flows. Our algorithm is
based upon the expectation-maximization (EM) framework, and thus benefits from the same convergence
guarantees. We propose a variational distribution built upon fully convolutional neural networks so that (1)
the number of variational parameters does not depend on the length of the observed time series and (2) the
variational lower bound can be optimized with back-propagation.

2 Methods

2.1 Model definition

Factorial HMMs are dynamical statistical models where time series data are represented on a distributed
latent space. The latent space is modeled with a pre-defined number, M , of independent Markov chains.
The state variable at time t for the m-th Markov chain, s(m)

t , depends only on the state variable of
the same Markov chain at time t − 1 (Figure 1). The dependence is modeled with transition kernels
pλ(s(m)

t | s(m)
t−1) where λ is a set of trainable parameters. The parameters related to the latent model can be

written λ = {π(1), . . . , π(M), P (1), . . . , P (M)}, where for m = 1, . . . , M , π(m) parameterizes the initial state
pλ(s(m)

1 ) and P (m) is the K × K transition matrix pλ(s(m)
t |s(m)

t−1) for the m-th chain in the latent model.
The state variables s(m)

t are assumed continuous (see section 2.4.4), and lie on the probability simplex
S = {y ∈ RK

+ |
∑K

k=1 yk = 1}.

An observed d-dimensional data sample at time t, xt ∈ Rd, is assumed to be drawn from an emission
distribution that dependents on the current latent state variable st = [s(1)

t , . . . , s(M)
t ] ∈ SM . The emission
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distribution is parameterized with a set of parameters ϕ and is denoted pϕ(xt | st). The set of parameters of
our statistical model is denoted θ = {λ, ϕ} with λ the set of parameters related to the latent model and ϕ the
set of parameters related to the generation model. The joint distribution of a sample time series x and a
series of states s under a factorial HMM model parameterized with θ′ factorizes as follows:

pθ′(x, s) =pϕ′(x1|s1)
M∏

m=1
pλ′(s(m)

1 )
T∏

t=2
pϕ′(xt|st)

M∏
m=1

pλ′(s(m)
t |s(m)

t−1) (1)

2.2 Notations

We denote x = [x1, . . . , xT ] ∈ RT ×d a multivariate time series of length T and with samples of dimension
d. Similarly, s = [s1, . . . , sT ] ∈ RT ×M×K denotes a sequence of states of length T , with individual samples
st ∈ RM×K

+ and such that s(m)
t ∈ S for m = 1, · · · , M . ⊙ and ◦ are the elementwise tensor product and

the composition operator respectively. The expectation with respect to (wrt) a certain distribution is noted
with the distribution names and parameters, i.e. Epθ′ (s | x) [·] = Epθ′ [·]. ln denotes the elementwise natural
logarithm, exp or e denote the elementwise exponential.

2.3 Learning framework

Learning the statistical model pθ(x) consists in maximizing the likelihood wrt parameter θ for some given
data x. We learn the statistical model pθ(x) in the EM framework Dempster et al. (1977). EM consists
in iteratively optimizing the joint distribution of the data and the latent state sequence given our current
estimate of the parameters θ′. In other words, EM consists in optimizing the expected value: Epθ′ [ln pθ (x, s)]
of the joint distribution, wrt our current knowledge of the posterior distribution of the states given the data:
pθ′(s | x). Learning the parameters θ in the EM framework consists in iteratively performing two steps.
The E-step: given a current parameter estimate θ′, compute Q (θ, θ′) = Epθ′ [ln pθ (x, s)]. The M-step: given
statistics computed at the previous step, maximize Q (θ, θ′) wrt θ.

When the statistical model is a HMM, the EM algorithm reduces to the Baum-Welch algorithm Baum &
Petrie (1966). The Baum-Welch algorithm provides a set of procedures and update rules to find the maximum
likelihood estimator of the HMM parameters. These procedures are however difficult to derive when the
underlaying graph is complex and their exact computation scales exponentially with M Ghahramani & Jordan
(1996). Moreover, the parameter update rules, based on state posterior statistics, have to be re-derived when
the family of distribution changes. We confront these limitations directly, and resort to variational Bayes, an
approximate method, to compute the state posterior statistics.

2.4 Variational E-step

2.4.1 Introducing the variational lower bound

We use variational inference to approximate the posterior distribution pθ′(s|x). This consists in approximating
pθ′ (s|x) with another distribution qκ(s|x) with parameters in a set κ. The approximation is obtained by
minimizing the Kullback-Leiber (KL) divergence between qκ (s|x) and pθ′ (s|x) wrt κ. Following a traditional
development Kingma & Welling (2014), it can be shown that minimizing the KL-divergence is equivalent to
maximizing the variational lower bound (VLB) L (θ′, κ; x) on ln pθ′ (x), written:

L (θ′, κ; x) = Eqκ(s|x) [ln pθ′ (x, s)− ln qκ (s|x)] . (2)

2.4.2 Computing the variational lower bound

To maximize L (θ′, κ; x) wrt κ, we must be able to differentiate L wrt κ. The direct optimization of L is
problematic since a naïve Monte Carlo (MC) approximation of the gradient of L has high variance Paisley
et al. (2012). We resort to the local reparameterization trick to define a differentiable variational distribution
and optimize an approximation of L.
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Figure 2: Sampling from the variational distribution qκ(s|x).

We build qκ(s|x) such that s ∼ qκ is equivalent to (1) sampling ϵ ∼ p(ϵ) and (2) computing s = gκ(ϵ; x). gκ

is defined as a diffeomorphism wrt ϵ, differentiable wrt κ and p(ϵ) is a fixed prior distribution (Figure 2,
details in section 2.4.3). Using this distribution, we can then optimize a MC approximation LA (θ′, κ; x) of
the true lower bound L (θ′, κ; x) defined as:

LA (θ′, κ; x) = 1
L

L∑
l=1

ln pθ′(x, s(l))− ln qκ(s(l)|x), (3)

where s(l) ∼ qκ(s|x) and L is the number of MC samples.

We now focus on the computation of the two terms ln pθ′(x, s(l)) and ln qκ(s(l)|x) required to compute LA.

2.4.3 The variational distribution

We define the variational distribution qκ(s|x), parameterized by κ = {κ1, κµ, κσ}, such that

s ∼ qκ(s|x)⇔ s = gκ(ϵ; x) = softmaxτ,δ(zµ + exp(zσ)⊙ ϵ), (4)

where zσ, zµ, ϵ ∈ RT ×M×K with ϵ
(m)
t,k ∼ p(ϵ) = N (0, 1). The intermediate variables zµ, zσ are defined as

zµ = tanh ◦ hµ ◦ h1(x) and zσ = sigmoid ◦ hσ ◦ h1(x). These variables can be interpreted as a translation
and scaling transformations of the variable ϵ respectively.

The transformations are defined through functions h1 : RT ×d → RT ×H , hµ, hσ : RT ×H → RT ×M×K

parameterized with κ1, κµ, κσ respectively, and implemented with convolutional neural networks (CNN)
Lecun et al. (1998); Ismail Fawaz et al. (2020). The use of deep CNNs enables the extraction of complex
non-linear dynamics, with a limited number of trainable parameters. Since qκ approximates Markov chains,
the convolution kernels need not be very large, which further reduces the number of trainable parameters.
The function h1 computes an intermediate representation of the data that is common to the translation and
scale transformations. This enables relevant dynamics to be extracted once and shared between the two
sub-branches of the model. The sampling process of states from the variational distribution is illustrated in
figure 2.

To compute the probability of a drawn state s, we use the fact that gκ is a diffeomorphism wrt ϵ, together
with the change of variable formula:

ln qκ(s|x) = ln p(ϵ) + ln
∣∣∣∣det ∂gκ(· ; x)

∂ϵ

∣∣∣∣−1
= ln p(ϵ) + ln

∣∣∣∣det ∂softmaxτ,δ(·)
∂ϵ

∣∣∣∣−1
− zσ. (5)

The function f = softmaxτ,δ was proposed in Potapczynski et al. (2020) and is defined:

softmaxτ,δ(y)k = exp(yk/τ)∑K−1
j=1 exp(yj/τ) + δ

, (6)
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where y ∈ RK , δ > 0 ensures that the function is invertible and τ > 0 is a temperature parameter such that
the output tends to a discrete distribution (one-hot vectors) when τ → 0. Following the development in
Potapczynski et al. (2020), the determinant of the Jacobian of this modified softmax is obtained:

ln |det Jf | =2(1−K) ln a + ln

∣∣∣∣∣1− τ

K−1∑
k=1

eyk/τ

yk

∣∣∣∣∣− (K − 1) ln τ +
K−1∑
k=1

ln |yk|+
yk

τ
, (7)

where a = δ +
∑K−1

k=1 eyk/τ . The relaxation to a continuous state space imposes constraints on the use of the
transition matrices for the Markov kernels. These constraints are implemented in the computation of the
Markov chains transition kernels.

2.4.4 Markov chain transition kernels

In the traditional use of HMM, the state variables st are discrete and this allows the state transition probabilities
to be modeled with a finite state transition matrix. A discrete state space is however incompatible with state
variables and transition kernels differentiable wrt κ. Instead, we use a continuous state space with state
vectors st ∈ S. The function softmaxτ,δ (see Figure 2) at the output of the variational sampling process,
allow us to control the continuity of the state variables with parameter τ . The state transitions and the
initialization probabilities of chain m are calculated as follows:

pλ′(s(m)
t |s(m)

t−1) = s(m)
t

T
P (m)T

s(m)
t−1,

pλ′(s(m)
1 ) = π(m)T

s(m)
1 ,

(8)

where P (m) and π(m) are the m-th chain transition and state initialization parameters respectively. This
relaxation ensures that when τ tends to 0, the state variable tends to a one hot encoded vector, and the
transition kernels tend to a matrix row and column selection (Bishop, 2006, chap. 13.2).

2.4.5 State emission distribution

We propose to model the state emission distribution by considering that an observed sample at time t is
drawn from a multivariate Gaussian distribution with mean and variance that are non-linear functions of
the state variable at time t. Specifically, the emission distribution of samples xt ∈ Rd given st ∈ RM×K is
defined:

pϕ(xt|st) = Φ (t(st) + a(st)⊙ xt) , (9)

where Φ is the density function of a standard multivariate Normal distribution and a, t : RM×K → Rd are
fully connected neural networks with parameters in ϕ. The non-linear functions a and t can be arbitrarily
complex as long as they are differentiable.

The joint distribution pθ′(x, s) (Equation (1)) depends on κ through the sampling process s ∼ qκ (s|x) and is
differentiable wrt κ and ϕ. This gives us all the quantities we need to compute the approximate lower bound
LA in equation (3). We optimize LA wrt κ using back-propagation, as described in algorithm 1.

Algorithm 1 Maximizing LA (θ′, κ; x) wrt κ

1: Input: Data x, number of iterations nv ∈ N, learning rate ηv ∈ R, number of Monte Carlo samples
L ∈ N, current variational parameters κ

2: for i = 1, . . . , nv do
3: Draw L samples s(l) ∼ qκ(s|x)
4: LA (θ′, κ; x) = 1

L

∑L
l=1 ln pθ′(x, s(l))− ln qκ(s(l)|x),

5: κ← κ + ηv∂κLA

6: end for
7: Output: qκ(s|x) ≈ pθ′(s|x)
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2.5 Approximate M-step

The M-step performed in the Baum-Welch algorithm, uses exact expectations obtained from the true posterior
pθ′(s|x).

Here we use the approximation qκ(s|x) from the variational E-step to update the Markov chains parameters
and the state emission distributions.

2.5.1 Updating the Markov chain parameters

The Markov chain parameters are updated with update rules similar to the Baum-Welch algorithm. The
difference here is that the state posteriors are not computed exactly but derived from the learnt variational
distributions. The latent space model parameters are updated wrt the approximate posterior qκ(s|x), as
described in algorithm 2.

Algorithm 2 Updating the Markov chains parameters.
1: Input: Approximation qκ(s|x) ≈ pθ′(s|x).
2: for m = 1, . . . , M do

3: P
(m)
i,j =

∑T
t=2 Eqκ [s(m)

t,i s(m)
t−1,j ]∑T

t=2 Eqκ [s(m)
t−1,j ]

, i, j = 1, . . . , K,

4: π(m) = Eqκ
[s(m)

1 ]
5: end for
6: Output: Updated markov chain parameters λ

The expectations wrt the approximate posterior distribution in algorithm 2 are computed:

Eqκ
[s(m)

t ] ≈ 1
L

L∑
l=1

gκ(ϵ(l); x)(m)
t and Eqκ

[s(m)
t−1s(m)

t ] ≈ 1
L

L∑
l=1

gκ(ϵ(l); x)(m)
t gκ(ϵ(l); x)(m)

t−1, (10)

with ϵ(l) for l = 1, . . . , L sampled independently from p(ϵ).

2.5.2 Updating the emission distribution

The emission distribution parameters are optimized using mini-batch back-propagation on the MC approxi-
mation of the joint distribution (see algorithm 3).

Algorithm 3 Updating the emission distribution parameters ϕ

1: Input: Data x, qκ ≈ pθ′ the variational approximation, ηe ∈ R+ the learning rate
2: Draw L samples s(l) ∼ qκ(s|x) {Figure 2}
3: Compute G(ϕ) ≈ 1

L

∑L
l=1 ln p{λ′ ,ϕ}(x, s(l))

4: ϕ← ϕ + ηe∂ϕG
5: Output: Updated ϕ

2.6 End-to-end training algorithm

The model is initialized with λ, ϕ and κ, the set of parameters for the latent space, the generative model and
the variational distribution respectively, n ∈ N the total number of training epochs, nv ∈ N and ηv > 0 the
number of iterations and the learning rate in the VLB maximization (see algorithm 1), ηe > 0 the learning
rate for the emission distribution update (see algorithm 3), L ∈ N the number of Markov samples. The
training procedure is summarized in algorithm 4.
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Algorithm 4 Training a factorial HMM
1: Input: Training sequences x ∈ RT ×d, initialized factorial HMM and variational distribution.
2: for i = 1, . . . , n do
3: for x in the training dataset do
4: Approximate state posterior distribution {algorithm 1}
5: Accumulate Markov chains parameters λ updates {algorithm 2}
6: Update Generative model parameters ϕ {algorithm 3}
7: end for
8: Update Markov chains parameters λ {algorithm 2}
9: end for

10: Output: Trained factorial HMM

3 Experiments

We first show a proof of principle of our learning algorithm on synthetic data. The goal of this experiment is
to retrieve and identify processes from a data sequence using the sequence of states of independent Markov
chains in the model. For ease of visualisation and interpretation, we used univariate input data sequences
composed of two independent additive processes. We then show that, using a real world dataset, our model
has better modeling abilities when M increases with fixed K = 2, compared to the case where K increases
with fixed M = 1. For all our experiments, the number of MC samples was fixed to L = 10. To reduce the
training time, we pre-warm our training by first initializing 3 models randomly, and then choosing the model
with the highest log-likelihood on the training data. We used Pytorch Paszke et al. (2019) to implement our
model. The inference time reported in figure 3 are obtained on 1× Intel(R) Core(TM) i7-8650U CPU @
1.90GHz. The rest of the experiments were carried out on a compute server running 2× Intel(R) Xeon(R)
Gold 6230 CPU @ 2.10GHz and 4× Tesla V100-SXM2-16GB.

3.1 Synthetic data

We demonstrate the ability of our system to recover independent processes from a scalar time series on
synthetic data. We generated data from two independent additive processes of dimension d = 1. The two
processes are periodic step functions of height 1 with equal period of 20 samples and width 5 and 10 samples
respectively. This means that the signal reaches the value 2 when both processes are active, it has value 1
when only the second process is active, it reaches value 0 when the two processes are inactive. We added
white Gaussian noise to the generated sequences, and created 30 sequences of length 60 samples each. An
example sequence is depicted in black in figure 4. We chose a generative model where the scaling transform a
is fixed to a constant scalar, and the translation transform t is linear and trainable.

3.2 Patient monitoring dataset

We then tested our model on a real dataset obtained from neonatal intensive care unit from Philips IntelliVue
MX800 patient monitors (Philips Healthcare, Amsterdam, Netherlands). All the patients were born with
very low birth weights (< 1500g) and experienced late-onset or early onset sepsis during their recording
period. We included both culture positive sepsis and culture negative sepsis if the patient was treated with
antibiotics for more than 5 days Persad et al. (2021). The vital signs we obtained were the ECG derived
inter-beat-interval (IBI) signal, the oxygen saturation level derived from pulse oximetry and the impedance
derived respiration frequency signal. We built non-overlapping time windows of duration 1 hour. For each
individual time window, we computed the minimum, maximum, mean, standard deviation, kurtosis and
skewness of each vital sign Persad et al. (2021). Additionally, we computed the sample entropy and the
sample asymmetry of the IBI signal following Griffin et al. (2003); Joshi et al. (2019). This resulted in 20
features per time window. We also used repetitive body weight data and the postnatal age of patients at the
start of the time window. We included patient demographics as constant features: the sex and the birth
weight. In total, our dataset comprised 16 patient time series of dimension 24. Overall, this corresponded to
74.9 days (1049 hours) of recording and an average recording length per patient of 66.5± 87.6 hours.
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We chose a generative model where both the scaling and the translation transforms are two trainable 2-layer
fully connected networks. The learning rate for the generative model was fixed to ηe = 0.01 (see algorithm 3).

3.3 Variational distribution design

We designed the internal architecture of the variational distribution such that: h1 is (1) a 3-layer CNN with
rectified linear unit (ReLU) activations and (2) has inputs processed as single channel T × d images. The first
convolution kernels is of size 5× d, and the last two of size 5× 1. We used zero-padding and feature maps of
size 10 so that each input to a CNN layer was transformed into a 10-channels T × 1 signal. We did not use
pooling layers in order to preserve the length of the time series accross the CNN layers. This is similar to the
idea employed in fully convolutional networks to perform image segmentation Long et al. (2015). hσ and
hµ were 1-layer CNNs with kernels of size 3 × 1. We chose a smaller kernel size since we wanted to have
the largest kernels in the shared transform h1. The two transforms map the 10 channel output of h1 to a
M ×K-dimensional signal of length T (see figure 2). We used sigmoid as the activation function for hσ

to restrict the range of the input to the exponential function, and tanh for the output of hµ since there is
no positivity constraint. We fixed the learning rate to ηv = 0.01 and the number of iterations to nv = 10
(see algorithm 1). We chose τ = 0.5 for the softmaxτ,δ function. We found that with δ > 0, the learning
algorithm does not converge. In practice a traditional non-invertible softmax works well although making the
training not theoretically sound. We thus fixed δ = 0.

4 Results

4.1 Model sanity check

On figure 3, we see that the number of parameters does not vary with T but varies linearly with M , and that
the inference time and the number of float operations vary linearly with both T and M . This is in line with
our target architecture.
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Figure 3: Analysis of the influence of (row 1) T and (row 2) M on (column 1) the number of trainable
parameters, (column 2) the number of float operations and (column 3) the inference time. Each row
corresponds to varying one hyper parameter and fixing the other. The default fixed values are T = 30, M = 2.

4.2 Proof of concept on synthetic data

The results depicted on the LHS in figure 4, show that our learning scheme iteratively increases the VLB (in
black) and the expected joint distributions (in green). We observe that the log variational probability (in red)
does not decrease as we expected during training. This is probably due our approximation of the variational
probability caused by δ = 0. On the RHS figure 4, we observe that the sequence of states of Markov chains
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2 and 3 (in red and blue) are enough to retrieve the two independent additive processes in the data. The
extra latent chain (Markov chain 1 in green) does not disturb the recovery of the two independent additive
processes. We note however a larger variance of the state for Markov chain 1 across Monte Carlo samples.
This likely indicates that the model had difficulties to use the extra latent chain efficiently. We plotted the
normalized correlation matrix between the sequences of states learnt by the model on the bottom figure 4.
We see an anti-correlation between Markov chain 1 and 2, indicating these latent Markov chains are likely
learning the process opposite of one another. This in turns means that two independent chains might be
enough in our case.
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Figure 4: (Top Left) Approximate joint distribution (green), expected log variational probability (red) and
the resulting VLB (black) over training iterations. (Top Right) The input time series data depicted in black
results from two independent additive scalar processes. We used a model with M = 3 independent Markov
chains. The inferred sequences of states for each independent Markov chain in a trained model are depicted
in green, red and blue. (Bottom) The normalized correlation matrix of the inferred states for a given time
series x. The matrix should be diagonal for de-correlated states.

4.3 Modeling patient data

We show the training and validation results of a leave-one-out (LOO) cross validation scheme in table 1. As
expected, increasing M with a fixed K = 2 is more beneficial to both the training and validation log-likelihood
compared to increasing K with fixed M = 1. The best median training and validation log-likelihoods are
obtained for M = 9 and K = 2. We note that the IQR of the validation log-likelihoods is multiplied roughly
by a factor 5 between M = 2 and M = 9. This shows that the model overfits the data when the order of the
model becomes too large. The log-likelihoods for the standard HMM do not vary significantly as K increases.
The performances of this model are consistently lower than that of the factorial HMM.

5 Discussion

In this work, we showed that our variational Bayes EM learning algorithm is able to fit factorial HMM models
as we expected. Our proposed model fulfills the design constraints: (1) the number of trainable parameters is
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factorial HMM (K=2)
M 2 3 4 5 6 7 8 9
Train. LL 4288

(248)
6486
(381)

8655
(539)

10836
(660)

12943
(649)

15386
(874)

17706
(1042)

19965
(1135)

Val. LL 1686
(3494)

2544
(5066)

3382
(6908)

3914
(6420)

5064
(10235)

5927
(12091)

6769
(13782)

7624
(15493)

standard HMM (M=1)
K 2 3 4 5 6 7 8 9
Train. LL 2169

(171)
2115
(166)

2114
(132)

2047
(112)

2078
(128)

2025
(152)

2029
(144)

2054
(111)

Val. LL 840
(1726)

836
(1615)

764
(1248)

820
(1613)

818
(1613)

753
(1235)

809
(1628)

806
(1547)

Table 1: Training and validation log-likelihood for standard and factorial HMM. The results are presented as
median (IQR) on the leave-one-out cross validation scheme.

independent from the length of the input time series (figure 3) and (2) the state emission distributions can be
chosen arbitrarily complex without the need for new update rules for the model parameters to be derived.
This makes our model particularly amenable to situations where complex processes are to be disentangled
in long time series. We also showed that our model with several independent Markov chains is able to fit
patient vital signs data better than a standard model with a single Markov chain (see table 1).

Sensitivity analysis The sensitivity of our model to hyper-parameters is not quantitatively studied in this
work. Hyper parameters related to training (learning rate, number of iterations, regularization parameters)
determine the speed of convergence and the fit quality. Other hyper parameters such as the number and size of
hidden layers, or convolutional kernel sizes are related to the model architecture. The optimal tuning of these
parameters is typically difficult to derive and is problem dependent. It also requires a large enough dataset in
order to avoid overfitting. Here we chose the sizes of the convolution kernels on the basis of the model our
variational distribution approximates (an order 1 latent Markov chains). Larger convolution kernels could
be evaluated to approximate higher order HMM. Other hyper parameters were chosen experimentally. We
observed that the training is sensitive to initialisation. This lead us to “pre-warm” our models before training
(see section 3). The model training is also sensitive to the learning rate for emission parameters especially in
cases where both inference networks and emission distributions are to be learnt. The quantification of these
behaviors is left for future studies.

Dependent processes Physiological processes often occur correlated in practice. Some patterns char-
acteristic of different underlying physiological processes might be visible simultaneously. This means that
our model should be able to explain the variance in the observed data using several latent Markov chains.
Although our model relies on independent latent Markov chains, it is not restricted to learning decorrelated
sequences of states (see Figure 4). Ambiguity might however arise when interpreting the prominence of each
physiological process, in particular if some variance can be explained by several physiological processes.

Limitations We identified some weaknesses in our approach. Our variational distribution does not explicitly
use the Markov chain structure to model the sequence of states. Imposing a strict Markov constraint in
our variational distribution could further reduce the amount of parameters. Also, a known problem when
modeling transition kernels with transition matrices, is that the probability of a state duration of length D
decreases exponentially with D (Bishop, 2006, eq. 13.74). A potential solution to this would be to model the
state duration directly, e.g. with Poisson distributions. This would lead to models even more applicable to
long time series were the underlying processes are expected to have a long duration.
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6 Conclusion

We proposed a novel variational distribution and an EM based learning algorithm to scale factorial HMM
to long and complex timeseries. Our model has the property of having a number of trainable parameters
independent from the length of the input data, allowing arbitrarily complex state emission distributions.
These two characteristics are major steps toward scaling factorial HMM models to long time sequences. We
showed that our model was able to recover independent additive processes on synthetic data. We showed that
our model outperforms standard HMM, even with a large state space, on modeling patient vital signs data.
Finally, our model opens opportunities to incorporate disease computational models into patient monitoring
surveillance time series models. This in turn could lead to more reliable automatized predictive monitoring of
patient vital signs in hospitals.
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