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Fig. 1: Our proposed dual-arm robotic system demonstrates adaptive manipulation and assembly
capabilities for diverse multi-part objects. The system combines offline task-oriented planning and
optimization to address sequencing, grasping, and motion planning for long-horizon assembly tasks.
For robust online control, it utilizes guidance from the offline plan to learn assembly skills that
generalize effectively across diverse object geometries, assembly paths, and grasp poses.

Abstract: Multi-part assembly poses significant challenges for robots to execute
long-horizon, contact-rich manipulation with generalization across complex ge-
ometries. We present Fabrica, a dual-arm robotic system capable of end-to-end
planning and control for autonomous assembly of general multi-part objects. For
planning over long horizons, we develop hierarchies of precedence, sequence,
grasp, and motion planning with automated fixture generation, enabling gen-
eral multi-step assembly on any dual-arm robots. The planner is made efficient
through a parallelizable design and is optimized for downstream control stability.
For contact-rich assembly steps, we propose a lightweight reinforcement learning
framework that trains generalist policies across object geometries, assembly di-
rections, and grasp poses, guided by equivariance and residual actions obtained
from the plan. These policies transfer zero-shot to the real world and achieve
80% successful steps. For systematic evaluation, we propose a benchmark suite
of multi-part assemblies resembling industrial and daily objects across diverse cat-
egories and geometries. By integrating efficient global planning and robust local
control, we showcase the first system to achieve complete and generalizable real-
world multi-part assembly without domain knowledge or human demonstrations.
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1 Introduction

Multi-part assemblies are prevalent in home and industrial settings. Robotic assembly of multi-
part objects presents a longstanding challenge: long-term planning to map CAD models to robot
programs and robust control skills to achieve high precision and adaptivity during contact-rich inter-
actions. However, most assembly robots today are programmed manually with specially designed
infrastructures, and the program is executed repetitively using a stiff controller. As a result, they
take substantial time to adapt to new production demands and are highly sensitive to uncertainties.

Despite recent progress in sim-to-real transfer of contact-rich part insertion skills [1, 2, 3], current
robotic systems are still not capable of assembling general multi-part objects. Prior research has
primarily focused on two-part, top-down insertion using a single robot arm, but multi-part assem-
bly requires diverse insertion and grasping poses and a bi-manual operation that frequently changes
which part to hold to counter-balance the insertion force from the other hand. This presents new
challenges to planning and control. First, jointly finding an assembly-hold sequence, physically
stable grasps, and collision-free robot motion presents a hybrid (discrete-continuous) optimization
problem in a large search space. Second, control policies for part insertion must be robust to mis-
alignment and uncertainty, while being able to generalize across a wide range of part geometries.

We tackle these challenges by building a general planning and control system for flexible, dual-arm
assembly of multi-part objects, with zero-shot sim-to-real transfer. Our contributions include:

Algorithms: We propose a hierarchical dual-arm planner to plan and optimize the assembly-hold se-
quence, grasps, and robot motion. For contact-rich steps, we learn generalist reinforcement learning
(RL) policies utilizing equivariant representations guided by planned motion to achieve robustness.

Systems: We build a real-world system that can map a CAD assembly model to robot execution that
alternates between tracking planned motions and reactive control policies. To our knowledge, this
is the first system that autonomously achieves all phases of a multi-part assembly problem: from
automatic pickup fixture design, to sequence, grasps, and motion planning, to insertion. Our system
is tested on commonly used robotics hardware and can be generalized to different dual-arm robots.

Benchmarks: We design a benchmark suite of 7 multi-part assemblies ranging from 5 to 9 parts,
and our system can assemble them robustly in both simulation and real-world system.

2 Related Work

Prior work on multi-part assembly is heavily focused on planning assembly sequences and paths,
including geometric reasoning [4], sampling-based motion planners [5, 6, 7], and RL for combina-
torial sequence search [8, 9]. Recently, physics-based motion planning [10] has shown success in
assembling many complex parts with tight clearances. In addition, realistic kinematic and dynamic
constraints have been considered in sequence planning for real-world robot setups [11, 12, 13]. How-
ever, planning alone struggles with execution uncertainties, and stability- or efficiency-optimal plans
remain underexplored. While robust and efficient robotic systems have been built for tasks like as-
sembling IKEA chairs [14], LEGO blocks [15], and structural elements [16, 17, 18, 19, 20, 21, 22],
these are domain-specific and lack generalizability. In contrast, our planner generalizes across di-
verse multi-part assemblies, employs hierarchical structure and parallelization for efficiency, and
explicitly optimizes stability to enhance downstream control robustness.

Even with given assembly plans, executing contact-rich assembly remains challenging due to tight
clearances, system uncertainties, and the need for generalization. RL has shown promise in ad-
dressing these issues, combining motion planning with policy learning from CAD models or su-
pervised trajectories [23, 24], and leveraging accurate simulations for motion generation and policy
training [11, 25]. Sim-to-real transfer [26, 3, 27, 2] and real-world RL [28] have enabled high-
precision insertion, while some efforts [29] explore multi-step tasks. However, they all primarily
work under simplified settings like top-down insertions and fixed grasps, which are insufficient for
multi-part assembly where side-way insertions or tilted grasps are necessary. Imitation learning ap-



proaches [30, 31] support complex multi-step skill learning but lack robustness and generality. While
spatial-equivariant techniques have improved generalization in other domains [32, 33, 34, 35, 36],
they remain underexplored for assembly. Notably, Seo et al. [37] learn an SE(3)-equivariant gain
scheduling policy, but without varying grasps or geometries. Existing benchmarks focus on narrow
tasks [38, 39, 40, 41, 42], limiting the evaluation of generalization. In contrast, we demonstrate
that combining planning with equivariant generalist policies, for the first time, enables multi-part
assembly over diverse geometries, paths, and grasps without any human demonstration.

3 Planning Multi-Step Dual-Arm Assembly

Input Planning (Sec. 3) Policy Learning (Sec. 4)
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Figure 2: System overview. Fabrica takes part meshes and hardware configurations as inputs. It
plans sequences, grasps, fixture designs, and motions through a multi-stage planner, and learns RL
policies for all insertion steps, which are deployed together on real robots to complete the assembly.

Given a n-part assembly with parts indexed by o € O, we compute a plan to manipulate all parts
from the initial poses pY, to the goal poses pg € SE(3) under all physical constraints. We focus
on sequential, collaborative manipulation that alternates between robot R, assembling a part and
another robot R}, holding a part to stabilize the sub-assembly. Then, we train control policies for
precise contact-rich assembly steps. Finally, our system execution alternates between open-loop
planned motions and closed-loop reactive policies. Fig. 2 provides an overview of the system.

We formulate planning as optimizing assembly-hold sequences ¢, grasps o, and robot motions 7:
;H;I;E(@?:lf(%:u01—1:@‘,7%)) st Cprec(9) <0, Cuin(¢,0,m) =0, Ceot(¢,0,m) <0 (1)
The sequence ¢ = [04,1,0h,2,0a,2, " ,Oh.n,Oan] is an ordering of parts to be held (h) and
assembled (a), with 0 = [g4.1,9n,2:9a,2: " ** » Gh.n» Ga,n) including grasp g € SE(3) for each
step. The robot motion 7 is divided based on the mode families [43, 44] and skills: © =

[T 15T 15Tt 7';{72 ,7'({2, Ta 9y Tao, -] where each assembly task 7[a,i] for R, contains (1) a
~—
wla,1] 7[h,2] mla,2]

transit motion Tf with its hand free, (2) a transfer motion 77, grasping an object, and (3) an as-

sembly motion 7 ; for part insertion. A hold task 7[h, i] only mvolves a hold transfer motion T,{ i

The cost function composes step-wise objective vectors f that evaluate the quality of each step,
P : RI/Ixn — RIf| aggregates objectives across steps (e.g., sum or max), and E maps the result

to a scalar (e.g., weighted sum). Cprec, Ciin, Ceol represent part precedence, kinematic, and collision
constraints respectively. Please refer to App. B for detailed constraint formulation.

Solving for feasible or even optimal solutions in a joint manner is intractable. We present a hierar-
chical approach to decompose it into simpler subproblems for efficient computation with optimality
guarantees under assumptions (A1)-(AS5). The complete pesudocode can be found in App. C.



3.1 Part Precedence Planning

To evaluate constraint Cpc, We propose an algorithm to
determine the complete precedence relationships for as-
sembling all parts O. First, we define precedence tier as
a group of parts that can be removed independently of
one another. Tiers are ordered so that parts in earlier tiers
must be disassembled before those in later ones. To iter-
atively construct all tiers, we use a physics-based motion
planner [10] to find all parts that can be disassembled without interfering with the rest, which are
grouped into the current tier. We then remove these parts and repeat the process on the remaining
assembly until each part is assigned to a tier. Next, we build a precedence graph G that encodes
the minimal set of ordering constraints that any collision-free assembly sequence must follow. Each
node in G is a part, and a directed edge o; — o; means that o; must be assembled before o; be-
cause o; blocks the (dis)assembly path 7, planned during tier generation. For each part o, we define

T .1
e

B B _@ ®

(1) Precedence tier generation

1. P9
94

parts from previous tiers
[ tier in consideration
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its precedence set Oprec[0] = {0'|(0" — 0) € Gprec } as all parts that must be assembled before it.

3.2 Dual-Arm Grasp Filtering

We aim to identify valid grasp pairs G¢*"[0,, 0] for each
assembly-hold part pair (0, 05, ) which support insertion
and holding without colliding with preceding parts of o,
and oy,. Since searching the full 6-DoF space is infeasible,
we assume feasible grasps exist in a dense, finite set of
grasps, see (AS). Because each grasp must be checked for
collisions with the current subassembly 1)1.;, doing this
online results in repeated and expensive checks against
many part combinations. To speed up, we precompute
valid grasps offline by sampling grasp candidates and per-
forming parallelized inverse kinematics (IK) and collision
checks for both arms. In practice, we simulate the robot

(1) Sample N grasp poses for part o
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(2) Assembling grasp feasibility check

Record all collisions for parts in
» O\Opreclo] while disassembling o

(3) Holding grasp feasibility check
Record all collisions with disassembly
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- holding o
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Reject if colliding with parts in Oppeclo]
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(4) Grasp pair filtering
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following the part’s disassembly path 7, and reject it if M 9"[01235‘[;}%1 z):lidc
the motion collides with the precedence set Oprec[0]. All Get G0, 0]
collisions and motions are recorded for reuse in later stages. Similarly, we check if a grasp can
securely hold a part while disassembling other parts without collision. Finally, for each part pair
(0a, 0n), we filter feasible grasps (ga, gr) by checking interarm collisions under computed IK.
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3.3 Dual-Arm Sequence-Grasp Optimization

With all valid grasps computed, we now solve for the
optimal sequence ¢* and grasps ¢* in Eq. 2. We for-
mulate this as a state-space search problem and con-
struct a directed state tree T, where each node repre-
sents a partial assembly state s = (¢, O, 0, g) consisting
of robot task ¢ (assemble or hold), assembled parts O,.,
part being grasped o, and grasp pose g. Starting from o
root nodes (complete assembly), we recursively expand ' 0
the tree by alternating between assembling and holding, Assemble @
pruning states that violate constraints. Valid transitions

must also respect precomputed grasp feasibility between successive steps. All collision and motion
feasibility checks are reused from the earlier filtering stage. Each transition is scored by a grasp
stability vector f, capturing objectives such as supportiveness of the held part, frequency of grasp
switches, torque stability, and contact area, which are designed to be lightweight yet effective for
downstream control. We apply dynamic programming (DP) to propagate the best cumulative scores
through the tree and identify the optimal solution. Please find more details in App. C.3.
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3.4 Grasp-Aware Pickup Fixture Generation

For precise pickup, we develop a software-hardware co-design approach to automatically generate a
fixture that stabilizes and orients each part for top-down pickup, based on planned grasps in Sec. 3.3.
This removes the need for reorientation or regrasping between pickup and assembly, allowing the
system to focus on the core assembly challenges. We first determine each part’s pickup pose in
the world frame, with its orientation defined by the rotation from the assembly grasp to a top-down
grasp. We then compute pickup positions by packing parts on the XY plane to avoid collisions
between parts and the gripper. To reduce material usage and workspace area, we model this as a bin-
packing problem and solve it with an iterative algorithm that alternates between packing, collision
checking, and resolution. Finally, we generate the fixture by creating mold cavities based on the part
geometries and poses, ensuring stable placement. See details in App. C.4 and examples in Fig. 3.

Beam Plumber Block Car Gamepad Cooling Manifold Stool

Figure 3: Top: benchmark assemblies. Bottom: the auto-generated pickup fixtures in Sec. 3.4.

3.5 Motion Planning for Transit and Transfer

Finally, RRT-Connect [45] plans for all remaining transit and transfer motions, i.e., 7'({ 79 T]{’i,

40 ta,i

which can be parallelized since all start and goal states of motions are provided from earlier stages.

4 Learning General Single-Step Assembly Policy

Once the full assembly plan is computed, the next challenge is to track it reliably in the real world.
We use a hybrid controller that alternates between tracking the pre-planned transit and transfer mo-
tions, and an RL-based reactive controller for contact-rich assembly steps. The controller must
generalize across variations in object geometry, grasp poses, and assembly directions. To this end,
we design a lightweight yet highly effective RL framework for training a generalist assembly policy.
Given a pre-planned insertion path 7, our goal is to guide the part from its noisy initial pose 7,[0] to
the goal pose 7,[1], accounting for uncertainty in grasp and mating part geometry. We frame this as a
Markov decision process (MDP) and learn a policy 7 : O — P(.A) that maximizes expected rewards
over time E; [EtT:_Ol v'r(s¢)]. We use proximal policy optimization (PPO) [46] to train a stochastic
policy in simulation, which is then transferred to the real world without additional fine-tuning.

4.1 Path-Centric Coordinate Transformation

Humans naturally reuse the same assembly skills across different objects, regardless of their poses
or motions. We emulate this ability by designing a problem space transformation [47] with SE(3)-
equivariance, which maps all straight-line assembly motions in the world frame into equivalent
top-down insertions in the task frame, allowing the RL agent to perceive them in a unified way.

Formally speaking, given an assembly path 7 with a pre-assembly position pg and the assembled
position p,, we define a path-centric transformation T conditioned on 7 such that T'(pg) = (0,0, 0)
and T(pq) — T(pa) = (0,0, ||pa — pall). Thus, the agent’s observation is the transformed position
of the part being assembled (under unknown noise), and its action is the transformed delta position,
i.e., the ideal position change in the path-centric frame. Thanks to equivariance, the agent only
needs to learn top-down insertions and can omit orientation from both observations and actions,



simplifying the learning setup. We use a task-space impedance (TSI) controller to enable smooth
and compliant insertions, with impedance gains similarly transformed into the path-centric frame
to maintain consistent behavior across different assembly directions. This design ensures that the
observation and action spaces are minimal yet essential, facilitating generalizability among different
assembly tasks, and is transferable to different robot arms and end effectors.

4.2 Plan-Guided Residual Action

We find that guidance from the planned open-loop action helps learning by injecting prior knowledge
about the coarse assembly direction. Thus, we adopt the idea of residual action [48, 31] in RL, where
the policy outputs only the corrective action on top of the open-loop action, allowing the policy to
focus on refining the assembly rather than learning the full assembly behavior. In practice, residual
action warm-starts policy learning and typically leads to faster and better convergence.

4.3 Minimalist Reward Design and Sim-to-Real Transfer

Surprisingly, our insertion reward is simply the negative L2 distance from the current part position
to the goal position. This form is dense and sufficient enough for learning effective local insertion
policies as our initial state is the pre-assembled pose given by the planner, which is already in the
proximity of the goal thus does not require expensive exploration or complex reward engineering.

Due to the sim-to-real gap from misaligned dynamics, we adopt 1) domain randomization with 3mm-
noised initialization on object pose during training and 2) Policy-Level Action Integrator (PLAI) [26]
during deployment to ease the sim-to-real transfer of RL policies, which improves action consistency
by incrementally applying policy outputs to the last desired state instead of the current state. PLAI
applies policy actions as s¢, ; = s¢ @ II(o,), where s¢ represents the desired state at time ¢, II(o;)
is the policy action computed based on the current observation oy, and ¢ denotes the composition

operation, instead of the nominal approach s¢ +1 = st ®II(o¢) which is prone to error accumulation.

S Experiments

5.1 Benchmark Suite and Experimental Setup

We develop a diverse benchmark suite spanning furniture, toys, and industrial equipment, which in-
cludes beam (5 parts), plumber block (5 parts), car (6 parts), gamepad (6 parts), cooling manifold
(7 parts), duct (8 parts), and stool (9 parts). These assemblies cover various geometries and con-
nection types found in real-world applications, with both top-down and sideway insertions, and are
feasible for dual-arm robots with parallel grippers. For planning in simulation, we demonstrate on
several different robots, including Franka Emika Panda, UFactory xArm7, and URS5e with different
grippers. We use Panda for systematic evaluations of policy training and real-world execution. See
more details on the experimental setup and hyper-parameters in App. D.

5.2 Planning Multi-Step Assembly in Simulation

Efficiency: Table 1 shows the breakdown of planning time by stages for different assemblies. Our
overall speed is on the order of minutes to solve for optimal plans given efficient parallelization.

Optimality: Table 2 shows the objective scores of optimized sequences surpassing the random ones
by a large margin with priorities from f; to fs (see App. C.3 for details on the score definitions).

Generality: Please see App. A for visual demonstrations of planning with different robot arms
(Panda, xArm7, URSe) and grippers. Our planning framework is general to any given hardware.

5.3 Learning Single-Step Assembly in Simulation

We use Isaac Gym [49] for training RL policies and performing simulation evaluations, with the PPO
code from RL Games [50]. Table 3 presents the average % of successful steps for assembling our



Table 1: Planning runtime breakdown of each  Table 2: Objective comparisons between opti-
assembly. Stages marked with * are paral- mal and random sequences. Higher is better for
lelized, while others have yet to be parallelized.  f1, fy; lower is better for fs, fs.

Objective Values (Optimal / Random)

Runtime (s)

Assembly Prec® Grasp® Seq  Fixture Motion Total Assembly ‘ it f2l fsd fat
Beam 19.7 35.7 0.2 1.7 1159 173.2 Beam 4.00/0.88 4.00/0.88 0.48/0.39 119.8/6.8
Plumber 21.6 31.8 12.6 0.9 118.9 185.7 Plumber | 4.00/1.27 2.00/1.79 0.18/0.33 293.0/93.4
Car 234 529 0.9 1.9 1274 2064 Car 4.00/1.72 1.00/1.64 021/094 140.6/35.2
Gamepad 222 372 45 3.6 117.4 184.8 Gamepad | 5.00/1.76 1.00/156 1.40/0.63 428.6/52.1
Manifold 209 162.7 52 1.9 149.6 3404 Manifold | 6.00/2.62 1.00/2.17 0.18/0.69 12.5/18.7
Duct 93.9 1023 208.1 25 1859 5927 Duct 6.00/3.00 1.00/2.88 0.09/039 536.0/101.3
Stool 572 109.1 8.0 4.0 3245 5027 Stool 8.00/3.43 6.00/3.24 0.03/0.54 322.2/879
Table 3: % of successful steps without intervention in simulation evaluations.
Method % of Successful Steps without Intervention (Simulation)
Beam Plumber Block  Car  Gamepad Cooling Manifold ~ Duct  Stool
Open-Loop Tracking 21.48 24.22 2.34 2.34 391 18.75 0.00
Part Specialist Policy (PS) 98.63 84.08 90.82 87.60 94.63 100.00 78.91
Assembly Specialist Policy (AS) | 99.12 97.46 70.12 88.87 95.02 96.58  76.66
Assembly Generalist Policy (AG) | 98.83 81.64 60.55 71.48 89.06 89.84  58.59

benchmark assemblies in simulation across 1024 random trials using different methods: 1) Open-
Loop Tracking: A baseline that strictly follows the pre-planned path without feedback correction.
2) Part Specialist Policy (PS): Policies trained on individual pairs of parts. 3) Assembly Specialist
Policy (AS): Policies trained on all parts within a single assembly. 4) Assembly Generalist Policy
(AG): Policies trained on all parts from all assemblies in our suite, aiming for broad generalization.

The results show that open-loop tracking exhibits the lowest success rates across all assemblies,
indicating its limitations in handling uncertainties and variations. The AS policy demonstrates com-
petitive performance as the PS policy, suggesting that a shared policy across different parts in an
assembly can generalize well. It may sacrifice some part-specific optimization, but can transfer the
knowledge between similar parts. The AG policy, while slightly less effective than the other RL
counterparts, still demonstrates robust performance, suggesting that learning a single shared policy
across different assemblies is promising, given the equivariant representations. Furthermore, the
success rates vary across different assemblies, with simpler assemblies like the Beam and Cooling
Manifold achieving higher performance across all methods, while more complex assemblies such as
the Gamepad and Stool exhibit lower success rates due to their intricate geometries and constraints.

5.4 Executing Multi-Step Assembly in Real World

Table 4 shows the % of successful steps on benchmark assemblies evaluated in the real world (step-
wise statistics), and Table 5 shows the multi-step cumulative success rates with 0/1/2 total interven-
tions for failure recovery (overall statistics). All numbers are averaged across three complete multi-
step real experiments, which translate to thousands of total assembly steps. We deploy stochastic
policies with state-based success detection and allow up to three trials per step until success. For
qualitative results on real-world multi-step executions, please refer to Fig. 1 and App. A.

Ours: We use both AS and AG policies for real-world comparisons. For AG, we perform out-of-
distribution (OOD) evaluations by training 7 generalist policies, where each one is trained on the
other 6 benchmark assemblies (excluding the test assembly). Remarkably, these OOD generalist
policies still achieved comparable performance to specialist policies trained directly on the test as-
sembly, which indicates that through our approach, insertion strategies learned from a diverse set of
assemblies can effectively transfer to novel, unseen assemblies.

Baseline: Since Fabrica is the first to assemble general multi-part objects with only CAD input,
identifying a comparable SOTA baseline is challenging. The closest work is ASAP [11], which per-
forms single-arm kinematic feasibility search without sequence/grasp optimization or closed-loop
control. To compare, we adapted it by planning with dual-arm and adding our RL policy. With-
out optimized part sequencing and grasping, ASAP performed substantially worse, often struggling
even with two interventions, which emphasizes the contributions of our planning optimizations.



Table 4: % of successful steps without intervention in real-world evaluations.

% of Successful Steps without Intervention (Real World)

Method ‘ Beam Plumber Block Car Gamepad Cooling Manifold Duct  Stool \ Overall
Ours AS 75 83 80 87 72 71 92 80
AG (OOD) 67 15 93 80 72 81 92 80
Baseline ASAP (Adapted) 50 42 67 33 55 52 15 55
i Open-Loop Tracking 42 25 20 20 17 14 21 23
w/o Part Seq Optim 75 75 73 40 61 71 92 71
Ablation w/o Grasp Optim 42 83 47 60 67 67 75 64
w/o Path-Centric Transform 67 67 20 53 78 38 92 61

Table 5: Multi-step cumulative success rate with 0/1/2 interventions in real-world evaluations.

Method Multi-Step Cumulative Success Rate with 0/1/2 Interventions (%) (Real World)

‘ Beam Plumber Block Car Gamepad Cooling Manifold Duct Stool ‘ Overall
Ours AS 0/100/100  33/100/100  0/100/100 33/100/100 0/ 67/ 67 0/ 0/100 33/100/100| 15/ 81/ 95
l AG (OOD) 0/ 67/100  0/100/100  67/100/100  0/100/100 0/ 33/100 0/ 67/100 33/100/100| 10/ 81/100
Baseline ASAP (Adapted) 0/ 0/100 0/ 0O/ 67 0O/ 33/100 0/ 0O/ O 0o/ 0/ 33 o/ 0/ 0 0/ 0/100] O/ 5/ 57
Open-Loop Tracking o/ 0/67 O 0/33 0 0 0 0 0 0 o 0 0 o/ 0 0 O 0 0] 0/ 0 14
w/o Part Seq Optim 0/100/100 33/ 67/100 0/ 67/100 0/ 0/ 0O o/ 0/ 67 0/ 0/100 33/100/100| 10/ 48/ 81
Ablation w/o Grasp Optim 0/ 0/ 67 33/100/100 0/ 0/ 33 0/ 0/100 0/ 0/100 0/ 0/ 67 0/ 0/100] 5/ 14/ 81
w/o Path-Centric Transform| 0/ 67/100 0/ 67/100 0/ 0/ 0 0/ 0/ 67 0/ 67/100 0/ 0/ 0 33/100/100| 5/ 43/ 67

Ablation: To understand how much optimizing part sequences and grasps helps, we conduct abla-
tion studies on our method by removing those optimizations respectively. We observed that subop-
timal sequencing often caused instability due to inadequate support of critical neighboring parts and
more part drifts due to unnecessary re-grasps. Meanwhile, suboptimal grasp selection frequently
caused part slippage due to insufficient contact area or inadequate resistance to external torques.
Thus, our planner inherently accounts for control-level uncertainties, and results demonstrate that
selecting effective part sequences and grasps significantly enhances assembly reliability. For control,
we observed that our path-centric transformation is crucial for generalizing across varying assem-
bly directions. Policies trained without it perform significantly worse when multiple directions are
involved. For more studies on the effects of path-centric transformation and residual actions intro-
duced in Sec 4, and success increase w.r.t. the number of trials per step, please see App. E.

Failures: We observed a noticeable gap between simula-
tion and real-world performances. Thus, we present a de-
tailed analysis of common failure cases shown in the right
figure: a) Small parts slip between gripper pads during in-
sertion attempts; b) Cumulative error accrued during the
assembly of large assemblies increases the displacement
error of final part insertions; c¢) The holding gripper is
not modeled during RL training, causing unexpected part
obstructions in the real world; d) Unstabilized parts shift
previously assembled parts during insertion. We assume
a 3mm noise in simulation given that the base part is sta-
bly held. However, many sources of real-world error lead
to much more significant errors than simulated, which are
non-trivial challenges for future work. Due to these fail-
ures, all methods achieve near-zero multi-step success rates without intervention due to inherently
challenging steps causing consistent failures. However, with minimal interventions, our method
significantly outperforms others, reaching 81% success with one intervention and 95% with two.

6 Conclusion

We presented Fabrica, a dual-arm robotic system that innovates and integrates global hierarchi-
cal planning with local generalist policy learning for autonomous multi-part assembly. To support
reproducible and rigorous evaluation, we introduced a comprehensive benchmark suite covering di-
verse multi-part assemblies. Fabrica is the first to demonstrate robust and generalizable performance
across a wide range of real-world assembly tasks. We discuss limitations and future work in Sec 7.



7 Limitations and Future Work

While Fabrica shows promising results for autonomous multipart assembly, there remain several
limitations and opportunities for future extension.

Assumptions: The assumptions we make in this problem formulation are the following:

(A1) Insertion-only assembly: We assume that the mating between two parts only involves an
insertion motion, without requiring skills like screwing or sliding.

(A2) No subassembly reorientation: The final assembled positions of all parts are assumed to
be given and fixed during the assembly process. This means that no further movement or
re-orientation is allowed once a part is assembled.

(A3) Monotonic assembly: Each part is only moved once, without considering regrasps, in-hand
manipulation, or handovers.

(A4) No force and torque constraints for the robots: We assume all parts are light compared to
the robot payload.

(A5) A finite grasp set for each part: Vg € o, g € Glo],|G[o]| = N, where G[o] can be computed
by any grasp generator.

The above assumptions leave areas such as handling heavier parts, managing grasp slippage, and
performing other operations such as screwing or sliding unaddressed. Incorporating these capabil-
ities would significantly improve the robustness and applicability of Fabrica in more complex and
diverse assembly tasks.

Dexterity: Moreover, the current setup enforces a fixed part pose once assembled. This is in contrast
with the more dexterous human assembly behavior, where one would constantly reorient the partial
assembly so that the parts are easily reachable. However, allowing reorientation would introduce
additional planning overhead and more uncertainty for control due to potential subassembly insta-
bility. Addressing it will enable a more dexterous robotic system that can handle large assemblies
that are beyond the reach of the current system, e.g., a large tabletop with parts on both sides.

Hardware capability: Compared to the existing multipart assembly dataset with thousands of ob-
jects [10], our current benchmark is limited in its size and diversity. This is because we want to
ensure that the benchmark tasks are achievable by commonly used parallel grippers, but these grip-
pers have a limited grasp width and thus cannot establish stable antipodal grasps for parts with large
and complex geometries. However, to broaden the assembly capability, we can envision either a
multi-finger hand or a multi-tool system in which the robots can switch specialized grippers accord-
ing to the part geometry, and our planning and control system could be adapted to this setting.

Practical integration A key practical limitation of the current setup is sensitivity to localization
calibration of the two arms. Each arm’s ability to reach commanded poses with millimeter-level
precision depends on the fidelity of its own kinematic model and calibration. Small errors in joint
encoder offsets, link dimensions, or tool center point definition can cause systematic deviations
between the planned and actual end-effector poses. Regular in-situ calibration against a reference
artifact or workspace-specific pose verification could mitigate this issue, but such steps introduce
additional setup and maintenance effort not yet addressed in the present system. In addition, repeated
insertions and extractions can cause gradual wear of the pickup fixture, leading to deviations from the
planned motions. This sensitivity is amplified by the tight tolerances inherent to the assembly, where
even sub-millimeter shifts can result in failures. Incorporating perception capabilities, as illustrated
below, could enable the system to detect and adapt to such deviations in real time, compensating for
both calibration errors and tolerance-induced misalignments.

Perception: Integrating vision systems for alignment feedback could greatly improve the accuracy
and adaptability of the assembly process. By incorporating perception, the system could enable
direct bin-picking, allowing it to grasp parts from random, unknown initial poses instead of requiring



a specialized pickup fixture. However, bin-picking remains a well-known challenge in industry,
particularly in terms of robustness and generalizability across arbitrary part geometries and physical
properties. Addressing these challenges requires substantial research and development efforts, but
would significantly expand the practical applications of our approach.

Data collection: Collecting real-world assembly data is challenging due to the task’s long-horizon,
contact-rich nature and the high cost of acquiring or fabricating diverse assembly assets. Fabrica
addresses these barriers by enabling fully autonomous data collection in simulation and requiring
only minimal human intervention in the real world. In future work, we aim to leverage this capa-
bility to generate large-scale, diverse datasets of assembly trajectories. These datasets can facilitate
broader research in generalizable policy learning, sim-to-real transfer, and foundation models for
robotic manipulation. Moreover, because assembly is one of the most constrained and demanding
manipulation tasks, learning from assembly data has the potential to positively transfer to a wide
range of general-purpose manipulation skills.
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