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Self-Comparison for Dataset-Level Membership Inference in
Large (Vision-)Language Model
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∗

Abstract
Large LanguageModels (LLMs) andVision-LanguageModels (VLMs)

have made significant advancements in a wide range of natural

language processing and vision-language tasks. Access to large

web-scale datasets has been a key factor in their success. How-

ever, concerns have been raised about the unauthorized use of

copyrighted materials and potential copyright infringement. Exist-

ing methods, such as sample-level Membership Inference Attacks

(MIA) and distribution-based dataset, inference distinguish member

and non-member data by leveraging the common observation that

models tend to memorize and show greater confidence in member

data. Nevertheless, these methods face challenges when applied to

LLMs and VLMs, such as the requirement for ground-truth mem-

ber data or non-member data that shares the same distribution as

the test data. In this paper, we propose a novel dataset-level mem-

bership inference method based on Self-Comparison. We find that

a member prefix followed by a non-member suffix (paraphrased

from a member suffix) can further trigger the model’s memoriza-

tion on training data. Instead of directly comparing member and

non-member data, we introduce paraphrasing to the second half

of the sequence and evaluate how the likelihood changes before

and after paraphrasing. Unlike prior approaches, our method does

not require access to ground-truth member data or non-member

data in identical distribution, making it more practical. Extensive

experiments demonstrate that our proposed method outperforms

traditional MIA and dataset inference techniques across various

datasets and models, including GPT-4o.
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1 Introduction
Large Language Models (LLMs) [2, 43, 45] and Vision-Language

Models (VLMs) [5, 26, 48] have demonstrated remarkable capa-

bilities in understanding, reasoning, and generating both textual

and visual data. These advancements have significantly impacted

natural language processing (NLP) tasks such as machine trans-

lation [42], text summarization [13], and sentiment analysis [32],

as well as vision-language tasks like image captioning [17], visual

question answering [28], and cross-modal retrieval [24]. The rapid

development of these models has been fueled by the availability of

large web-scale datasets, which have substantially improved their

performance. However, concerns are raised about unauthorized

data usage. Copyrighted materials may be included in training

datasets, potentially infringing upon the rights of content creators

and causing financial loss to them [27, 36, 50]. For example, the

New York Times sued OpenAI and Microsoft over the use of copy-

righted work for training models
1
. These datasets often require

substantial resources to construct by the companies, e.g., the New

York Times, and these companies typically do not disclose them

for model training purposes. Even when some datasets are open-

sourced [14, 35, 38], their usage is typically restricted by licenses

and is limited to educational and research purposes. Therefore, it is

crucial to safeguard these datasets against unauthorized use.

To protect the datasets, it is crucial to detect their usage in train-

ing. Membership Inference Attack (MIA) [39, 40] is a widely used

method in evaluating training data leakage. However, most exist-

ing research focuses on sample-level inference. When applied to

dataset-level inference, MIA faces two significant challenges. First,
current large models typically train for only one or a few epochs

on extensive web-scale datasets [4, 6, 9, 15, 21, 22, 46]. As a result,

each sample is encountered only a limited number of times, which

restricts its contribution to the training process. Consequently, this

makes inference on individual samples quite challenging [12, 29].

Existing methods demonstrate limited effectiveness in sample-level

inference. Second, MIA often relies on a strong assumption: prior

knowledge of a set of ground-truth member data. It is required ei-

ther explicitly [40] or implicitly [39]. Specifically, in some methods,

e.g., [39, 49], the ground-truth data is used to determine the decision

threshold for the proposed MIA method, implicitly imposing the

prior knowledge assumption.

To address aforementioned challenges in sample-levelMIA,Maini

et al. [29] propose to aggregate the membership information of in-

dividuals by using dataset distributions. They determine whether a

dataset is member data based on the assumption that the distribu-

tion of MIA features, such as likelihood, for member data should

significantly differ from non-member data. However, this approach

is effective only when a validation set, which is non-member and

has the identical distribution to the protected dataset, is available.

1
https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-

microsoft-lawsuit.html
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In our preliminary study of Section 3.2, we find that even a small

distribution shift between the validation data and the protected data

can result in false positive detection. This highlights the necessity

for improvement when there is no access to the non-member data

that follows the same distribution as the protected data.

To tackle the above challenges, we propose Self-Comparison

Membership Inference (SMI) for dataset-level inference. Instead of

directly comparing the distributions of two sets as in [29], we focus

on comparing how these distributions change under paraphrasing.

Intuitively, a model should be more confident when generating

member data than non-member data [10, 31, 39, 49], reflected in

higher likelihood scores. For non-member data, since the model

has not seen either the original or paraphrased data during train-

ing, the likelihood will remain relatively stable before and after

paraphrasing. In contrast, for member data, the model has encoun-

tered the original data but not its paraphrased version, leading to a

more significant likelihood change after paraphrasing. Our method

does not rely on the assumption of access to ground-truth member

data or non-member data that follows the same distribution as the

protected data. Instead, it only requires an auxiliary non-member

set which is not necessary to be in the same distribution. It can be

easily obtained by synthesizing data or using data published after

the release of the suspect model. In addition, our approach does

not require white-box access to the model’s internal parameters

or architecture. It only requires access to model outputs such as

logits or log probabilities, making it widely applicable even when

minimal information about the model is available.

We conduct a comprehensive evaluation across various LLMs

and LVMs, including publicly available model checkpoints with

well-documented training data, such as Pythia [6], GPT-Neo [7],

LLaVA [26], and CogVLM [48]. We also validate our approach on

models that we fine-tuned. We further apply our method to verify

the membership of well-known books on API-based models like

GPT-4o [1]. Our extensive results demonstrate that our method

outperforms existing techniques when no prior knowledge of the

ground-truth member data is available.

2 Related works
Sample-level MIA. MIA is first proposed to evaluate the data

leakage of individual samples by Shokri et al. [40], and is extensively

studied in classification models [19, 33, 37, 47, 52]. For LLMs, recent

works propose metrics based on a core assumption that the model

would assign higher prediction confidence to the training data [10,

31, 39, 49, 51]. For example, Carlini et al. [10] demonstrate that

member data usually has lower perplexity (greater confidence)

than non-member data, and improve the detection using zlib ratio.

Shi et al. [39] claim that non-member data would contain some

outlier tokens with extremely low probability, and use the tokens

of 𝑘% smallest likelihood to infer the membership. Mattern et al.

[31] substitute synonym to evaluate the confidence in the replaced

tokens. Reference-based methods [49] compare the likelihood with

a reference model that is not trained on the target data. However,

sample-level MIA requires ground-truth member data to assist the

detection, such as training a shadow model [40] or determining a

threshold [10, 31, 39, 49], which limits the practicality.

Dataset inference. Dataset inference is designed for a different

level of membership inference. It considers from the perspective

of distribution. Maini et al. [30] propose that training data is more

distant from the decision boundaries in classification models. Maini

et al. [29] extend the dataset inference to LLMs. They assume that

the training should bring a distribution shift between member data

and non-member data, and propose to use hypothesis testing for

membership inference. However, their method requires ground-

truth member and non-member data to train a regressor and a

validation set to infer membership.

3 Preliminary Studies
As mentioned above, models tend to produce more confident pre-

dictions on member data [40, 50]. The more frequently a model

encounters a sample during training, the more confident the pre-

diction is. In extreme cases, this results in the memorization effect

in generative models such as language models and diffusion mod-

els [10, 54]. Particularly, if a data sample is duplicated many times,

the model can memorize and re-generate it [20]. Even without full

memorization, training on member samples can increase a model’s

confidence in those samples, which can be considered a form of

weak memorization [10, 29, 51].

Based on this memorization, sample-level MIA and dataset in-

ference are proposed to detect member data. In Section 3.2, we first

present the gap in the existing methods, such as distribution-based

dataset inference (DDI) [29], by comparing two datasets. We show

that a non-member dataset is also possible to be different from the

validation set, leading to false positive detection in DDI. To further

improve dataset-level membership inference, we demonstrate the

possibility to fill in the gap by comparing the change of distribution

after applying a paraphrase. Then in Section 3.3, we conduct an

empirical study showing that a prefix sequence can further trigger

the weak memorization and amplify the change of confidence.

3.1 Definitions
In this subsection, we define the problem and some key concepts.

Problem definition. Model 𝑓 is an auto-regressive generation

model that takes a sequence of text and vision tokens as input

and outputs a probability distribution predicting the next token,

which is a text token. For a given dataset𝑄 , the goal of dataset-level

membership inference is to determine whether 𝑄 was included in

the training of 𝑓 . We name 𝑄 as candidate set, and 𝑓 as suspect

model. 𝑄 is composed of token sequences in varying lengths.

Prediction confidence. The likelihood of the predicted token

can reflect the confidence of the model [10, 31, 39, 49]. For a token

sequence 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑇 ), we can use average negative log-

likelihood (A-NLL) to represent the confidence to generate it, which

is given by

A-NLL(𝑋 ) = − 1

𝑇

𝑇∑︁
𝑡=1

log 𝑃 (𝑥𝑡 | 𝑥1, 𝑥2, . . . , 𝑥𝑡−1) .

It measures how confident a model predicts a sample of text by

evaluating the probability it assigns to a sequence of tokens. Lower

A-NLL indicates greater confidence. In our paper, we also use a

prefix sequence as input and calculate the A-NLL on the suffix,

𝑋𝑖:𝑇 = (𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑇 ). In this case, A-NLL is only averaged on

2
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the suffix, which is

A-NLL(𝑋𝑖:𝑇 |𝑋:𝑖 ) = − 1

𝑇 − 𝑖 + 1

𝑇∑︁
𝑡=𝑖

log 𝑃 (𝑥𝑡 | 𝑥1, 𝑥2, . . . , 𝑥𝑡−1) .

A-NLL is also the major term of the loss of the training of LLMs

and VLMs. It can be seen as a straightforward metric to reflect

the confidence and test membership. Besides A-NLL, metrics based

on the intuition of confidence, such as Min-𝑘% Prob [39], Max-𝑘%

Prob [29], perplexity [10], perturbation-based features [31], and

zlib Ratio [10], are also proposed to measure membership.

3.2 Limitation of DDI when the validation set is
not available

In this subsection, we use the DDI method proposed by [29] as

an example to demonstrate the limitation when the non-member

data which follows the same distribution as the protected set is not

available. We begin by outlining the details of DDI [29] and then

discuss the gap and the potential improvement.

The method of DDI [29] first employs a linear regressor to ag-

gregate various sample-wise MIA metrics derived from prediction

confidence, including Min-𝑘% Prob [39], Max-𝑘% Prob [29], per-

plexity [10], perturbation-based features [31], and zlib Ratio [10].

Trained on ground-truth member and non-member data, the lin-

ear regressor produces a membership score for each sample. Even

though the member and non-member data are in the same distri-

bution, the distributions of their membership scores are different.

Given a candidate set 𝑄 , 𝑄
val

is a validation set that is in the same

distribution as 𝑄 and is known to be non-member. DDI employs

a 𝑧-test for hypothesis testing, with the null hypothesis (𝐻0) as-

suming 𝑄 was not used in training. This 𝑧-test determines whether

the distributions of membership scores of 𝑄 and 𝑄
val

are different.

If 𝑄 was not used for training, their distributions of membership

scores should be similar; otherwise, they should differ. By perform-

ing a 𝑧-test between the membership scores of 𝑄 and 𝑄
val

, if the

𝑝-value falls below a significance threshold (such as 0.05 or 0.01),

𝑄 is classified as member data.

Limitation of DDI. DDI relies on a strict assumption: access to

a non-member set in the same distribution as 𝑄 . To test whether 𝑄

is a member, wemust always prepare a separate set as the validation

set. In practice, this is often impractical. If𝑄 is not training member,

even a small difference between 𝑄
val

and 𝑄 can result in a low 𝑝-

value, leading to a false positive prediction. Specifically, we find that

the 𝑝-value decreases dramatically as the sizes of the two sample

sets in 𝑧-test (such as 𝑄 and 𝑄
val

in DDI) increase, which is proved

in the following Theory 1.

Theory 1. Given two sample sets 𝐴 and 𝐵, 𝜇𝐴 and 𝜎𝐴 are the
mean and standard variance of 𝐴, and 𝜇𝐵 and 𝜎𝐵 are 𝐵’s. Without
loss of generality, we assume that the sample sizes of 𝐴 and 𝐵 are
both 𝑛. If 𝜇𝐴 ≠ 𝜇𝐵 , the 𝑝-value of 𝑧-test satisfy:

𝑝-value ∝ 𝑒−𝑐𝑛,

where 𝑐 is a constant coefficient and 𝑐 > 0.

(a) Distribution (b) 𝑝-value

Figure 1: An example of using DDI

Proof. In 𝑧-test, the statistic 𝑧 is calculated as

𝑧 =
𝜇𝐴 − 𝜇𝐵√︄(
𝜎2

𝐴

𝑛

)
+
(
𝜎2

𝐵

𝑛

) =
𝜇𝐴 − 𝜇𝐵√︂(
𝜎2
𝐴

)
+
(
𝜎2
𝐵

) √𝑛. (1)

Then the 𝑝-value for a one-tailed test is

𝑝-value = 1 − Φ( |𝑧 |),
where Φ( |𝑧 |) is the cumulative distribution function (CDF) of the

normal distribution.

When 𝑛 increases, the tail probability 1−Φ( |𝑧 |) can be calculated

using an asymptotic approximation [8, 11, 18], which gives

1 − Φ( |𝑧 |) ≈ 1

|𝑧 |
√
2𝜋
𝑒−

𝑧2

2

So the logarithmic of 𝑝-value is

log(𝑝-value) ≈ log

(
1

|𝑧 |
√
2𝜋
𝑒−

𝑧2

2

)
For larger 𝑛 (i.e. larger |𝑧 |), the dominant term is −𝑧2, which

means log(𝑝-value ) ≈ −𝑧2
2
. Substituting Eq. 1 into this, we have

log(𝑝-value) ∝ −𝑛, i.e., 𝑝-value ∝ 𝑒−𝑐𝑛 .
□

Empirical results. We use the example in Figure 1a to demon-

strate a case of false positive detection when the distributions of

𝑄
val

and 𝑄 are not identical. Specifically, we use 𝑄
val

to test the

membership of two sets, 𝑄mem and 𝑄non. In this scenario, 𝑄mem is

member data, while 𝑄non is non-member data. None of them has

an identical distribution to 𝑄
val

. We use Pythia-12B [6] as the sus-

pect model, PILE [14] as 𝑄mem, FineWeb [34] in 2024 as 𝑄non and

BBC news in 2024 as 𝑄
val

. In Figure 1a, while 𝑄mem differs more

significantly from 𝑄
val

, there is also a small difference between

𝑄non and 𝑄
val

. By calculating the 𝑝-value in Figure 1b, we make

two key observations. First, the 𝑝-value for 𝑄non is also very low,

indicating a false positive detection. Second, the logarithm of the

𝑝-value decreases linearly as the sample size 𝑛 increases, which

aligns with Theory 1. The difference between 𝑄
val

and 𝑄
non

may

arise from various factors, such as the lack of non-member data that

follows the same distribution and the randomness of the sampling

process.

3
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(a) The change of distribution (b) 𝑝-value

Figure 2: The change of distribution and 𝑝-values of before
and after 𝑄 is paraphrased.

Therefore, to avoid the false positive detection, we do not com-

pare 𝑄 directly with 𝑄
val

. Instead, we introduce changes through

paraphrasing the samples in 𝑄 and compare the differences before

and after paraphrasing. Figure 2a illustrates the distribution of A-

NLL on the suspect model. After paraphrasing, the mean A-NLL

of 𝑄mem increases more significantly than that of 𝑄non. This is be-

cause the model has encountered the member data during training,

resulting in (weak) memorization. After paraphrasing, the verbatim

member data becomes non-member data, leading to an increase in

A-NLL. In contrast, non-member data is less affected by paraphras-

ing, as the model has never been trained on it. In Figure 2b, we

also conduct a 𝑧-test to compare the distributions before and after

paraphrasing. Denote 𝜇org as the mean of A-NLL of the sample

set before paraphrase and 𝜇para as the mean of A-NLL of the sam-

ple set after paraphrase. Then, the null hypothesis and alternative

hypothesis (𝐻1) can be formulated as

𝐻0 : 𝜇org ≥ 𝜇para; 𝐻1 : 𝜇org < 𝜇para

Lower 𝑝-value indicates a more significant change after paraphras-

ing. In Figure 2b, the 𝑝-value for𝑄mem decreasesmuchmore rapidly,

demonstrating that 𝑄mem undergoes greater change after para-

phrasing compared to𝑄non. In the following subsection, we further

provide a study on when will the change become more obvious.

3.3 Prefix Sequences can trigger memorization
on training Data

As we analyzed, the model exhibits greater confidence (i.e., lower

A-NLL) on data it has encountered during training. However, in

this subsection, we observe that paraphrasing the entire sequence

of member data does not always result in a high A-NLL, making it

difficult to distinguish from non-member data. In this subsection,

we provide a detailed analysis of this phenomenon and point out

how to exemplify the change of A-NLL caused by the paraphrase

introduced in the previous subsection.

In Figure 3a, we present the change in A-NLL after applying

two different paraphrasing methods: whole paraphrase and half

paraphrase. For the whole paraphrase (blue in Figure 3a), we para-

phrase the whole text sequences. For each sample, we calculate

the NLLs of both the original and paraphrased text, then subtract

the original NLL from the paraphrased NLL and plot the results.

(a) The change of distribution (b) 𝑝-value

Figure 3: Different memorization results between paraphras-
ing the whole sequence and half of the sequence.

For the half paraphrase (red in Figure 3a), we leave the first half of

the text unchanged, paraphrasing only the second half, and report

the change in NLL for the paraphrased portion. As shown, for the

whole paraphrase, the average change in NLL is slightly above 0,

indicating that paraphrasing causes only a minor increase in NLL.

In contrast, the half paraphrase leads to a much more significant

increase in NLL. Consequently, in Figure 3b, the 𝑝-value for the half

paraphrase decreases more rapidly, making it easier to distinguish

from non-member data.

We conjecture that half paraphrasing can introduce an abrupt

and unexpected change in the prediction sequence. When given a

prefix, the causal model relies on it to predict the likelihood distri-

bution of the next token. If the prefix comes from member data, the

model is likely to follow its memorization verbatim, even if that

memorization is weak. Paraphrasing the second half can disrupt

this expectation, leading to a higher NLL. Conversely, if the prefix

is from non-member data, the paraphrased text still appears rea-

sonable, and the model does not have a strong tendency to predict

the original text verbatim. In contrast, the whole paraphrasing does

not induce such unexpected changes, as no member prefix exists to

trigger a verbatim prediction based on memorization.

For VLMs, the image tokens in the input can be viewed as the

prefix. We will present the difference of the processing between

LLMs and VLMs in the following section.

4 Method
Based on the observations from the preliminary studies, in this

section, we propose our method, Self-Comparison Membership In-

ference (SMI). We first introduce the framework of Self-Comparison

to get the 𝑝-values in Section 4.1. Then we explain how to use the

𝑝-values and its trend as 𝑛 changes to determine membership in

Section 4.2. Lastly, we introduce a variant for a challenging case

where only the probability of the predicted token is available in

Section 4.3.

4.1 Self-Comparison
Building on preliminary studies, we propose SMI to infer the mem-

bership by analyzing the change of A-NLL distribution. To caption

this distribution shift, SMI uses the 𝑝-value derived from the hy-

pothesis testing between the datasets before and after paraphrasing.

4
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Figure 4: The framework of Self-Comparison

In this subsection, we provide a detailed explanation of the hypoth-

esis testing process and how the 𝑝-values are calculated. We name

the process to get the 𝑝-values as Self-Comparison. The framework

of Self-Comparison can be found in Figure 4, which is performed

in three key steps. We begin by detailing these steps using textual

datasets, specifically focusing on membership inference in LLMs.

Following this, we discuss how the framework adapts to multi-

modal datasets, such as VQA and captioning, to demonstrate the

framework for VLMs.

LLMs.As discussed in Section 3.3, to make the change of member

data more obvious and easier to capture, SMI takes advantage of

triggered memorization of prefix sequences. For a given set 𝑄 , Self-

Comparison processes it using the following steps.

(1) Half paraphrase. We first truncate all the samples of 𝑄 into

sequences with a length of 150 tokens, and then paraphrase

the second half of the sequence. To ensure the completeness

of sentences, we remove the last sentence if it is broken

resulting from truncation. To get a complete second half, we

segment the sequence by sentences rather than tokens. We

use Gemma 2 [44] for paraphrase. The paraphrase prompt

can be found in Appendix A.1.

(2) Membership Metric calculation. In the proposed SMI, we use

the most straightforward A-NLL as the metric. We calculate

the average NLL on the tokens in the second half of the

sequence. By inputting the original data and paraphrased

data into the LLMs, we obtain two sets of A-NLL values.

(It is worth noting that there is a challenge with certain

models, such as ChatGPT-4, which only return the log prob-

ability for the predicted token. We provide a comprehensive

discussion of this case in Section 4.3.)

(3) Comparison. Based on the preliminary studies, we know

that if the model is trained on 𝑄 , the distribution of A-NLL

should have a significant change. We calculate the 𝑝-values

of the hypothesis testing with𝐻0 that𝑄 is not member data.

To get the trend of 𝑝-value as the sample size increases,

we calculate a series of 𝐾 𝑝-values, {𝑝𝑖 | 1 ≤ 𝑖 ≤ 𝐾} at 𝐾
equal intervals, {𝑛𝑖 | 1 ≤ 𝑖 ≤ 𝐾}, where 𝑛𝑖 = 𝑖

𝐾
𝑁 and 𝑁

is the total number of samples in 𝑄 . We use the slope of

linear least-squares regression for 𝑝𝑖 and 𝑛𝑖 (such as the

orange dash line in 𝑝-value of 𝑄mem in Figure 4) to rep-

resent the trend of 𝑝-values. The slope can be denoted

as 𝛽 =

∑𝐾
𝑖=1 (𝑛𝑖−𝑛)

(
log𝑝𝑖−log𝑝

)∑𝐾
𝑖=1 (𝑛𝑖−𝑛)2

, where 𝑛 is the mean of

{𝑛𝑖 | 1 ≤ 𝑖 ≤ 𝐾} and log𝑝 is themean of {log 𝑝𝑖 | 1 ≤ 𝑖 ≤ 𝐾}.
It is worth mentioning that, based on our experiments in Sec-

tion 5, in SMI, 𝑁 = 500 is large enough to provide a solid inference.

This means that for web-scale large datasets, we do not need to test

the whole dataset. We can sample a set of size 𝑁 , which is efficient

and effective to verify the unauthorized dataset usage.

VLMs. For datasets such as VQA and image captioning, image

is also a part of input. This leads to a small difference in the step

of paraphrase. For such datasets, SMI keeps the image tokens and

questions unchanged and paraphrases the textual response. For the

datasets with multi-round chatting, we only use the first round. For

step (2) and (3), it is the same as LLMs.

After obtaining the results of 𝑝-values, in the following subsec-

tion, we present the determination conditions for classifying 𝑄 as

a training member.

4.2 Criteria for membership
Although we use hypothesis testing to get 𝑝-values, the traditional

significance level like 𝑝 = 0.01 is not applicable to our problem. As

we mentioned in Section 3.2, a small difference may lead to a small

𝑝-value of 𝑄non especially when 𝑛 is large. The paraphrase may

also bring in such small differences. In this subsection, for a more

rigorous membership inference, we propose to use an auxiliary

dataset 𝑄aux to eliminate the impact of paraphrase and present the

two criteria for membership using 𝑄aux.

SMI uses a non-member set as the auxiliary set, 𝑄aux. This 𝑄aux

is non-member, but not necessary to be the same distribution to 𝑄 .

It is easy to obtain from synthesized data, unpublished data, and the

data released after the model training date. We denote the 𝑝-values

from Self-Comparison of 𝑄aux as

{
𝑝′
𝑖
| 1 ≤ 𝑖 ≤ 𝐾

}
, and its slope as

𝛽′. In the following experiments of Section 5, we observe that 𝑝′
𝑖
is

usually larger than or close to 0.01 and 𝛽′ is close to 0. Based on

𝑄aux, we say that 𝑄 is the member data in the training set when it

satisfies the following two criteria:

𝛽 < 𝛽′ − 𝜖1, (2)

log𝑝𝐾 < log 𝑝′𝐾 − 𝜖2 . (3)

Both of the criteria indicate the change of A-NLL of 𝑄 should be

more significant than 𝑄aux. Eq. 2 means the slope of 𝑄 should be

smaller than𝑄aux by 𝜖1, while Eq. 3 means the 𝑝-value of𝑄 should
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be smaller than𝑄aux by 𝜖2. The constants, 𝜖1 and 𝜖2, are two margin

values to reduce randomness. They are not data-specific since the

𝑧-test is not data-specific for various datasets. This is different from

the threshold in sample-wise MIA methods.

Remarks. From the above pipeline of Self-Comparison and the

criteria, we can find that SMI does not rely on ground-truth member

data. This relaxes the strict assumptions andmakes the dataset-level

inference much more practical.

4.3 A variant when not the logits/probability of
the whole vocabulary are available

For some models such as the API of Together AI platform
2
, the

logits for the whole vocabulary at each token position are available.

For example, if the previous sequence is “Today is a sunny ...” and
the next token is predicted to be “day”, these models will provide

not only the probability of “day”, but also the probability of the

whole vocabulary. However, for other models like GPT-4o, they

only provide the probability of the predicted token. For example,

if 𝑄 has a sample that is “Today is a sunny and warm day”, we
need the probability of “and warm day” to calculate A-NLL. But

the model prediction is “Today is a sunny day”. It only provides the

probability of “day”, but we need the probability of “and”. This is a
more difficult scenario.

To solve this challenge, we propose to use a constant as the

probability of the unavailable tokens. To get the probability of “and
warm day”, we first input the prefix “Today is a sunny”, if the model

prediction on the next token is “and”, we can have the probability of
“and”. However, if the prediction is “day”, it means the probability

of “and” should be low. Thus, we assign a low constant probability

value (i.e., large NLL) to it. Then we add “and” into the prefix and

continue to input “Today is a sunny and” to predict “warm” until we

iterate through all the following tokens. With this improvement,

we can also use SMI when only the probability of the predicted

token is available.

5 Experiments
In this section, we present the experiments to show the effective-

ness of SMI. We conduct the experiments across different models

and datasets in Section 5.2, and ablation studies including model

size, sample size, and margin values in Section 5.3. Additionally, in

Appendix B, we also conduct the experiment to demonstrate the

effectiveness of SMI when only part of 𝑄 is used for training. Next,

we first introduce the experimental settings.

5.1 Experimental Settings
Suspect models and datasets.We conduct experiments on public

model checkpoints, models fine-tuned by ourselves, and API-based

commercial models. The details are as follows:

(1) For public checkpoints, we include two LLMs, Pythia [6] and
GPT-Neo [7], and two VLMs, LLaVA [26] and CogVLM [48]. The

training dataset of Pythia andGPT-Neo is PILE [14], andwe use New

Yorker Caption Contest (NY) [16] and FineWeb (F-CC) [34] crawled

in 2024 as 𝑄non and 𝑄aux. The training data of LLaVA includes

TextVQA (TVQA) [41], Visual Genome (VG) [23], and MS COCO

2
https://www.together.ai/

(COCO) [25]. The training data of CogVLM includes CogVLM-SFT

(Cog) [48]. And we use NoCaps (NC) [3] and Flickr (Flkr) [53] as

𝑄non and 𝑄aux for public VLMs.

(2) For fine-tuned models, we train Pythia-1.4B on FineWeb, NY,

or BBC news in 2024. We train LLaVA using Flickr or MS COCO.

To simulate the real-world fine-tuning, we add 118,000 unrelated

samples into the training set of Pythia-1.4B and 20,000 into LLaVA.

Each model is trained in one epoch.

(3) For API-based models, we use GPT-4o. Since 𝑄mem is un-

known, we use famous books, Bible, Pride and Prejudice (Pride), and
Harry Potter (HP), and BookMIA containing member (B-Pos) and

non-member (B-Neg) samples of OpenAI models. The non member

in BookMIA (B-Neg) and BBC news in 2024 are 𝑄non and 𝑄aux.

To further validate SMI, we use different datasets as 𝑄non and

𝑄aux alternatively.

Baselines. To ensure the fairness of experiments, we assume

all the baselines and SMI have no access to the ground-truth mem-

ber data, but have access to 𝑄aux which is non-member and does

not necessarily follow the same distribution as member data. The

baseline methods include DDI and three sample-level MIAs, A-NLL,

Min-𝑘% [39] and zlib ratio [10]. Each sample-level MIA calculates

a membership score and uses it to determine the membership of

one sample. We use the 45th percentile of the membership score

of 𝑄aux as the threshold (which is explained in Figure 5 and Sec-

tion 5.2). In the three MIAs, lower membership scores than the

threshold will be classified as member. In addition, to better match

the sample-level MIAs to the dataset-level tasks, we create variants

of them by counting the positives in 𝑄 . We first use sample-level

MIAs to classify each sample in 𝑄 . If more than 50% samples are

predicted as member by the sample-wise MIA, we classify 𝑄 as

member. Otherwise, it is classified as non-member.

Evaluation metrics.We use F1 score, recall, and precision as

evaluation metrics. In each original dataset, there are at least 900

samples. For dataset-level inference, to increase the number of

datasets and get more convincing results, we construct 300 sub-

sets from the original datasets, with each sub-set consisting of 500

randomly sampled sequences (𝑁 = 500) from the original dataset.

The 300 sub-sets are composed of 100 𝑄mems, 100 𝑄nons and 100

𝑄auxs. The metrics are calculated by the label and prediction for the

sub-sets. In addition, to better explain the variants of sample-level

MIA, we also calculate the evaluation metrics at the sample level

using all the samples in the original datasets and use them as a

reference.

Implementation details. For all the models, we only use the

output probability for membership inference. For all the results of

SMI, we use 𝜖1 = 0.01 and 𝜖2 = 10. For GPT-4o, we use the chat

template in Appendix A.2.

5.2 Main results
In this subsection, we show the effectiveness of our method in

different LLMs and VLMs. We reported the results of public model

checkpoints, the model fine-tuned by ourselves, and API-based

GPT-4o in Table 1. We get two observations from the results.

1. SMI outperforms all the baselinemethods across various
models and datasets. For public models and fine-tuned models,
Table 1 shows that the average F1 scores of SMI consistently exceed
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Table 1: Dataset-level membership inference on public and fine-tuned models. The results are F1 score (recall/precision). We
label the best average F1 score by bold fonts.

Public LLM Pythia-1.4B Pythia-6.9B Pythia-12B GPT-Neo-1.3B GPT-Neo-2.7B

Average

𝑄mem/𝑄non/𝑄aux PILE/F-CC/NY PILE/NY/F-CC PILE/F-CC/NY PILE/NY/F-CC PILE/F-CC/NY

A-NLL (Dataset) 0.667 (1.000/0.500) 1.000 (1.000/1.000) 0.667 (1.000/0.500) 1.000 (1.000/1.000) 0.667 (1.000/0.500) 0.800 (1.000/0.700)

Min-𝑘% (Dataset) 0.667 (1.000/0.500) 1.000 (1.000/1.000) 0.667 (1.000/0.500) 1.000 (1.000/1.000) 0.667 (1.000/0.500) 0.800 (1.000/0.700)

zlib (Dataset) 0.667 (1.000/0.500) 1.000 (1.000/1.000) 0.667 (1.000/0.500) 1.000 (1.000/1.000) 0.667 (1.000/0.500) 0.800 (1.000/0.700)

DDI 0.667 (1.000/0.500) 0.667 (1.000/0.500) 0.667 (1.000/0.500) 0.667 (1.000/0.500) 0.667 (1.000/0.500) 0.667 (1.000/0.500)

SMI (ours) 0.958 (0.920/1.000) 1.000 (1.000/1.000) 0.995 (1.000/0.990) 0.980 (0.970/0.990) 0.985 (0.970/1.000) 0.984 (0.972/0.996)

Public VLM LLaVA-v1.5 CogVLM-v1 CogVLM-v1-chat

Average

𝑄mem/𝑄non/𝑄aux TVQA/Flkr/NC VG/NC/Flkr COCO/Flkr/NC Cog/NC/Flkr Cog/Flkr/NC

A-NLL (Dataset) 0.667 (1.000/0.500) 1.000 (1.000/1.000) 0.669 (1.000/0.503) 0.000 (0.000/0.000) 0.667 (1.000/0.500) 0.600 (0.800/0.501)

Min-𝑘% (Dataset) 1.000 (1.000/1.000) 1.000 (1.000/1.000) 0.995 (1.000/0.990) 0.000 (0.000/0.000) 0.667 (1.000/0.500) 0.732 (0.800/0.698)

zlib (Dataset) 0.667 (1.000/0.500) 1.000 (1.000/1.000) 0.667 (1.000/0.500) 1.000 (1.000/1.000) 0.667 (1.000/0.500) 0.800 (1.000/0.700)

DDI 0.667 (1.000/0.500) 0.873 (1.000/0.775) 1.000 (1.000/1.000) 0.667 (1.000/0.500) 0.667 (1.000/0.500) 0.775 (1.000/0.655)

SMI (ours) 0.980 (0.990/0.971) 1.000 (1.000/1.000) 0.980 (1.000/0.962) 1.000 (1.000/1.000) 1.000 (1.000/1.000) 0.992 (0.998/0.986)

Fine-tuned Pythia-1.4B LLaVA (initialized by Vicuna)

Average

𝑄mem/𝑄non/𝑄aux F-CC/NY/BBC NY/BBC/F-CC BBC/F-CC/NY Flkr/NC/TC COCO/Flkr/VG

A-NLL (Dataset) 0.667 (1.000/0.500) 1.000 (1.000/1.000) 1.000 (1.000/1.000) 0.667 (1.000/0.500) 1.000 (1.000/1.000) 0.867 (1.000/0.800)

Min-𝑘% (Dataset) 0.667 (1.000/0.500) 1.000 (1.000/1.000) 1.000 (1.000/1.000) 0.667 (1.000/0.500) 1.000 (1.000/1.000) 0.867 (1.000/0.800)

zlib (Dataset) 0.667 (1.000/0.500) 1.000 (1.000/1.000) 1.000 (1.000/1.000) 0.667 (1.000/0.500) 0.667 (1.000/0.500) 0.800 (1.000/0.700)

DDI 0.667 (1.000/0.500) 0.694 (1.000/0.532) 0.667 (1.000/0.500) 0.667 (1.000/0.500) 0.667 (1.000/0.500) 0.672 (1.000/0.506)

SMI (ours) 1.000 (1.000/1.000) 0.995 (1.000/0.990) 1.000 (1.000/1.000) 0.971 (1.000/0.943) 1.000 (1.000/1.000) 0.993 (1.000/0.987)

API-based GPT-4o

Average

𝑄mem/𝑄non/𝑄aux Bible/B-Neg/BBC Pride/B-Neg/BBC HP/B-Neg/BBC B-Pos/B-Neg/BBC

A-NLL (Dataset) 1.000 (1.000/1.000) 0.000 (0.000/0.000) 0.000 (0.000/0.000) 0.000 (0.000/0.000) 0.250 (0.250/0.250)

Min-𝑘% (Dataset) 1.000 (1.000/1.000) 0.000 (0.000/0.000) 0.000 (0.000/0.000) 0.000 (0.000/0.000) 0.250 (0.250/0.250)

zlib (Dataset) 0.000 (0.000/0.000) 0.667 (1.000/0.500) 0.667 (1.000/0.500) 0.667 (1.000/0.500) 0.500 (0.750/0.375)

DDI 0.667 (1.000/0.500) 0.667 (1.000/0.500) 0.667 (1.000/0.500) 0.667 (1.000/0.500) 0.667 (1.000/0.500)

SMI (ours) 1.000 (1.000/1.000) 1.000 (1.000/1.000) 0.919 (0.850/1.000) 0.958 (0.920/1.000) 0.969 (0.943/1.000)

Table 2: Sample-level MIAs. The results are F1 score (recall/precision).

Public LLM Pythia-1.4B Pythia-6.9B Pythia-12B GPT-Neo-1.3B GPT-Neo-2.7B

Average

𝑄mem/𝑄non/𝑄aux PILE/F-CC/NY PILE/NY/F-CC PILE/F-CC/NY PILE/NY/F-CC PILE/F-CC/NY

A-NLL 0.684 (0.877/0.561) 0.785 (0.690/0.910) 0.689 (0.898/0.559) 0.783 (0.698/0.893) 0.682 (0.882/0.556) 0.725 (0.809/0.696)

Min-𝑘% 0.645 (0.756/0.563) 0.720 (0.658/0.794) 0.666 (0.803/0.569) 0.702 (0.649/0.764) 0.661 (0.790/0.568) 0.679 (0.731/0.651)

zlib 0.670 (0.886/0.539) 0.778 (0.659/0.951) 0.677 (0.906/0.541) 0.782 (0.659/0.961) 0.673 (0.892/0.540) 0.716 (0.800/0.706)

Public VLM LLaVA-v1.5 CogVLM-v1 CogVLM-v1-chat

Average

𝑄mem/𝑄non/𝑄aux TVQA/Flkr/NC VG/NC/Flkr COCO/Flkr/NC Cog/NC/Flkr Cog/Flkr/NC

A-NLL 0.701 (0.830/0.606) 0.822 (0.953/0.723) 0.780 (0.983/0.646) 0.371 (0.320/0.440) 0.737 (0.992/0.586) 0.682 (0.816/0.600)

Min-𝑘% 0.701 (0.787/0.632) 0.799 (0.961/0.683) 0.795 (0.962/0.677) 0.299 (0.251/0.371) 0.712 (0.881/0.598) 0.661 (0.768/0.592)

zlib 0.671 (0.865/0.549) 0.765 (0.755/0.776) 0.729 (0.982/0.580) 0.861 (0.935/0.797) 0.720 (0.999/0.563) 0.749 (0.907/0.653)

0.98, demonstrating that our method can accurately distinguish

member data. In contrast, while dataset-level MIA variants achieve

high F1 scores on some models, such as Pythia-6.9B and GPT-Neo-

1.3B, they perform poorly on others like Pythia-1.4B and CogVLM-

v1, resulting in significantly lower F1 scores and precision compared

to our method. This is because previous MIA approaches rely on

data-specific thresholds that are not consistently applicable across

different models and datasets (which are detailed below). As for DDI,

its performance is typically 0.667 (1.000/0.500), as it classifies every

𝑄 as member data regardless of its true label. While this allows it

to recall all member sets, it misclassifies all non-member sets as

member, leading to a precision of 0.5. For API-based GPT-4o, our
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Figure 5: Three regions for the
threshold of sample-level MIAs

Figure 6: F1 score of SMI on dif-
ferent sample sizes

Figure 7: F1 score of SMI on dif-
ferent margin values

Figure 8: 𝑝-values of SMI on
different model sizes

method significantly outperforms others, achieving an F1 score of

0.969. The performance of dataset-level MIA variants is worse than

their performance on public and fine-tuned models. This difference

is likely due to the lack of access to the probabilities of all tokens,

which may affect the accuracy of their membership scores.

2. The performance of sample-levelMIAs and their dataset-
level variants is highly dependent on the choice of threshold.
From Table 1, it is evident that the dataset-level variants of MIAs,

such as A-NLL (Dataset), often exhibit three distinct modes of F1

scores: 0.000, 0.667, and 1.000. These modes are a result of three

different threshold choices. In Figure 5, we plot the distributions of

A-NLL of 𝑄mem and 𝑄non and their medians. We can see that the

two medians split the x-axis into three regions. When the threshold

falls within the middle region (between the medians), indicated by

the green arrow in Figure 5, more than 50% member samples will

be correctly classified as member. Since all the samples in 𝑄mem

are member samples, 𝑄mem will be classified as member. Similarly,

less than 50% non-member data will be classified as member and

𝑄non will be classified as non-member. This leads to the correct

classification of every 𝑄 , and F1 score is 1.000. However, if the

threshold falls in the right region, all the 𝑄s will be classified as

member set. In this case, the F1 score drops to 0.667 (1.000/0.500),

which is similar to DDI, i.e., all the member sets are recalled, but the

precision is only 0.5. On the other hand, if the threshold is in the left

region, all 𝑄s are classified as non-member sets, meaning no mem-

ber sets are recalled, leading to an F1 score of 0.000 (0.000/0.000).

To choose the threshold from the middle region, we conjecture that

the distribution of 𝑄aux is more similar to 𝑄non since they are both

non-member. Then the middle region is possible to locate at the

left of the median of 𝑄aux. Thus, we use the 45th percentile of the

membership score of 𝑄aux as the threshold.

In addition, it is important to note that there is a significant

overlap between the distributions of𝑄mem and𝑄non, which means

it is hard to use a threshold to distinguish the member and non-

member samples. We conduct sample-level inference experiments

using sample-level MIAs and present the results of sample-level

MIAs in Table 2. As shown, most of the sample-level MIAs achieve

F1 scores of 0.65 to 0.7 on public models, (which is very low since

random guess has F1 score of 0.5, and predicting all the samples as

member is 0.667). The observed overlap helps to explain the poor

performance of existing sample-level MIAs.

In summary, our method can achieve significantly better perfor-

mance than baseline methods and does not rely on ground-truth

data to determine a data-specific threshold.

5.3 Ablation studies
In this subsection, we conduct ablation studies on sample size,

margin values and model size.

Sample size. In some scenarios, models may restrict the number

of allowed queries. Verifying membership with fewer samples be-

comes important. In Figure 6, we show F1 scores of SMI on public

models when fewer samples are available. Recall that we use 𝑁 to

represent the number of the total available samples. The results

demonstrate that the performance is stable and high when 𝑁 ≥ 300.

Even with 𝑁 ≥ 100, SMI achieves F1 scores above 0.76 across all

models, with most scores around 0.9. In summary, our method

maintains strong performance even with a limited sample size.

Margin values. In Figure 7, we demonstrate the effectiveness

of the two margin values, 𝜖1 and 𝜖2. The results show that both 𝜖1
and 𝜖2 improve performance compared to the case without margin

values. Using 𝜖2 alone yields a higher F1 score than using 𝜖1 alone.

Furthermore, combining both margin values leads to an even better

performance in the F1 score. This improvement occurs because the

margin values help reduce noise in the sampling process.

Model size. Larger models usually have more parameters which

might memorize larger datasets. In Figure 8, we present the trend

of 𝑝-values for the Pythia series across different model sizes. The

results indicate that as model size increases, the 𝑝-value decreases

faster. Notably, this decrease is evident even at a model size of

410M, demonstrating that our method can effectively distinguish

member data at this scale. In contrast, smaller models, such as

Pythia-70M, exhibit insufficient capacity to memorize large datasets.

These smaller models do not raise significant concerns as they

cannot effectively leverage the knowledge and corpus of the dataset.

6 Conclusion
In this paper, we propose a novel dataset-level membership infer-

ence method based on Self-Comparison. Instead of directly com-

paring member and non-member data, our approach leverages

paraphrasing on the second half of the sequence and evaluates

how the likelihood changes before and after paraphrasing. Unlike

prior approaches, our method does not require access to ground-

truth member data or non-member data in identical distribution,

enhancing its practicality. Extensive experiments demonstrate that

our proposed method outperforms traditional MIA and dataset

inference techniques across various datasets and models, includ-

ing public models, fine-tuned models, and API-based commercial

models.
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Figure 9: Membership inference when part of 𝑄 is used for
training. The x-axis is the ratio of 𝑄 used for training.

A Details on the prompts used in SMI
A.1 Paraphrasing
The prompt of paraphrasing using Gemma 2 is:

“You need to paraphrase the sentences that user gives. Directly
output the paraphrased texts! The input for you to paraphrase is as
follows:”

A.2 GPT-4o
The prompt for GPT-4o is :

“Please complete the following sentence. Output the next words
directly! The incomplete sentence is:”

B Additional experiments
We conduct experiments to test the membership inference perfor-

mance when part of data in 𝑄 is used for training, and plot the

results in Figure 9. To simulate the training with partial 𝑄 , we do

not directly re-train a model with part of 𝑄 . Instead, we use the

public model checkpoints, but mix non-member data into 𝑄 in the

membership inference process. For instance, if 𝑟% of 𝑄 consists

of non-member data, the result can be interpreted as the suspect

model using only 𝑟% of 𝑄 for training.

From the results, we can see that when more than 40% is used

for training, on most of models, our method can perform well

with F1 score higher than 0.9. In contrast, A-NLL (Dataset) is still

suffering from the problem of threshold at all ratios. Without the

prior knowledge to the ground-truth member data or data-specific

threshold, the performance is inconsistent on different models. As

for DDI, the membership inference still has a high false positive

rate. In summary, our method still outperforms baseline methods

when only part of 𝑄 is used for training.
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