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Abstract

While causal models are becoming one of the mainstays of machine learning, the
problem of uncertainty quantification in causal inference remains challenging. In
this paper, we study the causal data fusion problem, where datasets pertaining to
multiple causal graphs are combined to estimate the average treatment effect of
a target variable. As data arises from multiple sources and can vary in quality
and quantity, principled uncertainty quantification becomes essential. To that
end, we introduce Bayesian Interventional Mean Processes, a framework which
combines ideas from probabilistic integration and kernel mean embeddings to
represent interventional distributions in the reproducing kernel Hilbert space, while
taking into account the uncertainty within each causal graph. To demonstrate the
utility of our uncertainty estimation, we apply our method to the Causal Bayesian
Optimisation task and show improvements over state-of-the-art methods.

1 Introduction

Causal inference has seen a significant surge of research interest in areas such as healthcare [1],
ecology [2], and optimisation [3]. However, data fusion, the problem of merging information from
multiple data sources, has received limited attention in the context of causal modelling, yet presents
significant potential benefits for practical situations [4, 5]. In this work, we consider a causal data
fusion problem where two causal graphs are combined for the purposes of inference of a target
variable (see Fig.1). In particular, our goal is to quantify the uncertainty under such a setup and
determine the level of confidence in our treatment effect estimates.
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Figure 1: Example problem setup: Causal graphs collected in two separate medical studies i.e. [6]
and [7]. (Left)D1 : Data describing the causal relationships between statin level and Prostate Specific
Antigen (PSA). (Right) D2 : Data from a prostate cancer study for patients about to receive a radical
prostatectomy. Goal: Model EEE[Cancer Volume|do(Statin)] while also quantifying its uncertainty.

Let us consider the motivating example in Fig.1, where a medical practitioner is investigating how
prostate cancer volume is affected by a statin drug dosage. We consider the case where the doctor
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only has access to two separate medical studies describing the quantities of interest. On one hand we
have observational data, from one medical study D1 [1], describing the causal relationship between
statin level and prostate specific antigen (PSA), and on the other hand we have observational data,
from a second study D2 [7], that looked into the link between PSA level and prostate cancer volume.
The goal is to model the interventional effect between our target variable (cancer volume) and the
treatment variable (statin). This problem setting is different from the standard observational scenario
as it comes with the following challenges:

• Unmatched data: Our goal is to estimate E[cancer volume|do(statin)] but the observed
cancer volume is not paired with statin dosage. Instead, they are related via a mediating
variable PSA.

• Uncertainty quantification: The two studies may be of different data quantity/quality.
Furthermore, a covariate shift in the mediating variable, i.e. a difference between its
distributions in two datasets, may cause inaccurate extrapolation. Hence, we need to account
for uncertainty in both datasets.

Formally, let X be the treatment (Statin), Y be the mediating variable (PSA) and T our target (cancer
volume), and our aim is to estimate E[T |do(X)]. The problem of unmatched data in a similar context
has been previously considered by [5] using a two-staged regression approach (X → Y and Y → T ).
However, uncertainty quantification, despite being essential if our estimates of interventional effects
will guide decision-making, has not been previously explored. In particular, it is crucial to quantify
the uncertainty in both stages as this takes into account the lack of data in specific parts of the space.
Given that we are using different datasets for each stage, there are also two sources of epistemic
uncertainties (due to lack of data) as well as two sources of aleatoric uncertainties (due to inherent
randomness in Y and T ) [8] . It is thus natural to consider regression models based on Gaussian
Processes (GP) [9], as they are able to model both types of uncertainties. However, as GPs, or any
other standard regression models, are designed to model conditional expectations only and will fail
to capture the underlying distributions of interest (e.g. if there is multimodality in Y as discussed
in [10]). This is undesirable since, as we will see, interventional effect estimation requires accurate
estimates of distributions. While one could in principle resort to density estimation methods, this
becomes challenging since we typically deal with a number of conditional/ interventional densities.

In this paper, we introduce the framework of Bayesian Interventional Mean Processes (BAYESIMP)
to circumvent the challenges in the causal data fusion setting described above. BAYESIMP considers
kernel mean embeddings [11] for representing distributions in a reproducing kernel Hilbert space
(RKHS), in which the whole arsenal of kernel methods can be extended to probabilistic inference (e.g.
kernel Bayes rule [12], hypothesis testing [13], distribution regression [14]). Specifically, BAYES-
IMP uses kernel mean embeddings to represent the interventional distributions and to analytically
marginalise out Y , hence accounting for aleatoric uncertainties. Further, BAYESIMP uses GPs to
estimate the required kernel mean embeddings from data in a Bayesian manner, which allows to
quantify the epistemic uncertainties when representing the interventional distributions. To illustrate
the quality of our uncertainty estimates, we apply BAYESIMP to Causal Bayesian Optimisation [15],
an efficient heuristic to optimise objective functions of the form x∗ = arg minx∈X E[T |do(X) = x].
Our contributions are summarised below:

1. We propose a novel Bayesian Learning of Conditional Mean Embedding (BAYESCME) that
allows us to estimate conditional mean embeddings in a Bayesian framework.

2. Using BAYESCME, we propose a novel Bayesian Interventional Mean Process
(BAYESIMP) that allows us to model interventional effect across causal graphs without
explicit density estimation, while obtaining uncertainty estimates for E[T |do(X) = x].

3. We apply BAYESIMP to Causal Bayesian Optimisation, a problem introduced in [15] and
show significant improvements over existing state-of-the-art methods.

Note that [16] also considered a causal fusion problem but with a different objective. They focused
on extrapolating experimental findings across treatment domains, i.e. inferring E[Y |do(X)] when
only data from p(Y |do(S)) is observed, where S is some other treatment variable. In contrast, we
focus on modelling combined causal graphs, with a strong emphasis on uncertainty quantification.
While [17] considered mapping interventional distributions in the RKHS to model quantities such
as E[T |do(X)], they only considered a frequentist approach, which does not account for epistemic
uncertainties.
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Figure 2: A general two stage
causal learning setup.

Notations. We denote X,Y, Z as random variables taking
values in the non-empty sets X ,Y and Z respectively. Let
kx : X × X → R be positive definite kernels on X with an
associated RKHS Hkx . The corresponding canonical feature
map kx(x′, ·) is denoted as φx(x′). Analogously for Y and Z.

In the simplest setting, we observe i.i.d samples D1 =
{xi, yi, zi}Ni=1 from joint distribution PXY Z which we con-
catenate into vectors x := [x1, ..., xN ]>. Similarly for y and z. For this work, X is referred as
treatment variable, Y as mediating variable and Z as adjustment variables accounting for confound-
ing effects. With an abuse of notation, features matrices are defined by stacking feature maps along
the columns, i.e Φx := [φx(x1), ..., φx(xN )]. We denote the Gram matrix as Kxx := Φ>x Φx and the
vector of evaluations kxx as [kx(x, x1), ..., kx(x, xN )]. We define Φy,Φz analogously for y and z.

Lastly, we denote T = f(Y ) + ε as our target variable, which is modelled as some noisy evaluation
of a function f : Y → T on Y while ε being some random noise. For our problem setup we observe
a second dataset of i.i.d realisations D2 = {ỹj , tj}Mj=1 from the joint PY T independent of D1. Again,
we define ỹ := [ỹ1, ..., ỹM ]> and t := [t1, ..., tM ]> just like for D1. See Fig.2 for illustration.

2 Background

Representing interventional distributions in an RKHS1 has been explored in different contexts
[18, 17, 19]. In particular, when the treatment is continuous, [17] introduced the Interventional Mean
Embeddings (IMEs) to model densities in an RKHS by utilising smoothness across treatments. Given
that IME is an important building block to our contribution, we give it a detailed review by first
introducing the key concepts of do-calculus [20] and conditional mean embeddings [21].

2.1 Interventional distribution and do-calculus

In this work, we consider the structural causal model [20] (SCM) framework, where a causal directed
acyclic graph (DAG) G is given and encodes knowledge of existing causal mechanisms amongst
the variables in terms of conditional independencies. Given random variables X and Y , a central
question in interventional inference [20] is to estimate the distribution p(Y |do(X) = x), where
{do(X) = x} represents an intervention on X whose value is set to x. Note that this quantity is
not directly observed given that we are usually only given observational data, i.e, data sampled
from the conditional p(Y |X) but not from the interventional density p(Y |do(X)). However, Pearl
[20] developed do-calculus which allows us to estimate interventional distributions from purely
observational distributions under the identifiability assumption. Here we present the backdoor and
front-door adjustments, which are the fundamental components of DAG based causal inference.

Figure 3: (Top) Backdoor
adjustment (Bottom)
Front-door adjustment,
dashed edges denote
unobserved confounders.

The backdoor adjustment is applicable when there are observed confound-
ing variables Z between the cause X and the effect Y (see Fig. 3 (Top)).
In order to correct for this confounding bias we can use the following equa-
tion, adjusting for Z as p(Y |do(X) = x) =

∫
Z p(Y |X = x, z)p(z)dz.

The front-door adjustment applies to cases when confounders are un-
observed (see Fig. 3 (Bottom)). Given a set of front-door adjustment
variables Z, we can again correct the estimate for the causal effect fromX
to Y with p(Y |do(X) = x) =

∫
Z
∫
X p(Y |x

′, z)p(z|X = x)p(x′)dx′dz.

We rewrite the above formulae in a more general form as we show below.
For the remainder of the paper we will opt for this notation:

p(Y |do(X) = x) = EΩx
[p(Y |Ωx)] =

∫
p(Y |Ωx)p(Ωx)dΩx (1)

For backdoor we have Ωx = {X = x, Z} and p(Ωx) = δxp(Z) where
δx is the Dirac measure at X = x. For front-door, Ωx = {X ′, Z} and p(Ωx) = p(X ′)p(Z|X = x).

1We refer the reader to a detailed review of RKHS methods provided in the Appendix of [5]
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2.2 Conditional Mean Embeddings

Kernel mean embeddings of distributions provide a powerful framework for representing probability
distributions [11, 21] in an RKHS. In particular, we work with conditional mean embeddings (CMEs)
in this paper. Given random variables X,Y with joint distribution PXY , the conditional mean
embedding with respect to the conditional density p(Y |X = x), is defined as:

µY |X=x := EY |X=x[φy(Y )] =

∫
Y
φy(y)p(y|X = x)dy (2)

CMEs allow us to represent the distribution p(Y |X = x) as an element µY |X=x in the RKHSHky
without having to model the densities explicitly. Following [21], CMES can be associated with a
Hilbert-Schmidt operator CY |X : Hkx → Hky , known as the conditional mean embedding operator,
which satisfies µY |X=x = CY |Xφx(x) where CY |X := CY XC−1

XX with CY X := EY,X [φy(Y ) ⊗
φx(X)] and CXX := EX,X [φx(X)⊗ φx(X)] being the covariance operators. As a result, the finite
sample estimator of CY |X based on the dataset {x,y} can be written as:

ĈY |X = Φy(Kxx + λI)−1ΦTx (3)

where λ > 0 is a regularization parameter. Note that from Eq.3, [22] showed that the CME can be
interpret as a vector-valued kernel ridge regressor (V-KRR) i.e. φx(x) is regressed to an element in
Hky . This is crucial as CMEs allow us to turn the integration, in Eq.2, into a regression task and
hence remove the need for explicit density estimation. This insight is important as it allows us to
derive analytic forms for our algorithms. Furthermore, the regression formalism of CMEs motivated
us to derive a Bayesian version of CME using vector-valued Gaussian Processes (V-GP), see Sec.3.

2.3 Interventional Mean Embeddings

Interventional Mean Embeddings (IME) [17] combine the above ideas to represent interventional
distributions in RKHSs. We derive the front-door adjustment embedding here but the backdoor
adjustment follows analogously. Denote µY |do(X)=x as the IME corresponding to the interventional
distribution p(Y |do(X) = x), which can be written as:

µY |do(X)=x :=

∫
Y
φy(y)p(y|do(X) = x)dy =

∫
X

∫
Z

(∫
Y
φy(y)p(y|x′, z)dy

)
︸ ︷︷ ︸

CME µY |X=x,Z=z

p(z|x)p(x′)dzdx′

using the front-door formula with adjustment variable Z, and rearranging the integrals. By definition
of CME

∫
φy(y)p(y|x′, z)dy = CY |X,Z(φx(x′)⊗ φz(z)) and linearity of integration, we have

= CY |X,Z

(∫
X
φx(x′)p(x′)dx′︸ ︷︷ ︸

=µX

⊗
∫
Z
φz(z)p(z|x)dz︸ ︷︷ ︸

=µZ|X=x

)
= CY |X,Z

(
µX ⊗ µZ|X=x

)

Using notations from Sec.2.1, embedding interventional distributions into an RKHS is as follows.
Proposition 1. Given an identifiable do-density of the form p(Y |do(X) = x) = EΩx [p(Y |Ωx)], the
general form of the empirical interventional mean embedding is given by,

µ̂Y |do(X)=x = ΦY (KΩx + λI)−1ΦΩx(x)> (4)

where KΩx
= KXX �KZZ and ΦΩx

(x) is derived depending on p(Ωx). In particular, for backdoor
adjustments, Φ

(bd)
Ωx

(x) = Φ>XkX(x, ·)�Φ>Z µ̂z and for front-door Φ
(fd)
Ωx

(x) = Φ>X µ̂X �Φ>Z µ̂Z|X=x.

3 Our Proposed Method

Two-staged Causal Learning. Given two independent datasets D1 = {(xi, zi, yi)}Ni=1 and D2 =
{(ỹj , tj)}Mj=1, our goal is to model the average treatment effect in T when intervening on variable X ,
i.e model g(x) = E[T |do(X) = x]. Note that the target variable T and the treatment variable X are
never jointly observed. Rather, they are linked via a mediating variable Y observed in both datasets.
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Figure 4: Two-staged causal learning problem

METHODS Stage 1 Stage 2

IME [17] KRR KRR
IMP (Ours) KRR GP
BAYESIME (Ours) GP KRR
BAYESIMP (Ours) GP GP

Table 1: Summary of our proposed methods

In our problem setting, we make the following two assumptions: (A1) The treatment only affects
the target through the mediating variable, i.e T ⊥⊥ do(X)|Y → P (T |do(X), Y ) = p(T |Y ), in other
words, that in the true data generating model P(X, Y, Z, T), all causal paths from X to T are mediated
through Y. and (A2) Function f given by f(y) = E[T |Y = y] belongs to an RKHSHky .2

We can thus express the average treatment effect as:

g(x) = E[T |do(X) = x] =

∫
Y

E[T |do(X) = x, Y = y]︸ ︷︷ ︸
=E[T |Y=y], since T⊥⊥do(X)|Y

p(y|do(X) = x)dy (5)

=

∫
Y
f(y)p(y|do(X) = x)dy = 〈f, µY |do(X)=x〉Hky

. (6)

The final expression decomposes the problem of estimating g into that of estimating the IME µY |do(X)

(which can be done using D1) and that of estimating the integrand f : Y → T (which can be done
using D2). Each of these two components can either be estimated using a GP or KRR approach (See
Table 1). Furthermore, the reformulation as an RKHS inner product is crucial, as it circumvents the
need for density estimation as well as the need for subsequent integration in Eq.6. Rather, the main
parts of the task can now be viewed as two instances of regression (recall that mean embeddings can
be viewed as vector-valued regression).

To model g and quantify its uncertainty, we propose 3 GP-based approaches. While the first 2 methods,
Interventional Mean Process (IMP) and Bayesian Interventional Mean Embedding (BAYESIME)
are novel derivations that allow us to quantify uncertainty from either one of the datasets, we treat
them as intermediate yet necessary steps to derive our main algorithm, Bayesian Interventional Mean
Process (BAYESIMP), which allows us to quantify uncertainty from both sources in a principled way.
For a summary of the methods, see Fig.4 and Table 1. All derivations are included in the appendix.

Interventional Mean Process: Firstly, we train f as a GP using D2 and model µY |do(X)=x as V-
KRR using D1. By drawing parallels to Bayesian quadrature [24] and conditional mean process
introduced in [25], the integral of interest g(x) =

∫
f(y)p(y|do(X) = x)dy will be a GP indexed by

the treatment variable X . We can then use the empirical embedding µ̂Y |do(X) learnt in D1 to obtain
an analytic mean and covariance of g.

Bayesian Interventional Mean Embedding: Next, to account for the uncertainty from D1, we model
f as a KRR and µY |do(X)=x using a V-GP. We introduce our novel Bayesian Learning of Conditional
Mean Embeddings (BAYESCME), which uses a nuclear dominant kernel [26] construction, similar to
[27], to ensure that the inner product 〈f, µY |do(X)=x〉 is well-defined. As the embedding is a GP, the
resulting inner product is also a GP and hence takes into account the uncertainty in D1.(See Prop. 4).

Bayesian Interventional Mean Process: Lastly, in order to account for uncertainties coming from
both D1 and D2, we combine ideas from the above IMP and BAYESIME. We place GPs on both
f and µY |do(X) and use their inner product to model E[T |do(X)]. Interestingly, the resulting
uncertainty can be interpreted as the sum of uncertainties coming from IMP and BAYESIME with an
additional interaction term (See Prop.5).

3.1 Interventional Mean Process

Firstly, we consider the case where f is modelled using a GP and µY |do(X)=x using a V-KRR. This
allows us to take into account the uncertainty from D2 by modelling the relationship between Y and

2We note that this two-staged setup resembles Instrumental Variable [23] (IV) regression. However, our
general setup allows the IV and the treatment to be confounded, which is not the case in standard IV regression.
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T using in a GP. Drawing parallels to Bayesian quadrature [24] where integrating f with respect
to a marginal measure results into a Gaussian random variable, we integrate f with respect to a
conditional measure, thus resulting in a GP indexed by the conditioning variable. Note that [25]
studied this GP in a non-causal setting, for a very specific downscaling problem. In this work, we
extend their approach to model uncertainty in the causal setting. The resulting mean and covariance
are then estimated analytically, i.e without integrals, using the empirical IME µ̂Y |do(X) learnt from
D1, see Prop.2.
Proposition 2 (IMP). Given dataset D1 = {(xi, yi, zi)}Ni=1 and D2 = {(ỹj , tj)}Mj=1, if f is the
posterior GP learnt from D2, then g =

∫
f(y)p(y|do(X))dy is a GP GP(m1, κ1) defined on the

treatment variable X with the following mean and covariance estimated using µ̂Y |do(X) ,

m1(x) = 〈µ̂Y |do(x),mf 〉Hky
= ΦΩx(x)>(KΩx + λI)−1Kyỹ(Kỹỹ + λfI)−1t (7)

κ1(x, x′) = µ̂>Y |do(x)µ̂Y |do(x′) − µ̂>Y |do(x)Φỹ(Kỹỹ + λI)−1Φ>ỹ µ̂Y |do(x′) (8)

= ΦΩx
(x)>(KΩx

+ λI)−1K̃yy(KΩx
+ λI)−1ΦΩx

(x′) (9)

where µ̂Y |do(x) = µ̂Y |do(X)=x,Kỹy = Φ>ỹ Φy, mf and K̃yy are the posterior mean function and
covariance of f evaluated at y respectively. λ > 0 is the regularisation of the CME. λf > 0 is the
noise term for GP f . Ωx is the set of variables as specified in Prop.1.

Summary: The posterior covariance between x and x′ in IMP can be interpreted as the similarity
between their corresponding empirical IMES µ̂Y |do(X)=x and µ̂Y |do(X)=x′ weighted by the posterior
covariance K̃yy, where the latter corresponds to the uncertainty when modelling f as a GP in D2.
However, since f only considers uncertainty in D2, we need to develop a method that allows us to
quantify uncertainty when learning the IME from D1. In the next section, we introduce a Bayesian
version of CME, which then lead to BAYESIME, a remedy to this problem.

3.2 Bayesian Interventional Mean Embedding

To account for the uncertainty in D1 when estimating µY |do(X), we consider a GP model for CME,
and later extend to the interventional embedding IME. We note that Bayesian formulation of CMEs
has also been considered in [28], but with a specific focus on discrete target spaces.

Bayesian learning of conditional mean embeddings with V-GP. As mentioned in Sec.2, CMEs
have a clear "feature-to-feature" regression perspective, i.e E[φy(Y )|X = x] is the result of regressing
φy(Y ) onto φx(X). Hence, we consider a vector-valued GP construction to estimate the CME.

Let µgp(x, y) be a GP that models µY |X=x(y). Given that f ∈ Hky , for 〈f, µgp(x, ·)〉Hky
to be

well defined, we need to ensure µgp(x, ·) is also restricted to Hky for any fixed x. Consequently,
we cannot define a GP(0, kx ⊗ ky) prior on µgp as usual, as draws from such prior will almost
surely fall outside Hkx ⊗Hky [26]. Instead we define a prior over µgp ∼ GP(0, kx ⊗ ry), where
ry is a nuclear dominant kernel [26] over ky, which ensures that samples paths of µgp live in
Hkx ⊗Hky almost surely. In particular, we follow a similar construction as in [27] and model ry
as ry(yi, yj) =

∫
ky(yi, u)ky(u, yj)ν(du) where ν is some finite measure on Y . Hence we can now

setup a vector-valued regression inHky as follows:

φy(yi) = µgp(xi, ·) + λ
1
2 εi (10)

where εi ∼ GP(0, r) are independent noise functions. By taking the inner product with φy(y′) on
both sides, we then obtain ky(yi, y

′) = µgp(xi, y
′) + λ

1
2 εi(y

′). Hence, we can treat k(yi, yj) as
noisy evaluations of µgp(xi, yj) and obtain the following posterior mean and covariance for µgp.
Proposition 3 (BAYESCME). The posterior GP of µgp given observations {x,y} has the following
mean and covariance:

mµ((x, y)) = kxx(Kxx + λI)−1KyyR
−1
yyryy (11)

κµ((x, y), (x′, y′)) = kxx′ry,y′ − kxx(Kxx + λI)−1kxx′ryyR
−1
yyryy′ (12)

In addition, the following marginal likelihood can be used for hyperparameter optimisation,

−N
2

(
log |Kxx + λI|+ log |R|

)
− 1

2
Tr

(
(Kxx + λI)−1KyyR

−1
yyKyy

)
(13)
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Note that in practice we fix the lengthscale of ky and ry when optimising the above likelihood. This is
to avoid trivial solutions for the vector-valued regression problem as discussed in [10]. The Bayesian
version of the IME is derived analogously and we refer the reader to appendix due to limited space.

Finally, with V-GPS on embeddings defined, we can model g(x) as 〈f, µgp(x, ·)〉Hky
, which due to

the linearity of the inner product, is itself a GP. Here, we first considered the case where f is a KRR
learnt from D2 and call the model BAYESIME.
Proposition 4 (BAYESIME). Given dataset D1 = {(xi, yi, zi)}Ni=1 and D2 = {(ỹj , tj)}Mj=1, if f
is a KRR learnt from D2 and µY |do(X) modelled as a V-GP using D1, then g = 〈f, µY |do(X)〉 ∼
GP(m2, κ2) where,

m2(x) = ΦΩx
(x)>(KΩx

+ λI)−1KyyR
−1
yyRyỹA (14)

κ2(x, x′) = BΦΩx(x)>ΦΩx(x)− CΦΩx(x)>(KΩx + λI)−1ΦΩx(x′) (15)

where A = (Kỹỹ + λfI)−1t, B = A>RỹỹA and C = A>RỹyR
−1
yyRyỹA

Summary: Constants B and C in κ2 can be interpreted as different estimation of ||f ||Hky
, i.e the

RKHS norm of f . As a result, for problems that are “harder” to learn in D2, i.e. corresponding to
larger magnitude of ||f ||Hky

, will result into larger values of B and C. Therefore the covariance κ2

can be interpreted as uncertainty in D1 scaled by the difficulty of the problem to learn in D2.

3.3 Bayesian Interventional Mean Process

To incorporate both uncertainties in D1 and D2, we combine ideas from IMP and BAYESIME to
estimate g = 〈f, µY |do(X)〉 by placing GPs on both f and µY |do(X). Again as before, a nuclear
dominant kernel ry was used to ensure the GP f is supported onHky . For ease of computation, we
consider a finite dimensional approximation of the GPs f and µY |do(X) and estimate g as the RKHS
inner product between them. In the following we collate y and ỹ into a single set of points ŷ, which
can be seen as landmark points for the finite approximation [29]. We justify this in the Appendix.

Proposition 5 (BAYESIMP). Let f and µY |do(X) be GPs learnt as above. Denote f̃ and µ̃Y |do(X)

as the finite dimensional approximation of f and µY |do(X) respectively. Then g̃ = 〈f̃ , µ̃Y |do(X)〉 has
the following mean and covariance:

m3(x) = ExKyŷK
−1
ŷŷRŷỹ(Rỹỹ + λfI)−1t (16)

κ3(x, x′) = ExΘ>1 R̃ŷŷΘ1E
>
x′︸ ︷︷ ︸

Uncertainty fromD1

+ Θ
(a)
2 Fxx′ −Θ

(b)
2 Gxx′︸ ︷︷ ︸

Uncertainty fromD2

+ Θ
(a)
3 Fxx′ −Θ

(b)
3 Gxx′︸ ︷︷ ︸

Uncertainty from Interaction

(17)

where Ex = ΦΩx
(x)>(KΩx

+ λI)−1, Fxx′ = ΦΩx
(x)>ΦΩx

(x′), Gxx′ = ΦΩx
(x)>(KΩx

+

λI)−1ΦΩx
(x′), and Θ1 = K−1

ŷŷRŷyR
−1
yyKyy, Θ

(a)
2 = Θ>4 RŷŷΘ4,Θ

(b)
2 = Θ>4 RŷyR

−1
yyRyŷΘ4

and Θ
(a)
3 = tr(K−1

ŷŷRŷŷK
−1
ŷŷ R̄ŷŷ),Θ

(b)
3 = tr(RŷyR

−1
yyRyŷK

−1
ŷŷ R̄ŷŷK

−1
ŷŷ ) and Θ4 =

K−1
ŷŷRŷỹ(Kỹỹ + λf )−1t. R̄ŷŷ is the posterior covariance of f evaluated at ŷ

Summary: While the first two terms in κ3 resemble the uncertainty estimates from IMP and
BAYESIME, the last term acts as an extra interaction between the two uncertainties from D1 and
D2. We note that unlike IMP and BAYESIME, g̃ from Prop.5 is not a GP as inner products between
Gaussian vectors are not Gaussian. Nonetheless, the mean and covariance can be estimated.

4 Experiments

In this section, we first present an ablation studies on how our methods would perform under settings
where we have missing data parts at different regions of the two datasets. We then demonstrate
BAYESIMP’s proficiency in the Causal Bayesian Optimisation setting.

In particular, we compare our methods against the sampling approach considered in [15]. [15] start by
modelling f : Y → T as GP and estimate the density p(Y |do(X)) using a GP along with do-calculus.
Then given a treatment x, we obtain L samples of yl and R samples of fr from their posterior GPs.
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Figure 5: Ablation studies of various methods in estimating uncertainties for an illustrative experiment.
∗ indicates our methods. N = M = 100 data points are used. Uncertainty from sampling gives a
uniform estimate of uncertainty and IME does not come with uncertainty estimates. We see IMP and
BAYESIME covering different regions of uncertainty while BAYESIMP takes the best of both worlds.

The empirical mean and standard deviation of the samples {fr(yl)}L,Rl=1,r=1 can now be taken to
estimate E[T |do(X) = x] as well as the correspondingly uncertainty. We emphasize that this point
estimation requires repeated sampling and is thus inefficient compared to our approaches, where we
explicitly model the uncertainty as covariance function.

Ablation study. In order to get a better intuition into our methods, we will start off with a preliminary
example, where we investigate the uncertainty estimates in a toy case. We assume two simple causal
graphs X −→ Y for D1 and Y −→ T for D2 and the goal is to estimate E[T |do(X) = x] (generating
process given in the appendix). We compare our methods from Sec.3 with the sampling-based
uncertainty estimation approach described above. In Fig.5 we plot the mean and the 95% credible
interval of the resulting GP models for E[T |do(X) = x]. On the x-axis we also plotted a histogram
of the treatment variable x to illustrate its density.

From Fig.5(a), we see that the uncertainty for sampling is rather uniform across the ranges of x
despite the fact we have more data around x = 0. This is contrary to our methods, which show
a reduction of uncertainty at high x density regions. In particular, x = −5 corresponds to an
extrapolation of data, where x gets mapped to a region of y where there is no data in D2. This fact
is nicely captured by the spike of credible interval in Fig.5(c) since IMP utilises uncertainty from
D2 directly. Nonetheless, IMP failed to capture the uncertainty stemming from D1, as seen from
the fact that the credible interval did not increase as we have less data in the region |x| > 5. In
contrast, BAYESIME (Fig.5(d)) gives higher uncertainty around low x density regions but failed to
capture the extrapolation phenomenon. Finally, BAYESIMP Fig.5(e) seems to inherit the desirable
characteristics from both IMP and BAYESIME, due to taking into account uncertainties from both
D1, D2. Hence, in the our experiments, we focus on BAYESIMP and refer the reader to the appendix
for the remaining methods.

BayesIMP for Bayesian Optimisation (BO). We now demonstrate, on both synthetic and real-world
data, the usefulness of the uncertainty estimates obtained using our methods in BO tasks. Our goal
is to utilise the uncertainty estimates to direct the search for the optimal value of E[T |do(X) = x]
by querying as few values of the treatment variable X as possible, i.e. we want to optimize for
x∗ = arg minx∈X E[T |do(X) = x]. For the first synthetic experiment (see Fig.6 (Top)), we will use
the following two datasets: D1 = {xi, ui, zi, yi}Ni=1 and D2 = {ỹj , tj}Mj=1. Note that BAYESIMP
from Prop.5 is not a GP as inner products between Gaussian vectors are not Gaussian. Nonetheless,
with the mean and covariance estimated, we will use moment matching to construct a GP out of
BAYESIMP for posterior inference. At the start, we are given D1 and D2, where these observations
are used to construct a GP prior for the interventional effect of X on T , i.e E[T |do(X) = x], to
provide a “warm” start for the BO.

Figure 6: Illustration of syn-
thetic data experiments.

Again we compare BAYESIMP with the sampling-based estimation
of E[T |do(X)] and its uncertainty, which is exactly the formulation
used in the Causal Bayesian Optimisation algorithm (CBO) [15]. In
order to demonstrate how BAYESIMP performs in the multimodal
setting, we will be considering the case where we have the following
distribution on Y i.e. p(y|u, z) = πp1(y|u, z) + (1− π)p2(y|u, z)
where Y is a mixture and π ∈ [0, 1]. These scenarios might arise
when there is an unobserved binary variable which induces a switch-
ing between two regimes on how Y depends on (U,Z). In this case,
the GP model of [15] would only capture the conditional expecta-
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tion of Y with an inflated variance, leading to slower convergence and higher variance in the estimates
of the prior as we will show in our experiments. Throughout our experiments, similarly to [15], we
will be using the expected improvement (EI) acquisition function to select the next point to query.

Synthetic data experiments. We compare BAYESIMP to CBO as well as to a simple GP with no
learnt prior as baseline. We will be using N = 100 datapoints for D1 and M = 50 datapoints D2.
We ran each method 10 times and plot the resulting standard deviation for each iteration in the figures
below. The data generation and details were added in the Appendix. We see from the Fig.7 that

Figure 7: We are interested in finding the maximal value of E[T |do(X) = x] with as few BO
iterations as possible. We ran experiments with multimodality in Y . (Left) Using front-door
adjustment (Middle) Using backdoor adjustment (Right) Using backdoor adjustment (unimodal Y )

BAYESIMP is able to find the maxima much faster and with smaller standard deviations, than the
current state-of-the-art method, CBO, using both front-door and backdoor adjustments (Fig.7(Right,
Middle)). Given that our method uses more flexible representations of conditional distributions, we
are able to circumvent the multimodality problem in Y . In addition, we also consider the unimodal
version, i.e. π = 0 (see right Fig.7). We see that the performance of CBO improves in the unimodal
setting, however BAYESIMP still converges faster than CBO even in this scenario.

Next, we consider a harder causal graph (see Fig.6 (Bottom)), previously considered in [15]. We
again introduce multimodality in the Y variable in order to explore the case of more challenging
conditional densities. We see from Fig.8 (Left, Middle), that BAYESIMP again converges much
faster to the true optima than CBO [15] and the standard GP prior baseline. We note that the fast
convergence of BAYESIMP throughout our experiments is not due to simplicity of the underlying
BO problems. Indeed, the BO with a standard GP prior requires significantly more iterations. It is
rather the availability of the observational data, allowing us to construct a more appropriate prior,
which leads to a “warm” start of the BO procedure.

Figure 8: (Left) Experiments where we are interested in E[T |do(D) = d] with multimodal Y ,
(Middle) Experiments where we are interested in E[T |do(E) = e] with multimodal Y , (Right)
Experiments on healthcare data where we are interested in E[Cancer Volume|do(Statin)].

Healthcare experiments. We conclude with a healthcare dataset corresponding to our motivating
medical example in Fig.1. The causal mechanism graph, also considered in the CBO paper [15],
studies the effect of certain drugs (Aspirin/Statin) on Prostate-Specific Antigen (PSA) levels [6].
In our case, we modify statin to be continuous, in order to optimize for the correct drug dosage.
However, in contrast to [15], we consider a second experimental dataset, arising from a different
medical study, which looks into the connection between PSA levels and cancer volume amount in
patients [7]. Similar to the original CBO paper [15], given that interventional data is hard to obtain,
we construct data generators based on the true data collected in [7]. This is done by firstly fitting a GP
on the data and then sampling from the posterior (see Appendix for more details). Hence this is the
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perfect testbed for our model where we are interested in E[Cancer Volume|do(Statin)]. We see from
Fig.8 (Right) that BAYESIMP again converges to the true optima faster than CBO hence allowing us
to find the fastest ways of optimizng cancer volume by requesting much less interventional data. This
could be critical as interventional data in real-life situations can be very expensive to obtain.

5 Discussion and Conclusion

In this paper we propose BAYESIMP for quantifying uncertainty in the setting of causal data fusion.
In particular, our proposed method BAYESIMP allows us to represent interventional densities in
the RKHS without explicit density estimation, while still accounting for epistemic and aleatoric
uncertainties. We demonstrated the quality of the uncertainty estimates in a variety of Bayesian
optimization experiments, in both synthetic and real-world healthcare datasets, and achieve significant
improvement over current SOTA in terms of convergence speed. However, we emphasize that
BAYESIMP is not designed to replace CBO but rather an alternative model for interventional effects.

In the future, we would like to improve BAYESIMP over several limitations. As in [15], we assumed
full knowledge of the underlying causal graph, which might be limiting in practice. Furthermore, as
the current formulation of BAYESIMP only allows combination of two causal graphs, we hope to
generalise the algorithm into arbitrary number of graphs in the future. Causal graphs with recurrent
structure will be an interesting direction to explore. Lastly, we would also like to include a cost
function as in [15] to constrain the search space to the most sensible solutions.
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