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ABSTRACT

Learning in games is a fundamental problem in machine learning and artificial
intelligence, with many successful applications (Silver et al., 2016; Schrittwieser
et al., 2020). We consider the problem of learning in matrix games, where two
players engage in a two-player zero-sum game with an unknown payoff matrix
and bandit feedback. In this setting, players can observe their actions and the cor-
responding (noisy) payoffs at each round. This problem has been studied in the
literature, and several algorithms have been proposed to address it (O’Donoghue
et al., 2021; Maiti et al., 2023; Cai et al., 2023). In particular, O’Donoghue et al.
(2021) demonstrated that deterministic optimism (e.g., the UCB algorithm for ma-
trix games) plays a central role in achieving sublinear regret and outperforms other
algorithms. However, despite numerous applications, the theoretical understand-
ing of learning in matrix games remains underexplored. Specifically, it remains
an open question whether randomised optimism can also exhibit sublinear regret.
In this paper, we propose a novel algorithm called Competitive Co-evolutionary
Bandit Learning (COEBL) for unknown two-player zero-sum matrix games. By
integrating evolutionary algorithms (EAs) into the bandit framework, COEBL in-
troduces randomised optimism through the variation operator of EAs. We prove
that COEBL also enjoys sublinear regret, matching the regret performance of algo-
rithms based on deterministic optimism (O’Donoghue et al., 2021). To the best of
our knowledge, this is the first work that provides a regret analysis of an evolution-
ary bandit learning algorithm in matrix games. Empirically, we compare COEBL
with classical bandit algorithms, including EXP3 (Auer et al., 2002), the variant of
EXP3-IX (Cai et al., 2023), and UCB algorithms analysed in O’Donoghue et al.
(2021) across several matrix game benchmarks. Our results show that COEBL
not only enjoys sublinear regret, but also outperforms existing methods in various
scenarios. These findings reveal the promising potential of evolutionary bandit
learning in game-theoretic settings, in particular, the effectiveness of randomised
optimism via evolutionary algorithms.

1 INTRODUCTION

1.1 TWO-PLAYER ZERO-SUM GAMES

Triggered by Von Neumann’s seminal work (Von Neumann, 1928; Von Neumann et al., 1953), the
maximin optimisation problem (i.e., maxx2X miny2Y g(x, y)) has become a major research topic
in machine learning and optimisation. In particular, two-player zero-sum games, represented by a
payoff matrix A 2 Rm⇥m, are a popular class of problems explored in much of the current machine
learning and AI literature (Littman, 1994; Auger et al., 2015; O’Donoghue et al., 2021; Cai et al.,
2023). The row player selects i 2 [m], the column player selects j 2 [m] and these choices, leading
to a payoff Aij (i.e. the row player receives the payoff Aij and the column player receives the payoff
�Aij). Generally, we are interested in finding the optimal mixed strategy, which is the probability
distribution over all actions for each player. Thus, we can formulate our problem as follows: to find
x
⇤
, y

⇤
2 �m, where �m denotes the probability simplex of dimension m� 1, satisfying

V
⇤
A := max

x2�m

min
y2�m

y
T
Ax. (1)

1
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By minimax theorem (Von Neumann, 1928), V ⇤
A = miny2�m maxx2�m y

T
Ax. (x⇤

, y
⇤) solving

for Eq.(1) is also called Nash equilibrium. V ⇤
A is the shared optimal quantity at the Nash equilibrium.

In this paper, we call it the Nash equilibrium payoff.

Nash’s Theorem, or the Minimax Theorem, guarantees the existence of (x⇤
, y

⇤) for Eq.(1) (Von Neu-
mann, 1928; Nash, 1950). If the payoff matrix is given or known, then Eq.(1) can be reformulated as
a linear programming problem, and it can be solved in polynomial runtime using algorithms includ-
ing the ellipsoid method or interior point method (Bubeck et al., 2015; Maiti et al., 2023). Now, if
the payoff matrix is unknown, let the row and column player play an iterative two-player zero-sum
game. At each iteration, based on their action, we can query one of the entries in the payoff ma-
trix, and then both players can adjust their strategies based on the observed payoff (or reward). We
repeat these iterations until the stopping criteria are met. This kind of two-player zero-sum game
is called repeated matrix games (or matrix games, for short). Our interest lies in algorithms that
can outperform others in matrix games. One of the common metrics measuring the performance of
algorithms in matrix games is regret, which will be defined in later sections. We are also interested
in whether they can find or approximate the Nash equilibrium (x⇤

, y
⇤), as measured by metrics such

as KL-divergence or total variation distance.

1.2 EVOLUTIONARY REINFORCEMENT LEARNING AND COEVOLUTION

Evolutionary Algorithms (EAs) are randomised heuristics that mimic natural selection to solve opti-
misation problems (Popovici et al., 2012; Eiben & Smith, 2015). EAs aim to find global optima with
minimal knowledge about fitness functions, making them well-suited for black-box or oracle settings
compared to gradient-based methods. They are powerful tools for discovering effective reinforce-
ment learning policies. EAs are particularly useful because they can identify good representations,
manage continuous action spaces, and handle partial observability. Due to these strengths, evolu-
tionary reinforcement learning (ERL) techniques have shown strong empirical success and we refer
readers to (Whiteson, 2012; Bai et al., 2023; Li et al., 2024a) for detailed reviews of ERL.

Coevolution, a concept from evolutionary biology, describes the interactions between individuals
evolving together. It occurs when an individual’s fitness depends on others also evolving (Popovici
et al., 2012). Coevolution can be either cooperative, such as the relationship between humans and
gut bacteria, or competitive, like predator-prey dynamics. These coevolutionary dynamics have been
studied and applied in ERL, demonstrating empirical effectiveness in many applications (Whiteson,
2012; Xue et al., 2024; Li et al., 2024a). For example, co-evolutionary algorithms (CoEAs), a subset
of EAs, have been applied in many black-box optimisation problems under various game-theoretic
optimisation scenarios (Xue et al., 2024; Gomes et al., 2014; Hemberg et al., 2021; Flores et al.,
2022; Fajardo et al., 2023; Hevia Fajardo et al., 2024; Benford & Lehre, 2024a).

Evolutionary reinforcement learning has achieved great success in many applications, including
game playing, robotics, and optimisation (Moriarty et al., 1999; Khadka & Tumer, 2018; Pourchot
& Sigaud, 2019; HAO et al., 2023; Li et al., 2024b;c), but there is barely any theoretical analysis
of these powerful methods. In particular, the theoretical understanding of coevolutionary learning
remains blanked, especially in the context of matrix games. As a starting point, in this paper, we
combine evolutionary heuristics with bandit learning and explore this combination in matrix games
from both theoretical and empirical perspectives.

1.3 CONTRIBUTIONS

This paper introduces evolutionary algorithms for learning in matrix games with bandit feedback. To
the best of our knowledge, this is the first paper to rigorously analyse the regret of evolutionary re-
inforcement learning (i.e., COEBL) for matrix games with bandit feedback. Specifically, we demon-
strate that randomised optimism via evolution can also exhibit sublinear regret in matrix games.
Our empirical results show that COEBL outperforms the existing bandit baselines for matrix games,
including EXP3, UCB, and the EXP3-IX variant. These findings highlight the great potential of evo-
lutionary algorithms for bandit learning in matrix games and reveal the importance of randomness in
game playing. It serves as the first step towards rigorously theoretical understanding of evolutionary
reinforcement learning.
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1.4 RELATED WORKS

1.4.1 REGRET ANALYSIS OF BANDIT LEARNING IN MATRIX GAMES

Theoretical analysis of bandit learning algorithms in matrix games has been extensively studied.
Recent works, such as (Auger et al., 2015; O’Donoghue et al., 2021; Cai et al., 2023), have exam-
ined classical bandit algorithms in matrix games, where only rewards or payoffs are observed. In
particular, O’Donoghue et al. (2021) conducted a detailed regret analysis on the UCB algorithm,
Thompson Sampling, and K-Learning 1. They showed sublinear regret bounds for these existing
bandit baselines in matrix games. Neu (2015) proved a sublinear regret bound for EXP3-IX, and
later, Cai et al. (2023) proposed a new variant of EXP3-IX for matrix games. Additionally, Auger
et al. (2015) convergence analyses of bandit algorithms on sparse binary zero-sum games, while Cai
et al. (2023) extended the convergence analysis to uncoupled bandit learning in two-player zero-sum
Markov games. However, the theoretical analysis of evolutionary reinforcement learning remains
largely unexplored. Our work aims to address this gap, marking the first step toward understanding
evolutionary bandit learning in matrix games, an exciting and under-explored area.

1.4.2 RUNTIME ANALYSIS OF COEVOLUTIONARY ALGORITHMS ON GAMES

Recent studies have conducted runtime analyses of coevolutionary algorithms in two-player zero-
sum games (Jansen & Wiegand, 2004; Lehre, 2022; Hevia Fajardo & Lehre, 2023; Fajardo et al.,
2023; Lehre & Lin, 2024; Benford & Lehre, 2024a;b). In this context, runtime refers to the number
of function evaluations required by the algorithms to find the Nash equilibrium. For a more detailed
introduction to these works, we refer readers to the recent paper by Benford & Lehre (2024b). While
we do not analyse the runtime of COEBL in this paper, it would be interesting to explore how the
runtime of COEBL could be studied in the context of matrix games with bandit feedback in future
work. The idea of competitive coevolution in game-theoretic settings is derived from the works
mentioned in this section, which we apply to the bandit learning in matrix games.

2 PRELIMINARIES

2.1 NOTATIONS

Given n 2 N, we write [n] := {1, 2, · · · , n}. Fp denotes the finite field of p (prime number)
elements. For example, F3 denotes the finite field of three elements, {�1, 0, 1}. We denote the row
player by the x-player and the column player by the y-player. f(n) 2 O(h(n)) if there exists some
constant c > 0 such that f(n)  ch(n). f(n) 2 Õ(h(n)) if there exists some constant k > 0
such that f 2 O(h(n) logk (h(n))). We define the (m � 1)-dimensional probability simplex as
�m := {z 2 Rm

|
Pm

i=1 zi = 1, zi � 0}. In each round t 2 N, the row player chooses it 2 [m],
and the column player chooses jt 2 [m]; and then rt is the reward obtained by the row player. We
define the corresponding filtration Ft prior to round t by Ft := (i1, j1, r1, . . . , it�1, jt�1, rt�1).
We denoted Et(·) := E(· | Ft). For any real number x, we define 1 _ x := max(1, x). Given
x 2 {0, 1}n, |x|1 :=

Pn
i=1 xi.

Definition 1. A random variable X 2 R is �2-sub-Gaussian with variance proxy �
2 if E(X) = 0

and its moment generating function satisfies E(exp(sX))  exp
⇣

�2s2

2

⌘
, for all s 2 R.

2.2 P-ARY TWO-PLAYER ZERO-SUM GAMES AND NASH REGRET

A two-player game is defined by the strategy spaces X and Y , along with payoff functions gi :
X ⇥ Y ! R, where i 2 [2]. Here, gi(x, y) represents the payoff to player i when player 1 plays
strategy x and player 2 plays strategy y.
Definition 2. Given a two-player game with strategy spaces X and Y and prime number p 2 N,
the payoff functions g1, g2 : X ⇥ Y ! R are defined for player 1 and player 2, respectively. The
game is zero-sum if player 1’s gain is exactly equal to player 2’s loss (and vice versa), meaning

1UCB has been shown to outperform the other two algorithms in (O’Donoghue et al., 2021); hence, we
consider UCB as our primary baseline for matrix games in this paper.
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g1(x, y) + g2(x, y) = 0 for all x 2 X and y 2 Y . If g1(x, y), g2(x, y) 2 Fp for all x, y 2 X ,
the game is called p-ary (i.e. binary if p = 2, ternary if p = 3 and quinary if p = 5). Given a
payoff function g : X ⇥Y ! Fp, we refer to the game with payoff functions g1(x, y) = g(x, y) and
g2(x, y) = �g(x, y) as the p-ary zero-sum game defined by g.

Many classical games where the outcomes are win/lose/draw, such as Rock-Paper-Scissors, Tic-Tac-
Toe and Go, can be modelled as ternary zero-sum games by identifying g(x, y) = 1 with a win for
player 1, g(x, y) = �1 with a win for player 2, and g(x, y) = 0 with a draw. In this paper, we
mainly focus on ternary two-player zero-sum games.

In matrix games, we consider the Nash regret as our performance measure, defined as the cumulative
difference between the Nash equilibrium payoff in Eq.(1) and the rewards obtained by the players.
Definition 3 (Nash Regret (O’Donoghue et al., 2021)). Consider any matrix game with payoff
matrix A 2 Rm⇥m and the reward for the row player choosing action it 2 [m] and the column player
choosing action jt 2 [m] is given by rt = Aitjt + ⌘t, where ⌘t is zero-mean noise, independent and
identically distributed from a known distribution at iteration t 2 N. Given an algorithm ALG that
maps the filtration Ft to a distribution over actions x 2 �m, we define the Nash regret with respect
to the Nash equilibrium payoff V ⇤

A 2 R by

R (A, ALG, T ) := E⌘,ALG

 
TX

t=1

V
⇤
A � rt

!
.

Given any class of games A 2 A, we define
WORSTCASEREGRET (A, ALG, T ) := max

A2A
R (A, ALG, T ) .

Given a fixed unknown payoff matrix A, R (A, ALG, T ) represents the expected cumulative differ-
ence between the Nash equilibrium payoff and the rewards obtained by player 1 using ALG over
T iterations. WORSTCASEREGRET (A, ALG, T ) considers the maximum regret of Algorithm ALG
over all the possible payoff matrices in the class of games A. In other words, it denotes the expected
regrets under the worst-case scenario.

3 CO-EVOLUTIONARY BANDIT LEARNING FOR MIXED NASH EQUILIBRIUM

3.1 LEARNING IN GAMES AND COEBL

Many studies have analysed how players learn to reach equilibrium when playing against opponents
(Fudenberg & Levine, 1998). Briefly speaking, learning in games aims to understand how a player
can learn to reach or approximate equilibrium and win the games when playing against either rational
or irrational opponents. One of the common measures to evaluate the performance of algorithms in
games is regret, which is defined in Definition 3. Other measures include convergence to Nash
equilibrium, which can be measured by KL-divergence or total variation distance.

In this paper, we only present the algorithm for the x-player as the algorithm for the opponent is
symmetric. We defer other algorithms to the supplementary material and only present the proposed
algorithm in this section. COEBL stands for Co-Evolutionary Bandit Learning. We use Āt

ij to denote
the empirical mean of the samples from Aij and n

t
ij 2 [t] [ {0} to denote the number of times the

row player chooses action i and the column player chooses j up to round t.

The following mutation variant is considered in this paper.

Mutate(Āt
ij ,

1

1 _ nt
ij

) = Āt
ij +N

 s
c log(2T 2m2)

1 _ nt
ij + 1

,
1

(1 _ nt
ij)

2

!
,

where N
�
µ,�

2
�

denotes a Gaussian random variable with mean µ and variance �
2, and c is some

constant with respect to T and m.

Evolutionary algorithms consist of two main components: variation operators and selection mecha-
nisms. Variation operators can generate new individuals from the current population, and the selec-
tion mechanism chooses the best individuals from the population based on the fitness function. In

4
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Algorithm 1 COEBL for matrix games

Require: Fitness function: Fitness(x,B) := miny2�m y
T
Bx where B 2 Rm⇥m and x 2 �m.

1: Initialisation: x0, y0 = (1/m, . . . , 1/m) and n
0
ij = 0 for all i, j 2 [m]

2: for round t = 1, 2, . . . , T do
3: for all i, j 2 [m] do
4: Compute Ã

t
ij = Mutate(Āt

ij , 1/1 _ n
t
ij)

5: end for
6: Obtain the mutated policy x

0
2 argmaxx2�m miny2�m y

T
Ã

t
x

7: if Fitness(x0
, Ã

t) > Fitness (xt�1, Ã
t) then

8: Update policy xt := x
0

9: else
10: Update policy xt := xt�1

11: end if
12: Update the query number of each entry in the payoff matrix n

t
ij for all i, j 2 [m]

13: end for

COEBL, the fitness function Fitness(x,B) := miny2�m y
T
Bx is used to evaluate the performance

of policy x against the best response of the opponent given payoff matrix B. At the beginning,
COEBL employs a Gaussian mutation operator to generate a new estimated payoff matrix Ã

t and
then the mutated policy x

0 for the row player. Note that, since the estimated payoff matrix Ã is
always fully accessible to the x-player, x0 in line 6 can be obtained by solving a linear programming
problem (Bubeck et al., 2015; Maiti et al., 2023). Between lines 7 and 10, we use the fitness function
to evaluate the performance of policy x

0 and compare it with the previous policy xt�1. If the new
policy x

0 strictly outperforms the previous policy xt�1, we update the policy xt to x
0; otherwise we

keep the policy xt as xt�1.

The main idea of COEBL is to employ the principle of ‘optimism in the face of uncertainty’ (OFU)
to explore the action space and exploit the opponent’s best response (Bubeck et al., 2012; Lattimore
& Szepesvári, 2020). However, the main difference between COEBL and other bandit algorithms
including the original UCB family is that COEBL adopts randomised optimism through the use of
evolutionary algorithms. As a result, via the variation operator, COEBL can generate more diverse
estimated payoff matrices, leading to more diverse policies. Then, the selection mechanisms guide
the evolutionary process towards higher fitness. Unlike (O’Donoghue et al., 2021), which men-
tioned that deterministic optimism plays a central role in enabling UCB (Algorithm 4) to exhibit
sublinear regret and outperform the classic EXP3 and other bandit baselines, we will show that ran-
domised optimism (via evolution) also exhibits sublinear regret. Furthermore, we will demonstrate
that randomised optimism in matrix games can be more effective and adaptive in preventing ex-
ploitation by the opponent than deterministic optimism, and thus outperforms existing bandit base-
lines. Specifically, it outperforms the current bandit baseline algorithms for matrix games, including
EXP3 (Algorithm 3), UCB (Algorithm 4) and the EXP3-IX variant (Algorithm 5) on the matrix
game benchmarks discussed in this paper.

3.2 REGRET ANALYSIS OF COEBL

In this section, we conduct the regret analysis of COEBL in matrix games. Before our analysis, we
need some technical lemmas. We defer these lemmas to the appendix.

We follow the setting in (O’Donoghue et al., 2021) and consider the case where there is 1-sub-
Gaussian noise when querying the payoff matrix. Assume the following, given t 2 N:

(A): The noise process ⌘t is 1-sub-Gaussian and the payoff matrix satisfies A 2

[0, 1]m⇥m.

Lemma 1. Suppose Assumption (A) holds with T � 2m2
� 2 and � :=

�
1/2T 2

m
2
�c/8 where

c > 0 is the mutation rate in COEBL. For each iteration t 2 N, given Ã
t in Algorithm 1, we have:

Pr
⇣
Aij � (Ãt)ij  0

⌘
� 1� �, for all i, j 2 [m]. (2)

5
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Theorem 2 (Main Result). Consider any two-player zero-sum matrix game. Under Assumption
(A) with T � 2m2

� 2 and � =
�
1/2T 2

m
2
�c/8, where c > 0 is the mutation rate in COEBL, the

worst-case Nash regret of COEBL for c � 8 is bounded by 2
p

2cTm2 log(2T 2m2), i.e., Õ(
p
m2T ).

Sketch of Proof. Due to page limit, we defer the full proof to the appendix and provide a simple
proof sketch here. First, we bound the regret under the case where all the entries of the estimated
payoff matrix are greater than those of the real, unknown payoff matrix (this event is denoted by E

c
t

at iteration t 2 N). Secondly, we use the law of total probability to consider both cases: when all
the entries of the estimated payoff matrix are greater than the real payoff matrix, and the converse
(i.e., event Et). We already have the upper bound for the first part; the second part can be trivially
bounded by 1 in each iteration. Using Lemma 1, we can obtain the upper bound of probability of
event Et. Combining these bounds provides us with the upper bound for the regret of COEBL.

Theorem 2 shows that, under the worst-case scenario (assuming the best response of the opponent
across all the possible matrix game instances under Assumption (A)), COEBL can also exhibit sub-
linear regret. More precisely, the regret of COEBL is bounded by Õ(

p
m2T ), which is the same

as the regret bound of UCB. This implies that deterministic optimism in the face of uncertainty is
not the crucial factor for achieving sublinear regret, as discussed in (O’Donoghue et al., 2021). The
current results considers c � 8 in the analysis due to current technical limitations. We conjecture
that the regret bound can be improved by considering smaller c values, and thus, in practical use, we
suggest one may need hyperparameter tuning in various problems. Additionally, as we will show
later, randomised optimism via evolution can be more robust than deterministic optimism in game
playing, and therefore COEBL outperforms the other algorithms in the following benchmarks.

4 EMPIRICAL RESULTS

In this section, we present empirical results comparing the discussed algorithms. We are interested
in empirical regret in specific game instances, measured by cumulative (absolute) regret, i.e.,

TX

t=1

|V
⇤
A � rt| and

TX

t=1

V
⇤
A � rt (3)

where rt is the obtained reward at round t. We focus on two scenarios, including self-play and
ALG 1-vs-ALG 2. In the self-play scenario, both row and column players use the same algorithm
with the same information. We use the absolute regret (the first metric) to measure the performance
of the algorithms in this case. The ALG 1-vs-ALG 2 is a generalisation of the self-play scenario. We
use the second metric in Eq. 3 to measure the performance of the algorithms. The ALG 1-vs-ALG 2
means the row player uses ALG 1, and the column player uses ALG 2 with the same information. As
in the setting of (O’Donoghue et al., 2021), the plots below show the regret (not absolute regret) from
the maximiser’s (ALG 1) perspective. A positive regret value means that the minimiser (ALG 2) is,
on average winning and vice versa. This allows us to compare our algorithms directly.

Moreover, to measure how far the players are from the Nash equilibrium, we use the KL-divergence
between the policies of both players and the Nash equilibrium or the total variation distance (for the
case where the KL-divergence is not well-defined), i.e.,

KL(xt, x
⇤) + KL(yt, y⇤) :=

X

i

xt(i) ln

✓
xt(i)

x⇤(i)

◆
+
X

j

yt(j) ln

✓
yt(j)

y⇤(j)

◆

TV(xt, x
⇤) + TV(yt, y

⇤) :=
1

2

X

i

|xt(i)� x
⇤(i)|+

1

2

X

j

|yt(j)� y
⇤(j)|

where (x⇤
, y

⇤) is the Nash equilibrium of A.

Parameter Settings: Given K is the number of actions for each player and T is the time
horizon, for EXP3, we use the exploration rate �t = min{

p
K logK/T , 1} and learning rate

⌘t =
p
2 logK/TK as suggested in O’Donoghue et al. (2021). For the variant of EXP3-IX, we use

the same settings ⌘t = t
�k⌘ , �t = t

�k� , "t = t
�k" where k⌘ = 5

8 , k� = 3
8 , k" = 1

8 as suggested in

6
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Cai et al. (2023). For COEBL, we set the mutation rate c = 2 for the RPS game and c = 8 for the rest
of the games. There is no hyperparameter needed for UCB. For the observed reward, we consider
standard Gaussian noise with zero mean and unit variance, i.e. rt = Ait,jt +⌘t where ⌘t ⇠ N (0, 1).
We compute the empirical mean of the regrets and the KL-divergence (or total variation distance),
and present the 95% confidence intervals in the plots. We run 50 independent simulations for each
configuration (over 50 seeds).

4.1 ROCK-PAPER-SCISSORS GAME

We consider the classic matrix game benchmark: Rock-Paper-Scissors games (Littman, 1994;
O’Donoghue et al., 2021), and its payoff matrix is defined as follows.

R P S
R 0 1 -1
P -1 0 1
S 1 -1 0

Table 1: The payoff matrix of RPS game. R denotes rock, P denotes paper, and S denotes scissors.

It is well known that x⇤
, y

⇤ = (1/3, 1/3, 1/3) is the unique mixed Nash equilibrium of the RPS
game for both players. We conduct experiments using Algorithms 3 to 5 and compare them with our
proposed Algorithm 1 (i.e. COEBL) on the classic matrix game benchmark: the RPS game.

Figure 1: Regret and KL-divergence for Self-Plays on RPS games

In Figure 1, we present the self-play results of each algorithm. We can observe that COEBL also
exhibits sublinear regret in the RPS game, similar to other bandit baselines, and matches our theo-
retical bound. In terms of the KL-divergence, EXP3, as reported in (O’Donoghue et al., 2021; Cai
et al., 2023), diverges from the Nash equilibrium. By zooming in on the KL-divergence plot, we can
observe that COEBL and UCB converges to the Nash equilibrium faster than the other algorithms;
especially, EXP3-IX has a much slower convergence rate.

Next, we compare the performance of the algorithms by examining their regret bounds and KL-
divergence from the Nash equilibrium when algorithms compete with each other using the same
information. In Figure 2, we can clearly observe that COEBL outperforms the EXP3 family, includ-
ing EXP3 and EXP3-IX, in terms of regret. On average, COEBL has a smaller advantage over UCB
in terms of regret, since the empirical mean of regret is above 5 but below 10 after iteration 2000.

The RPS game with a small number of actions is relative simple for these algorithms to play. More-
over, although COEBL completely outperforms the EXP3 family, it does not have an overwhelming
advantage over the UCB. How do these algorithms behave on more complex games with exponen-
tially many actions? Can COEBL still take over the game? Next, we answer these questions by
considering DIAGONAL and BIGGERNUMBER games.

4.2 DIAGONAL GAME

DIAGONAL is a pseudo-Boolean maximin-benchmark on which Lehre & Lin (2024) conducted
runtime analysis of coevolutionary algorithms. Both players have an exponential number (i.e. 2n)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Exp3 vs COEBL (b) Exp3-IX vs COEBL (c) UCB vs COEBL

Figure 2: Regret for ALG 1-vs-ALG 2 on RPS games

of pure strategies. To distinguish between pure strategies that consist of the same number of 1,
we modify the original DIAGONAL by introducing a ‘draw’ outcome. For U = {0, 1}n and V =
{0, 1}n, the payoff function DIAGONAL : U ⇥ V ! {0, 1} is defined by

DIAGONAL(u, v) :=

8
<

:

1 |v|1 < |u|1

0 |v|1 = |u|1

�1 otherwise
.

As shown by Lehre & Lin (2024), this game (we provide a simple example in the appendix) exhibits
a unique pure Nash equilibrium where both players choose 1n. This corresponds to the mixed
Nash equilibrium where x

⇤ = (0, · · · , 1) and y
⇤ = (0, · · · , 1). We conduct experiments using

Algorithms 3 to 5 and compare them with our proposed Algorithm 1 (i.e. COEBL) on another
matrix game benchmark: the DIAGONAL game. We set the mutation constant c = 8 for COEBL and
consider n = 2, 3, 4, 5, 6, 7 in the experiments.

(a) n = 2 (b) n = 3 (c) n = 4

(d) n = 2 (e) n = 3 (f) n = 4

Figure 3: Regret and TV Distance for Self-Plays on DIAGONAL

In Figures 3 and 7, we present the self-play results of each algorithm on DIAGONAL game for various
values of n. Our results show that COEBL consistently exhibits sublinear regret in the DIAGONAL
game, aligning with our theoretical bounds and similar to other bandit algorithms. As n increases,
the regret of the baseline algorithms grows as expected. COEBL remains more adaptive and robust
in more challenging games, maintaining sublinear regret beneath the theoretical bound (0.1

p
K2T ),

as indicated by the black dotted line. We also observe that the regrets of all algorithms increases as

8
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n grows, which is expected due to the exponential increase in the number of pure strategies and the
corresponding complexity of the game. In terms of convergence measured by TV-distance, COEBL
converges to the Nash equilibrium for n = 2, 3, while the baseline algorithms do not converge.
However, for n � 4, as the number of strategies grows exponentially, COEBL also struggles to
converge to the Nash equilibrium. In Figures 4 and 8, we present the regrets for ALG 1-vs-ALG 2
on DIAGONAL. The empirical regrets across all algorithms exceed 16.2, with a maximum of 389.8
for n = 6, indicating that the minimiser is dominant. In other words, COEBL outperforms the other
bandit algorithms across all values of n, from 2 to 7.

(a) (b) (c)

Figure 4: Regret for ALG 1-vs-ALG 2 on DIAGONAL.

4.3 BIGGERNUMBER GAME

BIGGERNUMBER is another challenging two-player zero-sum game proposed and analysed by
Zhang & Sandholm (2024). In this game, each player aims to select a number that is larger than
their opponent’s. The players’ action space is X = {0, 1}n, representing binary bitstrings of length
n corresponding to natural numbers in the range [0, 2n � 1]. A formal definition and the complete
results can be found in the appendix. We present part of the results here.

(a) n = 2 (b) n = 3 (c) n = 4

(d) n = 2 (e) n = 3 (f) n = 4

Figure 5: Regret and TV Distance for Self-Plays on BIGGERNUMBER

In summary, we conducted extensive experiments on three matrix games: the RPS game, the DIAG-
ONAL game, and the BIGGERNUMBER game. In terms of regret performance, COEBL in self-play

9
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(a) (b) (c)

Figure 6: Regret for ALG 1-vs-ALG 2 on BIGGERNUMBER.

aligns with our theoretical bounds. Moreover, COEBL consistently outperforms other bandit base-
lines when competing across various matrix game benchmarks, as shown in Figures 4 and 6. COEBL
matches the performance of UCB and converges more quickly than EXP3-IX in the RPS game. CO-
EBL converges to the Nash equilibrium for n = 2, 3 and for n = 2, 3, 4, respectively, while the
other baselines do not converge, as shown in Figures 3 and 5. Therefore, we conclude that COEBL is
a promising algorithm for matrix games, demonstrating sublinear regret, outperforming other ban-
dit baselines, and achieving convergence to the Nash equilibrium in several matrix game instances.
However, as the number of strategies grows exponentially, COEBL, like other algorithms, fails to
converge to the Nash equilibrium. This observation points out the current limitation of existing
algorithms in exponentially large matrix games, and it will be an exciting path for future research.

5 CONCLUSION AND DISCUSSION

This paper addresses the unsolved problem of learning in unknown two-player zero-sum matrix
games with bandit feedback, proposing a novel algorithm, COEBL, which integrates evolutionary
algorithms with bandit learning. To the best of our knowledge, this is the first work that combines
evolutionary algorithms and bandit learning for matrix games and provides regret analysis of evolu-
tionary bandit learning (EBL) algorithms in this context. This paper demonstrates that randomised
or stochastic optimism, particularly through evolutionary algorithms, can also enjoy a sublinear re-
gret in matrix games, offering a more robust and adaptive solution compared to traditional methods.

Theoretically, we prove that COEBL exhibits sublinear regret in matrix games, extending the rig-
orous understanding of evolutionary approaches in bandit learning. Practically, we show through
extensive experiments on various matrix games—including the RPS, DIAGONAL, and BIGGER-
NUMBER games that COEBL outperforms existing bandit baselines, offering practitioners a new
tool (randomised optimism via evolution) for handling matrix games playing with bandit feedback.

Despite these promising results, our work has some limitations. Theoretically, we only consider two-
player zero-sum games, which is consistent with prior studies such as (O’Donoghue et al., 2021; Cai
et al., 2023). Extending COEBL to general-sum games with more players or to Markov games rep-
resents an exciting and challenging avenue for future research. More technically, we conjecture
whether Theorem 2 could also hold for smaller value of c < 8 with certain threshold. Additionally,
our analysis assumes sub-Gaussian noise; investigating the algorithm’s performance under different
noise distributions, such as sub-exponential noise, could yield further insights. From an experimen-
tal perspective, testing on more diverse problem instances would strengthen the empirical analysis.

Future work could focus on both theoretical and practical extensions of evolutionary bandit learning.
From a theoretical perspective, it would be worthwhile to explore how COEBL or other evolutionary
bandit learning algorithms can be adapted to more complex game structures, such as multi-player or
general-sum games. On the practical side, improving COEBL by incorporating more sophisticated
mutation operators, additional crossover operator, non-elitist selection mechanisms, or population-
based evolutionary algorithms could enhance its performance in more complex settings.
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